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Abstract: Background and objectives: Machine learning approaches using random forest have been
effectively used to provide decision support in health and medical informatics. This is especially
true when predicting variables associated with Medicare reimbursements. However, more work is
needed to analyze and predict data associated with reimbursements through Medicare and Medicaid
services for physical therapy practices in the United States. The key objective of this study is
to analyze different machine learning models to predict key variables associated with Medicare
standardized payments for physical therapy practices in the United States. Materials and Methods:
This study employs five methods, namely, multiple linear regression, decision tree regression, random
forest regression, K-nearest neighbors, and linear generalized additive model, (GAM) to predict key
variables associated with Medicare payments for physical therapy practices in the United States.
Results: The study described in this article adds to the body of knowledge on the effective use of
random forest regression and linear generalized additive model in predicting Medicare Standardized
payment. It turns out that random forest regression may have any edge over other methods employed
for this purpose. Conclusions: The study provides a useful insight into comparing the performance
of the aforementioned methods, while identifying a few intricate details associated with predicting
Medicare costs while also ascertaining that linear generalized additive model and random forest
regression as the most suitable machine learning models for predicting key variables associated with
standardized Medicare payments.

Keywords: random forest; Medicare costs; K-nearest neighbors; multiple linear regression; decision
trees; linear generalized additive model

1. Introduction

Investigators have used various methods and techniques to analyze results in health-
care delivery. While many of these studies have involved methods such as ANOVA and
MANOVA, regression, and more recently deep learning techniques [1–3], there has been
a dearth of literature on the use of random forests [4] and other ensemble learning meth-
ods [5] for analyzing health and medical data when compared to other machine learning
algorithms. The goal of the current study was to compare traditional regression techniques
with the random forest approach and assess the differences in predicting payments to
Medicare beneficiaries. Here, we would like to point out that Medicare is defined by
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Rajaram and Bilimoria [6] as “a federal program that provides health insurance coverage
to people aged 65 years or older and younger people with permanent disabilities.” Based
on this aforementioned comparison the broader research goals targeted by this study are as
follows: (a) increasing the information available to the health informaticians on Medicare
payments with respect to physical therapy practices in the United States [7,8], and (b)
analyzing the computational techniques available to the researchers in deciphering the
necessary information that can assist in the development of a knowledge base for decision
making purposes [1].

As such, the specific research objectives of the study are as follows: (a) analyze the
utility of random forest in predicting the total standardized Medicare payment by a variety
of variables that include the proxy for number of new patients, and number of Medicare
beneficiaries, (b) identify variables that can be used to predict Medicare payments, (c)
more broadly, add to the body of knowledge on the usage of random forest and other
methods used in the study [2] for the purpose of implementing machine learning techniques
in health informatics, and (d) analyze linear generalized additive model (GAM) [9] as
a method which exists between parametric and non-parametric methods on Medicare
payments. Here, the authors would like to define standardized Medicare payment as [10]
“a process to remove the area and policy-based payment differentials allowing for a more
accurate comparison of resource use between providers and across geographic region.”
This definition is presented based on the study provided by O’Donnell et al. [10]. The
investigators involved in this study have attempted to identify critical variables that effect
standardized Medicare payments. It is important to note that “total standardized payment”
refers to standardized payments with respect to all services provided by the healthcare
provider. Assessing and reducing hospital readmissions has become a key element in
improving healthcare delivery [11].

An important motivation towards carrying out this important study is the increase in
healthcare costs tied to Medicare payments. Hospital readmissions are defined as, “admis-
sion to a hospital within a given time period after an original admission (often time defined
within 30 days).” The recent changes in policies by Centers for Medicare and Medicaid
Service (CMS) [12] have incentivized outpatient care to decrease patient readmission rates.
As such, ascertaining the risk of readmission for each patient with high accuracy is an
important step to decrease readmission rates. One method to accomplish this goal is
comparing various predictive models to calculate risk of readmissions among patients
being discharged to determine the most accurate model. Here, it is important to mention
that Futoma, Morris, and Lucas [11] used a dataset of 3.3 million hospital admissions
obtained from New Zealand Ministry of Health and examined hospital readmissions. The
readmission was treated as a binary classification problem between high or low chance of
readmission. Here, it is important to note that hospital readmissions are tied to Medicare
payments for healthcare providers and therefore, the investigators have decided to discuss
this topic here. Here, it is important to note that the research study is focused on Medicare
standardized payments for physical therapies using machine learning approaches.

In this article we first provide the reader a brief background information on the
research methods used for the study. This is followed by the description of the dataset and
an overview of the research process. This is followed by a description of the individual
methods employed and their associated results. A discussion on the results obtained along
with the limitations of the experiment is presented and finally the authors conclude with a
brief description of the core contributions and direction of future research work.

2. Background

In this section the authors attempt to explore the usefulness and applicability of the
individual machine learning methods explored for achieving the aforementioned research
objectives.
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2.1. Summarizing Previous Work Conducted in Using Random Forest Analysis for Predicting
Medicare Payments

Based on the existing literature, few key methods were identified as critical in pre-
dicting a few important variables associated with Medicare costs. Here, it is to be noted
that random forest [4] has the possibility of helping ontology development [13] that will
be useful in developing knowledge bases for decision support systems [3,14,15]. Selecting
the correct regression method for predicting an outcome is an important step in medical
decision making. Random forest is one method that has been used in the medical field
for classification and predictive tasks, although, it is an under used method. Torgo [16]
provided an overview of decision trees, random forest, and their uses in classification,
diagnosis, and prediction. Here, the author presents different induction methods for trees
and the domains where they are the most effective. Furthermore, Podgorelec, Kokol, Stiglic,
and Rozman [3] present how decision trees are used and compare the approach with
other prediction models. It is important to mention that Khalilia et al. [17] analyzed the
healthcare cost and utilization report (HCUP) to predict disease risk of individuals based
on medical diagnosis history. The dataset presented 8 million records with both clinical
and non-clinical records. The diseases considered were cancer, heart disease, diabetes,
hypertension, osteoporosis, and other related diseases. Additionally, the random forest
learning method showed promising results as compared to support vector machines (SVM)
bagging and boosting for receiver operating characteristic (ROC) and area under curve
(AUC). Denis Arnold [9] in their work on linguistics applied both random forest and
generalized additive models (GAM), including the linear model. A key observation made
here was that random forest was a good method for analyzing variable importance while
GAMs were effective in modelling non-linear interactions. The current study employs
random forest techniques because they rely on several decision trees to make predictions
which helps to prevent the issue of overfitting models which is common in decision tree
regression [18,19].

2.2. Decision Tree Regression

Loh [15] illustrated the effectiveness of decision trees in predicting continuous vari-
ables. This study focused on modern methods of regression tree algorithms, specifically
those that can partition data with linear splits and other sophisticated partition models. It
is worth mentioning that these methods can be applied to all types of statistical models
and distribution types. The findings in this paper delineate the strengths and potential
pitfalls of random forest models. Specifically, while this analysis was effective in predictive
capacity, there were limitations in the handling of missing values and covariates for longi-
tudinal data. Single tree methods were also less capable in terms of accuracy compared to
new ensemble methods that combine different techniques of predictive analysis. However,
this study provided a foundation for the work presented in this article by showcasing the
strengths of decision tree regressions and showing its effectiveness in continuous variable
predictive analysis. It is worthwhile noting that Williams and Wan [20] described how
decision tree regression and random forest models can be effectively used for evaluat-
ing clinical practices and their associated decision-making process to improve healthcare
services provided by the healthcare providers.

2.3. K-Nearest Neighbors

It is important to note that Zhang et al. [21] in their work considered K-nearest neigh-
bors (KNN) because of its simplicity and power of classification. Here, the investigators
formulated the idea that it was impractical to assign the K-value to all test samples by using
a cross-validation method. They proposed a K decision tree to learn optimal K-values dur-
ing the training and then kTree would output the optimal K-value for each test sample and
this resulted in greater accuracy as compared to traditional KNN methods. K* tree enabled
to conduct KNN classification by applying a subset of training records for the leaf nodes
rather than considering all the training samples. Thus, the importance of K-value was
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illustrated in the work and we drew inspiration to apply different K-values for unscaled all
variable dataset and unscaled select variable dataset. An important study presented by
Cherif [22] proposed a way to improve the performance of KNN by clustering and attribute
selection for breast cancer diagnosis. This optimization led to an improved performance in
the use of KNN with an F-measure of 94%. In the present work, the authors have derived
motivation from this study. KNN has been used by removing top three variables which
exhibit a high correlation with the dependent variable.

2.4. Linear Generalized Additive Model

Linear GAM is a type of semi-parametric methods that is based on the generalized
linear models [23]. The smooth functions of the model are designed to capture the non-linear
relations between the independent and the dependent variables. Ilseven and Gol applied
various methods for predicting monthly electricity demand with a high level of accuracy [24].
They considered methods like multiple linear regression (MLR), linear GAM, multivariate
adaptive regression splines (MARS), KNN, classification and regression trees (CART), neural
networks (NN) and support vector machines (SVM) methods over metrics like mean absolute
percentage error (MAPE), mean absolute error (MAE), and Root Mean Square Error (RMSE).
It is important to note that some of the critical findings of this study have motivated the
authors to use Linear GAM and RMSE in performing the required analysis.

2.5. Comparison with Other Key Related Works

At this point the investigators would like to illustrate a few other projects that have
attempted to perform similar analyses.

Table 1 provides a comparison of the various analysis methods used through literature
in the field of medical sciences.

Table 1. Comparison of research projects and analysis methods.

Research Study Analysis Techniques Results

This Project Multiple linear regression vs.
decision tree vs. random forest

Random forest and decision tree
analysis outperformed multiple linear
regression in predicting Medicare
physical therapy payments.

Loh 2014 [15] Decision tree analysis
Decision tree analysis was effective in
use for continuous variable
prediction (baseball player salaries).

Long 1993 [14] Decision tree analysis vs. logistic
regression

Logistic regression slightly
outperforms decision tree analysis for
predicting acute cardiac ischemia
classification.

Futoma 2015 [11]

Logistic regression, logistic
regression with multi-step
variable selection, penalized
logistic regression, random forest,
and support vector machine

Random forests were superior in
predicting readmission rates
compared to other methods of
predictive analysis.

3. Materials and Methods
3.1. Description of the Dataset Used for Experimentation

The dataset used in the study consists of twenty-five independent variables as indi-
cated in Table 2 and examines the total Medicare amount paid by individuals given certain
non-personally identifiable information as the independent variable. The investigators
created a machine learning model to take the twenty-five predictor variables as input and
predict the total standardized Medicare amount to be paid. The dataset had data points for
total annual dollar payments to 40,662 physical therapists. In the dataset, one of the feature
variables contained non-numeric values; therefore, it was converted to a bit vector of size
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four owing to four unique values contained within it. In addition, this dataset was used
as the 2014 Medicare Provider Utilization and Payment Data [25] that had the necessary
information in relation to procedures and services provided to individuals covered under
Medicare by physical therapists. This dataset encompassed variables and associated data
that had critical information on the dollar amount spent for individuals covered under
Medicare and the type of services used with respect to physical therapy. The choice of
this dataset for this study was made based on the idea that the associated results could
be critical in identifying the factors that affect the total Medicare standardized payment
which happens to be the dependent variable for the study addressed in this article. It is
important to mention here that Gurupur et al. [8] have previously worked on the 2014
Medicare Provider Utilization and Payment Data focusing on predictive analysis using
deep learning techniques. The same dataset was used in this project for the purpose of
comparing statistical techniques; thereby, expanding on the body of knowledge of pre-
dictive analytics. It contains data on physical therapy patients and amounts paid to the
physical therapists in each case. In this dataset, the Healthcare Common Procedure Coding
System (HCPCS) is an important part.

Table 2. Linear relationship of training variables with the predicted feature.

Index Alias Name Feature Name Correlation

27 TotalPayment Total Medicare Standardized Payment Amount 1.000000
7 PatientProxy Proxy for # of new patients 0.796309
3 #MedicareBeneficiaries Number of Medicare Beneficiaries 0.747528
5 MedicareBenefit Medicare standardized amount benefit 0.474725
2 HCPCS Number of HCPCS 0.335347
6 PhysicalAgentPercentage Physical agent percentage 0.205529
8 BeneficiaryAge Average Age of Beneficiaries 0.175424
9 HCCBeneficiary Average HCC Risk Score of Beneficiaries 0.170843

14 RiskAdjustedCost Standardized Risk-Adjusted Per Capita Medicare Costs 0.135006
17 MedicareBenefitPopulation Percent Medicare Fee-For-Service(FFS) benefit pop 2014 0.130285
18 AverageAgeFee Medicare FFS Benefit Average Age Fee for Service 2014 0.128929
20 AverageHCCScoreFee Medicare FFS Benefit Avg HCC Score Fee for Service 2014 0.120106
23 OldInDeepPoverty Percent of persons 65 or older in Deep Poverty 2014 0.080313
19 FemaleMedicareBenefit Percent of Medicare FFS Benefit Female 14 0.064783
13 LargeMetroArea Large metro area 0.012649
12 NonMetroArea Non-metropolitan area or missing (9 counties missing) 0.012599
21 MedicareBeneficiaryforMedicaid Percent Medicare Beneficiary Eligible for Medicaid 14 0.002792
11 SmallMetroArea Small metro area −0.000148
22 MedianHouseholdIncome2014 Median Household Income 2014 −0.008139
10 MiSizedMetroArea Mid-sized metro area −0.024261
1 ReportingDPTDegree Reporting DPT degree −0.048336

16 PhysicalTherapistsPer10000 Physical Therapists per 10,000 pop 2009 −0.068251
15 PrimaryCarePer10000 Primary care Physicians per 10,000 pop 2014 −0.081168
24 PhysicalTherapsistsPerBeneficiary Physical Therapists per beneficiaries ratio −0.084612
4 ChargeToAllowedAmount Charge to allowed amount ratio −0.098310
0 Female Female gender −0.175792

Termed as the “curse of dimensionality” by Bellman [19], machine learning is compu-
tationally very expensive, and the time complexity increases as the number of variables
increases. As a result, this study attempts to demonstrate that classical approaches such as
random forest are a viable option for particular datasets where the number of variables
is relatively large. In general practice, a paradigm should be chosen [26] only after sig-
nificant statistical analysis of the given dataset often with an input from a domain expert
who can point out certain non-correlated or unimportant variables which can be directly
removed. It is important to note that in this dataset some feature values followed a very
close linear trend with respect to the feature to be predicted, thus a MLR [8] approach was
selected for comparison with the decision tree method. With regards to this phenomenon,
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Zuckermann et al. [27] depict the calculation of percentage probabilities of a patient being
readmitted within the time specified time period. Here, the classification problem starts
resembling a continuous variable prediction problem as there are a hundred labels that
can be applied to the probability from 0 to 100 percent. Then based on the percentage and
a predetermined threshold a decision is made regarding if the patient will be readmitted
or not. In addition, investigators have used decision trees to capture more complex rela-
tionships among variables in the dataset. This project aims to take lessons learned from
these projects to compare random forest to MLR analysis to comprehend the strengths and
limitations of random forest within the context of total Medicare payment for physical
therapists. Sci-kit learn a library provided for Python programming language was used
for normalization and modelling machine learning algorithms used in the analysis. The
versions were Python 3.5.2 scikit-learn 0.19.1, the Pandas 0.23.1, and Numpy 1.14.5 on
hardware Intel® Core™i5-7200 U CPU @ 2.50 GHz.

Here, the investigators would like to point the following key motivational factors that
led to the choice of this dataset: (i) the dataset was well suited to fulfill the core objectives
of the study, and (ii) any work performed on the dataset can be scaled for the prediction of
Medicare payments for non-physical therapy practices.

3.2. Data Pre-Processing

The general workflow (shown in Figure 1) of our approach is divided into three parts:
(a) identify the selected predictor variables, (b) the location feature was converted from
string values to bit vectors using one-hot encoding, and (c) the dataset was divided into
training set and test set by implementing a 60:40 ratio. The training set was used to train
MLR models and the resulting models were used on the test dataset to obtain results.
Thus, a training set containing 60% of the training values and a test set containing 40% of
testing values was used for all the models under consideration. The results of the study
are detailed in the following section. All the different values that a single nominal feature
could take were mapped to a corresponding bit value, thus capturing the uniqueness of
each string. To select the necessary variables the variables that impacted the predictor
variable to the greatest extent was first identified. This was followed by the application of
MinMaxScaler to the predictor variable to normalize the values.
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4. Results
4.1. Results of Data Pre-Processing

To test the best model for the problem, various combinations of the pre-processing
steps and training models were compared. Performing this comparison helped the investi-
gators find the best results and comprehend the significance of various steps involved in a
machine learning pipeline. Interestingly, the difference in the RMSE for the selected feature
training and the training performed on all variables did deliver significantly different
results. An RMSE of 15,349.55 was observed for the MLR model using all variables and a
RMSE of 32,172.84 was observed for the model using selected variables dataset. This was
substantially different from the random forest results, where RMSE of 3739.26 was observed
for the model using all variables and root mean error of 30,685.62 was observed for analysis
involving the selected feature dataset. The R2 value for the MLR model with all variables
was observed to be 0.82 and the value derived from random forest regression was equal
to 0.99. Table 2 shows the correlation between the selected independent variables and the
dependent variable. It is important to point out that values closer to 1 are highly correlated.
This correlational analysis is performed using Pearson’s R. The linear relationship of the
top correlated variables is visualized in Figure 2 using scatter plots.
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The dataset was further used to build two separate sets of training and testing datasets
based on the correlation of the variables. The first data set, termed as the “complete
dataset”, contained all the variables; the second data set, termed as the “selected variables
dataset”, contained all variables expect the three highly correlated variables depicted in
Table 2 in bold. The complete dataset contained 25 variables, including the abovementioned
three variables.

A situation when all the variables in the unscaled dataset was considered led the
authors to analyze the factors of correlation. Pearson’s correlation [28] was considered as it
provided useful ways of measuring linear association between the variables in the dataset.
A value of 1 indicated good correlation; 0, no correlation; −1, negative correlation. The
Panda library from Python was used to develop a script to graphically plot the correlation
among variables for the entire dataset as shown in Figure 3. The color codes were filled to
indicate relative correlation between all the variables. A dark red indicated high degree of
correlation; dark blue of negative correlation and intermediate colors showed the variations
among the extremes. Figure 3 indicates weak correlation between variables. The presence
of weak correlation may not be very conclusive; to work on it further, we may need to
apply it to a model. This helped the investigators draw insights into the relatively poorer
performance of MLR model using metrics such as RMSE and R2. Another useful insight
could be provided by the metric “Mean Absolute Error (MAE)” which investigates mean
of absolute errors.
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4.2. Multiple Linear Regression Results

Some of the variables in the dataset are linearly related, therefore a linear regression
model was built using the scikit-learn library [1] for Python. The dataset was divided into
two sets. One part was used to train the regression model and the second part was used to
test the final trained model to check for accuracy. The data were split in a 60:40 ratio with
60% of the data used for training which was about 24,397 data points. Rest of the 40% of
the data were used for testing and this was applied to all methods.

The resulting model was used to predict the testing data set and the predictions were
stored and plotted against the actual values. The following parameters values were used.
Fit intercept was set to true and Normalize was set to False since we had already scaled the
data in two of the four MLR models tested. Number of jobs was set to None since we did
not use any parallelization for training the models. Table 3 shows the root mean squared
values and the R2 values of all our MLR models. Figure 4 includes relationship between the
predicted model and the original values for the MLR model. The graph plots the original
values and the predicted values against each other, most of the points lie near the straight
diagonal running in the middle, which indicates a good performance.

Figure 5 shows the performance of the MLR model on dataset with selected variables,
i.e., with the top predictor variables removed from the dataset. Figure 5 illustrates that
the points are drifting from the diagonal line for unscaled selected variables thereby
establishing the need for using all the variables in the dataset. This clearly shows that at
times there is a performance penalty in terms of accuracy when a few selected independent
variables are used for analysis.
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4.3. Decision Tree Regression Analysis and Results

The MLR model was also compared with the decision tree regression (DTR) model.
DTR uses a greedy algorithm called classification and regression tree algorithm (CART)
to grow a decision tree. The representation of the CART model is a binary tree. A node
represents a single input variable X and a split point on that variable. The leaf nodes of
the tree contain the value of the predicted/dependent variable. Once created, a tree can
be navigated with a new instance of data following each branch with the splits until a
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final prediction is made. Thus, a decision tree splits the input space recursively. A greedy
approach is used to divide the space called recursive binary splitting. This is a numerical
procedure where all the values are lined up and different split points are tried and tested
using a cost function. The split that minimizes the cost is selected [29]. The cost function
for the regression model is the mean squared error or absolute mean error depending on
the dataset in use. The critical part of the DTR is the splitting algorithm is described in [14].

4.4. Application of Decision Tree Regression

DTR can capture complex non-linear relations between different variables [11]. There-
fore, it was a computational model used for testing. The scikit-learn library used for
this analysis includes a decision tree regressor class. A few parameters of the class were
changed, and others were not owing to the nature of the problem being analyzed. The
major attribute included maximum depth which defines the depth of the constructed tree.
This was varied and the resulting RMSE scores were plotted against the maximum depth.
The minimum sample split defines the minimum number of samples in the internal node
before a split can occur. If the number of samples exceed the minimum sample split, the
node is further divided into two. This was set to two for this study since the output is a
continuous variable as opposed to a classification variable. Minimum sample leaf defines
the number of samples in the leaf node. Its value was set to one for the aforementioned rea-
sons. Maximum variables identify the number of variables to examine before splitting an
internal node, while all variables were used for decision tree analysis. Here, it is important
to note that the parameter criterion defines the loss function and its value was set to the
mean square error whose role is to minimize L2 loss function. Table 3 shows the root mean
squared errors and R2 values for all the DTR models. To find the optimal value for the tree
depth, the RMSE score was plotted against varying tree depths, as depicted in Figure 6.
Figure 4 presents the predicted values versus the original values for the optimal model on
all variable’s dataset. Most of the points lie near the diagonal in the center indicating higher
accuracy in prediction, whereas Figure 5 represents the predicted values of the model on
the dataset with top predictors removed. As can be seen from Table 3, the performance
of the DTR model has displayed a higher level of performance in terms of predictability
when compared to the linear model that involved MLR on the test dataset.

After observing the near-root level split nodes in Figure 7, we can make a few conclu-
sions regarding the importance of certain variables in the decision making when predicting
the Medicare physical therapy payments. Here, it is important to inform the readers that
the value of X associated in the parenthesis is the same as the value in the index table in
Table 2. The three-level decision tree was observed, and the split nodes now were “Average
age of beneficiaries”, “Number of Medicare Beneficiaries” and “Medicare standard amount
benefit”. The first major split is on the variable “Average age of beneficiaries.” This feature
is important because it sets an upper limit to our predicted variable, meaning that the
maximum value of this variable is directly proportional to the maximum value of the
predicted variable. This correlation was easily found by analyzing the decision splits in tree
model used in the study. A similar analysis was carried out on factors affecting differences
in Medicare reimbursements for physicians’ services by [7]. However, it is important to
point out that they did not use machine learning methods [30].
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4.5. Random Forest Analysis and Results

Decision Trees work well for correlating and predicting for non-linear data; however,
the deeper the level of the nodes are, the higher the chance of overfitting. This means that
the model starts fitting to the details of the data instead of the general properties of the data
distribution. Random Forest overcomes this shortcoming by combining models to reduce
overfitting. This method is termed as “bagging.” Bagging [16] makes use of an ensemble of
parallel estimators each of which over-fits the data and averages the results to find a better
model. As observed in the results of this study, this method was very effective. To test the
optimal number of trees to use and the effect of number of trees on the performance of
the random forest algorithm, the model was tested with a sequence of different number of
trees plotted against the RMSE values and R2 values as depicted in Figure 8. The variable
importance of all the splits on variables (tree depth) was also seen as compared to decision
tree regression in (Figure 6). It is important to note that the R2 in case of random forest
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regression was computed by correlating the observed scores with the predictions generated
by the random forest model.
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The test results of random forest study were trained on unscaled data and all variables,
and finally on unscaled and selected variables. The following major parameter values were
chosen for the models: (a) criterion was set as MSE (same as decision tree model), and
number of trees was set to 500, (b) random state was set to 0 this is the seed used by the
random number generator used by the Random Forest, and (c) all the parameters had the
same value as the decision tree model. Figure 4 includes a plot of the original values and
the predicted values of the random forest model. Figure 5 represents the predicted values
of the random forest model with the top predictors removed. Table 3 shows the R2 scores
of the predicted values for each type of dataset. The random forest regressor performed
the best out of all the models tested. Specifically, using all variables the random forest
regression had an R2 value of 0.99 when compared to the decision tree with a value of 0.95,
the MLR model with an R2 value of 0.83 and Linear GAM model with an R2 value of 0.87.

4.6. K-Nearest Neighbors Analysis and Results

It is observed that KNN is one of the simplest machine learning algorithms available
for regression analysis. It is known to work well for large training datasets. KNN is a
non-parametric regression that can handle many predictor variables. The value of K or
the number of neighbors affects the bias-variance tradeoff. A low value of K results in
low bias but high variance and on the contrary a larger value of k may result in a lesser
variable fit. The optimal K-value for the dataset with all variables and for the dataset with
selected variables is illustrated in Figure 9. The optimal is the one with the smallest RMSE
value. Thus, from the analysis we choose k = 2 for further study action on unscaled and all
variables and a k = 11 for unscaled and selected K-nearest neighbors model was trained on
unscaled all variables and unscaled with selected variables. The value of K was chosen
as 2 as illustrated in Figure 9. The measured vs. predicted values was as illustrated in
Figures 4 and 5. For the study for all variables KNN could achieve an R2 value of 0.72 and
for the study with top correlated variables removed KNN’s performance was the poorest
among all models considered and it was indicated as an unfit model for the considered data
with an R2 of 0.17. A low value for R2 indicates that the model is not highly recommended
for more accurate predictions.
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4.7. Analysis of Linear Generalized Additive Model

The Linear GAM was implemented using the gridsearch() method from Python
version 3.5.2, which performs a search over parameter space for optimal parameters. The
feature functions use splines to model non-linear relations. The number of splines we
considered were 25 and 11 models from logscales ranging from 1 × 10−3 to 1 × 103 were
set to logspace to find the best smoothing which may either be linear or non-linear features.
The above parameters resulted in optimal value for R2 and were thus considered for
application to the linear GAM which resulted in a R2 of 0.87 for all variables and R2 0.29
for selected variables. The measured vs. predicted values for all variables and select
variable dataset is as illustrated in Figures 4 and 5. Here, it is important to note that Linear
GAM has performed better than methods such as multiple linear regression. An important
theoretical observation here could be that the linear GAM model works well for datasets
where variables have minimum co-linearity. This claim might need further investigation
with similar other datasets. While the study illustrates the use of random forest regression
in analyzing datasets where variables have minimum correlation, it also identifies the
possibility of the weakness of the K-nearest neighbors method. It was evident that the
degree of correlation to the dependent variable was further reduced when the top three
predictor variables identified in Table 2 were removed. This removal of top predictor
variables resulted in an instability in correlation and had an impact on the performance of
the K-nearest neighbors analysis.

Table 3. Performance of multiple linear regression, linear generalized additive, decision tree, random forest and K-nearest
neighbors in terms of root mean square error and R2.

Model and Type Dataset Root Mean Square Error R2 Score

Multiple linear regression (parametric) All variables and unscaled data 15,349.55 0.83
Multiple linear regression (parametric) Selected variables and unscaled data 32,172.84 0.24

Linear generalized additive model (semiparametric) All variables and unscaled data 13,469.41 0.87
Linear generalized additive model (semiparametric) Selected variables and unscaled data 31,057.77 0.29

Decision tree regression (nonparametric) All variables and unscaled data 8204.61 0.95
Decision tree regression (nonparametric) Selected variables and unscaled data 32,587.74 0.22

Random forest regression (nonparametric) All variables and unscaled data 3739.26 0.99
Random forest regression (nonparametric) Selected variables and unscaled data 30,685.62 0.30

K-nearest neighbors (nonparametric) All variables and unscaled data 19,438 0.72
K-nearest neighbors (nonparametric) Selected variables and unscaled data 33,445.64 0.17
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5. Discussion
5.1. Discussion on Efficiency and Computational Time for the Methods Applied

The novelty of the experimentation illustrated in this article is that there is very little
information available on the predicting power of the methods discussed on Medicare and
especially on total Medicare standardized payment.

As the size of data grows, it becomes imperative to measure the computational time
efficiency. The computational time efficiency analysis is as illustrated in Table 4. It can
be easily visualized that MLR model outperformed decision trees [31] and random forest,
KNN and linear GAM models by 88.05%, 99.97%, 93.31% and 94.39%, respectively. This
analysis shows that MLR models could have a positive role for big data applications where
computational time efficiency could be one of the important criteria. This leads to the
idea of exploring additional data samples in the area of population health and its impact
on improving the accuracy of random forest regression as compared to more advanced
deep learning algorithms [14,32], where more samples can help in accurate predictions [33].
This study provides a key contribution not only in terms of the accuracy of three different
types of machine learning methods but also provides key insight into their associated
computational time. The evaluation of computational time is a key factor with large and
ever-increasing size of data associated with population health.

Table 4. Computational time analysis.

Analysis Technique Computational Time (ms)

Multiple linear regression 63.558
Decision tree 532.042

Random forest 288,897.591
K-nearest neighbor 950.597

Linear GAM 1134.083

Table 3 provides a comparison between different methods used in terms of accuracy.
The authors used MLR and random forest on selected variables and the complete dataset
to predict the total Medicare payment amount for the physical therapists. Mean absolute
error (MAE) and R2 were computed for the test dataset. The MAE of the MLR model was
close to 24% of the mean of the dependent variable. A model is considered good if MAE
could be a value close to 10%. Thus, MLR with its R2 of 0.79 and MAE of 24% had a lower
performance as compared to decision trees whose R2 was 0.97 and MAE was approximately
5%. The R2 for linear GAM model was found to be 0.87 and MAE turned out to be 21.43%.
The R2 for random forest was 0.99 and MAE close to 2%. The R2 for K-nearest neighbors
was 0.72 and MAE close to 26.60%, which indicated the highest deviation from the mean
and among all models in the study. This clearly corroborated the concept that random
forests were more suitable for data which were not highly correlated.

5.2. Limitations and Future Work

This analytic report has several potential limitations. First, predictive modeling ap-
proach could be assisted by a theoretically informed framework that could guide the
development of precise and valid statistical models. For instance, a transdisciplinary per-
spective enables the investigator to identify the relative importance of predictor variables
such as the contextual, ecological, organizational, and personal factors influencing in the
variability in readmission rates [34]. Secondly, from a broader perspective, the compara-
tive analysis of decision tree regression was not compared with other correlation analytic
techniques such as ANOVA and neural network analysis. Traditionally, MLR has been
employed for health care, but in Seligman et al. [35], it was found that feed forward neural
networks outperformed linear regression, penalized regressions, random forests, when
analyzing the effect of social and economic factors on health issues like systolic blood
pressure, body mass index, waist circumference, and telomere length. Therefore, it would
be interesting to apply neural network models in future studies. Thirdly, the investigators
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limited the study to the dataset readily available for the purpose of this study. Thus, the
generalizability of the results is limited. Future research could include longitudinal panel
data to be analyzed by selected variables guided by specific theoretical frameworks. Thus,
predictive models for health services use could be replicated and verified. Gurupur et al. [8]
created a binary valued prediction variable using the total payment amount and the me-
dian amount and demonstrated the power of deep learning methods [13] in classification,
whereas the investigators involved in this study were more interested in using the dataset
to predict the exact value of the total payment amount using relatively simpler methods
that require less computation and even try to cut down the number of variables required to
make these predictions.

6. Conclusions

A key finding of this research is the analysis of linear GAM and random forest re-
gression in addition to other methods employed for experimentation. Linear GAM is a
fairly newer method and this article expands on the body of knowledge in terms of its
application on Medicare reimbursements. The key contributions of the study discussed in
this article are as follows: (i) comparison between linear GAM and random forest regres-
sion for analyzing CMS data, (ii) demonstration of hyper-parameter tuning to minimize
bias-variance and testing for CMS data for random forest regression, and (iii) an overall
comparison of the machine learning methods for prediction on CMS data.

Furthermore, this research provides a multidimensional view of predicting standard-
ized payments for Medicare. This can potentially lead to further investigations of theoretical
importance involving the synthesis or development of deep learning networks, directed
acyclic graphs, and structural equation models. Therefore, the described study will serve as
a precursor for more advanced studies involving machine learning on Medicare payments.
As aforementioned, there is a possibility that decision tree regression can be used in syn-
thesizing knowledge bases [20,32,36–38] used in the development of expert systems. The
investigators will be advancing the work illustrated in this article in this direction applying
various correlational and predictive analysis in implementing knowledge curation that
furthers the science of decision support systems [26]. In addition, in future studies, the
interplay of statistical variable optimization and deep learning [39] Regression could be
deployed for accurately predicting medical healthcare affordability for larger size datasets
which would help clinical practitioners. Lastly, the emergence of the adversarial machine
has opened a new chapter to adversarial attacks to machine learning algorithms and these
challenges need to be addressed in our future studies [40,41].
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