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Abstract: Many organizations must produce many reports for various reasons. Although this activity
could appear simple to carry out, this fact is not at all true: indeed, generating reports requires the
collection of possibly large and heterogeneous data sets. Furthermore, different professional figures
are involved in the process, possibly with different skills (database technicians, domain experts,
employees): the lack of common knowledge and of a unifying framework significantly obstructs
the effective and efficient definition and continuous generation of reports. This paper presents a
novel framework named RADAR, which is the acronym for “Resilient Application for Dependable
Aided Reporting”: the framework has been devised to be a ”bridge” between data and employees in
charge of generating reports. Specifically, it builds a common knowledge base in which database
administrators and domain experts describe their knowledge about the application domain and
the gathered data; this knowledge can be browsed by employees to find out the relevant data to
aggregate and insert into reports, while designing report layouts; the framework assists the overall
process from data definition to report generation. The paper presents the application scenario and
the vision by means of a running example, defines the data model and presents the architecture of
the framework.

Keywords: framework for report definition and generation; common knowledge base; ontologies
and high-level data model

1. Introduction

Organizations such as large companies, institutions or government bodies (e.g., central
banks, regional and municipal authorities, credit institutions, and so on) have built pow-
erful information systems to support their business processes and institutional missions.
Very large volumes of data are stored and managed by these information systems, both
internally generated and periodically uploaded from external sources: in fact, in many
cases, external data flows feed the information systems with a certain regularity (e.g., daily,
weekly and monthly). Thus, if from one side the underlying technology has been improved
to deal with ever-increasing amounts of data, from the other side database administrators
and system integrators have practically defined and implemented solutions to efficiently
collect and manage these data flows, optimizing the upload processes as much as possible.

A very critical activity that many organizations must perform is “continuous report-
ing”, i.e., periodically generating reports: in fact, periodical reports are required by many
governmental and regulatory authorities, to monitor the economic and social operators
whose activity is subject to strong rules, to verify that they actually respect them. However,
data gathering and management for generating reports present issues that are independent
of the specific application domain; these issues can significantly reduce the efficiency of
the processes to generate reports. (i) Typically, reports must provide aggregate data, but
they often come from many data sources; consequently, data to aggregate are not defined
based on a standard dictionary and common semantics; usually, this issue is addressed
by manually writing queries that make data homogeneous. (ii) The previous issue can
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be solved only by a very small number of experts, who have both technical skills and
domain knowledge: these are very rare people, difficult to find and enroll. (iii) The users
who are in charge of preparing reports typically do not have complete knowledge about
the meaning of fields in data sources; in contrast, they need a uniform and homogeneous
view of data they must aggregate into reports, possibly with clear semantic annotations.
(iv) Users in charge of generating reports are not database experts: they need a high-level
tool that provides access to data in a transparent way with respect to technicalities of data
management. (v) Terms and concepts often are informally defined by communities and
their meaning often varies from one community to another; furthermore, specialists use a
lot of complex interconnected concepts, including those defined by international standards,
developed to provide global services. (vi) A common comprehension of terms and their
semantics is essential to define reports effectively and efficiently; this issue could be solved
by building a common dictionary of terms.

Different business areas experience these problems. This work considers the appli-
cation contexts of the “financial market”. This is usually characterized by high volumes
of data generated every day. Banks and financial institutions continuously exchange data
flows describing financial transactions. These data flows, from different sources, constantly
feed information systems and their databases. Unlike traditional activities, these data
are essential for reporting activities, since reports are necessary not only for internal use
(e.g., auditing and decision making). In fact, the European Central Bank (known as BCE)
constantly monitors the financial status of banks; for example, BCE asks for periodical
reports that summarize the performance of loans managed by banks.

The large amount of data to aggregate to produce summaries, as well as the repeated
and possibly frequent generation of reports, overseen by employees who usually do not
have technical competences in data management, are practical obstacles for organizations.
Even though they are provided with powerful information systems that can deal with large
volumes of data for operational activities, reporting activities are often not supported by
software tools in an integrated way. This situation causes waste of time, delays, errors and
high costs.

On the market, there are many systems that enable the analysis of large amounts
of data, such as Microsoft Power BI, QlikView and Tableau. These tools are devised for
the activity called ”business intelligence” and aim to retrieve, analyze, transform and
report on dashboards data to enable easy and accurate analysis of data usually contained
in data warehouses [1]. However, users involved in business-intelligence activities are
analysts, unusually with good knowledge of the application domain; furthermore, reports
are generated as the output of the analysis, usually performed in a one-shot way. Finally, a
good preliminary knowledge about data to analyze is necessary, to effectively use these
tools. In other words, BI tools are not suitable for “continuous reporting”, which is a regular
business activity to be performed by employees.

The novel framework named RADAR (acronym for “Resilient Application for De-
pendable Aided Reporting”) aims to provide a “bridge” between data and employees who
must generate reports. The acronym synthetically summarizes its goal: the framework is
aimed to aid reporting activities, so that data put into reports are dependable; furthermore,
the application should be resilient, meaning that it collects all the knowledge about data
and application domain for a possibly-long period of time. Many different features charac-
terize the RADAR Framework. (i) A knowledge base is managed, to collect all terms that
characterize the application domain in a common dictionary. (ii) The framework applies
the concept of ”Operational Data Store” (ODS) [2,3], i.e., a database able to provide an
integrated but still operational view of data; this way, all data sources are integrated into
one unique database (called RADAR DB), but they are not transformed towards a multidi-
mensional representation. (iii) Data are modeled by means of the RADAR Data Model, i.e.,
a hybrid solution between an ontology of terms and concepts and the actual operational
and relational schema of data sources; the resulting RADAR Schema gives a high-level view
of the collected data, which are semantically characterized by ontological concepts. This
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way, data collected within the RADAR DB actually gives a ”concrete view” to ontological
concepts. (iv) The RADAR Data Model also explicitly maintains mapping between data
gathered from source databases and their representation within the framework; this way,
the work of database administrators is simplified and the knowledge about mapping is
explicitly maintained. (v) The RADAR Data Model encompasses the RADAR Rule Language,
whose goal is to provide domain experts with a practical yet high-level formalism to en-
code how to complete properties that do not correspond to attributes in the source data.
(vi) Employees in charge of generating reports are provided with a clear and high-level
view of data; they can browse the knowledge base in general and the RADAR Schema in
particular, to easily retrieve and aggregate data to put into reports, for which they define
the layouts.

Notice that the features of the RADAR Framework are quite effective in addressing the
above-mentioned issues regarding the activity of reporting: (i) database experts do not have
to write low-level queries, and the mapping between source databases and the RADAR DB
is clearly described and documented; (ii) domain experts provide their knowledge about
the application domain in a high-level way through the RADAR Data Model, obtaining the
RADAR Schema, which lasts over time and documents the knowledge; (iii) employees can
easily browse the RADAR Schema by moving from ontological classes to retrieve data on a
semantic basis; (iv) reports are directly tied to data in the form provided by the RADAR
Schema, so as technicalities to retrieve data and generate reports are automatically dealt
with by the RADAR Framework.

In comparison with our previous work [4], which for the first time gave a (still partial)
presentation of the RADAR Framework, the present paper provides many contributions. (i)
The application scenario is clearly described, by exploiting a running example. (ii) The
RADAR Data Model is extensively and formally defined in all its aspects. (iii) A complete
RADAR Schema is provided for the running example. (iv) The architecture of the RADAR
Framework and its components are extensively presented, showing screenshots of the user
interfaces to clarify the usage perspective of the framework.

The paper is organized as follows: Section 2 introduces relevant related works and
technical background. Section 3.1 presents the running example that is considered in this
work, while Section 3.2 describes, respectively, the problem and the approach we devised,
together with the vision we identified to solve the problem. Section 3.3 presents the general
architecture of the RADAR Framework. Section 4 introduces the RADAR Data Model. Then,
Section 5.1 describes each component of the Knowledge Base, while Section 5.2 presents the
Report Designer in details. Finally, concluding remarks are reported in Section 6.

2. Related Works

This section presents the main contributions published in the literature in the field
of ontology-based generation of reports. In particular, Section 2.1 summarizes the funda-
mental concepts related to knowledge representation through ontologies, focusing on the
paradigms that are specifically related to this work; Section 2.2 presents the works related
to ontology-based generation of reports, in particular focusing on financial reporting.

2.1. Reporting and Knowledge Representation

Many organizations, presently, face the problem of extracting data from heterogeneous
data sources. Reporting activities are performed by organizations of different sizes and
often refer to large and heterogeneous collections of data, to aggregate in various manners.
Of course, such collections of data may contain redundant or inconsistent information.
Moreover, the fact that reports are required by authorities with regular frequency and rigid
templates makes the reporting activity further complex and critical.

One possible solution to deal with the problem is the use of business intelligence (BI)
tools. Already at the birth of computer science, IBM researchers, as shown in [5], tried to
find a solution to support the management of a company in making decisions. Business
intelligence systems are much more complex than what one would like to achieve, i.e.,
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a tool to help domain experts produce reports. The work proposed by R. Rao in [6] is
helpful to understand: it presents a system for labeling data (metadata) and extracting
knowledge from unstructured data. In fact, BI does not only include report generation,
but also statistical inference and probabilistic simulation, KPI optimization and so on. As
explained in [7], BI supports managers to make important strategic decisions within a
company; experienced analysts are necessarily involved. In contrast, this work focuses
on the problem of continued report generation, performed in a routine manner by regular
employees, not by analysts from possibly-heterogeneous data sources.

Reporting systems can exploit ontologies to characterize data. Ontologies are semantic
data models that define a vocabulary of concepts, which characterize an application domain,
together with the properties that can be used to describe those concepts. In fact, from a
general point of view, an ontology denotes the attempt to formulate an exhaustive, rigorous
and hierarchically structured conceptual scheme within a given domain, which can be used
as the foundation of a knowledge base [8–10].

Conceptualizing a domain corresponds to model phenomena of the real world that
characterize the domain of interest. Thus, a domain can be conceptualized by explicitly
defining concepts, properties and constraints that concur to describe the phenomena of
interest [11]. For example, in the financial domain, the concept of “financing” and the
concept of “amortization plan” are characterized by precise properties.

An ontology is described by the following main components:

• Concept/Class. It represents a category of (either physical or virtual) real-world objects.
For example, it can be a task, a function, an action, a physical object, a notion or
an idea, and so on. Concepts can be abstract or concrete, elementary or derived by
aggregating other concepts.

• Relationship. It represents a correlation among the concepts/classes.
• Axioms. They are true statements about the domain described by the ontology. They

are used to specify the semantics of concepts. They generally specify how the concep-
tual vocabulary can be used.

Moreover, an ontology can be classified according to the following categories, as
presented in [12]:

• Top-level (foundational) ontology. These are interdisciplinary ontologies, which consti-
tute the basic bricks of multiple domains, i.e., different ontologies could derive from
the same top-level ontology.

• Domain ontology. It models specific portions of knowledge by identifying entities of
interest and their relationships, which characterize a given domain. In principle, a
domain ontology should specialize a top-level ontology.

• Application ontology. It specializes a domain ontology with detailed concepts for very
specific application domains.

In the literature, several ontology-based solutions are used to implement reporting
systems applied in different domains. The approach (initially presented by Berners Lee
in [13]) is based on the definition of a knowledge base only defined by considering concepts,
neither data nor their management issues are considered. The main critical issue arising
from such an approach is that these concepts do not correspond to a real scenario. For this
reason, in our approach real data and their relationships contribute to define the concepts
in the knowledge base.

In [14], Bontcheva et al. presented an approach for the automatic generation of reports
from domain ontologies in the Semantic Web. In their project named MIAKT (acronym
for Medical Imaging and Advanced Knowledge Technologies), they devised a “Natural-
Language Generator” (NLG) to automatically generate reports from knowledge encoded
in a domain ontology.

The literature also presents approaches in which ontologies are used for organizing
and managing data sources and repositories (like data warehouses), to extract relevant
information for reporting systems. In these cases, a report can be seen as a set of different
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pieces of information that are processed (e.g., aggregated) to extract knowledge from them.
In [15], Romero et al. proposed the AMDO (acronym for Automating Multidimensional
Design from Ontologies) method; it is a proposal for discovering multidimensional knowl-
edge contained in data sources; specifically, the work introduced a user-centered approach
to support elicitation of end-user requirements and the multidimensional design tasks of
data warehouses.

An interesting approach was also proposed by Nebot et al. in [16], where they de-
fined a Semantic Data Warehouse as a repository of ontologies and semantically annotated
data resources. They developed an ontology-driven framework to design multidimen-
sional analysis models for data warehouses. In details, they defined an integrated ontol-
ogy, called MIO (acronym for Multidimensional Integrated Ontology), which includes the
classes, relationships and instances representing the analyses developed over dimensions
and measures.

Another way to tackle the problem is using the new paradigm called “Ontology-
based data access” (whose acronym is OBDA). Within an information system, this paradigm
superimposes a conceptual layer on the data layer. This conceptual layer allows users
to have a conceptual view of the information in the system [17,18]. In the literature, this
paradigm is also known as “Virtual Knowledge Graph” (whose acronym is VKG): instead of
structuring the integration layer as a collection of rigid relational tables, the rigid structure
is replaced by flexible graphs that are kept virtual, which embed domain knowledge. [19].
Our approach is very close to this view of the problem: the RADAR Data Model integrates
both the ontological concepts and the actual data.

Underlying all the approaches above reported is the goal of “Ontology and Linked
Data”. The main goals of an ontology concern the abstraction of the domain of interest
in an information system, and the definition of a mapping to relate data to sources and
instances of concepts and roles in the ontology itself. The mapping is performed in a simple
way using “Linked Data”, as shown in the work by Poggi et al. [20].

From a general point of view, Linked Data allow for publishing data on the web in a
way that is readable and interpretable by a machine. Their meaning is defined by a string of
words and markers to build a data network belonging to a domain, which can be connected
to other data sets related to other domains on the Web. This enables for defining a global
data network, whose contents can be exchanged and interpreted by machines (this is the
basis for the semantic Web [13,21]). Consequently, formats for representing ontologies play
a critical role. In such a scenario, the RADAR Framework, which implements the notion of
“Operational Data Store” (ODS), can be in the middle between an ontology of terms and
concepts and the actual operational (and relational) schema of the source data. Moreover,
it makes use of a data model by means of which it is possible to define a schema that gives
a high-level view of the source data based on the concepts described in the ontology for
the specific application domain.

As far as formats for representing ontologies are concerned, it is worth mentioning
a W3C recommendation that specifies the JSON-LD format [22]. JSON-LD is a standard
format for encoding Linked Data using JSON as the basic syntactic formalism [23]. Specifi-
cally, JSON-LD is designed around the concept of “context”: it links object properties in a
JSON document to concepts in an ontology. To convert the JSON-LD format to RDF (the
“Resource Description Framework” [24], the format originally used for the Semantic Web),
JSON-LD allows values to be coerced to a specified type or to be tagged with a language. A
context can be embedded directly in a JSON-LD document or put into a separate document
and referenced by different documents.

2.2. Literature Concerning the Running Example

The literature also provides papers that are related to our running example, i.e.,
generating reports related to the financial application domain. Hereafter, some interesting
works are presented.
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In the financial market, the problem of producing reports requested by controlling
institutions (such as central banks) is not new; however, the advent of computer science
has changed the application scenario: in the past, the application context was much less
dynamic than now; in particular, the number of requested reports was very limited and
did not change in time; data to provide were simpler to obtain and the layout of reports
was stable in time. The advent of computer science and the increasing dynamicity of the
contemporary world have changed the paradigm. As reported by [25], the Bank for Inter-
national Settlements (BIS) issued the Basel Committee on Banking Supervision directive
(known as BCBS), which aims at forcing organizations to automate reporting processes,
so as to reduce the dependency on manual input. However, the costs of introducing au-
tomated reporting processes caused the rising of significant obstacles in order to comply
with the above-mentioned directive. Moreover, the correct definition of a reporting model
is strongly related to the right interpretation of the different terminology used by such
organizations. In such a scenario, ref. [26] presented how the Semantic Web may be seen
as an effective way to present the data, by considering them into a linked database. In
that work, the Semantic Web is formalized as a description of concepts, and corresponding
terms, to describe data and information stored within a given database.

The approach presented in [27] explains how financial companies can handle their
data and an associated vocabulary using semantic technologies. Their work examines the
approach followed by experts, employees and analysts involved in financial reporting, to
identify social and institutional mechanisms being applied to construct a common standard
vocabulary, using ontology-based models. Indeed, a common and standardized ontology-
based vocabulary will have to underpin the design of next-generation semantically-enabled
information systems for financial companies. For this reason, the authors described an ap-
proach that uses and extends the “Financial Industry Business Ontology” (whose acronym
is FIBO) [26,28]. FIBO specifies semantic linking between the financial concepts, as well as
their descriptions.

FIBO is certainly a consolidated ontology for the financial domain; for this reason, it
has been merged into the more recent ontology named “Schema.org” [29]. As reported
in [30], Schema.org is a well-defined and large heterogeneous vocabulary that covers many
domains. It has been thought to be applied for semantically annotating Linked Data;
however, this goal is far away to be achieved, mainly due to the size of its vocabulary, as
well as to the lack of guidance for the users to decide which classes and properties must
be considered (this lack leads to inconsistent semantic annotations). To address this issue,
some approaches were proposed to analyze the vocabulary in real-world applications [31],
as well as to extend it for defining more precise and inconsistent annotations.

Another very important context in the field of reporting is the environmental sector.
Although this context can appear very far away from the financial sector, it is very useful to
understand the problem of continuous reporting, since it is facing the same issues faced in
the context of the financial market. Indeed in recent years, environmental and ecological
issues have become of particular interest from several points of view, particularly regarding
the ability to acquire and manage heterogeneous data from measuring instruments such as
sensors, for analysis purposes.

According to [32], ecology is a multidisciplinary science that involves physical, chemi-
cal and biological factors. The need to access such different data sources becomes partic-
ularly important in the analyses carried out to address ecological issues, such as studies
on pollutants. Indeed, analysts and governments increasingly need integrated analyses to
make decisions, to manage the environment in a sustainable way.

In this case, as reported by the literature, ontologies are useful as they represent a
formal tool in the definition of concepts and relations, improving the interpretation and
integration of information coming from heterogeneous sources and stored in different
databases. For example, the work proposed by Madin et al. in [33] presented the problem
caused by the lack of formalized concept definitions in ecological and environmental
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topics, and provided an interesting review of the positive efforts that could be obtained by
developing ontologies for this context.

Similarly, the works proposed in [34–37], propose ontologies for the environmental
sector, facilitating the extraction of data from information systems.

The problem of ontology-based generation of reports is not only of interest to the
financial and environmental fields, but can be considered in many other areas. For example,
in [38] the authors adopt the same approach for data mining in the oil field. In [39] examples
of application of the ontology-based data-integration paradigm are presented, in particular,
different approaches for extracting information from an industrial plant by mapping data
through an ontology are presented. In [40], an example in the medical field is presented.

Further examples of applications can be found in all fields. This work is focused
on the financial sector because it can be considered to be the most-interesting sector for
developing innovative reporting applications.

3. Running Example, Approach and Architecture

This section is devoted to illustrate the practical problem, from which the idea of
developing the RADAR Framework came out, the approach we followed to address it and
the architecture of the RADAR Framework. The practical case is simplified into a running
example that will be exploited throughout the remainder of the paper.

3.1. Running Example

Consider the case of a bank that operates on the market of loans. For various reasons,
some banks sell their loans to other banks, which acquire them and become the real
owners of sold loans. Let us suppose that the bank called MyBank buys loans from
other banks. The contract by means of which loans are bought is called “Cession” and
describes the acquired loan. Although MyBank is the owner of these loans, the interaction
with the end customer is still performed by the original bank, so MyBank receives large
data flows concerning the acquired loans from other banks: specific technical solutions
are implemented by technicians to receive these data flows and store them into (usually
relational) databases. Data flows usually update the list of paid installments and the
amortization plan of each loan.

Depending on the economical capability of customers, i.e., their capability of regularly
paying installments, loans are specifically classified: (i) a “Performing Loan” is a loan that
has neither arrears nor unpaid installments; (ii) a “Defaulted Loan” is a loan that is either
close to default or with many unpaid installments. (iii) A “Delinquent Loan” denotes
a loan that has significant troubles but there is still the possibility that becomes again
performing. Each type of loan is further subdivided according to other features, such as (a)
“Mortgage Loan” (i.e., a loan that is secured by a mortgage), (b) “Guaranteed Loan” (i.e., a
loan that is not secured by mortgages but by other guarantees, such as pledges), and, finally,
(c) “Unguaranteed Loan” (i.e., loans that are not supported by any kind of guarantee).

National and international regulatory bodies, as well as financial-rating agencies (one
of the most famous is Moodie’s) ask the bank to send them reports concerning its degree of
reliability with respect to non-performing loans, to be informed if the financial situation of
the bank is getting bad. Employees responsible for auditing and control of the financial
state of the bank must prepare these reports. Some typical reports to prepare and send are
the following ones.

• Portfolio 1. This report provides summary data based on a few categories: (i) “Out-
standing Principal”, which summarizes the theoretical residual debt; (ii) “Accrued In-
terest”, which summarizes the accrued interest and delinquent installments;
(iii) “Unpaid Outstanding Principal”, which summarizes the actual remaining debts.
These aggregations are also disaggregated based on loan status (“Performing”, “Delin-
quent” and “Defaulted”) and related guarantees (“Mortgage”, “Guaranteed”
and “Unguaranteed”).
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• Portfolio 2. This report provides aggregate data related to advance payments (closure
of debts) during a given quarter, together with an immediately preceding quarter.

• Loan by Loan. This report summarizes the status of each single loan. For each loan,
apart from the usual identification data of the bank, the customer and the loan, the
current status of the loan, the current rate, the amount of the loan secured by mortgage
(and so on) are reported.

To produce the above-mentioned reports, employees must retrieve raw data previously
received through the incoming data flows, aggregate them and put the aggregate values
into specific report layouts. To effectively perform this task, they also need to know the
semantics of data to aggregate, as well as the data structures of the database where data
are stored. However, these competences are hardly owned by the same person. At least
two different types of employees are involved: experts of the application domain (usually,
economists) and computer technicians. This situation makes the process to generate a new
report quite hard and long.

For this reason, the primary objective of the tool that we have developed was to allow
employees without in-depth knowledge of the application domain to generate reports.
An important feature of the reports is the possibility of generating different versions of
the same report over time, as regulators such as the BCE require monthly, quarterly and
annual reports.

3.2. Problem Description and Approach

The running example presented in Section 3.1 is a typical example of practical sit-
uations in which reporting is a crucial business task. Nevertheless, it also shows the
complexity behind “continuous reporting”, which is a business activity to be regularly
carried on by employees. Hereafter, the various types of complexity are discussed.

• Technical Complexity. Gathering and processing the possibly-large amount of data to
aggregate in reports asks for integrating many different technologies, such as APIs,
streaming, relational databases, reporting tools, and so on. Specialized technicians are
involved to deal with this kind of complexity.

• Business Complexity. Many people perceive reporting as a simple task. However, this
is not true, thinking about the complexity of the business activities for which reports
must be produced. In fact, national and international regulations and regulatory bod-
ies ask for specific reports with specific interpretations of concepts used to define what
they want in reports. Domain experts must contribute with their domain knowledge.

• Skill Complexity. Both technical and business complexity can be dealt with only by a
wide variety of skills. However, these skills are hardly owned by the same person:
the scenario asks for many people with different skills in various areas (e.g., technical
skills, general and domain-specific business skills, and so on) in different times.

The above considerations can be used to identify the key issues behind reporting activities.

• Transferring and Provisioning Domain Knowledge. Business complexity can be addressed
only by transferring knowledge from domain experts to employees. However, these
people rarely work together. Consequently, it is necessary to gather and formalize
domain knowledge, possibly by associating it to data by exploiting ontologies.

• Accessing Data. Employees in charge of generating reports must access the data to use
to generate reports. However, data are usually stored within relational databases and,
usually, employees are not familiar with this kind of tools (as the SQL language, in
particular). A bridge between data-management systems and employees is necessary,
possibly based on domain knowledge.

• Easy Design of Reports. Once data are accessible and comprehensible (in relation to the
application domain), high-level tools for generating reports by aggregating data are
necessary, to assist employees in a non-tedious and efficient way.

To exemplify, we are thinking about a “bridge” between all the activities necessary to
collect data, the domain knowledge and the employees that must design reports. In fact,
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often the lack of a standard vocabulary makes it hard to satisfy requirements for reports;
this lack should be overcome by defining a set of concepts and terms that are typical of the
application context, provided in advance by domain experts and later used by employees.

Let us consider another type of obstacle that characterizes reporting activities. Data
coming from the source databases often present attributes whose names do not clearly
denote their semantics. The meaning of these “non-descriptive names” is known by
database administrators, but they are not comprehensible by employees: if they were
provided with a high-level view of data, they could easily browse and understand data
to aggregate. In other words, we are thinking about an environment where data, domain
knowledge and skills are integrated, to make designing and generating reports from raw
data effective and efficient, to provide a bridge between data and domain knowledge.

It becomes clear that a software framework able to assist report designers is necessary
for organizations. The RADAR Framework has been designed to provide a solution to this
problem; for the best of our knowledge, there is not another framework that is based on
the same vision, by means of which at design time we identified the features that the
framework had to provide.

• Conceptual characterization. Semantics of data must be conceptually characterized by
means of an ontology. In fact, an ontology can provide the conceptual framework to
improve data comprehension.

• Concrete and high-level view of data. A data model is introduced, able to relate real data
to ontological concepts, as well as to provide a concrete vision of data. This model,
which is called RADAR Data Model, is an object-oriented model in which classes
and relationships are called Concrete Classes and Concrete Relationships (respectively).
Report designers are provided with the RADAR Schema, which is an instance of the
RADAR Data Model for the managed data. Data to put in reports are stored within an
internal database called RADAR DB, whose schema is compliant with the RADAR
Schema. This way, report designers will directly operate on the RADAR Schema and
will be totally unaware of the structure of source data.

• Mapping from RADAR Schema to Source Schema. The RADAR Schema must be mapped
into the actual schema of source data, to automatically transfer data from the exter-
nal sources to the RADAR DB; furthermore, this information will be precious for
technicians who will have to maintain the gathering process.

• Defining Update Rules. The RADAR Rule Language is a language defined to complete
properties that do not correspond to attributes in the source data. These rules allow
for defining how to derive properties that are missing in new data.

The general vision behind the RADAR Framework is to play a role similar to an
“Operational Data Store” [2,3], able to provide a unified view of all the data necessary to
produce reports, data that are managed by possibly different storage systems specifically
designed to support traditional operational activities. Consequently, the RADAR Framework
must rely on an internal database (the RADAR DB) and provide several tools for the various
types of users.

The architecture of the RADAR Framework (presented in Section 3.3) is the result of the
considerations made above.

3.3. Architecture

The architecture of the RADAR Framework is fully modular, to easily integrate it with
existing information systems. In fact, it is highly probable that data to process are secured
as much as possible within areas of the information system with limited access (this is
necessary to protect highly-sensitive data from hacker attacks). Consequently, even though
the RADAR DB is obviously separated from the databases of the information system, it
cannot be outside the protected area. Therefore, the architecture is organized in two distinct
layers, called Design Layer and Information-System Layer.
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The overall architecture of the RADAR Framework is depicted in Figure 1. The Design
Layer is above the dashed line, while the Information-System Layer is below the dashed line.
In Sections 3.3.1 and 3.3.2 an overview of their components is presented.

Figure 1. Architecture of the RADAR Framework.

Before going on, it is worth explaining the graphical conventions adopted for Figure 1.

• Rectangles with orange borders represent software tools that provide a kind of
user interface;

• Rectangles with green border represent software services;
• Rectangles with black border represent storage and archives;
• Blue arrows without labels represent synchronous communications between the

connected software tools (the arrow represents the direction of the main data flow);
• Rectangles with light-blue background represent documents or descriptions specifi-

cally generated and received by software tools;
• Blue arrows labeled with documents or descriptions represent asynchronous commu-

nications between software tools, performed through the generation of documents
and descriptions denoted by the label.

The architecture of the RADAR Framework relies on the concept of “micro-service” [41].
Even though there is not a formal definition of “micro-service architectures”, it is possible
to describe their common characteristics. A “micro-service architecture” can be referred to
as “an approach to develop a single application as a suite of small services, each running in
its own process and communicating with the other components of the architecture, sharing
input and output data” [42]. The choice for an architecture in which each micro-service
is processed independently of the other micro-services allows the whole process to be
decomposed into smaller and easier running processes through user interfaces. Micro-
services are deployed independently and in a fully automated way; they are also capable
of using different data storage technologies.

3.3.1. Design Layer

This layer (depicted in the upper part of Figure 1) provides tools for knowledge
design and report design. The Design Layer encompasses a series of components that are
detailed below.

• The Knowledge Base persistently stores the overall RADAR Schema, which is the core
description for the RADAR Framework. The name is motivated by the fact that the
RADAR Framework manages an ontology, concrete classes, RADAR Rules and external
tables (see Section 4), which are possibly semantically annotated; all of them con-
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stitute the knowledge necessary to actually collect data, interpret them, design and
generate reports.

• The Knowledge-Base Manager is a suite of micro-services that are responsible to create
and manage the overall RADAR Schema, stored within the Knowledge Base. The module
deploys various descriptions, which are used to set up the Information-System Layer.
They are (i) the DB Schema, used to create the RADAR DB and (ii) ETL Directives, which
pilot the ETL (Extract, Transform and Load ) process that transfers data from external
sources into the RADAR DB. The Knowledge-Base Manager is presented in details in
Section 5.1.

• A Source Ontology (or Reference Ontology) is loaded by the Knowledge-Base Manager, and
saved into the Knowledge Base, to constitute the basis for defining the RADAR Schema.

• The Report Designer provides analysts with a user-friendly interface, able to browse
the Knowledge Base so far built, define aggregations and design reports. The Report
Designer generates Report Definitions and Aggregation Queries, which are stored within
the Report Folder; through these documents, report layouts and aggregations necessary
to obtain them are persistently saved.

The reader can notice that the Design Layer is not specifically tied to the actual in-
formation system; furthermore, the micro-service approach makes it independent of the
executing platform.

3.3.2. Information-System Layer

This layer encompasses databases, applications, services and every computational
resource that constitutes the information system of the company. As far as our framework
is concerned, this layer presents the following components (see the lower part of Figure 1).

• The Source DBs are storage systems, usually relational databases, which store and
provide the External Tables in which data to integrate are stored. Notice that the way
these tables are populated depends on the specific applications that provide source
data: for example, in the case of the running example external tables store flows about
cessions and payments received from external systems.

• The RADAR DB is the database in which all data possibly involved in reporting are
collected, when they are transferred from the Source DBs. The transfer is performed
periodically by ETL (Extract-Transform-Load) tasks. The data in the RADAR DB will
then be used to perform further aggregations, necessary as input for generating
reports. The RADAR DB is actually managed by a relational DBMS; nevertheless,
in order to be not tightly coupled with a specific DBMS, the Hibernate [43] bridge is
adopted: this way, any relational DBMS can be used to manage the RADAR DB.

• The ETL Service is the micro-service in charge of transferring data from the Source
DBs to the RADAR DB, piloted by the ETL Directives provided by the Knowledge-Base
Manager in the Design Layer.

• The Rule-Execution Service is a micro-service that acquires the definitions of RADAR
Rules (which are an integral part of the RADAR Data Model, see Section 4.3.2) from the
Knowledge Base by synchronously calling the Knowledge-Base Manager, to execute them
on the RADAR DB when new data are uploaded.

• The Report-Generator Service is a micro-service whose goal is to actually generate
reports in xlsx format, based on (i) the data stored in the RADAR DB, (ii) a Report
Definition generated by the Report Designer and (iii) the Aggregation Queries necessary
to compute the aggregate measures that must be inserted into the final report. Report
Definitions and Aggregation Queries are retrieved by accessing directly the Report Folder,
in which the Report Designer stores them: this way, changes in report layouts are
seamlessly deployed to the Report-Generator Service.

The reader can notice the advantages of the separation of the architecture in two
distinct layers: while the components of the Information-System Layer are deployed on the
computational resources that actually support the Enterprise Information System (which
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is typically a protected environment subject to many restrictions), the Design Layer can be
installed and used independently. This way, it is possible to obtain the highest possible level
of decoupling of the two layers, with minimal impact on the actual information system.

4. RADAR Data Model

This section introduces the RADAR Data Model. Based on it, data managers and
domain experts design the RADAR Schema, which will be provided to report designers to
retrieve desired data and aggregate them to design reports.

The RADAR Data Model is structured in three different layers:

• Ontological Layer. This layer defines the Reference Ontology that provides the conceptual
framework for managed data.

• Concrete Layer. This layer provides a high-level and uniform view of actual data, in a
way suitable for report designers.

• Mapping Layer. This layer maps classes defined in the Concrete Layer to source data,
used to feed the RADAR DB, i.e., the internal database of the RADAR Framework.

Figure 2 illustrates the overall RADAR Schema for the running example. Notice the
three layers in which the model is subdivided. In the remainder of this section, we introduce
all the components of the RADAR Data Model.

Figure 2. Graphical representation of the unified view of ontology (top), high-level logical model
(middle) and source tables (bottom) for the running example.

4.1. Ontological Layer

This layer describes the Reference Ontology, i.e., the ontology that provides basic and
abstract concepts that are made concrete by the RADAR Data Model.

An ontology is defined by a graph that contains ontological classes and inheritance
relationships between them. The following definition does not want to redefine the well-
known concept of ontological class; its goal is to define how they are denoted in the RADAR
Data Model and within the RADAR Framework.

Definition 1. Ontological Class. An “Ontological class” (or “concept”) is defined by the tuple:

oc : 〈name, subclass_o f , LP, annotation〉
where “name” corresponds to the name of the ontological class (ontological classes are uniquely
identified by their name), while “subclass_o f ” is the name of the direct super-class that oc derives
from (if null, oc is the root of the ontology). Furthermore, “LP” (with LP = {opd1, opd2, . . . }) is
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the set of “local-property descriptors”. Finally, the “annotation” field in oc is a textual message
that explains the meaning of the class.

Each ontological-property descriptor opdi = 〈name, data_type, annotation〉 denotes a prop-
erty of the class defined locally, i.e., not inherited from any super-class; a property is characterized
by its “name” and a “data_type” (a string denoting the datatype, i.e., “integer", “decimal",
“boolean", “string", “date"); the “annotation” field is a text message that explains the meaning
of the property.

The full set of properties oc.P encompasses both local properties and inherited properties,
i.e., oc.P = oc.LP ∪ oc.subclass_o f .P. This way, it is possible to define the following constraint,
to avoid overriding of properties:

π(name)oc.LP ∩ π(name)oc.subclass_o f .P = ∅

where the dot notation oc.subclass_o f .P denotes the list of properties inherited from the super-
class; π(name)S is the projection of a set of tuples S on the “name” field (taken from Relational
Algebra [44–46]).

Definition 1 is enough to define concepts admitted in the Ontological Layer. Further
notice that the inheritance relationship induces a tree representation of ontological classes
and their relationships.

Example 1. The Ontological Layer is represented in Figure 3 (extracted from the upper part of
Figure 2). Specifically, the Reference Ontology is the Schema.org [29], which has incorporated the
FIBO standard [28]; in the figure, the fragment depicted in the figure is the one related to the rest of
the schema. In fact, the adopted ontology contains the definition of a set of basic concepts and classes
in various fields, including finance. Here, terms such as “Financial product”, “Bank Account”,

“Loan Or Credit”, “Payment Service”, and so on are defined.

Figure 3. Excerpt of the Schema.org Reference Ontology imported within the RADAR Data Model for
the running example.

4.2. Concrete Layer (Core RADAR Data Model)

The core of the RADAR Data Model is the Concrete Layer, i.e., the layer where ontological
classes are made concrete, to be able to fit real data.

4.2.1. Concrete Classes

Definition 2. Concrete Class. A “Concrete Class” represents a specific concept or object described
by data. It is defined as a tuple

cc : 〈name, P, K, annotation〉
where “name” uniquely identifies the concrete class, while “P” (with P = {p1, p2, . . . }) is the set
of properties (property descriptors) pi = 〈name, . . . 〉 (later defined in Definition 3) that denote the
properties of the concrete class; “K” denotes the key (or set of key-property names), whose value
uniquely identifies each single instance of the class. The “annotation” field is a textual message
that explains the meaning of the class.

To be valid, the set of property names π(name)cc.P must include the set K of key-property
names; this constraint is formally expressed as

π(name)cc.P ⊇ cc.K, with cc.K 6= ∅.
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The notion of property (descriptor) for a concrete class is formalized by the following
Definition 3.

Definition 3. Property and Property Descriptor. A “Property” represents an aspect or feature
or attribute that characterizes a class. It is defined by a “Property Descriptor”, which is the
following tuple:

p : 〈name, p_type, data_type, prede f ined, annotation〉
where “name” is the unique name (within the class) of the property, while “p_type” denotes the
type of property, i.e., “categorical-closed" (the property is categorical and has a closed set
of predefined values), “categorical-open" (the property is categorical and has an open set of
values), “measure" (the property is numerical).

The “data_type” field defines the data type of property values, i.e., “integer", “decimal",
“boolean", “string", “date". The ”prede f ined” field is the set of predefined values in the case
that the property type p_type is “categorical-closed".

The final “annotation” field is a textual message that explains the property and its values.

In the Concrete Layer, inheritance is considered as well. Definition 4 defines the concept
of “subclass”.

Definition 4. Concrete Subclass. A concrete class can be specialized into a “Concrete Subclass”,
which is formally defined by the tuple:

sc : 〈name, LP, subclass_o f , annotation〉
where “name” uniquely identifies the subclass, “LP” is the set of “local properties” of the subclass
(where a property is defined as in Definition 3), and “subclass_o f ” is the name of the super- class
that is specialized by sc. Finally, the “annotation” field is a textual message that explains the
meaning of the subclass.

A subclass inherits the properties and the key from its direct super-class. Thus, the full set of
properties and the key of a concrete subclass are denoted as:

1. sc.P = sc.LP ∪ sc.subclass_o f .P
2. sc.K = sc.subclass_o f .K

To be valid, the subclass must respect the following constraint:

π(name)sc.LP ∩ π(name)sc.subclass_o f .P = ∅

that is, no property names inherited from the super-class can be redefined.

Once defined the concepts of concrete class and subclass, the notion of “instance”
must be defined.

Definition 5. Instance. Consider a concrete class cc and the pool SC(cc) = {sc1, sc2, . . . } of its
subclasses. Let us denote with P(cc) = π(name)(cc.P) ∪sc∈SC(cc) π(name)(sc.LP) the aggregated
set of property names.

An “Instance” o of the concrete class cc is a key-value map o(ki) = vi, where ki ∈ P(cc)
is a property name belonging either to the cc concrete class or to any of its subclasses. If a name
k ∈ P(cc) is not defined in the o instance, it is assumed that o(k) =null, meaning that the value
for k is missing.

Notice that one single instance o of the cc concrete class covers all the subclasses of cc.
Depending on the specific data source the instance comes from, it could happen that some
property is not defined; in this case, the property has the null value.

Furthermore, based on Definition 5, it is possible to say that the RADAR DB is a “con-
tainer of instances”, in which all known instances of concrete classes and their subclasses
are stored.
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Example 2. The concrete layer in the RADAR Schema for the running example is zoomed in
Figure 4; Figure 5 depicts the properties for the concrete classes. Four concrete classes are in the
layer, which are hereafter explained.

Figure 4. Concrete Layer for the running example.

Figure 5. Properties of concrete classes in the RADAR Schema for the running example (depicted in
Figure 2).

The Cession concrete class denotes the contract by means of which a loan has been
bought by the bank; in practice, it denotes the loan itself. The Financing_State concrete
class denotes the state of a loan at a given time (typically, a month). It reports the number
of paid and unpaid installments, the residual debt and so on; there is an instance for each
passed installments, to represent the overall history of the loan.

The Amortization_Plan concrete class reports the full amortization plan for each
instance of the Financing_State concrete class; for example, if the loan has 120 install-
ments, for each instance of the Financing_State concrete class there are 120 instances
of the Amortization_Plan concrete class. Why this apparent redundancy? Because the
amortization plan can change over time and flows coming from external banks report, for
each new state of the loan, the full list of past and future installments.

Finally, the Deposit concrete class denotes deposits that guarantee the loan.
The Financing_State class has two subclasses, named Moodys_State and BCE_State,

which describe how the state of a loan is evaluated based on Moody’s (one of the World’s
most important private rating agencies) rules and BCE (the European Central Bank)
rules, respectively.

4.2.2. Look-Up and Virtual Relationships

The RADAR Data Model provides the concept of “relationship”, declined in two
different ways, i.e., Look-Up Relationship and Virtual Relationship.

Definition 6. Look-Up Relationship. A “Look-Up Relationship” is defined by the tuple:
lr : 〈name, f rom_cc, to_cc,

re f erences : list_o f (pp : 〈re f erencing_prop, target_prop〉),
annotation〉
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where “name” uniquely identifies the relationship, “ f rom_cc” is the “source concrete class”,
while “to_cc” is the “target concrete class”; “re f erences” is the list (pp1, pp2, . . . ) of pairs
ppi : 〈re f erencing_prop, target_prop〉 of property names that are related through the Look-
Up Relationship. The “annotation” field is a textual message that explains the meaning of
the relationship.

To be valid, lr must meet the following constraints:

1. ∃ f rom_cc(lr. f rom_cc = f rom_cc.name ∧
∀pp = 〈re f erencing_prop, target_prop〉 ∈ lr.re f erences

(pp.re f erencing_prop ∈ f rom_cc.P))
2. ∃to_cc(lr.to_cc = to_cc.name ∧

∀pp = 〈re f erencing_prop, target_prop〉 ∈ lr.re f erences
(pp.target_prop ∈ to_cc.K)),

3. ∃ f rom_cc, to_cc(lr. f rom_cc = f rom_cc.name ∧ lr.to_cc = to_cc.name ∧
∀pp = 〈re f erencing_prop, target_prop〉 ∈ lr.re f erences

(∃rp, tp(rp ∈ f rom_cc.P ∧ tp ∈ to_cc.P ∧
pp.re f erencing_prop = rp.name ∧ pp.target_prop = tp.name ∧
rp.type = tp.type ∧ rp.data_type = tp.data_type)))

4. ∃to_cc(lr.to_cc = to_cc.name ∧ π(name)to_cc.K = π(target_prop)lr.re f erences)

where f rom_cc and to_cc describe concrete classes (see Definition 2), while rp and tp describe
properties (see Definition 3).

The constraints in the above definition have the following meaning:

1. Each referencing property must be a property in the full set of properties in the
referencing class.

2. Each target property must be part of the key of the target class.
3. The type and the data type of the referencing property and of the target property

must be the same.
4. All the properties in the key of the target class must be referenced.

By means of a Look-Up Relationship, instances of the referencing class can refer to
instances of the target class. This ensures the referential integrity in the data, so as at query
time it is possible to navigate relationships and reach properties of associated instances
(instead of writing complex join operations, as in SQL).

Example 3. Figure 6 extends the Concrete Layer depicted in Figure 4 with Look-Up relation-
ships. They are depicted as thick yellow arrows. Three look-up relationships are defined: the
Related_Cession relationship denotes that an instance of the Financing_State class refers
to the related (instance of the) Cession class; the Related_Financing_State relationship de-
notes that an instance of the Amortization_plan class refers to the related (instance of the)
Financing_State class; the Granting_Deposit relationship denotes that an instance of the
Amortization_plan class also refers to the related (instance of the) Deposit class.

Figure 6. Concrete Layer for the running example extended with Look-Up relationships.

Virtual Relationships are abstract relationships, defined by a list of Look-Up Relationships,
with the aim of semantically enriching the RADAR Schema. A Virtual Relationship is a view
of a complex path that connects two concrete classes. This way, at query time the report
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designer is provided with clear semantic characterizations of indirect associations obtained
by more than one Look-Up Relationship.

Definition 7. Virtual Relationship. A “Virtual Relationship” is defined by the tuple:
vr : 〈name, side_1_cc, side_2_cc, path : list_o f (lrd : 〈lr, lside_1_cc, lside_2_cc〉), annotation〉
where “name” uniquely identifies the relationship; “side_1_cc” and “side_2_cc” are the names
of the associated concrete classes; “path” is the list of the Look-Up relationships that associates
classes “side_1_cc” and “side_2_cc”. To be precise, “path” is a list of descriptors “lrd”, with lrd :
〈lr, lside_1_cc, lside_2_cc〉, where “lr” is the name of the Look-Up relationship and “lside_1_cc”
and “lside_2_cc” are the names of the two concrete class associated by the look-up relationship. The
last “annotation” field is a textual message that explains the relationship.

To be valid, the virtual relationship vr must meet the following constraints.

1. vr.side_1_cc = vr.path[1].lside_1_cc
2. vr.side_2_cc = vr.path[|vr.path|].lside_2_cc
3. ∀1 ≤ i < |vr.path| (vr.path[i].lside_2_cc = vr.path[i + 1].lside_1_cc)
4. ∀lrdi ∈ vr.path(∃lr(lrdi.lr = lr.name ∧

((lrdi.lside_1_cc = lr. f rom_cc ∧ lside_2_cc = lrdi.lr.to_cc) ∨
(lrdi.lside_1_cc = lr.to_cc ∧ lrdi.lside_2_cc = lr. f rom_cc))))

where lr describes a look-up relationship (see Definition 6).

The constraints in the above definition have the following meaning:

1. The first descriptor in vr.path moves from the vr.side_1_cc concrete class.
2. The last descriptor in vr.path reaches the vr.side_2_cc concrete class.
3. For each intermediate descriptor in vr.path, its side_2_cc concrete class coincides with

the side_1_cc concrete class of the next descriptor (the path is continuous).
4. For each descriptor in vr.path, it denotes a look-up relationship that associates

the lside_1_cc and lside_2_cc classes either in forward direction (lside_1_cc refers
to lside_2_cc) or in backward direction (lside_2_cc refers to lside_1_cc).

In other words, a Virtual Relationship is a view of a path of Look-Up Relationships,
in possibly mixed directions. Consequently, in its general form, it is a many-to-many
relationship, while Look-Up Relationships are one-to-many relationships.

Example 4. Figure 7 visually presents the virtual relationships defined in the Concrete Layer of
the running example, by further extending Figure 6. Virtual relationships are defined to relate
two concrete classes that have no direct connection; they are represented as thick light-blue lines.
The Guarantee_Deposit relationship provides information about the deposit associated with a
Financing_State. The Reference_Deposit relationship provides information about the de-
posit associated with a Cession. Both relationships are many-to-many associations, obtained by
combining look-up relationships.

Figure 7. Graphical representation of the virtual relationships defined for the running example.
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4.2.3. Concreting Relationships

To connect the Concrete Layer to the Ontological Layer, because concrete classes give a
concrete interpretation to ontological classes, the notion of Concreting Relationship
is introduced.

Definition 8. Concreting Relationship. A “Concreting Relationship” is an ordered relationship
that associates an ontological class to a concrete class, to specify that the concrete class gives a
concrete interpretation to the ontological class. It is defined by the following tuple:

cr : 〈name, f rom_oc, to_cc, P : set_o f (prop_name), annotation〉
where “name” uniquely identifies the relationship, “ f rom_oc” is the ontological class from which
the relationship starts, “to_cc” is the concrete class associated by the relationship to the ontological
class; “P” is the set of property names inherited by the concrete class from the ontological class.
Finally, “annotation” is a textual message that explains the meaning of the relationship.

To be valid, a concreting relationship must meet the following constraints:

1. ∃oc(cr. f rom_oc = oc.name ∧ cr.P ⊆ π(name)oc.P)
2. ∃cc(ccr.to_cc = cc.name ∧ cr.P ⊆ π(name)cc.P)
3. ∃oc, cc(cr. f rom_oc = oc.name ∧ cr.to_cc = cc.name ∧

π(name,data_type)(oc.P ./ cr.P) = π(name,data_type)(cc.P ./ cr.P)

where oc and cc describe, respectively, an ontological class (see Definition 1) and a concrete class
(see Definition 2); ./ is the natural join operator from Relational Algebra [44–46], which produces
all tuples with the same value for the common fields (in this case, the same property name).

The constraints in the above definition have the following meaning:

1. All properties inherited by the concrete class must be defined in the ontological class.
2. All inherited properties must have the same name in the concrete class.
3. Each inherited property must have the same data type in both the ontological class

and the concrete class.

As the reader can see, many concrete classes can provide a concrete view to one onto-
logical class, as well as a concrete class can give a concrete view to many ontological classes.

Example 5. To illustrate, consider again the running example. The Ontological Layer and the Con-
crete Layer are connected through some concreting relationships, which are reported in Figure 8: they
associate ontological classes to concrete classes; concreting relationships are depicted as green down-
ward arrows (for the sake of simplicity, names of concreting relationships are not reported, though
the model encompasses them). Notice that the three concrete classes Cession, Financing_State
and Amortization_plan all derive from the same “Loan or Credit” ontological class. This should
not be surprising for the reader, because the concept of “Loan or Credit” is very generic and has
many facets: it denotes either the contract (modeled by the Cession class), or the current state
of the loan (modeled by the Financing_State class) or the installments to pay (modeled by the
Amortization_plan class). Likewise, the concrete class called Deposit directly derives from the
“Investment or Deposit” ontological class, because it describes the deposit which the amortization
plan of the loan is associated with. This schema should explain why we used the term “concrete
class”: it gives a concrete interpretation of a generic concept in the ontology.

To conclude, consider again Figure 5, which reports the properties of concrete classes. Notice
that the properties named Amount and Interest_Rate are present in three classes, because they
are inherited from the ontological class named “Loan or Credit”.
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Figure 8. Concreting Relationships defined for the running example.

4.3. Mapping Layer

Actual sources for data to import into the RADAR DB and manage by means of
concrete classes are external tables possibly stored in relational databases. Many different
tables could provide instances of the same concrete class. The role of the Mapping Layer is
to map external tables to concrete classes.

A preliminary definition is necessary.

Definition 9. Attribute Descriptor. An “Attribute Descriptor” is defined by the tuple

ad : 〈name, data_type, annotation〉
where “name” corresponds to the name of the attribute and “data_type” corresponds to its data
type (i.e., “integer", “decimal", “boolean", “string" and “date"). The “annotation” field
is a textual message provided to explain the meaning of the attribute.

The attribute descriptor is used to define the schema of an external table.

Definition 10. External Table. An “External Table” is described by the following tuple:

et : 〈name, data_source, A : list_o f (ad), annotation〉
where “name” is the name of the table in the database denoted by “data_source”, while ”A” is a
list of attribute descriptors (see Definition 9) in the table (thus, “A” is the ”schema” of the table).
Finally, “annotation” is a textual message provided by technicians that import external tables.

By means of Definition 10, it is possible to define a generic external table that could be
either stored within a relational database or stored as a CSV (Comma-Separated Value) file.
In this regard, et.data_source is the connection string to the data source.

4.3.1. Mapping Relationships

To meet the actual goal of the Mapping Layer, i.e., associating concrete classes to input
external-source tables, it is necessary to define the concept of ”Mapping Relationship”.

Definition 11. Mapping Relationship. The goal of a “ Mapping Relationship” is to associate
concrete classes to external tables. It is represented by the tuple:

mr : 〈name, f rom_et, to_cc, Mapping : list_o f (pa : 〈attr_name, prop_name〉), annotation〉
where “name” is the name of the relationship, while “ f rom_et” is the name of the external table
that is mapped onto the concrete class whose name is denoted by to_cc; “Mapping” is a list of pairs
pa : 〈attr_name, prop_name〉, where each pair couples an attribute of the external table denoted
by f rom_et and a property “prop_name” in the concrete class that is denoted by ”to_cc. The

“annotation”field is a textual annotation provided by technicians that design the relationship.
The following constraints must be met by the mapping relationship.

1. ∃et(mr. f rom_et = et.name ∧ π(attr_name)mr.Mapping ⊆ π(name)et.A)

2. ∃cc(mr.to_cc = cc.name ∧ π(prop_name)mr.Mapping ⊆ π(name)cc.P)
3. ∃et, cc(mr. f rom_et = et.name ∧ mr.to_cc = cc.name ∧

mr.Mapping ./ ρ(name)→(prop_name)(π(name,data_type)(oc.P)) =
mr.Mapping ./ ρ(name)→(attr_name)(π(name,data_type)(et.A))
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where et and cc are, respectively, an external table (see Definition 10) and a concrete class (see
Definition 2); the ρ operator (taken from Relational Algebra [44–46]) renames the attributes specified
in the left-hand side of the arrow into the names specified on the right-hand side of the arrow.

The three constraints in the above definition have the following meaning:

1. All the attribute names specified in the mapping must be in the schema of the
” f rom_et” external table.

2. All the property names specified in the mapping must be properties in the ”to_cc”
concrete class.

3. Associated properties and attributes must have the same data type.

Notice that mapping relationships are oriented from an external table to a concrete
class. This way, each single concrete class can be mapped to more than one external table.
The rationale is that instances of the concrete class can come from multiple external sources,
and unified within one single concrete class.

Example 6. The Mapping Layer of the running example is depicted in Figure 9. Rectangles
represent external tables in the source database. Arrows connecting an external table to a concrete
class depict Mapping Relationships (for the sake of simplicity, their names are not reported); they
denote that the external table is mapped onto the concrete class and its rows are used to obtain the
instances of the concrete class. Remember that not necessarily all the properties in the concrete
class will have a value coming from the external table; consequently, some RADAR Rules will be
necessary to derive property values (see Section 4.3.2).

Figure 9. Mapping Layer and Mapping Relationships defined for the running example.

4.3.2. RADAR Rule Language

The RADAR Data Model is completed by the RADAR Rule Language. In fact, not all the
properties of a concrete class are necessarily mapped to attributes of external tables. To
cope with this situation, the RADAR Rule Language was introduced: the goal of a RADAR
Rule is to assign a value to properties without value, which, otherwise, would have the
null value. These properties are called “derived properties”. Therefore, the RADAR Rule
Language provides a non-procedural way to define the values of derived properties.

RADAR Rules are defined as “Condition-Action” (CA) rules [47] since their action is
executed when their condition is true. By means of the following definitions, rules and
their execution semantics are defined.

Definition 12. Rule. A “RADAR Rule” is defined by the following tuple:
rr : 〈name, application_class, condition, action : listo f (assignment), annotation〉

where “name” uniquely identifies the rule, “application_class” is the concrete class which the rule
is applied to, “condition” is a logical condition based on comparison predicates possibly composed by
logical operators; finally, “action” is a non-empty list of assignments based on the = operator, where
the left-hand side is the name of a property p, while the right-hand side is an expression that possibly
refers to properties. The “annotation” field is a textual annotation provided by rule designers.
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Both the condition and the assignment expressions can refer to properties of rr.associated_class,
as well as to properties in concrete classes reachable from rr.associated_class by navigating either
Look-Up Relationships or Virtual Relationships by means of the reach operator (see Definition 13).

As reported in Definition 12, conditions and assignment expressions possibly must
navigate the RADAR Schema by means of the Reach operator, defined in Definition 13.

Definition 13. Reach Operator. The syntax of the Reach operator in the RADAR Rule Language
is

Reach(class (via relationship)+)

where “class” is the concrete class to reach though the operator, by navigating both Look-Up Relation-
ships and Virtual Relationships specified in the non-empty repetition of pairs “via relationship”.

The operator returns the instances of the target class reached by navigating the list of rela-
tionships reported in the parentheses; if the sequence of relationships does not reach the target class
(broken sequence or wrong class) the operator returns no instance.

The dot notation can be applied after the Reach operator, to refer to properties in the instances
returned by the operator application.

The reader can find examples of RADAR Rules in Listings 1, which will be discussed
in the example below .

At this point, Definition 14 can define the execution semantics of RADAR Rules.

Definition 14. Execution Semantics of Radar Rules. Consider a RADAR Rule rr and the set
of instances of the rr.application_class concrete class for which the rule is defined; these instances
are known as the “Native Instances” and are denoted as Nat(rr).

Each native instance n ∈ Nat(rr) is combined with the set Ri of instances returned by
applying the i-th occurrence of the Reach operator in rr, by moving from the n native instance;
the set of “Compound Instances” Comp(n) ⊆ {n} × R1 × · · · × Rk is obtained (where k is the
number of occurrences of the Reach operator in the rr rule).

For each compound instance c ∈ Comp(n) for which rr.condition is true, the assignments in
rr.action are performed on the corresponding source instances (i.e., while c ∈ Comp(n) is obtained
by combining the images of the instances, the assignments are performed on instances actually
stored in the RADAR DB).

The rationale behind the RADAR Rule Language is to provide the Mapping Layer with a
tool to complete missing properties. In fact, properties in concrete classes are independent
of the presence of a corresponding attribute in the input external tables; often, many
properties must be derived or computed based on other properties. RADAR Rules provide
the way to complete new instances of concrete classes.

Example 7. The RADAR Schema of the running example is completed by RADAR Rules that are
necessary to evaluate those properties in concrete classes that cannot be mapped onto attributes in
external tables. Listing 1 reports three rules.

The Junk_BCE_Rating rule must evaluate the value for the BCE_Rating property in the
BCE_State concrete class, which is a subclass of the Financing_State class (remember that a
concrete class and its subclasses share the same instances, see Definition 5). Once a new instance is
added to the class, the condition is evaluated; specifically, it is true when the number of non-paid
installments is greater than the number of residual installments multiplied by 1.3. If the condition
is true, the action assigns the string “Junk" to the BCE_Rating property.
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Listing 1. Three RADAR Rules for the running example.
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Listing 1 Three RADAR Rules for the running example.
Rule: Junk_BCE_Rating
Class: BCE_State
Condition: Not_Paid_Installments > Residual_Debt * 1.3
Action: BCE_Rating=‘‘Junk"

Rule: Default_Moodys_Rating
Class: Moodys_State
Condition: BCE_Rating == ‘‘Junk" AND

Reach(Cession via Related_Cession).PerformingCategory == ‘‘Default"
Action: Moodys_Rating=‘‘D"

Rule: Performing_Cession
Class: Cession
Condition: Reach(Deposit via Reference_Deposit).Deposit_Amount > Amount
Action: Performing_Category = ‘‘Performing"

The Default_Moodys_Rating rule behaves similarly. Its condition exploits the Reach
operator (see Definition 13) to get the value of the Performing_Category property in
the related instance of the Cession concrete class; it moves from the current concrete
class (i.e., Moodys_State, which is a subclass of the Financing_State concrete class)
and via the Related_Cession look-up relationship obtains the associated instance of the
Cession concrete class; the dot notation completes the reference to the desired prop-
erty. Substantially, the rule behaves this way: it assigns the “D" value (that stands for
“Default") to the Moodys_Rating property of the evaluated instance of the Moodys_State
concrete class, which is a subclass of the Financing_State concrete class, if its BCE_Rating
property is “Junk" and the Performing_State property in the referred instance of the
Cession concrete class is “Default". Notice that the BCE_Rating property is not within the
Moodys_State subclass; however, the Financing_State class and its subclasses (BCE_State
and Moodys_State) share the same instances, so the BCE_Rating property is visible to the
rule.

Finally, the Performing_Cession rule is associated with the Cession concrete class
and has the goal of assigning the value "Performing" to the Performing_Category prop-
erty of the instance of the Cession concrete class it is evaluated on. This time, the condition
exploits the Reach operator (see Definition 13) to reach instances of the Deposit concrete
class via the Reference_Deposit virtual relationship; if there is at least one associated de-
posit whose value of the Deposit_Amount property is greater than the value of the Amount
property of the cession that the rule is evaluating, the condition is true and the action
is executed.

4.4. RADAR Schema

The previous sections defined all concepts that compose the RADAR Schema. Now,
this concept can be formally defined.

Definition 15. RADAR Schema. The overall ”RADAR Schema” is defined as the tuple:
RS : 〈OC, CC, LR, VR, CR, ET, MR, RR〉

where:

• OC = {oc1, oc2, . . . }: is the set of ontological classes (see Definition 1);
• CC = {cc1, cc2, . . . } is the set of concrete classes (see Definition 2) and subclasses (see

Definition 4) ;
• LR = {lr1, lr2, . . . } is the set of look-up relationships between concrete classes (see Definition 6);
• VR = {vr1, vr2, . . . } is the set of virtual relationships (on concrete classes) that give a

semantic view of transitive relationships obtained by navigating look-up relationships (see
Definition 7);

The Default_Moodys_Rating rule behaves similarly. Its condition exploits the Reach op-
erator (see Definition 13) to get the value of the Performing_Category property in the related
instance of the Cession concrete class; it moves from the current concrete class (i.e., Moodys_State,
which is a subclass of the Financing_State concrete class) and via the Related_Cession look-up
relationship obtains the associated instance of the Cession concrete class; the dot notation completes
the reference to the desired property. Substantially, the rule behaves this way: it assigns the “D"
value (that stands for “Default") to the Moodys_Rating property of the evaluated instance of the
Moodys_State concrete class, which is a subclass of the Financing_State concrete class, if its
BCE_Rating property is “Junk" and the Performing_State property in the referred instance
of the Cession concrete class is “Default". Notice that the BCE_Rating property is not within
the Moodys_State subclass; however, the Financing_State class and its subclasses (BCE_State
and Moodys_State) share the same instances, so the BCE_Rating property is visible to the rule.

Finally, the Performing_Cession rule is associated with the Cession concrete class and
has the goal of assigning the value "Performing" to the Performing_Category property of
the instance of the Cession concrete class it is evaluated on. This time, the condition exploits
the Reach operator (see Definition 13) to reach instances of the Deposit concrete class via the
Reference_Deposit virtual relationship; if there is at least one associated deposit whose value of
the Deposit_Amount property is greater than the value of the Amount property of the cession that
the rule is evaluating, the condition is true and the action is executed.

4.4. RADAR Schema

The previous sections defined all concepts that compose the RADAR Schema. Now,
this concept can be formally defined.

Definition 15. RADAR Schema. The overall ”RADAR Schema” is defined as the tuple:

RS : 〈OC, CC, LR, VR, CR, ET, MR, RR〉
where:

• OC = {oc1, oc2, . . . }: is the set of ontological classes (see Definition 1);
• CC = {cc1, cc2, . . . } is the set of concrete classes (see Definition 2) and subclasses (see

Definition 4) ;
• LR = {lr1, lr2, . . . } is the set of look-up relationships between concrete classes (see Definition 6);
• VR = {vr1, vr2, . . . } is the set of virtual relationships (on concrete classes) that give a

semantic view of transitive relationships obtained by navigating look-up relationships (see
Definition 7);

• CR = {cr1, cr2, . . . } is the set of concreting relationships between ontological classes in OC
and concrete classes in CC (see Definition 8);

• ET = {et1, et2, . . . } is the set of external tables (see Definition 10);
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• MR = {mr1, mr2, . . . }is the set of mapping relationships, which associate concrete classes in
CC and external tables in ET;

• RR = {rr1, rr2, . . . } is the set of RADAR Rules(see Definition 12).

The RS schema is ”correct” if and only if all constraints reported in Definitions 1–12 and the
following ones are met.
1. ∀oc ∈ OC such that oc.subclass_o f 6= null, ∃oc ∈ OC such that oc.name = oc.subclass_o f .
2. ∀cc ∈ CC such that cc.subclass_o f 6= null, ∃cc ∈ CC such that cc.name = cc.subclass_o f .
3. ∀lr ∈ LR, ∃ccs, cct ∈ CC such that ccs.name = lr. f rom_cc and cct.name = lr.to_cc.
4. ∀vr ∈ VR and ∀lrd ∈ vr.path, ∃lr ∈ LR such that lr.name = lrd.lr.
5. ∀cr ∈ CR, ∃oc ∈ OC, cc ∈ CC such that oc.name = cr. f rom_oc and cc.name = cr.to_cc.
6. ∀mr ∈ MR, ∃cc ∈ CC, et ∈ ET such that cc.name = mr.to_cc and et.name = mr. f rom_et.
7. ∀rr ∈ RR, ∃cc ∈ CC such that cc.name = rr.application_class.

The constraints in the above definition can be described as follows.

1. The parent class of a non-root ontological class in OC must be defined in OC.
2. The parent class of a concrete subclass in CC must be defined in CC.
3. The concrete classes associated by a look-up relationship in LR must be defined in CC.
4. The look-up relationships navigated by virtual relationships in VR must be defined

in LR.
5. The ontological class and the concrete class associated by a concreting relationship in

CR must be defined in OC and in CC, respectively.
6. The concrete class and the external table associated by a mapping relationship in MR

must be defined in CC and in ET, respectively.
7. Each RADAR Rule must be applied to a concrete class defined in CC.

Although the three layers that constitute the RADAR Schema have been intuitively
introduced, it is now possible to formally define them.

Definition 16. Ontological Layer. In the RADAR Schema, the “Ontological Layer” is composed
by the set OC of ontological classes only.

Definition 17. Concrete Layer. In the RADAR Schema, the “ConcreteLlayer” is the sub-tuple

CLayer : 〈CC, LR, VR, CR〉
i.e., the set CC of concrete classes, the set LR of look-up relationships, the set VR of virtual
relationships and the set CR of concreting relationships.

Definition 18. Mapping Layer. In the RADAR Schema, the “Mapping Layer” is the sub-tuple

MLayer : 〈ET, MR, RR〉
i.e., the set ET of external tables, the set MR of mapping relationships and the set RR of RADAR Rules.

As a final remark concerning the concepts in the RADAR Data Model, recall the
“annotation” fields that occur in every tuple that defines an element of the RADAR Schema.
An “annotation” is a pure text message that gives a natural-language explanation. For
example, the meaning of a concrete class, the meaning of a property and how to interpret
its values, and so on. This way, knowledge about the application field is handed down by
domain experts to other users.

Through the RADAR Data Model it is possible to define a unique schema for data,
able to integrate a semantic and generic set of concepts (the Ontological Layer), the concrete
concepts that give a unified view of actual data (the Concrete Layer) and the source data (the
Mapping Layer). In particular, we designed the RADAR Data Model to be used by different
users in various ways, as specified hereafter.

• Domain experts provide the reference ontology and define the schema for the Concrete
Layer. This way, they provide other users with the unifying and high-level schema for
concrete concepts to use to represent data to aggregate into reports.
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• Technicians that deal with databases and data flows map concrete classes to external
tables, to feed instances of concrete classes (they work on the Mapping Layer).

• Users in charge of designing reports exploit ontological classes and semantic anno-
tations in the Concrete Layer to find out the data to aggregate in reports. These users
exploit the Ontological Layer and the Concrete Layer, while they have no access to the
Mapping Layer.

4.5. Discussion

The RADAR Schemas for the running example should have clarified the rationale
behind the RADAR Data Model; nevertheless, it is worth further discussing this issue,
before concluding this section.

The RADAR Data Model gives a “unified view” of aspects that usually would be
considered separately.

• Ontological classes are necessary to give a clear semantics to data items, to assist
during the evolution of the model and to help users in charge of designing reports.

• On the opposite side, external tables describe the source data, as they come to the
RADAR DB.

• Concrete classes are the bridge between semantics and raw data: they provide a
uniform view of data, because when data are imported from several external tables,
they are translated into a homogeneous view with ontological classes that denote
their meaning.

Looking at users involved in the process, many of them are considered within RADAR.

• Domain experts who participate to the original design of the system are precious to
define the Reference Ontology and to orient the design team to properly interpret rules
and the application context.

• Database administrators who deal with source data provide their knowledge about
incoming data and contribute to map them into the concrete classes. Apart from the
initial design activities, they are also precious to add novel data sources if the system
is operational.

• Users in charge of designing reports work directly on the concrete classes, because
they do not have to take case about raw source data; in fact, they are not technicians.
Furthermore, the availability of domain knowledge associated with concrete classes
(the ontology and the annotations), provided by the domain expert(s) involved in the
initial design phase, provides report designers with a valuable source of information
to choose the concrete classes to query in relation to the data to be aggregated into the
report to produce.

In other words, it could be said that the RADAR Schema plays the role of ”historical
memory” of all the knowledge behind the design of the schema, contributed by many
people with different skills in different times.

To help the reader to better understand the rationale behind the RADAR Data Model,
it is worth reporting some more considerations.

• The formal definition of the RADAR Data Model is given to provide the scientific
community with a rigorous formalization of the model. Since the model encompasses
concepts such as “ontological class” and “table”, the paper reports specific definitions
for them, even though they are well known in the scientific community. The goal of
these definitions is not to provide yet another definition; in contrast, their goal is to
give a representational structure of them, to be effectively used within the RADAR Data
Model. Indeed, Definitions 1 and 10 provides the way such concepts are represented
and used in the specific model.
Further notice that the adoption of MOF (acronym for ”Meta-Object Facility”) [48,49]
might be evaluated as well to define the RADAR Data Model; it could be considered in
the future, as an engineering approach, to build novel components of the framework
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and connectors. Nevertheless, the MOF approach can accompany the formal approach
followed in this section, to support the practical exchange of models and data.

• When the term “ontology” is used, many people think about RDF (acronym for
“Resource Description Framework”) [50,51] and OWL (acronym for “Web Ontology
Language” ) [52,53]. The reader could wonder why they are not mentioned before
in the paper. The answer is that in the RADAR approach, they are possible formats
to represent ontologies when the Source Ontology is loaded into the Knowledge-Base
Manager. Currently, the framework relies on the JSON-LD format, adopted by the
Schema.org ontology. JSON-LD is the most recent format for representing ontologies,
and Schema.org is the most recent ontology (based on JSON-LD) that encompasses the
financial domain. Nevertheless, if necessary, our framework could be easily extended
to import both RDF and OWL ontologies.

• The RADAR Data Model maintains a separation between ontological classes and
concrete classes, i.e., concepts and data. This is due to various reasons. (i) The
considered application context is characterized by huge volumes of raw data to deal
with; while associating raw data (described by concrete classes) to concepts (described
by ontological classes) should help retrieve the concrete class to query for aggregating
raw data, it is not feasible to think to express queries on ontological classes, because
there is not a certain correspondence with raw data (in the application context, raw
data to aggregate in report must be certain, no imprecision is allowed). (ii) RDF and
JSON-LD are thought for describing “Linked Data” over the Internet, i.e., documents
(resources) are linked each other based on their content; queries on linked data can
retrieve data with a certain degree of imprecision and efficiency is not a key issue; this
is not true for the application context considered in this paper: queries must be done
on certain data and efficiency is a key issue.

• Based on the considerations reported in the previous item, it is clear why we had
to define the RADAR Rule Language: already existing languages, in particular those
that were thought to apply logical inference on the bases of OWL ontologies (to infer
intensional data from extensional data) were not applicable. In fact, RADAR Rules
ensures an efficient execution (they can be translated into SQL updates) and they are
based only on the Concrete Layer, because ontological classes cannot be considered to
manage and query raw data.

5. Creating the Knowledge Base and Designing Reports

It is now time to show the reader how the various types of user can exploit the Design
Layer of the RADAR Framework to create knowledge (by defining the RADAR Schema)
though the Knowledge-Base Manager (in Section 5.1), as well as to design reports through
the Report Designer (in Section 5.2).

5.1. The Knowledge-Base Manager

The component called Knowledge-Base Manager is used to build the RADAR Schema
and the full Knowledge Base. It is devoted to various types of user: (i) domain experts, which
choose the Reference Ontology by means of which raw data are semantically annotated;
(ii) domain experts and data managers design the Concrete Layer; (iii) database adminis-
trators define the Mapping Layer, to make automatic the ETL activities to load the RADAR
DB.

From the technical point of view, the Knowledge-Base Manager is a suite of micro-
services, as depicted in Figure 10. For many of them, the corresponding Designer is
implemented, which provides users with the necessary graphical user interfaces.
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Figure 10. Architecture of the Knowledge-Base Manager.

• The users in charge of uploading the Reference Ontology and designing concrete classes
exploits the Class Service. Figure 11 reports a screenshot of the Class Designer, the user
interface of the Class Service. Hereafter, the figure is briefly explained.

– On the left-hand side of the figure, there is the Ontology Browser, which allows
the user to select the ontological classes (concepts) which the new concrete
class derives from. In the case that the Reference Ontology does not provide the
ontological classes that are needed to define concrete classes, the Class Service
allows for defining new ontological classes.

– The dialog window for defining the schema of the new concrete class is depicted
on the right-hand side of Figure 11. Specifically, it shows the definition of the
Cession concrete class, whose properties are reported in Figure 5. The inherited
properties do not appear, because they are shown in a preliminary stage, once
the ontological classes are selected.

• Once concrete classes have been created, the users exploit the Relationship Service
to create look-up relationships and virtual relationships among the concrete classes.
The user interface of the service is called Relationship Designer. Figure 12 shows
a screenshot of the user interface: specifically, the figure shows the definition of
the Related_Cession relationship; notice how properties in the referring class (i.e.,
Financing_State), on the left-had side, are associated with properties in the key of
the referred class (i.e., Cession), on the right-hand side.

• Data managers can populate the Mapping Layer to set up the correspondence between
external tables and concrete classes; specifically, they exploit the Mapping Service to
define mapping relationships between concrete classes and external tables (in the
Source DBs). Users are provided with a graphical user interface, which is called
Mapping Designer (for the sake of space, no screenshot is reported).

• Data managers and domain experts can define RADAR Rules to complete missing
properties in the instances of data. To this end, they exploit the Rule Service and its
user interface called Rule Designer (for the sake of space, no screenshot is reported).

• Finally, once the RADAR Schema is complete, the software architect in charge of
managing the framework exploits the Deploy Service to actually generate and deploy
the two descriptions necessary to set-up the Information-System Layer, i.e., the DB
Schema and the ETL Directives.
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Figure 11. RADAR Knowledge-Base Manager: screenshot of the Class Designer.

Figure 12. RADAR Knowledge Designer: screenshot of the Relationship Designer.

5.2. The Report Designer

Consider the running example. Users in charge of designing reports, not necessarily
domain experts, use the Report Designer tool to browse the Knowledge Base. In fact, this tool
provides several functionalities to correctly interpret the data collected in the RADAR DB.

The tool is devised as a stand-alone application, which can call the micro-services that
constitute the Knowledge-Base Manager. Through its graphical user interface, the user creates
report layouts (in the form of Report Definitions and Aggregation Queries), which are stored
within the Report Folder. Specifically, the user is provided with the following functionalities.

1. The user can browse the Knowledge Base and consult the RADAR Schema through the
Knowledge Browser.

2. The user defines the layout of the reports and defines the aggregations she/he is
interested in through the functionality named Report-Layout Designer.

3. The user stores in a persistent way, through the functionality named Archive Manager,
the actual layout of the reports (Report Definitions) together with the queries that
specify how to aggregate the data to put into the reports (Aggregation Queries).
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The user defines report layouts and aggregations through the user interface of the
Report Designer. It provides the user with the following model for reports.

• A report consists of several “worksheets”, each of which contains one and only
one “table”.

• A “table” is the fundamental complex object in reports. In particular, the user can
create two distinct types of tables: “stratification tables” and “detail tables” (also
called “stratification reports” and “detail reports”, under the assumption that a table
is the simplest form of report); specifically, a “stratification table” is useful to generate
reports where instances of concrete classes are aggregated at different stratification
levels, while ”detail tables” are filled in with detailed values coming from instances of
concrete classes.
Figure 13 shows an example of a table defined for a report in the running example:
the report contains three distinct worksheets (see the bottom of the screenshot), where
the shown worksheet is Portfolio1, which is an example of “stratification table”;
Figure 14 shows the worksheet called LoanByLoan, which is an example of “detail table”.

• A “cell” content is defined through the Knowledge Browser. It lets the user exploit the
knowledge provided by the domain experts and and saved in the Knowledge Base. It
also letd the user to define the “cell” type. The “cell” corresponds to the information
unit in a table. Several cell types are available, with respect to the value they can
report within:

– Empty Cell: the cell has no value.
– Label Cell: the value is a constant textual label.
– Arithmetic-Expression Cell: the value of the cell is specified by an expression that

can rely on numerical values and class properties, as well as aggregations and
cells that were previously defined.

– Condition Cell: this type of cell is used to specify selection conditions on the in-
stances of the concrete class; the condition holds for the entire line that contains
the cell, so as only instances of the concrete class that meet the condition will be
used to compute aggregations and cell values. Figure 15 reports a screenshot
of the user interface that allows users to define conditions: it refers again to
the running example. Specifically, the condition is called Mortgage_Loans and
selects those instances of the Financing_State concrete class that refer (through
the Related_Cession relationship) to cessions whose Performing_State prop-
erty has the "PERFOMRING" value and the Guarantee_Category property has the
"MORTGAGE" value; notice the presence of the Reach operator (the same intro-
duced for RADAR Rules) that navigates the Related_Cession relationship to
reach the instances of the Cession concrete class. In the bottom part of Figure 15,
the reader can notice the buttons that allow users to express complex conditions.

– Aggregation Cell: this type of cell allows users to aggregate values in instances
of concrete classes. A specific interface is provided: Figure 16 shows a screenshot,
which refers to the running example. Specifically, values of the Paid_Installments
property of the Financing_State class are summed, based on the SUM aggrega-
tion function. Notice that the aggregation is given a name, to be referred to by
other cells. Usual aggregation functions are available, i.e., SUM, COUNT (instance
counter), AVG (average), MIN (minimum) and MAX (maximum). If the line in which
the aggregation is defined contains a condition cell, the aggregation implicitly
works on the instances selected by the condition. Aggregations can be specified
in “arithmetic-expression cells” too, by using the AGGR(n, cc, a f, p) operator,
where n is the name of the aggregation, cc is the concrete class whose instances
are aggregated, a f is the aggregation function and p is the property whose values
are aggregated.
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• When the user defines a report, she/he also specifies all the queries that are required
to generate the report (the so-called Aggregation Queries).

• Given a report, the user can define some parameters called Report Parameters (RP)).
They receive external data to be used to select data to aggregate: for example, in
the running example, the StartDate and EndDate parameters could be defined, to
indicate the period of interest to consider; only the amortization plans referring to the
specified time period are considered; to this end, when a new parameter is defined,
the user interface forces the user to define a condition on this parameter, which selects
instances further considered by tables in the report.

Figure 13. Report Designer: definition of a “aggregation table” in the worksheet called Portfolio1
within a report layout.

Figure 14. Report Designer: definition of a “detail table” in the worksheet called LoanByLoan within a
report layout.
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Figure 15. Report Designer: user interface for defining “Condition Cells”.

Figure 16. Report Designer: user interface for defining “Aggregation Cells”.

Apart from the model the user must follow to define reports, the novelty introduced
by the RADAR Framework is the semantic characterization of data based on the Reference
Ontology. The user who is in charge of designing a report is not an expert in databases:
she/he is an employee, usually with economical knowledge, which received the official
documentation from the regulatory body that asked for the report and must design it. At
this point, the user must search for the right data in the RADAR DB; the Report Designer
assists the user as follows.

• The user searches for a reference to a key concept that characterizes the report to
generate within the knowledge base. For example, since the running example is
focused on loans, she/he looks for the word “loan”.
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• The result of the search is the ontological class “Loan or Credit”, which is made
concrete by various concrete classes (see the RADAR Schema depicted in Figure 2). The
user can also navigate the ontology: to this end, the user is provided with a browser
similar to the one depicted in Figure 11.
Furthermore, annotations associated with class definitions, property definitions and
relationship definitions can be consulted, so as the user can fully comprehend how
to use them. For example, what is exactly a “performing loan”? such an annotation,
provided by the domain expert who designed the RADAR Schema, can accompany the
definition of the Cession class; the user can consult it to learn about it and exploit this
knowledge to prepare reports.

• Once identified the concrete classes, the user is now ready to define the report layout,
since concrete classes to work on have been identified.

Suppose that the user is in charge of designing the report named “Portfolio 1” in-
troduced in Section 3.1. Figure 13 shows how the user interface allows for designing
a report.

• The user creates the worksheet and then inserts an “aggregation table”. This choice is
based on the layout required by the regulatory body.

• To comply with requirements, the user defines various groups of aggregate values;
these groups are labeled as “1”, “2” and so on, on the A column. Specifically, group
“1” summarizes ”Performing Loans” (see the label in cell B6), group “2” summarizes
“Delinquent Loans” (see the label in cell B11), and so on.

• For each line in a group, the user defines “condition cells”, because only specific
instances of the concrete class must be considered for computing aggregations. For
example, consider cells B7, B8 and B9: since they are “condition cells”, lines 7, 8 and 9
are derived by selecting those instances of the concrete classes that meet the condition.
In the cells, notice the names given to the conditions: for example, cell B7 is associated
with the condition called “Mortgage_Loans”; to define it, the user is provided with the
dialog box shown in Figure 15. The effect of having defined cells B7 as a “condition
cell” is that next cells on line 7 will be derived only from instances of the Cession
concrete class (see Figure 15. ) that meet the condition (those instances such that the
value of the Performing_Category property is "Delinquent" and the value of the
Guarantee_Category property is "Unguaranteed").

• After having defined the “condition cell” for a line, the user can define aggregations
in the other cells of the same line. For example, considering again line 7 (that is the
selected line in Figure 13), cell C7 is defined as an “aggregation cell”, whose name
is PM_ResidualDebt: it indicates the sum of the residual debts of performing loans
guaranteed by a mortgage. To define it, the user is provided with the dialog box
shown in Figure 16: instances of the Financing_State class that are related to the
instances of the Cession class selected by the B7 conditional cell are aggregated, to
sum the values of the Residual_Debt property (since the condition in cell B7 selects
only instances describing performing loans that are guaranteed by a mortgage, only
these selected instances are aggregated by the specified aggregation, so this explains
the name PM_Residual_Debt). Cells D7 and F7 are aggregation cells too.

• The reference layout provided by the regulatory bodies asks to sum the values of
“aggregation cells”; this is the case of cell C6. For this reason, the user defines it as an
“arithmetic-expression cell”; it sums the values of the cells C7 (denoted as CELL(7,3)),
C8 (denoted as CELL(8,3)) and C9 (denoted as CELL(9,3)).

• In the case of cell E7 the user must define an aggregation within a mathematical
expression. The Report Designer allows that in “arithmetic-expression cells”, by means
of the AGGR operator.
Consider the expression within the cell, which is CELL(7,3)+AGGR(PM_Residual_Debt,
Financing_State, SUM, Residual_Debt). The AGGR operator sums values of the prop-
erty named Residual_Debt of instances of the Financing_State class; the aggrega-
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tion is given the PM_Residual_Debt name; then, the resulting aggregate value is
summed to the C7 cell (denoted as CELL(7,3)).

The user continues to behave as illustrated for line 7. At the end, the report layout
is ready for generating the actual report. Figure 17 shows an example of the final report
generated by the layout reported in Figure 13.

Figure 17. Example of “aggregation report”.

The user could be in charge of designing reports in which detailed data must be
reported; this is the case of the “Loan-By-Loan” report introduced in Section 3.1, in which
each row describes the actual status of a specific loan. In this case, the user designs the
report by inserting a “detail table” in the worksheet. Figure 14 shows the layout of type
“detail table” created for the report called LoanByLoan. The number of lines generated
in the final report is not fixed, as in the case of an “aggregation table”; in contrast, it is
unpredictable, because it depends on the actual instances to show. Figure 18 shows an
example of generated report. Hereafter, the layout is briefly explained.

Figure 18. Example of “detail report”.
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• The user is asked to define the heading of the report and the structure of each “detail
line”, i.e., the line that is repeated as many times as the number of selected instances.
In the heading (lines 1 and 2 in in Figure 14), only label cells can be used.

• The user defines the line to be actually tied to instances of the selected concrete class.
This is the selected line in Figure 14.
For each cell, the user ties it to a property of the concrete class (in this case, the
Financing_State concrete class): such cells are formally defined as “aggregation
cells”, for which the aggregation function is not specified; this way, the basic model
for cells is kept.
For example, cell B4 is defined with name CessionId, as shown in the figure; the
source class is the Financing_State class, and the considered property is CessionId.
Consequently, all the cells on the line are automatically tied to the same concrete class,
because the line is automatically bounded to an instance of the concrete class.
If necessary, “arithmetic-expression cells” can be defined, to obtain values from other
cells on the same line.

The resulting report is depicted in Figure 18. The reader can notice that the single line
in Figure 14 generates as many lines as the instances of the Financing_State class found
in the RADAR DB.

6. Conclusions

It is time to make some final remarks. First, Section 6.1 summarizes the contribution
of the paper; then, Section 6.2 sketches possible future work.

6.1. Summary

The paper presents the RADAR Framework, a novel suite specifically designed to sup-
port reporting activities in an integrated way. Its distinctive features are resumed hereafter.

• The RADAR Framework is designed to cover the overall process that leads to generate
reports, from data gathering to final reports.

• The Knowledge Base stores the knowledge about the application domain and data
integrated within the framework.

• The RADAR DB is the unique storage system where data are gathered from external
sources; derived from the concept of “Operational Data Store”, it provides a unique
and uniform view of data, although they are still modeled in an operational fashion.

• The RADAR Data Model provides a high-level yet concrete view of data, which are
semantically characterized by the adoption of the Reference Ontology: the Ontological
Layer gives the basic semantic framework to data; the Concrete Layer models actual
(operational and possibly massive) data by giving them a semantic characterization
by means of the Reference Ontology; the Mapping Layer maintains knowledge about
provenance of data.

• The Report Designer is used to design the layout of reports and connect them to data
stored within the RADAR DB; the user browses the Knowledge Base to retrieve data of
interest and specify aggregations.

• The rigid distinction between Design Layer and Information-System Layer allows for
easily deploying the RADAR Framework within existing information systems: the
computational resources necessary for actually processing data and generating reports
are decoupled from those necessary for managing the Knowledge Base, designing
the RADAR Schema and reports; this way, analysts and designers interfere with the
information system as little as possible.

It is possible to summarize the RADAR Framework as follows: it is not just a tool
for designing reports; it is a framework that assists the overall process of gathering data,
providing a uniform data model to them, semantically characterizing data, gathering
knowledge about the application domain, assisting users in the definition of layouts and
data to put into reports, automatically processing data and generating reports. In other



Information 2021, 12, 463 34 of 36

words, it is devised to provide a long-lasting support to many different users with different
competences, skills and roles, to formalize and maintain the enterprise knowledge behind
the enterprise business domain. For the best of our knowledge, this approach is unique in
the panorama of currently available tools for business reporting.

6.2. Future Work

The RADAR Framework has been engineered into a practical and fully usable tool for
enterprises. In fact, the running example presented in this paper derives directly from
practical testbeds with customers.

Nevertheless, many future works can be pursued, to make the RADAR Framework
increasingly attractive for customers. We present our ideas hereafter.

• The adoption of the micro-service approach has been a good choice, which allows for
decoupling engines and user interfaces. Following this direction, we are going to make
a complete re-engineering of all the user interfaces towards a pure web-application
approach (which is quite appreciated by users).

• Currently, the RADAR Framework is designed to gather only relational data, both
from relational databases and from CSV (acronym for Comma-Separated Values) and
MS Excel files. However, NoSQL (which stands for Not Only SQL) databases [54]
based on the JSON format [55] have become widely used, due to the ability of JSON to
represent data with complex structures, also called ”Non-First Normal Form” (denoted
as NF2) [56,57]). Moving from previous work on the management of large JSON data
sets [58–61], we plan to extend the Mapping Layer of the RADAR Data Model, to make
the framework able to load JSON data sets from JSON stores and web sources.

• Finally, we plan to extend the Report Designer with a wizard that should drive the user
through knowledge browsing, aggregation definition and report-layout definition.
This functionality will be added while re-engineering the user interface.
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