
  information

Article

Help Me Learn! Architecture and Strategies to Combine
Recommendations and Active Learning in Manufacturing

Patrik Zajec 1,2,† , Jože M. Rožanec 1,2,3,*,† , Elena Trajkova 1,4 , Inna Novalija 1 , Klemen Kenda 1,2,3 ,
Blaž Fortuna 1,3 and Dunja Mladenić 1
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Abstract: This research work describes an architecture for building a system that guides a user from
a forecast generated by a machine learning model through a sequence of decision-making steps. The
system is demonstrated in a manufacturing demand forecasting use case and can be extended to other
domains. In addition, the system provides the means for knowledge acquisition by gathering data
from users. Finally, it implements an active learning component and compares multiple strategies
to recommend media news to the user. We compare such strategies through a set of experiments to
understand how they balance learning and provide accurate media news recommendations to the
user. The media news aims to provide additional context to demand forecasts and enhance judgment
on decision-making.

Keywords: artificial intelligence; machine learning; active learning; knowledge acquisition; explain-
able artificial intelligence; manufacturing; demand forecasting; smart assistant

1. Introduction

The decreased cost of sensors and connectivity [1], along with the development of the
Internet of Things, Cloud Computing, Big Data Analytics and Blockchain technologies [2]
have enabled an increasing digitalization of manufacturing and the introduction of new
paradigms, such as Cyber-Physical Systems (CPS) [3,4] and Digital Twins (DTs) [5–7].
Moreover, they bring extensive added value to Industry 4.0 [8], enabling more effective
operations, cost saving, and better product quality [9].

While an explosive growth of data available in the manufacturing industry has been
observed [10], captured through sensors or made available from software, such as Enter-
prise Resource Planning (ERP) or Manufacturing Execution Systems (MES), much collective,
semantic, and tacit knowledge that the employees are aware of is not digitalized. Fur-
thermore, much of the digitalized data are not labeled, and thus no supervised learning
algorithms can be applied to it. It is thus essential to identify how informative the newly
collected data instances are to make good decisions regarding data management and
machine learning models.

Much of the missing information can be introduced into the digital domain by asking
users specific questions. Users can be queried regarding missing labels, asked for feedback
on particular entries, or missing domain knowledge. The collection of locally observed
collective knowledge can be achieved through a specialized solution [11,12]. The particular
case of querying a user for labels given a large pool of unlabeled data is addressed by a
sub-field of machine learning known as Active learning (AL) [13]. Active learning attempts
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to identify the most informative data instances, which are presented to the oracle (e.g., a
human expert) asking for a label, reducing the data annotation effort. Newly labeled data
are incorporated into the existing dataset and can be fed to the machine learning models.
Batch machine learning models require regular deployments to make available the last
trained version to the manufacturing software.

Active learning reduces the labeling stress posed on the user and provides a solution
to the users’ reticence to provide information and feedback [14]. Though, active learning
alone does not solve the data labeling issue: a good user experience is key to the success
of such a system [15], impacting conversion rates (amount of labeled samples) and user
satisfaction (users will not abandon the feature or application) [16]. Therefore, we designed
a user interface considering users’ feedback can be implicit [17] or explicit. Assuming
that the quality of our entries is acceptable (implicit feedback, if no other feedback is
provided), we provide means to the user to signal disagreement (explicit feedback) [18–20].
When providing recommendations to the users, candidate data instances identified by
an active learning strategy do not guarantee their quality and the consequent good user
experience [21]. A compromise is required to balance exploration and exploitation while
delivering good results. Furthermore, we ranked the unlabeled data entries to ensure
entries whose high-quality is most probable are displayed first, and those that do not
meet a certain quality threshold are not shown at all. For particular cases, such as when
collecting feedback on decision-making options suggested to the user, we allowed the user
to provide their own input. This way, we gather additional domain knowledge when the
options provided so far do not satisfy the user. New domain knowledge provided by the
users can be later incorporated into the application, promoting continuous knowledge
gathering and learning.

This paper evolves previous work done in [22]. The scientific contributions of this
paper are twofold. First, it describes an architecture we developed to realize a system that
combines semantic technologies, machine learning, and explainable artificial intelligence to
provide forecasts, explanations, and contextual information while guiding users’ decision-
making. Second, it compares nine active learning scenarios to understand the learning
versus recommendation trade-off. Then, we evaluate them implementing a prototype
application and recommending four categories of media news that enhance planners’
awareness in a demand forecasting setting. In addition, we describe the implementation of
a knowledge-based decision-making options recommender system implemented to advise
logisticians regarding transport scheduling based on demand forecasts.

The media news we recommend to the users relates to four aspects influencing the
demand for automotive engine components produced by a European original equipment
manufacturer selling its products worldwide. First, the demand forecasting models were
trained using real-world data provided by manufacturing partners of the European Horizon
2020 project FACTLOG [23–25]. Data we used included three years of shipment information
daily, a month of demand forecasts for material and clients at a daily level, feature relevance
for every prediction, forecast explanations created based on those feature rankings, and
decision-making options created based on demand forecasts and heuristics.

We evaluate the outcomes of the machine learning models across different active
learning scenarios assessing two metrics: area under the receiver operating characteristic
curve (ROC AUC) [26] and Mean Average Precision (MAP) [27]. ROC AUC is widely
adopted as a classification metric due to its desirable properties, such as being threshold
independent and invariant to a priori class probabilities. We measure ROC AUC considering
prediction scores cut at a threshold of 0.5. On the other side, MAP is a popular metric
in the information retrieval domain, computing the precision of the recommendation set
with the size associated with the relevant item’s rank. Both metrics are used to assess the
performance of recommender systems [28].

The rest of this paper is structured as follows: Section 2 presents related work, and
Section 3 details the architecture we designed to satisfy the requirements described above.
Section 4 describes the demand forecasting use case we considered to build and test the
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concept architecture and system. Section 5 presents the user interface, describing each of
the components we built into it. Section 6 describes the decision-making recommender
system implementations, while Section 7 details the experiments and results obtained when
applying active learning for media news categorization and recommendation. Finally,
Section 8 provides the conclusions and outlines future work.

2. Related Work

In this section, we first briefly introduce scientific literature describing demand fore-
casting models related to the automotive industry. We then describe related work regarding
Explainable Artificial Intelligence (XAI), and conclude with an overview of scientific works
related to the active learning field.

2.1. Demand Forecasting

Products’ demand forecasting requires the application of different approaches condi-
tioned by the demand characteristics. Widely adopted criteria to characterize the demand
relate to the demands’ lead times variance [29], the average demand interval magni-
tude [30], or the coefficient of variation (see Equation (1)) [31].

CV =
Demand Standard Deviation

Demand Mean
. (1)

Demand is closely related to the product’s characteristics and is influenced by the
economic context, market type, and customer expectations. Among factors affecting the
demand in the automotive industry we find personal income [32], fuel prices [33,34], gross
domestic product [35], inflation and unemployment rates [36,37]. This information can be
collected and encoded to datasets used to train machine learning models, which learn to
predict future demand based on past data.

Statistical and machine learning models were successfully applied to provide accurate
car, and car components demand forecasts. Among the most frequent machine learning
algorithms used to train the models we find the Support Vector Machine (SVM) [36],
Multiple Linear Regressor (MLR) [38,39] and Artificial Neural Networks (ANN) [40–42].
Popular statistical forecasting methods include the autoregressive integrated moving aver-
age (ARIMA) [32,43], autoregressive moving average (ARMA) [33] and moving average
models [44].

While the accuracy of the demand forecasting models is critical for their adoption,
given the influence on decision-making, it is imperative to provide details on the rationale
followed by the model. Such insights help the user understand the reasons behind the
forecast and decide whether it can trust it or not [25]. Furthermore, it has been argued that
including domain context can further aid the planners assess the forecasts’ soundness, and
eventually correct it before making a decision [45–47].

2.2. Explainable Artificial Intelligence

While the Industry 4.0 paradigm represents a great potential for the manufacturing
industry [48], risks associated with its implementation, such as the complexity of integration
or the perceived risks of novel technologies [49] must be mitigated. One such perceived
risk is the difficulty of providing an intelligible explanation regarding the machine learning
models’ predictions. Usual reasons behind models’ opaqueness are: (i) the complexity of
the formal structure of the model, which can be beyond human comprehension [50], or
alien to human reasoning; and (ii) intentional hiding of the inner workings of the model
(e.g., to avoid exposing some trade secret, or sensitive information) [51]. Research on how
to provide intelligibility on the reasons behind the forecast and transparency regarding
the machine learning forecasting model is known as explainable artificial intelligence [46].
Such insights and explanations increase the trust in AI models and provide additional
information to assist users’ decision-making.
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Best practices on how to convey the insights regarding the models’ reasoning process
require the explanation to resemble a logic explanation [52], and take into account relevant
context. Among context elements, ref. [53] considers three related to the explainee: (i) the
user profile to whom the explanation is given; (ii) the goal of the explanation; and (iii) if the
explanation is either global (describes the average AI model forecast), or local (describes a
specific forecast instance). Common explanation types include feature rankings, prototype
(local) explanations, and counterfactual explanations. Multiple techniques were developed
to compute feature rankings, which convey information on which features exercised most
influence on a given forecast (local explanation) [54–56], or forecasts in general (global
explanation). Prototype explanations are data instances obtained from the train set, which
are similar to the feature vector used to issue the prediction [57]. Such samples help us
to understand which instances most likely influenced the model learning to provide a
particular forecast. Finally, counterfactual explanations provide perturbed data samples
that produce a different forecasting outcome than the original data instance [58–60]. Such
samples allow the user to understand what values need to be changed to change a forecast
outcome. Ideally, the perturbed features correspond to actionable aspects, on which the
user can be advised to take action to influence future outcomes [61].

In the context of manufacturing, XAI technologies have been tested in several scenarios
such as predictive maintenance [62], real-time process management [63], and quality
monitoring [64]. One of our research goals is to highlight the models’ explainability in
smart manufacturing processes, aligning XAI technologies with human interaction. We also
aim to collect feedback on the quality of such explanations since there are few validated
measurements for user evaluations on explanations’ quality [65].

2.3. Active Learning

Active learning is a sub-field of machine learning that studies how to improve the
learners’ performance by asking questions to an oracle (e.g., a human annotator), under the
assumption that unlabeled data are abundant, while the labels are expensive to obtain [13].
Since users are usually reluctant to provide information and feedback, AL can be used
to identify a set of data instances on which the users’ input conveys the most valuable
information to the system [14]. While active learning in itself helps to reduce the labeling
effort focusing on the data that provides new information, it has been demonstrated that
explainable artificial intelligence can provide meaningful information to the user, increasing
the accuracy of the labels provided [66]. Furthermore, feedback on the explanations can
be used to enhance them in the future further. A framework of three components can be
used to gather feedback, considering a forecasting engine, an explanation engine, and a
feedback loop to learn from the users [67].

The scientific literature describes multiple approaches towards the realization of
active learning [13,68,69]. Regarding how the unlabeled data instances are obtained, we
distinguish three scenarios: (i) membership query synthesis; (ii) stream-based selective
sampling; and (iii) pool-based active learning. Membership query synthesis requires some
mechanism (e.g., adversarial generative sampling [70]) to synthesize new data instances
for the specific label they were requested. Stream-based selective sampling assumes a
stream of unlabeled data instances is available. A decision must be made for each data
instance regarding whether it should be discarded or provided to the oracle for labeling.
Such a decision can be made based on an informativeness measure or determining a region
of uncertainty, querying the data instances within it. Finally, pool-based active learning
assumes a pool of unlabeled data from which data instances are selected greedily based on
an informativeness measure, which enables to rank the entire pool before selecting the best
candidate data instance.

While we envision that active learning can be applied to enhance the explanations
provided by XAI, and the decision-making options recommendations we provide to the
users regarding manufacturing-related operations [14], in this work, we only compare
different active learning strategies to classify and recommend media news to the users.
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We extend the approach proposed by [67] to collect feedback from forecasts, forecast
explanations, media news related to demand forecasting, and decision-making options we
recommend to the users. When recommending media news to the users, we evaluate our
approaches against baselines described in [21]. Those baselines allow us to understand the
exploration and exploitation trade-off required to learn from promising unlabeled data
instances while providing good recommendations to the users.

Active Learning for Text Classification

Text classification is a procedure of assigning predefined labels to the text and is
considered one of the most fundamental tasks in natural language processing [71]. Most
classical machine learning approaches follow the two steps, where in the first step (hand-
crafted), features are extracted from the input texts and in the second step, the features are
fed to a classifier that makes predictions. The choices of features include the bag-of-words
(BoW) approach with various extensions, such as BoW with TF-IDF weighting [72], while
the choices of classifiers include logistic regression and support vector machines [73]. In
some tasks, such approaches can still provide competitive baselines.

To address the limitations of hand-crafted features, neural approaches have been
explored, where the model learns to map the input text to a low-dimensional continuous
feature vector [73,74]. Feature extraction from text can be done using the approaches, such
as word2vec [75], doc2vec [76], universal sentence encoder [77], or by using transformer-
based models, such as BERT [78,79] and RoBERTa [80]. In some approaches, there are
multiple ways to obtain a single feature vector for the input text. E.g., this can be done, by
using only the vector of a specific word from text, for example the classification token, or
by averaging the feature vectors of all the words. Different techniques might yield different
performances on a given task [79,81]. A neural feature extractor can be used to produce
fixed feature vectors that are fed to the classifier as in the classical two-step approach, or
the neural model can be trained end-to-end on the given task.

To achieve a satisfying performance, text classification models need a large num-
ber of annotated examples to learn from. As manual labeling is a resource-intensive
task, active learning can alleviate some of the efforts. Different feature extraction tech-
niques, classification models and query strategies might be used [74,81–83]. The prediction
uncertainty-based query strategies are widely adopted and used with both single model or
committees [84,85] approaches. We are primarily interested in evaluating the strategies that
tackle the trade-off between learning and recommendation, so we follow the conclusions
from [81] to select the feature extraction method and classification model.

3. Proposed Architecture

To realize the system described in Section 1, we first drafted and iterated an architec-
ture, which requires the following components: (see Figure 1A):

• Database, stores operational data from the manufacturing plant. Data can be obtained
from ERP, MES, or other manufacturing platforms;

• Knowledge Graph, stores data ingested from a database or external sources and
connects it, providing a semantic meaning. To map data from the database to the
knowledge graph, virtual mapping procedures can be used, built considering ontology
concepts and their relationships;

• Active Learning Module, aims to select data instances whose labels are expected to
be most informative to a machine learning model and thus are expected to contribute
most to its performance increase when added to the existing dataset. Obtained labels
are persisted to the knowledge graph and database;

• AI model, aims to solve a specific task relevant to the use case, such as classification,
regression, clustering, or ranking;

• XAI Library, provides some insight into the AI models’ rationale used to produce
the output for the input instance considered at the task at hand. E.g., in the case of a
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classification task, it may indicate the most relevant features for a given forecast or
counterfactual examples;

• Decision-Making Recommender System recommends decision-making options to
the users. Recommended decision-making options can vary depending on the users’
profile, specific use case context, and feedback provided in the past;

• Feedback module, collects feedback from the users and persists it into the knowledge
graph. The feedback can correspond to predetermined options presented to the users
(including labels for a classification problem) or custom feedback written by the users;

• User Interface, provides relevant information to the user through a suitable infor-
mation medium. The interface must enable user interactions to create two-way
communication between the human and the system.

Figure 1. (A) displays a diagram of the system components and their interaction. (B) shows the main ontology concepts we
considered, and their relationships.

The knowledge graph is a central component of the system. Instantiated from an
ontology (see Figure 1B), it relates forecasts, forecast explanations, decision-making options,
and feedback provided by the users. To ensure context regarding decision-making options
and feedback provided is preserved, different relationships are established. The feedback
entity directly relates to a forecast, forecast explanation, and decision-making option. While
a chain of decisions can exist for a given forecast, there is a need to model the decision-
making options available at each stage and the sequence on which they are displayed. To
that end, the decision-making snapshot entity aims to capture a list of decision-making
options provided at a given point in time. A relationship between decision-making option
snapshots (followedBy) provides information on such a sequence. For each decision-making
snapshot, a selectedOption relationship is created to the user’s selected decision-making
option. A suggestsActionFor relationship is created between the forecast entity and entities
that correspond to the first decision-making options displayed for that particular forecast.
Since the decision-making options are linked to decision-making option snapshots and
preserve a sequential relationship, all decision-making options can be traced back to the
forecast that originated them.
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4. Use Case

Demand forecasting is a key component of supply chain management since it directly
affects production planning and order fulfillment. Accurate forecasts enable operational
and strategic decisions regarding manufacturing and logistics for deliveries. We developed
a model to forecast demand on a material and client level daily. The model was trained
on three years of data for 516 time-series corresponding to 279 materials and 149 clients
of a European automotive original equipment manufacturer’s daily demand. While the
forecasts were created and evaluated for all of the clients and materials, we used a subset
of them to evaluate the application (e.g., the forecast explanations, media news we display,
and recommended decision-making options). We generated forecast explanations using
the LIME library [54], but other approaches could be used too (e.g., LionForests [86]
or Shapley values [87]). We implemented two strategies for decision-making options
recommendations, which allowed us to select a new transport or chose among existing ones.
The first one consisted of a set of heuristics that satisfy certain criteria (e.g., have enough
capacity to satisfy the expected demand for a given client), while the second one was a
knowledge-based recommender. To enhance the context understanding related to demand
forecasting, we display media entries for predetermined topics (Automotive Industry, Global
Economy, Unemployment, and Logistics) obtained from a media event retrieval system for that
day. Media events are queried based on a set of keywords. We developed machine learning
models to classify media entries as interesting or not to the users and then gather labels
from the users for new media entries. Given there is no need to deliver such media news
entries in real-time, we opted to follow a pool-based active learning strategy, persisting
all media news event entries, and selecting those considered most informative from the
pool of unlabeled data.To provide decision-making options to the users, we implemented
two recommender systems: one based on heuristics, and a knowledge-based recommender
system. We describe both in Section 6.

5. User Interface

To provide forecasts, forecast explanations, media news, and decision-making options
to the user, we developed a user interface with five distinct parts (see Figure 2). Among
them we find:

A Media news panel: displays media news regarding the automotive industry, global
economy, unemployment, and logistics. The user can provide explicit feedback on
them (if they are suitable or not), acting as an oracle for the active learning classifier.
Once feedback is provided, a new piece of news is displayed to the user.

B Forecast panel: given the date and material, it displays the forecasted demand for
different clients. For each forecast, three options are available: edit the forecast
(providing explicit feedback on the forecast value), display the forecast explanation,
and display the decision-making options. The lack of editing on displayed forecasts
is considered implicit feedback approving the forecasted demand quantities.

C Forecast explanation panel: displays the forecast explanation for a given forecast.
Our implementation displays the top three features identified by the LIME algorithm
as relevant to the selected forecast. If users consider that some of the displayed
features do not explain the given forecast, they can provide feedback by removing it
from the list.

D Decision-making options panel: displays possible decision-making options for a
given forecast or step in the decision-making process. In particular, the decision-
making options relate to possible shipments. If no good option exists, the user can
create its own.

E Feedback panel: gathers feedback from the user to understand the reasons behind
the chosen decision-making option. While some pre-defined are shown to the user,
we always include the user’s possibility to add their reasons and enrich the existing
knowledge base. Furthermore, such data can be used to expand feedback options
displayed to the users in the future.
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Figure 2. User interface, displaying contextual media news, forecasts, forecast explanations, and
recommended decision-making options.

6. Decision-Making Options Recommendation

Demand forecasts influence decision-making on a wide variety of scenarios: from
raw material orders to workers hiring and upskilling to logistics arrangements to meet the
required deadlines. Decision-making recommender systems can alleviate such decision-
making by suggesting to the user appropriate actions based on the projected demand. In
particular, we implemented a decision-making options recommender system considering
the logistics use case. We consider two possible scenarios. The first scenario refers to
the user who schedules a new transport for a given demand, material, client, and date.
Here, the decision-making options are the possible transports, differing in transport type,
delivery time, and price. The second possible scenario relates to the user who decides to
use an existing transport. Here each decision-making option selects one of the existing
transports. In both steps, the recommendation module ranks the decision-making options
from most to least relevant.

We developed two recommendation strategies: a heuristic-based and a knowledge-
based approach. The heuristic-based recommender system follows simple rules, hand-
crafted either by the domain expert or simply by the system’s developer based on his
incomplete knowledge about the problem. At each step, the user should have the possi-
bility to select any of the possible options regardless of their ranking. Such a system has
no learning capacity, and therefore has little potential to improve the users’ experience.
The recommendation quality directly depends on the quality of the designed rules. An
example of such a heuristic rule is consistently ranking the transports according to the
price or keeping only existing transports delivering in the client’s proximity and ranking
them according to the remaining capacity.

The knowledge-based approach provides recommendations based on the feature
vectors’ similarity to a target vector describing users’ requirements. To that end, each
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decision-making option at the given step is represented as a vector v. The representation
captures all necessary information for the ranking, encoding the context up to the current
step, the corresponding decision-making option, and its relation to all other possible
decision-making options (the decision-making options snapshot). The model assigns the
relevance score to each option based on v. The ranking is determined by sorting the scores
from highest to lowest.

The representation and the underlying model should be expressive enough to cover
the scenarios encountered in the use case. As with the heuristic-based strategy, domain
knowledge heavily influences the design of features, but the content-based strategy pro-
vides greater flexibility. The features directly capture the context, which in our use case
includes the forecasted demand, date, material, and client; the decision-making option,
which in the case of scheduling a new transport includes the transport type, time of deliv-
ery, capacity, and price; and the relation of the decision-making option to the whole set of
available options to capture, how this option is different from others and why it should
be preferred.

Among the constraints of our recommender system, we must mention that we had no
data regarding the physical characteristics of each product we created demand forecasts
for. In addition, while we had no information regarding the specific addresses of the
clients ordering such products, we had information of the destination country. To mitigate
these constraints, we collected pricing and delivery time information for air, land, and
sea shipments considering single standard forty feet containers from Slovenia to fourteen
countries. Such data was retrieved from two specialized web-pages (we collected data
regarding pricing and shipment time from World Freight Rates (https://worldfreightrates.
com/freight) and SeaRates (https://www.searates.com/freight). We retrieved the data
between 12 July and 16 July 2021). Finally, given the application was not deployed to a
production environment yet, we lack data regarding logisticians’ interaction and choices,
which would enable recommender systems’ performance evaluation. We envision that
more complex models can be developed in the future once data regarding users’ interaction
with decision-making options is obtained.

7. Active Learning for Media News Categorization and Recommendation

When providing a demand forecast and the explanation that conveys an intuition
regarding the reasons behind the forecast, the user can be interested in getting media news
on events that can influence demand. In particular, when forecasting engine parts for the
automotive industry, the user can be interested in news regarding the automotive industry,
the global economy, unemployment, or logistics. While media news can be retrieved from
some news intelligence platforms, keywords based queries can issue many false positives.
It is thus imperative to develop a recommender system capable of discriminating and prior-
itizing good quality news over those considered false positives. Furthermore, it is desired
that such a model improve the quality of discrimination over time and require as little
manual labeling effort as possible. To realize this, we built a set of active learning binary
classifiers, each one informing if the media news considered does fit into a specific media
news category or not. We consider the end-user is at the same time the news consumer
and the active learning’s oracle, providing feedback regarding unlabeled instances. In our
design, we display the news and collect feedback regarding them in the same user interface.
This poses an exploration–exploitation dilemma since the same user interface space must be
optimized to provide high-quality media news balancing between those entries where high
confidence on the category exists but provide little additional information to the existing
dataset, and those entries where the confidence is lower, but can provide a higher degree of
novelty to the dataset [21]. In particular, each day, at most, ten pieces of news per each of
the four categories are displayed to the user. The user can then provide positive or negative
feedback (label) regarding each piece of news. The news should be informative for the
system as the goal is to achieve good classification performance as soon as possible. On the
other hand, the displayed news events should also be relevant so that the system is usable

https://worldfreightrates.com/freight
https://worldfreightrates.com/freight
https://www.searates.com/freight
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to the users after the first few iterations. The set of displayed news events on each day
should therefore balance the learning vs. recommendation (exploration vs. exploitation).
In this research, we do not deal with the cold-start problem since we consider it can be
mitigated by pre-training the models with a set of manually annotated instances before
starting the active learning dynamics. We have evaluated nine strategies (see Table 1),
balancing learning and recommendation.

Table 1. Active learning and recommendation strategies.

Strategy Description

Random Selects the k random instances at each step.

Uncertain Selects k instances with highest uncertainty
score at each step.

Certain Selects k instances with lowest uncertainty score,
that is, most certain examples.

Positive uncertain Select at most k instances that were labeled as positive
by the classifier and have the highest uncertainty scores.

Positive certain Select at most k instances that were labeled as positive
by the classifier and have the lowest uncertainty scores.

Positive certain and uncertain Select at most k/2 positive points with lowest and at
least k/2 points with highest uncertainty score.

Alpha trade-off (α = 0.5, 0.75, 1.0) We adapt the strategy proposed by [21]

Different measures can be used to measure the classification certainty of the model,
which is needed in the 5 out of 9 strategies presented in the Table 1. We use the uncertainty
of classification which is defined for a single sample x as U(x) = 1−max

y
P(yx) where a

higher value of U(x) means higher uncertainty. In the case of the SVM model, the distance
to the separating hyper-plane is an indicator of uncertainty, with the example having the
lowest distance being most uncertain [88].

Strategy Uncertain straightly implements the uncertainty assumption that labels of the
instances with the highest classification uncertainty are the most informative. It solely fo-
cuses on learning as such instances tend not to be the most relevant for the recommendation.
The Random strategy is included as a baseline, and so is the Certain strategy, which only
selects the least uncertain instances whose labels should provide the most negligible value
for the system according to the uncertainty assumption. To also address the recommenda-
tion, the Positive uncertain strategy selects the instances labeled as positive by the model
as this already signals that the instance is likely to be relevant for the recommendation.
At the same time, it might still provide some value for learning due to uncertainty. On
the other hand, the Positive certain strategy selects only the positive instances. Therefore,
it ranks them according to the certainty, which should highly favor the recommendation
while providing little value for learning. The Positive certain and uncertain strategy tries
to include both recommendation and learning by following the Positive certain strategy
for the first k/2 instances (or less if there are not enough positive instances) to provide
relevant recommendations and next following the uncertainty strategy to select at least the
k/2 instances relevant for learning.

The Alpha trade-off strategy is adapted from [21] and has a parameter α, used to control
between learning and recommendation. It selects the instances according to the formula

xα = arg min
x
|Pα − P(y = 1 | x)|

with Pα being the (100α)th percentile of the distribution of predictive probabilities of
positive class induced on the pool of new examples. For example P0.5 equals to the median
probability and P1.0 equals to the maximum probability of the positive class assigned to
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an instance from the pool. According to [21], α = 0.5 selects the instance with highest
uncertainty from the pool and thus favours learning while α = 1.0 selects most certainly
positive instance and thus favours recommendation. Setting α = 0.75 could therefore
provide a trade-off between learning and recommendation. The k instances closest to Pα

are selected to form the pool.
Positive certain and Alpha trade-off (α = 1.0) differ by the fact that Positive certain limits

only to instances that were labeled as positive and selects at most k instances which have
the lowest uncertainty score (highest probability of positive class), while Alpha trade-off
(α = 1.0) always selects k examples according to the decreasing probability of positive class.
Similarly as Positive certain, the Positive uncertain strategy also limits to examples that were
labeled as positive and selects at most k instances, which have the highest uncertainty score
(lowest probability of positive class).

7.1. Active Learning Experiments

The active learning experiments were performed on a dataset of media news events
classified into four categories: Automotive Industry, Global Economy, Unemployment, and
Logistics. The dataset was manually annotated by three human annotators, based on the
specific keywords used in each category to retrieve them (see Table 2). The media news
events were retrieved daily for a period of six months (from July 2019 to December 2019)
from Event Registry [89], a well-established media events monitoring platform that has
monitored mainstream media since 2014. The first month of the dataset was reserved for
training the initial version of the models and for tuning the model’s hyperparameters. The
last month of the dataset was reserved for testing the classification performance of the
models at each active learning step. The remaining data was used to execute the active
learning experiments and evaluate the recommendation performance at each step. We
provide an overview regarding the dataset in Table 3. We report the dataset size regarding
the number of instances per dataset split (initialization set, learning set used with AL,
and test set). We can observe that the datasets vary in size, with B being the smallest and
D being almost two magnitudes larger than B. Further, we include the ratio of negative
and positive instances, as labeled by the human annotators. The datasets are differently
balanced, with D being most unbalanced as the ratio of positive instances is only 2.29%.
We consider that the datasets’ diversity strengthens the experiments designed to evaluate
diverse scenarios. In addition to the dataset information, in Table 3 we also report the
number of AL iterations per each dataset (the number of days when at least one news event
is available) and the maximum number of instances that could be queried for a category,
per day, on average. While we conducted the experiments with a fixed budget of at most k
data instances per day; note that this number is smaller than k times the number of days;
less than k instances were available for some days.

Table 2. Active learning dataset categories, keywords used to query them, the number of instances per category, the number
of days without entries for a given category, and the median of events per day for that category (MEPD). “# Instances”
stands for “the number of instances”.

Category Keywords # Instances Missing Data MEPD

(A) Automotive Industry car sales demand, new car sales, vehicle sales,
car demand, automotive industry 3865 10 days 20

(B) Global Economy global GDP projection, global economic outlook,
economic forecast 853 29 days 5

(C) Unemployment
unemployment rate, unemployment numbers,
unemployment report, employment growth,
long-term unemployment

3801 8 days 22

(D) Logistics logistics, maritime transport, railroad transport,
freight, cargo transport, supply chain 28,231 0 days 133
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We executed the following procedure (see Figure 3). For each day, we retrieved
all available events for that given day, and for each media news entry, we created the
corresponding feature vector and assessed whether it should be displayed to the user to
gather feedback (label the instance) or not. This decision was made based on a strategy
(see Table 1) that considered how informative the news entries were to the existing dataset,
and their quality towards the target category, given the requirement that the events should
be both relevant for the user (recommendation quality) and informative for the model
(improvement of classification). For each day, we selected at most k events, which were
then shown to the user. We set k = 10, based on the median number of events per day, and
acknowledging it is a common practice to query a fixed number of instances at each step
according to the literature [81]. Once the media entry was displayed to the user, it was
incorporated into the existing dataset if it provided an annotation.

Figure 3. Fluxogram, showing how active learning and recommendations are implemented for media news event entries.

There are cases where the model can recommend less than k events. For example,
this could be due to not enough events for a particular category exist that day or that
only k′ < k of them are relevant or need a label. Thus, fewer events of that category are
displayed to the user.

We use a separate test set to measure the active learning models’ classification perfor-
mance to evaluate the models. In contrast, the recommendations’ quality is measured at
each step of active learning using the gold labels of the displayed news events. To measure
the models’ discrimination power, we adopted the ROC AUC, a widely used metric due
to its invariance to a priori class probabilities. On the other hand, to measure the quality
of the recommendations, we adopted the MAP metric, which computes the precision of
the recommendation set, and is not affected by the number of entries considered in each
particular case (the desired property when k′ < k media news events are shown to the user).

Only the titles of news events were considered for classification. We used two groups
of classification models, namely, the ones that are retrained on the labeled set on each
iteration of AL and the ones that are trained incrementally (online) on each new pre-
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sented labeled instance. We used logistic regression (LR), support vector machine (SVM),
and random forest (RF) in the first group. Among the online algorithms, we trained an
SGD-based logistic regression, a perceptron, and a passive-aggressive classifier (PA) [90],
obtaining best results with the latest. The selection of the batch models follow the related
work [74,81] where the SVM model was identified as a frequent choice for active learning
for text classification. The models that are retrained were also selected based on their fast
training time.

We experimented with three text representation techniques: TF-IDF weighted BoW
representation, which is a classical representation technique used for text classification
and serves as a strong baseline in our experiments; an average of token embeddings
from the RoBERTa model (We have used the pre-trained version of “RoBERTa-base”
model implemented in the Huggingface library [91]) which proved to be most effec-
tive for text classification based on the results obtained by [81], and representations ob-
tained from the Universal sentence encoder [77] (We have used the model available at
https://tfhub.dev/google/universal-sentence-encoder/4, accessed last time on Novem-
ber 2021). The TF-IDF representation is not straight-forward to adapt for the streaming
setting (where one example at the time is available) so we have used the simpler, hashing
based method (We have used the hashing vectorizer from Sci-kit learn library [92] avail-
able at https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.
text.HashingVectorizer.html, accessed on 11 November 2021) instead for streaming models.
The hashing vectorizer creates features by transforming a collection of text documents to a
matrix of token occurrences.

Through our experiments, we focused on comparing a set of data selections strategies,
retrieving unlabeled data from a pool of data instances. We simulated a realistic scenario,
where the news events were presented on a daily level, and the model received mini-
batch of labeled instances. We assume that the set of labeled instances always fits in the
available memory so the batch models can be re-trained in each iteration to achieve the best
performance. In addition to the batch models, we also tested several streaming models,
from which the best performance was obtained with the Passive-Aggressive classifier,
and the results included in this work. We consider that, given that there is no need to
display media news in real-time, and that providing them at a daily granularity is enough,
having a pool of news provides greater flexibility when choosing unlabeled data instances
and choice of machine learning models. Nevertheless, our goal is to compare selection
strategies. Thus, the models are useful towards providing if a strategy is consistently better
across several aspects thorough the models of choice.

Table 3. Overview of the active learning datasets with total number of instances per each split, ratio
of negative and positive instances, as labeled by the human annotators, number of iterations on the
learning set when AL is used and maximum number of possible queried instances by limiting the
budget with k = 10 instances per iteration. “# instances” denotes “the number of instances”.

A B C D

Initialization set size (# instances) 607 128 638 4388
Learning set size (# instances) 3070 693 2882 23,051
Test set size (# instances) 795 160 919 5180

Ratio of negative instances (all sets) 69.83% 65.06% 92.50% 97.71%
Ratio of positive instances (all sets) 30.17% 34.94% 7.50% 2.29%

Number of AL iterations 122 115 122 123
Number of possible selected instances (given k = 10) 1138 644 1132 1205

7.2. Results

In this section, we present the results we obtained when conducting experiments re-
garding different AL strategies. Strategies and models were evaluated in the AL setting by
following the procedure explained in Section 7.1. We report the classification performance

https://tfhub.dev/google/universal-sentence-encoder/4
https://tfhub.dev/google/universal-sentence-encoder/4
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.HashingVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.HashingVectorizer.html
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as the ROC AUC score obtained in the last iteration of active learning, while recommenda-
tion performance is reported with the MAP metric for all iterations. Further, we compare
different active learning strategies to determine the most successful in tackling the learning
versus recommendation trade-off. We provide additional results in the Tables A1–A4, in
the Appendix A.

7.2.1. Evaluating the Classification Baselines

Before conducting the experiments, we established a baseline by training multiple
supervised machine learning models on all available labeled data, excluding the test set.
In the baseline, we also included a fine-tuned RoBERTa model. This set of models aims
to understand the maximum expected performance achieved with this dataset and its
features. We report the baseline ROC AUC scores in Table 4.

Table 4. Classification performance of the models trained on all labeled examples excluding the test
set. Best score for each dataset is shown in bold. A–D correspond to the four datasets we used to
conduct the experiments, which are described in Table 2. TF-IDF representation is calculated on the
whole training set while the PA model is trained in the incremental learning setting.

Model Representation A B C D

LR TF-IDF 0.8575 0.8592 0.9856 0.9456
RoBERTa 0.8788 0.8681 0.9769 0.9297
USE 0.8654 0.8681 0.9875 0.9195

SVM TF-IDF 0.8639 0.8744 0.9846 0.9494
RoBERTa 0.8889 0.8702 0.9693 0.8916
USE 0.8828 0.8920 0.9799 0.9314

RF TF-IDF 0.8506 0.8345 0.9733 0.8987
RoBERTa 0.8720 0.8850 0.9179 0.8235
USE 0.9197 0.8756 0.9854 0.8899

PA Hashing 0.8538 0.8489 0.9880 0.9049
TF-IDF 0.8665 0.8480 0.9845 0.9372
RoBERTa 0.8985 0.8539 0.9365 0.9237
USE 0.9151 0.8789 0.9859 0.9067

Fine-tuned RoBERTa RoBERTa 0.8854 0.9081 0.9865 0.9531

From the baseline results shown in Table 4, we observe that RoBERTa model achieves
the best or at least competitive performance on all but a single dataset. This is expected
as fine-tuned language models are known to achieve state-of-the-art results on many text
classification tasks. Still, we can observe that the performance of the second-best model on
each dataset is very close, thus providing a good alternative to the RoBERTa model in our
case since other models usually require less time to train.

Fine-tuning the RoBERTa model is shown to be almost always better than using fixed
RoBERTa representations with a classifier on our datasets. There is no clear winner in
terms of representations, although universal sentence encoder (USE) appears to be a strong
competitor (if not better) to RoBERTa based representations recommended by [81].

An unexpected finding was that models based on the TF-IDF-based representations
achieve very competitive performance. Namely, on text classification tasks, TF-IDF-based
models usually lag in performance behind neural-based approaches.

As mentioned in the Section 7.1, TF-IDF representation calculation cannot be easily
adapted to the streaming setting. Still, for better comparison with other models, we used
TF-IDF representation calculated on the whole training set before training the PA classifier.
To also include the real streaming setting, we have used the hashing based approach, which
is referred to as Hashing in Table 4.
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7.2.2. Evaluating the Classification Performance of AL Strategies

As an aggregation of the results from all experiments, we report the mean value and
standard deviation, aggregated over models and representations on strategy and dataset
level, for ROC AUC score in the Table 5. This gives us insight into the actual classification
performance of the strategies on each of the datasets.

Table 5. Mean ROC AUC score with standard deviation, aggregated over used models and representations, for each strategy,
reported on each of the four datasets. The best score for each dataset is shown in bold. A–D correspond to the four datasets
we used to conduct the experiments, which are described in Table 2.

Strategy A B C D

Random 0.8610± 0.0323 0.8655± 0.0253 0.9561± 0.0320 0.8652± 0.0480
Uncertain 0.8592± 0.0354 0.8655± 0.0200 0.9639± 0.0258 0.8892± 0.0333
Certain 0.8575± 0.0304 0.8678± 0.0215 0.9480± 0.0449 0.8600± 0.0475
Positive uncertain 0.8154± 0.0348 0.8390± 0.0323 0.9368± 0.0345 0.8650± 0.0370
Positive certain 0.8037± 0.0433 0.8382± 0.0352 0.9408± 0.0311 0.8635± 0.0403
Positive certain and uncertain 0.8521± 0.0372 0.8681± 0.0221 0.9662± 0.0245 0.8867± 0.0324
Alpha trade-off (α = 0.5) 0.8637± 0.0346 0.8690± 0.0200 0.9561± 0.0355 0.8666± 0.0452
Alpha trade-off (α = 0.75) 0.8555± 0.0364 0.8696± 0.0191 0.9613± 0.0309 0.8733± 0.0390
Alpha trade-off (α = 1.0) 0.8507± 0.0445 0.8700± 0.0192 0.9643± 0.0251 0.8820± 0.0399

We observe little difference in final classification performance among the strategies in
Table 5, although they have many different policies for selecting the instances. For example,
the Uncertain and Certain strategies favor different (and, in a sense, complementary) subsets
of instances while their performance appears not to differ much.

As we aim to find the strategies suitable for learning regardless of the model and
representation used, we further compare the classification performance of the strategies
across all datasets. First, we group the results by model, representation, and dataset. Then,
inside each group, we sort and rank the strategies by their ROC AUC score. Finally, we
report the mean rank for each strategy in the Table 6. Additionally, for each active learning
strategy, we compute the mean ROC AUC ratio towards the best strategy in the group (see
Table 6). The mean rank gives us the ordering of the strategies. Finally, we determine the
significance of differences between them using the Wilcoxon signed-rank test [93] on ROC
AUC scores from all experiments, at a p-value = 0.005.

Table 6. AL strategies sorted according to mean rank of ROC AUC.

Strategy Mean Rank Mean Ratio to Best

Uncertain 3.3750 0.9561
Positive certain and uncertain 3.3958 0.9548
Alpha trade-off (α = 1.0) 3.4792 0.9532
Alpha trade-off (α = 0.75) 4.2708 0.9513
Alpha trade-off (α = 0.5) 4.5208 0.9502
Random 5.1042 0.9482
Certain 5.4375 0.9444

Positive certain 7.5417 0.9208
Positive uncertain 7.8750 0.9235

According to the results from Table 6, there is little difference between the best seven
strategies in terms of mean rank. Furthermore, we have observed no significant difference
among those strategies. We attribute this result to the large enough number of queried
instances at each step (k = 10 in our experiments) which, for our datasets, allows us to
cover a diverse set of instances regardless of the instance selection strategy. We observed,
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however, a significant difference between the top seven strategies and the Positive certain
and Positive uncertain strategies. We attribute this difference to the two strategies, limiting
only to the instances with a positive label assigned by the model, which might noticeably
limit the labeled set obtained during active learning. In comparison, other strategies always
request the label for k instances at the given step. Positive certain strategy selects the positive
instances on which the model is most certain. However, despite the certainty, there is no
reason for such instances to be true positives. When the number of positive instances is less
or equal to k, both Positive certain and Positive uncertain strategies select the same instances.
We have observed that, on average, 69.28% of instances selected by the Positive certain
strategy are positive while that percentage is 68.67% for the Positive uncertain strategy.

Furthermore, to evaluate whether active learning actually improves the performance
of the models or training on the initialization set is enough for good performance, and to
evaluate which of the strategies yield the highest performance increase, we report the mean
value and standard deviation, aggregated over models and representations on strategy and
dataset level, for change in the ROC AUC score in the Table 7. To determine the significance
of performance change (either increase or degradation) when training with AL compared to
training only on the initialization set and to determine the significance of different changes
in performance among the strategies, we have used the Wilcoxon signed-rank test at a
p-value = 0.005.

Table 7. Mean change in ROC AUC score with standard deviation, aggregated over used models and representations, for
each strategy, reported on each of the four datasets. The best score for each dataset is shown in bold. A–D correspond to the
four datasets we used to conduct the experiments, which are described in Table 2. It shows the change in performance when
models trained on initialization set are trained with AL.

Strategy A B C D

Random 0.0415± 0.0270 0.0441± 0.0296 0.0196± 0.0181 0.0089± 0.0117
Uncertain 0.0399± 0.0410 0.0420± 0.0345 0.0275± 0.0197 0.0317± 0.0242
Certain 0.0405± 0.0290 0.0483± 0.0291 0.0123± 0.0195 0.0051± 0.0075
Positive uncertain −0.0039± 0.0226 0.0153± 0.0220 −0.0010± 0.0164 0.0138± 0.0263
Positive certain −0.0159± 0.0274 0.0168± 0.0275 0.0044± 0.0185 0.0055± 0.0165
Positive certain and uncertain 0.0341± 0.0364 0.0473± 0.0311 0.0294± 0.0204 0.0319± 0.0246
Alpha trade-off (α = 0.5) 0.0455± 0.0432 0.0457± 0.0291 0.0213± 0.0203 0.0095± 0.0213
Alpha trade-off (α = 0.75) 0.0360± 0.0416 0.0492± 0.0340 0.0250± 0.0202 0.0185± 0.0198
Alpha trade-off (α = 1.0) 0.0338± 0.0460 0.0475± 0.0330 0.0288± 0.0215 0.0264± 0.0293

We have observed that all strategies can either improve or degrade the performance
of the model. However, the performance when the models are trained with AL is sig-
nificantly better for all strategies except Positive uncertain and Positive certain, where no
significant change in performance was observed—no significant improvement or degrada-
tion. When comparing the strategies, we did not observe any significant difference among
the first 7 strategies as listed in the Table 6 while we have observed a significantly worse
improvement for strategies Positive certain and Positive uncertain.

7.2.3. Evaluating the Recommendation Performance of AL Strategies

To evaluate one aspect of the strategies’ recommendation performance, we aggregate
the results from all experiments and report the mean value and standard deviation, ag-
gregated over models and representations on strategy and dataset level, for MAP score
in Table 8. MAP enables us to quantify, for each dataset, the strategies’ performance on
how accurate the recommended entries are while penalizing their ordering within the top
K entries.

We observe that the performance of strategies that focus on the positively labeled
instances, such as Positive certain or Alpha trade-off (α = 1.0), far exceeds the performance
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of uncertainty focused strategies, such as Uncertain or Alpha trade-off (α = 0.5). This is
especially evident on the strongly imbalanced datasets C and D, where there is a large
number of negatives, that is, irrelevant news events. A large number of negatives also
explains the poor performance of Certain strategy, as classifying negatives appear to be
more certain.

Table 8. Mean MAP score with standard deviation, aggregated over used models and representations, for each strategy,
reported on each of the four datasets. The best score for each dataset is shown in bold. A–D correspond to the four datasets
we used to conduct the experiments, which are described in Table 2.

Strategy A B C D

Random 0.2736± 0.0083 0.4772± 0.0159 0.1265± 0.0155 0.0327± 0.0072
Uncertain 0.4497± 0.0614 0.5334± 0.0159 0.4718± 0.0817 0.2916± 0.0690
Certain 0.1893± 0.0525 0.4217± 0.0201 0.0450± 0.0234 0.0109± 0.0010
Positive uncertain 0.5779± 0.0450 0.6994± 0.0985 0.8528± 0.0943 0.6683± 0.2515
Positive certain 0.6912± 0.0653 0.7633± 0.0866 0.8931± 0.0697 0.6992± 0.2338
Positive certain and uncertain 0.6482± 0.0454 0.6717± 0.0183 0.6035± 0.0377 0.3545± 0.0557
Alpha trade-off (α = 0.5) 0.3238± 0.0164 0.6439± 0.0120 0.0916± 0.0099 0.0222± 0.0038
Alpha trade-off (α = 0.75) 0.5504± 0.0428 0.6627± 0.0190 0.1265± 0.0137 0.0280± 0.0057
Alpha trade-off (α = 1.0) 0.6854± 0.0423 0.6713± 0.0191 0.6062± 0.0390 0.3619± 0.0579

Further, to find the strategies which are good in terms of MAP score regardless of the
model and representation used, we compare them across all datasets by following the same
procedure as in Table 6 for the classification performance. The metric under consideration
is not the ROC AUC but the MAP score in this particular case. Results are reported in
Table 9, where the mean rank is used to order the strategies. We determine the significance
of differences between the strategies using the Wilcoxon signed-rank test on MAP scores
from all experiments, at a p-value = 0.005.

Table 9. AL strategies sorted according to mean rank of MAP.

Strategy Mean Rank Mean Ratio to Best

Positive certain 1.3125 0.8000

Alpha trade-off (α = 1.0) 2.6250 0.6192
Positive uncertain 3.0000 0.7316

Positive certain and uncertain 3.3542 0.6054

Alpha trade-off (α = 0.75) 5.6458 0.3724
Uncertain 5.6875 0.4615

Alpha trade-off (α = 0.5) 7.1875 0.2883
Random 7.2292 0.2427

Certain 8.9583 0.1772

We can observe that the Positive certain strategy achieves significantly better perfor-
mance than others. Moreover, despite showing worse classification performance, according
to the results from Table 6, and thus yielding less capable classification models, it displays
the most relevant instances to the user at each step. However, it has to be noted that such a
strategy displays much fewer instances than others and thus might miss many relevant
recommendations, achieving low recommendation recall. The Alpha trade-off (α = 1.0),
Positive uncertain and Positive certain and uncertain strategies follow with significantly worse
performance. We can further observe a drop in performance after the first four strategies
focused on positively labeled instances. The performance of Alpha trade-off (α = 0.75),
which is meant to balance between the learning and recommendation, is not significantly
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different from the performance of Uncertain strategy. The Random, Alpha trade-off (α = 0.5)
and Certain strategy follow, again all with significantly worse performance, with Certain
strategy being significantly the worst-performing.

Another relevant dimension of recommender systems’ performance is the recall. Recall
evaluates how many of the relevant instances were actually recommended and displayed
to the user. While MAP score measures how many of the k (or less) displayed instances are
relevant and whether the relevant instances are shown first, the recall score measures the
ratio of shown relevant instances versus all relevant instances. We aggregate the results
from all experiments and report the mean value and standard deviation, aggregated over
models and representations on strategy and dataset level, for Recall score in Table 10.

Table 10. Mean recall score with standard deviation, aggregated over used models and representations, for each strategy,
reported on each of the four datasets. The best score for each dataset is shown in bold. A–D correspond to the four datasets
we used to conduct the experiments, which are described in Table 2.

Strategy A B C D

Random 0.5375± 0.0115 0.9666± 0.0055 0.4602± 0.0388 0.0771± 0.0158
Uncertain 0.6892± 0.0467 0.9816± 0.0045 0.8698± 0.0642 0.5285± 0.0679
Certain 0.4126± 0.0457 0.9543± 0.0060 0.1767± 0.0515 0.0131± 0.0045
Positive uncertain 0.5530± 0.2350 0.6096± 0.2999 0.4822± 0.1760 0.2004± 0.0958
Positive certain 0.5689± 0.2425 0.6031± 0.3005 0.4694± 0.1783 0.2019± 0.0932
Positive certain and uncertain 0.8098± 0.0373 0.9924± 0.0031 0.9508± 0.0384 0.5787± 0.0630
Alpha trade-off (α = 0.5) 0.4275± 0.0287 0.9510± 0.0051 0.1452± 0.0328 0.0307± 0.0100
Alpha trade-off (α = 0.75) 0.7005± 0.0285 0.9795± 0.0063 0.2305± 0.0557 0.0517± 0.0185
Alpha trade-off (α = 1.0) 0.8497± 0.0272 0.9926± 0.0030 0.9526± 0.0335 0.5865± 0.0693

The Alpha trade-off (α = 1.0) strategy achieves the best mean recall score on all datasets
and is closely followed by the Positive certain and uncertain strategy. Although the Positive
certain strategy was ranked first according to the MAP score (see Table 9), it is evident that
it performs well in terms of precision by trading the recall.

To further compare the strategies regardless of the model and representation used,
we follow the same procedure as for the MAP score (see Table 9). Results are reported in
Table 11, where the mean rank is used to order the strategies. The significance of differences
between the strategies is determined using the Wilcoxon signed-rank test on recall scores
from all experiments, at a p-value = 0.005.

Table 11. AL strategies sorted according to mean rank of recall.

Strategy Mean Rank Mean Ratio to Best

Alpha trade-off (α = 1.0) 1.2083 0.9362

Positive certain and uncertain 1.8333 0.9218

Uncertain 3.2917 0.8472

Alpha trade-off (α = 0.75) 5.3958 0.5155
Random 5.6250 0.5345
Positive certain 5.9167 0.4997
Positive uncertain 6.2292 0.4996

Alpha trade-off (α = 0.5) 7.6875 0.4039
Certain 7.8125 0.4022

We found the Alpha trade-off (α = 1.0) displayed the best performance with significant
difference to the second best, Positive certain and uncertain strategy. The Uncertain strategy
follows with significantly better results than the remaining strategies. It can be observed
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from the Table 10 that the score of Uncertain strategy is in range with the scores of the best
two strategies on all datasets, and it does not even decrease as much as the score of others,
worse-performing strategies, on dataset D. It might be that the uncertain instances are
frequently from the positive class in our datasets. Next, we can observe the decrease in
performance with the differences between the following four strategies not being significant,
and the Alpha trade-off (α = 0.5) and Certain strategies at the tail.

Through the classification and recommendation results, we have evaluated how
well each strategy performs in terms of learning and recommendation and how does its
performance compares to others. As just a single strategy is implemented in the active
learner, is has to be such that it best balances the learning and recommendation for the best
user experience. Based on the results, we consider the Alpha trade-off (α = 1.0) strategy to
be the best choice, followed by the Positive certain and uncertain strategies. The classification
results (see Table 6) showed no statistically significant difference in performance between
the best strategies. Although based on the precision of recommendation (MAP score)
results (see Table 9), the Positive certain is the best performing strategy, it only performs
well in one aspect of recommendation and ignores the recall. Both Alpha trade-off (α = 1.0)
and Positive certain and uncertain are second-tiers in terms of MAP score with Alpha trade-
off (α = 1.0) strategy being slightly better, while they rank first and second in terms of
recommendation recall.

8. Conclusions and Future Work

The current work presents an architecture designed to acquire and encapsulate com-
plex knowledge using semantic technologies and artificial intelligence. The system was
instantiated for the demand forecasting use case in the manufacturing domain, using real-
world data from partners from the EU H2020 projects STAR and FACTLOG. In particular,
the system provides forecasts and explanations, enriches users’ domain knowledge through
a set of media news, recommends decision-making options, and collects users’ feedback.
Furthermore, the system uses active learning to reduce manual labeling effort and better
discriminate between good and bad media news reporting events related to the demand
forecast domain. A series of experiments were executed to understand the best exploration
and exploitation trade-off between strategies, which is required to learn from unlabeled
media news entries while providing good recommendations to the users. We consider that
the best performance was achieved by the Alpha trade-off (α = 1.0) and Positive certain and
uncertain, which displayed a strong performance in terms of MAP score and recall. While
many improvements can be introduced to increase the classification performance on top of
the existing datasets, our research mainly focused on evaluating the impact of each strategy
on learning. Future work will explain the models’ criteria for classifying the media news
events and the associated unlabeled entry uncertainty. We expect that such explanations
will enhance users’ understanding of the underlying model and ease their labeling effort.
Furthermore, users’ feedback can be leveraged in an active learning schema to learn how
they perceive the explanations and to enhance their quality over time [94]. Finally, we
envision extending such explanations towards the decision-making recommendations to
increase the transparency behind such recommendations.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AL Active Learning
ANN Artificial Neural Networks Neural Networks
ARIMA AutoRegressive Integrated Moving Average
ARMA AutoRegressive Moving Average
ROC AUC Area Under the Receiver Operating Characteristic Curve
BoW Bag-Of-Words
CPS Cyber-Physical System
DT Digital Twin
ERP Enterprise Resource Planning Resource Planning
LIME Local Interpretable Model-agnostic Explanations
MAP Mean Average Precision
MES Manufacturing Execution System
MLR Multiple Linear Regression
SVM Support Vector Machine
TF-IDF Term Frequency-Inverse Document Frequency
USE Universal Sentence Encoder
XAI Explainable Artificial Intelligence

Appendix A

We report the performance of the models trained only on the initialization set to see if
the active learning is really needed or if the initialization set itself provides enough labeled
examples to obtain good performance.

Table A1. Classification performance of the models trained on the initialization set. Best score
for each dataset is shown in bold. A–D correspond to the four datasets we used to conduct the
experiments, which are described in Table 2.

Model Representation A B C D

LR TF-IDF 0.7762 0.7954 0.9533 0.8698
RoBERTa 0.8301 0.8903 0.9308 0.9109
USE 0.8556 0.8199 0.9795 0.8931

SVM TF-IDF 0.7805 0.7998 0.9336 0.8576
RoBERTa 0.8375 0.8795 0.9280 0.8822
USE 0.8574 0.8571 0.9789 0.8969

RF TF-IDF 0.7965 0.7268 0.9268 0.8221
RoBERTa 0.8246 0.8607 0.8514 0.7535
USE 0.8765 0.8226 0.9808 0.8177

PA Hashing 0.7598 0.7642 0.9087 0.8027
RoBERTa 0.7871 0.8164 0.8870 0.8727
USE 0.8409 0.8291 0.9759 0.8881
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Table A2. ROC AUC scores for all experiments.

Random Uncertain Certain

Model Representation A B C D A B C D A B C D

LR TF-IDF 0.8416 0.8763 0.9692 0.8835 0.8391 0.8564 0.9777 0.9019 0.8377 0.8613 0.9702 0.8716
RoBERTa 0.8638 0.9015 0.9527 0.9114 0.8209 0.8754 0.9655 0.9208 0.8579 0.8957 0.9494 0.9105
USE 0.8545 0.8655 0.9812 0.8996 0.8595 0.8697 0.9818 0.9257 0.8500 0.8726 0.9805 0.8925

SVM TF-IDF 0.8353 0.8653 0.9722 0.8703 0.8264 0.8629 0.9694 0.9043 0.8305 0.8677 0.9755 0.8719
RoBERTa 0.8348 0.8609 0.9453 0.8935 0.8035 0.8747 0.9455 0.8552 0.8400 0.8732 0.9395 0.8919
USE 0.8783 0.8936 0.9837 0.9023 0.8803 0.8957 0.9801 0.9195 0.8827 0.8924 0.9808 0.8960

RF TF-IDF 0.8491 0.8132 0.9414 0.8313 0.8332 0.8199 0.9642 0.8553 0.8553 0.8142 0.9544 0.8374
RoBERTa 0.8637 0.8860 0.8816 0.7511 0.8828 0.8857 0.9038 0.8230 0.8266 0.8807 0.8323 0.7552
USE 0.9185 0.8728 0.9852 0.8356 0.9060 0.8753 0.9885 0.8743 0.9129 0.8733 0.9797 0.8042

PA Hashing 0.8058 0.8283 0.9726 0.8146 0.8588 0.8449 0.9754 0.8659 0.8157 0.8512 0.9535 0.8112
RoBERTa 0.8726 0.8522 0.9115 0.9025 0.8846 0.8534 0.9278 0.9103 0.8814 0.8541 0.8875 0.8918
USE 0.9138 0.8698 0.9770 0.8871 0.9158 0.8718 0.9872 0.9145 0.8987 0.8774 0.9727 0.8857

Positive Uncertain Positive Certain Positive Certain and Uncertain

Model Representation A B C D A B C D A B C D

LR TF-IDF 0.7730 0.8311 0.9442 0.8644 0.7894 0.8311 0.9442 0.8661 0.8246 0.8609 0.9774 0.9022
RoBERTa 0.8076 0.8793 0.9285 0.9191 0.8047 0.8899 0.9305 0.9192 0.8181 0.8978 0.9657 0.9235
USE 0.8308 0.8466 0.9685 0.9090 0.8161 0.8477 0.9685 0.9086 0.8410 0.8677 0.9826 0.9260

SVM TF-IDF 0.7956 0.8031 0.9536 0.8712 0.7352 0.8457 0.9536 0.8713 0.8220 0.8657 0.9688 0.8956
RoBERTa 0.7851 0.8669 0.9087 0.8728 0.7768 0.8716 0.9136 0.8670 0.8270 0.8704 0.9624 0.8585
USE 0.8462 0.8700 0.9626 0.9011 0.8465 0.8781 0.9626 0.9011 0.8712 0.8959 0.9838 0.9179

RF TF-IDF 0.7998 0.7849 0.9167 0.8327 0.7917 0.7869 0.9476 0.8260 0.8182 0.8253 0.9707 0.8586
RoBERTa 0.8430 0.8725 0.8779 0.8133 0.8455 0.8331 0.8876 0.7850 0.8545 0.8861 0.9029 0.8351
USE 0.8912 0.8663 0.9861 0.8403 0.8989 0.8573 0.9842 0.8677 0.9180 0.8765 0.9863 0.8507

PA Hashing 0.7944 0.8028 0.9325 0.8011 0.7682 0.7713 0.9424 0.8044 0.8289 0.8346 0.9767 0.8569
RoBERTa 0.7801 0.8164 0.8870 0.8727 0.7782 0.8164 0.8870 0.8727 0.8839 0.8559 0.9339 0.9126
USE 0.8380 0.8281 0.9749 0.8827 0.7928 0.8290 0.9675 0.8731 0.9173 0.8802 0.9832 0.9033

Alpha Trade-Off (α = 0.5) Alpha Trade-Off (α = 0.75) Alpha Trade-Off (α = 1.0)

Model Representation A B C D A B C D A B C D

LR TF-IDF 0.8363 0.8791 0.9773 0.8888 0.8303 0.8653 0.9864 0.8766 0.8150 0.8609 0.9773 0.9027
RoBERTa 0.8341 0.8973 0.9616 0.9171 0.8303 0.8969 0.9672 0.9134 0.8210 0.8978 0.9658 0.9251
USE 0.8503 0.8644 0.9819 0.9115 0.8480 0.8707 0.9800 0.9048 0.8421 0.8677 0.9813 0.9260

SVM TF-IDF 0.8405 0.8609 0.9627 0.8710 0.8353 0.8644 0.9762 0.8740 0.8324 0.8657 0.9533 0.8969
RoBERTa 0.8014 0.8698 0.9570 0.8350 0.7992 0.8688 0.9630 0.8821 0.7770 0.8704 0.9632 0.8252
USE 0.8873 0.8969 0.9803 0.9000 0.8680 0.8978 0.9789 0.9029 0.8702 0.8959 0.9827 0.9179

RF TF-IDF 0.8556 0.8295 0.9575 0.8403 0.8374 0.8274 0.9477 0.8347 0.8124 0.8373 0.9688 0.8480
RoBERTa 0.8662 0.8749 0.8679 0.7646 0.8811 0.8792 0.8844 0.7860 0.8777 0.8838 0.9049 0.8226
USE 0.9147 0.8747 0.9751 0.8275 0.9003 0.8719 0.9830 0.8366 0.9248 0.8803 0.9872 0.8559

PA Hashing 0.8655 0.8401 0.9743 0.8445 0.8218 0.8555 0.9719 0.8534 0.8319 0.8426 0.9735 0.8453
RoBERTa 0.8976 0.8606 0.8998 0.9025 0.8991 0.8552 0.9171 0.9091 0.8929 0.8550 0.9274 0.8963
USE 0.9146 0.8795 0.9780 0.8963 0.9149 0.8821 0.9799 0.9054 0.9106 0.8829 0.9864 0.9221
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Table A3. MAP scores for all experiments.

Random Uncertain Certain

Model Representation A B C D A B C D A B C D

LR TF-IDF 0.2741 0.4717 0.1265 0.0307 0.5056 0.5227 0.5576 0.4220 0.1791 0.4219 0.0274 0.0103
RoBERTa 0.2675 0.4631 0.1005 0.0271 0.3885 0.5212 0.4328 0.2808 0.1623 0.4087 0.0328 0.0101
USE 0.2787 0.4584 0.1062 0.0449 0.4059 0.5235 0.5186 0.2804 0.1676 0.4158 0.0236 0.0106

SVM TF-IDF 0.2699 0.4939 0.1238 0.0312 0.5428 0.5155 0.3572 0.1969 0.2661 0.4084 0.0904 0.0110
RoBERTa 0.2799 0.4874 0.1433 0.0349 0.3618 0.5144 0.3313 0.2850 0.1651 0.4308 0.0347 0.0101
USE 0.2694 0.4530 0.1175 0.0298 0.3805 0.5385 0.4531 0.2747 0.1993 0.4227 0.0289 0.0102

RF TF-IDF 0.2690 0.4753 0.1283 0.0357 0.4965 0.5687 0.5629 0.3595 0.1285 0.3887 0.0258 0.0102
RoBERTa 0.2849 0.4741 0.1309 0.0476 0.5088 0.5468 0.4990 0.3350 0.1390 0.4091 0.0394 0.0131
USE 0.2629 0.4854 0.1193 0.0286 0.5132 0.5476 0.5985 0.3538 0.1203 0.4109 0.0283 0.0114

PA Hashing 0.2618 0.4648 0.1224 0.0242 0.4331 0.5284 0.4656 0.2960 0.2688 0.4561 0.0814 0.0125
RoBERTa 0.2884 0.4988 0.1527 0.0331 0.4480 0.5329 0.4759 0.1822 0.2525 0.4592 0.0618 0.0102
USE 0.2766 0.5001 0.1465 0.0252 0.4116 0.5411 0.4092 0.2328 0.2229 0.4278 0.0652 0.0117

Positive Uncertain Positive Certain Positive Certain and Uncertain

Model Representation A B C D A B C D A B C D

LR TF-IDF 0.5575 0.6555 0.9191 0.6422 0.6145 0.7174 0.9240 0.6379 0.6449 0.6672 0.6296 0.4259
RoBERTa 0.5554 0.6876 0.7333 0.3689 0.6448 0.7196 0.7862 0.3922 0.6140 0.6660 0.6093 0.3900
USE 0.5642 0.6423 0.8603 0.3739 0.6655 0.7233 0.8978 0.4124 0.6584 0.6942 0.6312 0.3249

SVM TF-IDF 0.5796 0.6649 0.9378 0.9355 0.6636 0.7012 0.9383 0.9355 0.6325 0.6679 0.6250 0.3826
RoBERTa 0.5288 0.7256 0.7001 0.4127 0.5900 0.7363 0.7493 0.4423 0.6012 0.6610 0.5887 0.3730
USE 0.6066 0.7058 0.8721 0.5820 0.7129 0.7610 0.8933 0.5675 0.6912 0.7059 0.6408 0.4162

RF TF-IDF 0.5618 0.6373 0.8929 0.6623 0.6742 0.6837 0.9403 0.6226 0.6710 0.6672 0.6260 0.3731
RoBERTa 0.6160 0.6476 0.8878 1.0000 0.6675 0.7439 0.9057 1.0000 0.6807 0.6786 0.5192 0.3370
USE 0.6156 0.6565 0.9059 1.0000 0.7528 0.7417 0.9406 1.0000 0.7348 0.6867 0.6134 0.3621

PA Hashing 0.6255 0.6978 0.7151 0.4966 0.8186 0.7727 0.8466 0.7378 0.6198 0.6397 0.6121 0.3572
RoBERTa 0.4842 1.0000 1.0000 1.0000 0.7418 1.0000 1.0000 1.0000 0.5650 0.6496 0.5384 0.2268
USE 0.6392 0.6715 0.8088 0.5461 0.7482 0.8585 0.8948 0.6425 0.6649 0.6762 0.6083 0.2846

Alpha Trade-Off (α = 0.5) Alpha Trade-Off (α = 0.75) Alpha Trade-Off (α = 1.0)

Model Representation A B C D A B C D A B C D

LR TF-IDF 0.3076 0.6420 0.0794 0.0192 0.5520 0.6495 0.1073 0.0237 0.6691 0.6671 0.6317 0.4211
RoBERTa 0.3177 0.6467 0.0874 0.0206 0.5645 0.6620 0.1036 0.0232 0.6767 0.6665 0.6103 0.3914
USE 0.3145 0.6538 0.0857 0.0205 0.5707 0.6871 0.1143 0.0269 0.6769 0.6976 0.6317 0.3257

SVM TF-IDF 0.3246 0.6337 0.0837 0.0224 0.5351 0.6537 0.1237 0.0199 0.6693 0.6679 0.6269 0.4259
RoBERTa 0.3566 0.6388 0.0975 0.0238 0.5546 0.6512 0.1386 0.0291 0.6280 0.6619 0.5907 0.3820
USE 0.3319 0.6678 0.0872 0.0188 0.5965 0.6985 0.1377 0.0248 0.7341 0.7087 0.6412 0.4462

RF TF-IDF 0.3226 0.6422 0.0931 0.0188 0.5577 0.6589 0.1211 0.0401 0.6856 0.6559 0.6279 0.3605
RoBERTa 0.3296 0.6450 0.0973 0.0242 0.5777 0.6664 0.1366 0.0247 0.7076 0.6649 0.5212 0.3458
USE 0.3095 0.6580 0.0970 0.0223 0.6038 0.6818 0.1291 0.0282 0.7765 0.6915 0.6282 0.3444

PA Hashing 0.2958 0.6268 0.0881 0.0232 0.4834 0.6349 0.1240 0.0327 0.6687 0.6500 0.6148 0.3643
RoBERTa 0.3397 0.6272 0.1169 0.0326 0.4554 0.6401 0.1500 0.0358 0.6241 0.6469 0.5343 0.2430
USE 0.3355 0.6446 0.0857 0.0200 0.5530 0.6685 0.1321 0.0268 0.7080 0.6765 0.6154 0.2923
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Table A4. Recall scores for all experiments.

Random Uncertain Certain

Model Representation A B C D A B C D A B C D

LR TF-IDF 0.5221 0.9610 0.4113 0.0659 0.7179 0.9804 0.9161 0.6631 0.4300 0.9472 0.1337 0.0114
RoBERTa 0.5267 0.9611 0.3750 0.0755 0.6448 0.9778 0.8304 0.5545 0.4016 0.9576 0.1657 0.0091
USE 0.5453 0.9670 0.4424 0.0909 0.6692 0.9759 0.9546 0.5790 0.4285 0.9633 0.1111 0.0110

SVM TF-IDF 0.5517 0.9642 0.4943 0.0734 0.7383 0.9767 0.7693 0.4523 0.4970 0.9549 0.2469 0.0139
RoBERTa 0.5537 0.9669 0.4837 0.0905 0.6217 0.9893 0.8141 0.5252 0.3926 0.9569 0.1659 0.0091
USE 0.5270 0.9699 0.4430 0.0722 0.6283 0.9795 0.9022 0.5392 0.4495 0.9594 0.1317 0.0101

RF TF-IDF 0.5341 0.9738 0.4774 0.0815 0.7215 0.9841 0.9465 0.5653 0.3565 0.9550 0.1287 0.0101
RoBERTa 0.5540 0.9721 0.4844 0.1146 0.7582 0.9778 0.8457 0.5009 0.3662 0.9572 0.1796 0.0139
USE 0.5293 0.9551 0.4781 0.0644 0.7494 0.9845 0.9589 0.5345 0.3333 0.9482 0.1444 0.0205

PA Hashing 0.5270 0.9677 0.4387 0.0582 0.6745 0.9845 0.7987 0.5251 0.4540 0.9496 0.2513 0.0231
RoBERTa 0.5392 0.9732 0.5074 0.0606 0.6731 0.9886 0.8550 0.3830 0.4200 0.9591 0.2074 0.0104
USE 0.5401 0.9671 0.4872 0.0771 0.6741 0.9797 0.8459 0.5198 0.4225 0.9431 0.2537 0.0141

Positive Uncertain Positive Certain Positive Certain and Uncertain

Model Representation A B C D A B C D A B C D

LR TF-IDF 0.6374 0.7670 0.4826 0.2527 0.6550 0.7670 0.4826 0.2565 0.8142 0.9910 0.9650 0.6678
RoBERTa 0.6254 0.7617 0.6415 0.1638 0.6451 0.7544 0.6426 0.1638 0.7988 0.9942 0.9531 0.6057
USE 0.7107 0.7544 0.6419 0.1787 0.7307 0.7507 0.6419 0.1805 0.8258 0.9929 0.9885 0.6036

SVM TF-IDF 0.6392 0.7235 0.4333 0.2545 0.6776 0.6928 0.4333 0.2545 0.7972 0.9929 0.9506 0.6395
RoBERTa 0.6173 0.7966 0.6665 0.2538 0.6002 0.7948 0.6685 0.2538 0.7718 0.9927 0.9483 0.5771
USE 0.7167 0.8332 0.5974 0.3245 0.7253 0.8167 0.5974 0.3245 0.8373 0.9986 0.9744 0.6509

RF TF-IDF 0.6772 0.7300 0.4565 0.2807 0.7207 0.7241 0.4683 0.2647 0.8415 0.9869 0.9633 0.5781
RoBERTa 0.7239 0.7688 0.4117 0.2545 0.6999 0.7615 0.4356 0.2545 0.8381 0.9896 0.8493 0.5066
USE 0.7436 0.8180 0.4800 0.2545 0.8001 0.8344 0.4194 0.2561 0.8628 0.9942 0.9681 0.5401

PA Hashing 0.2468 0.1707 0.4556 0.0977 0.2886 0.1674 0.4659 0.1368 0.7812 0.9883 0.9507 0.5838
RoBERTa 0.0257 0.0000 0.0000 0.0000 0.0125 0.0000 0.0000 0.0000 0.7266 0.9942 0.9087 0.4460
USE 0.2719 0.1912 0.5193 0.0898 0.2716 0.1735 0.3776 0.0770 0.8222 0.9929 0.9894 0.5453

Alpha Trade-Off (α = 0.5) Alpha Trade-Off (α = 0.75) Alpha Trade-Off (α = 1.0)

Model Representation A B C D A B C D A B C D

LR TF-IDF 0.4041 0.9464 0.1189 0.0243 0.6982 0.9722 0.1676 0.0355 0.8444 0.9910 0.9661 0.6668
RoBERTa 0.4108 0.9488 0.1389 0.0195 0.7277 0.9838 0.1654 0.0381 0.8431 0.9942 0.9554 0.6111
USE 0.4133 0.9455 0.1139 0.0285 0.7243 0.9852 0.1843 0.0390 0.8541 0.9951 0.9896 0.6036

SVM TF-IDF 0.4336 0.9491 0.1309 0.0254 0.6729 0.9721 0.2031 0.0290 0.8309 0.9929 0.9494 0.6894
RoBERTa 0.4720 0.9630 0.1606 0.0261 0.7212 0.9844 0.2548 0.0636 0.8192 0.9949 0.9406 0.5789
USE 0.4122 0.9520 0.1185 0.0200 0.7272 0.9879 0.2372 0.0414 0.8720 0.9986 0.9767 0.6820

RF TF-IDF 0.4241 0.9536 0.1396 0.0272 0.6892 0.9784 0.2241 0.0823 0.8487 0.9893 0.9569 0.5325
RoBERTa 0.4266 0.9577 0.2072 0.0446 0.7219 0.9787 0.3215 0.0634 0.8732 0.9891 0.8707 0.5271
USE 0.3888 0.9498 0.1444 0.0352 0.7245 0.9813 0.2122 0.0530 0.9055 0.9907 0.9683 0.5246

PA Hashing 0.4179 0.9511 0.1467 0.0369 0.6502 0.9668 0.2296 0.0455 0.8353 0.9883 0.9541 0.5995
RoBERTa 0.4916 0.9499 0.2093 0.0529 0.6558 0.9822 0.3470 0.0864 0.8039 0.9942 0.9124 0.4671
USE 0.4355 0.9455 0.1139 0.0281 0.6929 0.9812 0.2193 0.0429 0.8665 0.9929 0.9907 0.5555
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