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Abstract: Serious Games (SG) provide a comfortable learning environment and are productive
for various disciplines ranging from Science, Technology, Engineering, and Mathematics (STEM)
to computer programming. The Object Oriented (OO) paradigm includes objects related to real
life, and is considered a natural domain that can be worked with. Nonetheless, mapping those
real-life objects with basic Object-Oriented Programming (OOP) concepts becomes a challenge for
students to understand. Therefore, this study is concerned with designing and developing an SG
prototype to overcome students’ difficulties and misconceptions in learning OOP and achieving
positive learning outcomes. An experimental evaluation was carried out to show the difference
between the experimental group students’ performance, who interact with the developed game, and
students of the control group, who learn via the traditional instructional method. The experimental
evaluations’ main finding is that the experimental group’s performance is better than the control
group. The experimental group’s Normalized Learning Gain (NLG) is significantly higher than
the control group (p < 0.005, paired t-test). The evaluation study results show that the developed
prototype’s perceived motivation on the Instructional Materials Motivation Survey (IMMS) 5-point
Likert scale resulted in the highest mean score for attention (3.87) followed by relevance (3.66)
subcategories. The results of this study show that the developed SG prototype is an effective tool
in education, which improves learning outcomes and it has the potential to motivate students to
learn OOP.

Keywords: serious games; object-oriented programming; learning outcomes; normalized learning
gains; perceived motivation; performance

1. Introduction

Computer programming involves algorithm design, code writing, debugging, testing,
and implementation and it requires logical reasoning to solve various real-world problems
in different situations. For beginners, programming (mainly basic knowledge) is challeng-
ing to learn [1], because rote learning is impossible. In the beginning, students cannot solve
complex problems; instead, they need to acquire basic concepts to build a higher cognitive
understanding of advanced programming concepts. Transitioning from the programming
paradigm, such as procedural programming to Object-Oriented Programming (OOP), is
also challenging for students [2].

The Object Oriented (OO) paradigm is a more natural domain because OOP’s problem
domain comprises objects related to real-life objects [3]. However, the mapping of these
real-life scenarios with OOP’s basic concepts (for example, class, object, attribute, method,
message passing, inheritance, polymorphism, and encapsulation) is tough for students to
comprehend [4].
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Using OOP’s approach has many benefits, such as reducing the overall software devel-
opment time and providing code re-usability and code organization flexibility. However,
high-level software development skills are required for learning OOP, and it has become
hard for students to understand its underlying concepts clearly in the beginning. Several
studies have been conducted to assess the students’ difficulties and misunderstandings in
OOP learning. In addition, it is imperative to know what barriers make learning program-
ming difficult and how students could learn correctly and efficiently; these issues are not
undertaken in developing the learning environment to achieve positive learning outcomes.
Therefore, students becoming proficient in computer programming creates the need to
identify diverse ways in which the programming problems can be presented and solved.
Choosing the correct programming method is important because the boredom and current
knowledge in programming concepts may also affect students’ learning performance [5].
To provide an excellent learning experience, one should start by conceptualizing OOP
basic features and then moving towards the language’s technical details. The learning
environment, such as learning by playing games, can enhance the learning process [6] and
motivate students to learn entertainingly. In addition, games help stimulate the learner’s
abstract thinking leading to cognitive thinking and further improve their advanced think-
ing skills [7]. As a result, students would learn happily due to the attractiveness, immersion,
and interactive characteristics of computer games. If teachers apply digital games to their
curriculum properly, students’ performance could be improved [8,9]. Other educational
advantages of using computer games for learning include enhancing problem-solving, mo-
tivation, retention [3], active student learning, satisfaction [10,11], and advancing learners’
ability to adopt new skill levels and support alternative learning styles [4].

Serious Games (SG) refers to a category of games with a clear and specific educational
or learning purpose and is not designed and developed primarily for entertainment pur-
poses [12]. SG is more learner-centered, making the learning process more comfortable,
fun, and effective, and the whole learning process can be carried out naturally by playing.
In games, entertainment and fun are the main attributes that attract people to participate in
the learning experience and performance of the students such as positive learning outcomes
and Normalized Learning Gain (NLG) could be improved by adequately mapping the
course content into the game elements [2,8].

Researchers have made efforts to identify the effect of incorporating SG as an instruc-
tional medium and determining how it supports learning outcomes. Moreover, usage
of SG methodology can help to develop effective educational games on specific learning
topics [10]. As educational games are mainly used to achieve learning outcomes [13], there
is little debate about the implications of using games for OOP learning and the various
ways of incorporating games into the learning environment.

Earlier studies help provide valuable knowledge regarding learning theory issues,
which provides the foundation for developing SG. Smith [9] describes the five categories of
learning theories: behaviorism, cognitivism, constructivism, experimentalism, and Socio-
contextual theory. These theories are invoked to strengthen the design of educational
computer games. The current literature revealed paucity in using learning theories and
instructional designs for creating SG prototypes for learning OOP. Due to the high level of
complexity involved in OOP subjects, student boredom and dropout rates may increase. For
achieving the positive learning outcomes from SG, this study enlightens the development
of an SG prototype named OOsg for learning OOP. There are many reasons why OOP
was chosen as the primary focus area of this research. Most students encountered severe
difficulties in understanding simple OOP concepts. The motivation behind this research
was to provide a solution prototype to improve student’s performance and motivate them
to grasp the OOP concepts in earlier studies.
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2. Difficulties in Learning OOP

The student’s difficulties were identified through a literature review and the investiga-
tion on students’ performance while learning OOP. The details about these two methods
are discussed in the following sections:

2.1. Difficulties Identified from Literature Review

The literature review identified the difficulties of learning OOP, faced by the students.
The literature comprises tools for identifying the difficulties, OOP concepts (contents
covered in the studies), analysis technique, certain OOP problems, and identified issues.

In order to be good programmers, the students skills that the students are required
to learn to become good programmers in programming included: algorithm designing,
code writing, debugging, testing, and implementation stages. On the other hand, there are
certain problems that actually enable students to learn programming that become efficient
include mastered the identification of different ways in which of problems presentation
and their solutions. Thomasson [14] discussed that the most common difficulty observed
was related to Non-Referenced Class fault; it means that students were not able to integrate
the classes into the design properly. Other observed challenges were about Non-Existent
Classes, attribute identification problem, and issues of cohesion. Or-Bach and Lavy [15]
explored the cognitive difficulties and results show that the attributes in the abstract class
were only included, however, when the students failed to include methods of any type.
Whereas, some students included extra classes (classes that were not related to the solution
or could be integrated into the methods and attributes of existing classes). Furthermore,
the students missed the necessary class details, placed insignificant attributes within the
class, and reduced cohesion.

Sheetz [16] revealed that learning basic OOP concepts, issues of design problems,
and programming techniques are difficult for the students. The research results show
that learning basic object concepts is the most difficult part for the students other than
designing problems and programming techniques. It is also difficult for the students to
use or reuse class libraries and distinguishing between the functions of programming
language and OOP language. On the basis of analyses, Ragonis [17] shows, the most
common problems that surfaced were: difficulty in general picture of program exaction;
state changing during execution; the sequence of method invocations related to problem
solving. Additionally, method invocation defines the source of parameters’ value and the
target of the method’s return value. The requirement of the input instructions and the
connections between the constructor declaration, invocation, and the execution were also
listed, that create more difficulty in understating and implementing high-level concepts
such as algorithm designing, methods, designing a program, and OOP concepts in contrast
with the topics with low-level conceptual difficulty such as understanding the syntax of
any language [18]. Even though the current teaching method applies the segmentation
to the complex topics into easily understandable pieces, it is still hard for the beginners
to leap from understanding to the implementation of concepts [19–21]. Liberman [22]
addressed the student’s difficulties and misconceptions in the topics related to interfaces,
inheritance, and polymorphism. Understanding these topics is undoubtedly difficult but
their implementing is also challenging for the students.

2.1.1. Difficulties Identified from Students’ Investigations

Learning activities are a series of activities designed to enable learners to participate
in problem-solving actively. The practical design of these activities ensures that learners
are focused while solving them. With reference to a problem scenario, the activities were
followed by a set of eight cognitive activities based on OOP concepts that are available
here: https://drive.google.com/file/d/1Vcjg9GPeyPn_F-hR01aNu_YOswlcgIaT/view?
usp=sharing (accessed on 5 February 2021). The summary of responses obtained from
learners are summarized as follows.

https://drive.google.com/file/d/1Vcjg9GPeyPn_F-hR01aNu_YOswlcgIaT/view?usp=sharing
https://drive.google.com/file/d/1Vcjg9GPeyPn_F-hR01aNu_YOswlcgIaT/view?usp=sharing
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2.1.2. Difficulties and Misconceptions in Understanding Classes

Most of the students had mistaken to give a reference to some-non-existing classes.
The researcher observes that the students did not identify the classes by considering the
given problem scenario. Another difficulty that was observed was that students failed to
provide the complete identification of the classes. In addition to these difficulties, students
also had some misconceptions of conflation between class and attribute or method or
object. Some students’ solutions included repeated identification of the classes as the same
occurrences of classes are written multiple times in the given problem scenario.

2.1.3. Difficulties and Misconceptions in Understanding Objects

The majority of the students had shown the wrong instantiates of the classes, in
other words, students had difficulty in showing association of an object with a particular
class. In addition to these difficulties, students also had some misconceptions about
conflation between object and attribute or class. Some student’s solutions included repeated
identification of the objects, like the same occurrences of objects written multiple times in
the given problem scenario.

2.1.4. Difficulties and Misconceptions in Understanding Attributes

Students had difficulty in giving the complete identification of attributes or properties
for the particular class. Another difficulty observed was that students failed to identify the
attributes of all the classes they had previously identified. In addition to these difficulties,
students also had some misconceptions of conflation between attributes and class or
method or object.

2.1.5. Difficulties and Misconceptions in Understanding Methods

Students had difficulty giving the complete identification of methods or behaviors
for the particular class. Another difficulty observed was that students failed to identify
the methods of all the classes they had previously identified. In addition to these difficul-
ties, students also had some misconceptions of conflation between methods and class or
attributes or objects.

2.1.6. Difficulties and Misconceptions in Understanding Inheritance

Students had mistakenly provided a reference to some-non-existing hierarchies of
the classes. Another difficulty that has been observed is that students failed to provide
the complete hierarchies of classes. In addition to these difficulties, students also had
some misconceptions about finding the class that may exist in the identified hierarchy, and
students sometimes select the same class as both parents and children. Moreover, in many
occurrences of the student’s solution, it has been observed that they have chosen a child
class as a parent class.

For the sake of this research, the difficulties and misconceptions related to understand-
ing the classes, attributes, methods, objects, and inheritance are considered to be overcome,
by applying the proposed research method.

3. Competencies Required for Mastering OOP

Competence refers to the cognitive abilities and skills that an individual has or may
learn to solve a specific problem [23]. Regarding measurement, Klieme [24] stated that
competencies are the range of situations or tasks that one needs to be master of, and
assessment of those competencies might be done by challenging the student by providing
the sample of such (eventually simulated) conditions. The competency model results from
such identification that describes and measures the primary competency subjects that an
individual must master in a specific topic.

Havenga [25] discusses how high-performance student programmers can facilitate
successful computer programs through thinking processes and strategies. The proposed
model is intended to assess student skill improvements in initial programming courses.
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The score (s) in their model would be attributed to the student’s work in the same way that
the teachers assign a score for the semester test. This research aims to find the difference
between successful programmers and failed programmers, and show that a framework
is needed to support novice programmers. However, no evidence is available for the
measurement results based on this model as per our knowledge.

Karmer [26] proposed the OOP’s competency structure model and evaluation instru-
ments. To measure the student’s competencies in OOP, the proposed model includes two
major components: (1) a set of candidates for (potentially measurable) competencies, and
(2) a category system that supplies a structure for these competencies. The model has
four dimensions and sub-dimensions, i.e., 1. OOP knowledge and skills (competencies re-
quired for acquiring core programming knowledge and skills); 2. mastering representation
(competencies required to understand any system’s formal description, such as syntax or
the semantics of any programming language); 3. cognitive process (competencies related
to the problem-solving stage, such as understanding the problem, determining how to
solve the problem, translating the problem into a computer language program, testing, and
debugging the problem program); and 4. metacognitive processes (it includes factors like
volition, motivation, self-efficacy, perceived understanding, or theoretical values).

The findings obtained from the Ramanauskaite [27] level-based competency structure
for OO courses indicate that the distribution of scores and the importance of the proposed
e-evaluation process are more similar to the teacher evaluation than the conventional
e-assessment system tasks. Instead of displaying the summary score of all skills, you will
see the results of many tasks. The author has, nevertheless, implemented the model in any
current study frameworks.

Discussing the various competency models, it is observed that none of the models
have described how the competencies should be evaluated either in the traditional learn-
ing system or by using any game prototype; it is, therefore, researchers who design the
competency model themselves. The competency model is also required as input model
for developing the research study prototype to evaluate the core competencies of OOP in
students. The designed competency model (CM) is presented in Figure 1.

Figure 1. Designed competency model for mastering Object-Oriented Programming (OOP) skills.
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The designed CM is used to describe the student’s competencies that we want to
assess, such as knowledge, skills, or other attributes. CM is used primarily to support
the reasoning for specific purposes, such as providing scores for students’ homework or
assignments, certificates, diagnosis, or further guidance. A group of knowledge and skills
in CM are called nodes. A more specific CM version is called the student model, which
describes competencies at a finer granularity, such as transcripts or progress reports.

This research study emphasizes the achievement of competencies related to the “under-
stand structures” and their underlying sub-competencies. The sub-competencies of “under-
stand structures” which are “understanding inheritance”, “understanding of classes”, and
“understanding of objects” and their sub-competencies (that is, the shaded parts in Figure 1)
are focused on in this research study and incorporated in the SG model. The competency
“understanding inheritance” has sub-competency or tasks “sub- and super-classes”. The
node “identification of class” does not include any sub-competency; therefore, it is referred
to as concrete tasks/activities. The competency “creation of class” has two sub-nodes
related to the “define the status” and “define behaviors”; furthermore, the “define state”
and “define behaviors” have other child nodes, considered as concrete task/active nodes.

4. Available Tools for Learning OOP

In the past decade, the utilization of SG to learn OOP and other programming-related
topics has increased. Many researchers stress the potential of using the SG as initial
exposure for learning basic concepts of OOP interactively and engagingly. Mainly, there are
two primary purposes for using SG for learning OOP: firstly to promote learning, secondly,
motivating, and engaging the students. The example of SG developed for learning OOP
can be found in the following sections:

4.1. Multiuser Programming Pedagogy for Enhancing Traditional Study (MUPPETS)

Multiuser Programming Pedagogy for Enhancing Traditional Study (MUPPETS) is
an immersive OOP learning framework. The framework itself is not a game, but it has
an essential mechanism that can provide prompt feedback, interaction, and community
integration like modern games. Students learn by creating objects and avatars and sharing
the created objects with peers and upper-division students to improve and contribute to
students’ success. The senior students behave as role models and helpers to the novice.
The authors’ findings on their student group research praise the strengths of the system.
MUPPETS intends to improve the affective and cognitive learning outcomes, students
engaged by immediate feedback integrated into the environment, enhancing peer-to-peer
collaborations [28].

4.2. Alice

Alice [29] is a learner-centric environment that facilitates OOP by allowing objects to
be manipulated directly using a limited set of simple commands. In Alice, a simple story
can be achieved by selecting objects in the world (such as skaters) and calling one of them
(such as Skate). Students can use the graphical interface to incorporate method calls by
dragging the name of the method from the object list and placing it in the calling method
of the valid location. This textual representation is intended to allow the line of code to be
read as a sentence describing the object [30].

4.3. Jeliot

Jeliot is an interactive visualization platform designed to help beginners learn pro-
cedural and OOP languages [31]. Jeliot supports the method “First Object” or “First
Fundamentals” for initial programming courses [32]. Jeliot is primarily intended for OOP
Java programming, making it difficult for students to transition between various IDE’s to
make weaker students feel confused [33].
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4.4. Greenfoot

Greenfoot is a comprehensive development platform for instructional applications
intended to educate young novices. Greenfoot helps to simplify the use of the standard
java programming language by creating a personalized environment to minimize much
of OOP’s difficulty. At the same time, it also adds the ability to create graphics, images,
and sounds conveniently so that persuasive examples can be handled as soon as possible.
Greenfoot can be used by middle and older students as the first programming method or
as the second for young learners [34].

4.5. BlueJ

BlueJ is an optimized Java framework for simple OOP concepts [35]. It aims to provide
the Java language’s easy-to-use teaching environment. However, the source code editor is
not technically equivalent to industrial IDEs. Integrating BlueJ with a competent IDE is
ineffective. The side effect of using BlueJ in the course too long is that students will use it
later to build more complicated projects.

4.6. Ztech De

ZTECH is a 2D role-playing game to inspire students to learn OOP in a relaxed, inter-
active atmosphere. In the game-play, Ztech traveled around the map using the navigation
system to battle with enemies to gain experience and win gold points. As the player enjoys
the game, they learn OO expertise. The gaming part aims to increase the interest of users in
learning the knowledge. The game offers users basic OO concepts such as encapsulation,
inheritance, and polymorphism, and other basic programming concepts. Feedback is
presented by appropriate dialogue. The authors’ findings claimed by testing their game
on inexperienced learners include an improvement in learner confidence, courage, and
determination to learn and understand OOP concepts [36].

4.7. POO SGs

POO SG is a 2D mobile-based game developed for beginners of software development
to teach OOP concept basics in a fun and engaging way. The environment of the zoo
inspires the gameplay. The game’s main purpose is to construct and identify animals and
understand various processes, e.g., “voices, acts, attitudes, etc.,” by using the OO paradigm.
In-game assessment technique is applied to evaluate learners’ knowledge about the field in
each level of the POO, and the level includes “class, object, inheritance, and polymorphism”
OOP concepts. However, the author did not statistically prove the developed game [37].

4.8. Discussion on Available Tools for Learning OOP

The OOP was taught through the playing and creation of various SG. The effects
of other game-related tools, such as simulators, micro-world, and game engine were
also evaluated in addition to the SG. Alice and Jeliot are used as an immersive learning
environment in which the code must be used to define the object. Greenfoot, though,
is just an educational software creation platform for the use of OOP learning scenarios
and it is expected to understand the technical specifics of the code. BlueJ and MUPPETS
are optimized learning systems and again need sound computer code skills to learn with
these tools. The effect on students observed in terms of results provided by these tools
and almost all studies in the study showed results that affect student learning directly
or indirectly. Learning from other related instruments, however, includes the order to
underscore programming codes that contain all game features like demotivating, boredom,
irritation and lack of interest in the topics.

In comparison, ZTECH and POO are SG to learn OOP and have a positive influence
on their integration. The studies resulted in cognitive and affected outcomes, learning
improvement, problem-solving skills, motivation, student engagement, improved grading,
reinforced learning, knowledge acquisition, and student satisfaction effects observed, but
still they lack in providing the statistical evidences for the improvement in the learning
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outcomes of the students. The studies do not demonstrate the purported link between the
game motivation and the actual learning results that are to be obtained with the inclusion
of SG. The studies lack in consideration of the difficulties and misconceptions of the student
that impede mastering OOP skills. Other problems may include the lack of use of learning
theories and instructional design for prototyping SG. Thus, this research acknowledges
all of the constraints such as the student’s difficulties and misunderstandings, the incor-
poration of learning theories and instructional design in the design and development of
SG prototype. The statistical evidence for the effectiveness of the developed prototype has
also been closely analyzed and it provided the relationship between motivation and actual
learning outcomes.

5. SG Model for Learning OOP

From identifying the student’s difficulties and misconceptions through the investi-
gation on student’s performance and looking at existing SG available for learning and
teaching OOP discussed in Sections 2 and 3, this section stresses the identification of the
essential elements that make up an SG. An SG model is required to overcome the difficulties
and avoid misconceptions in comprehending given OO problems, such as identifying the
classes, their attributes and methods, the impact of creation and destruction of class objects,
and establishing the correct hierarchy. The model also aims to foster the learning outcomes
and improve the performance of the students.

A model is needed to overcome students’ obstacles and follow the entire learning
process in a fun and engaging way. Therefore, the development of models is influenced by
learning theories, and linking game attributes to instructional design models. For the diffi-
culties arise because of the lack of motivation, the motivational model is incorporated into
the model’s design. Figure 2 shows an SG model based on the described components, i.e.,
instructional contents or learning difficulties, game attributes, learning theories, required
competencies, and motivational aspects logically placed in the presentation, practice, and
performance phases. The purpose of the placement of the components in these phases is
presented in Table 1.

Figure 2. Designed Serious Games (SG) model for learning OOP.
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Table 1. Placement of the components in the SG model’s phases.

Phase Purpose Components

Presentation The input content presented to the
user/player as learning material

Instructional contents, learning
difficulties and intended
learning outcomes

Practice Learning and practicing of the user/player Instructional Models, Learning
Theories, Game attributes

Performance
Assessment of the Performance of the
user/player, Game logs/statistics,
perceived motivation

5.1. Three Phases of the Model

The proposed SG model is divided into three phases. The following subsections
describe all three phases and their related components.

5.1.1. Presentation

In the presentation phase, the instructional contents of OOP, and the contents on which
students faced difficulties and misconceptions collected from existing studies, are presented
as a game input or contents to the user/player to learn and improve their performance in
those particular OOP tasks.

5.1.2. Practice

In the practice phase, the inputted data from the presentation phase is presented to
the user/player in the form of learning activities to practice and accomplish the intended
learning outcomes. This stage helps trigger a cycle that includes a sense of achievement
or response (such as perceived motivation or interest) or change in user behavior (such as
more remarkable persistence or time on task completion), and further system feedback.
The practicing phase is the core of the SG model, where the game activities are prudently
designed by linking the game attributes with the instructional design model, and the whole
learning process has occurred under the rules of the adapted learning theories. Every game
activity in the practicing phase is supposed to be played and mastered to achieve one or
more learning outcomes and some motivational aspects. The phase components include
the instructional design, learning theories, and game attributes.

5.1.3. Performance

Each activity played by the user/player in the practicing phase is assessed to check
their performance. This phase includes two types of assessments; first, the formative
assessment, where the player is informed about their every correct and incorrect action
performed while playing the activities in each game level with the help of log files generated
as result of playing game. In the formative assessment, the player is not only informed of
their right and wrong actions, but they are also provided with tailored feedback to improve
their performance. A summative assessment is done to evaluate the performance of each
player, and it is usually done at the end of each level, either completed or not completed by
the player. In the summative assessment, the player is informed about their correct and
incorrect attempts, remaining actions required to solve the complete level, total time is
taken in playing the level, overall score, and their percentage of performance (i.e., correct
solution attempted/total correct solution × 100)

6. Design and Development of SG for Learning OO: OOsg

The developed 2D game is named as Object Oriented serious game (OOsg), The
motivational point behind the design and development of OOsg is to provide an SG envi-
ronment, in which the novice programming students or the students who have difficulty
in the conceptualization of fundamental quarks of OOP can start learning interestingly and
engagingly. The students can improve their concepts, especially the concepts of classes,
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attributes, methods, objects, and inheritance using developed SG. The post-test was used to
provide the proof of the validity of the learning outcomes using the developed prototype.
OOsg starts by providing the personal and control information in which the user has to
select the type of player, i.e., basic, intermediate, or expert, to define the size of the solution
model. Students may also choose the difficulty level, i.e., simple, medium, or difficult, for
defining the time limit for completing the solution, as shown in Figure 3a. The SG incorpo-
rated three different stories as playing scenarios, which include the hospital management
system, library management system, and the online shopping system. Before starting the
game, the students were presented with a warm-up session, as shown in Figure 3b to
provide an idea of the environment in which they will play the game. After the warm-up
session, the actual game began. Each level of the game begins with a brief introduction to
the topic as shown in Figure 3c, and the rules and goals for playing the game as shown
in Figure 3d, which were supposed to be achieved at a particular level. The activities
provided in the game environment are based on stories related to the problem domain
selected at the beginning of the game. Each activity includes a comprehensive learning and
assessment program for the student. Every interaction students made with the game is
also captured and stored in the game’s log file and an increase or decrease in score in the
scoreboard, and provided with appropriate and tailored feedback, respectively.

(a) (b)

(c) (d)

Figure 3. Startup of the screen, the screen includes (a) personal and game control information,
(b) warm-up session (c), introduction to the basic concepts needed to be learned, and (d) rules and
goals for playing the levels.

6.1. Game Levels

The game includes various levels related to the competencies required to achieve using
OOsg. Currently, the game is focused on achieving the shaded competencies shown in
Figure 1. Level-1 to level-5 are dedicated for learning about concepts of “class”, “attributes”,
methods, “object”, and “relationship between the classes”, respectively. In Level-1, shown
in Figure 4a, the game story is presented to the player in chunks and the player has to
identify the correct candidates for the class according to the domain of the story. The
player is supposed to drag the candidate class from the game story and drop it on the
empty box available to populate the class list. With the player’s correct identification, the
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candidate class occurrence would appear in the class list available in the playing region of
the screen. In every correct and wrong attempt, the players will be notified with appropriate
feedback for their attempt with increment or decrements in the score table. If the player has
successfully achieved the game goals, which are set based on the game control information,
congratulation messages would greet the players to enhance their motivation to play the
game. Once the game control information is matched, the game will go into the stop
state. All the actions taken and game statistics are recorded into the log files. Some game
level statistics/evaluation information are also presented to the player, such as Win/Lose
status, correct and incorrect attempts/solution, how many correct attempts/solutions were
remaining, the performance of playing level, total time played, and total score, as shown
in Figure 4b. This screen is presented for all the levels if the players play the level until it
matches the game control information; otherwise, this information with more details is
only recorded into the log files.

(a) (b)

(c) (d)

(e) (f)
Figure 4. Game levels include: (a) Level-1—learning about the class identification. Taken from [38].
(b) Statistics/evaluation of the Level-1. (c) Level-2—learning about the attributes of the identified
class. (d) Level-3—learning about the methods of the identified class. (e) Level-4—learning about the
objection creation. (f) Level-5—learning about the relationship between classes.

In the Level-2 shown in Figure 4c, the player must identify the attributes for the classes
identified in Level-1, whereas, Level-3 shown in Figure 4d is dedicated to the identification
of the methods to complete class structure. The class box for each identified class appeared



Information 2021, 12, 101 12 of 21

separately with animation in both levels. If the player clicks on the classes available in the
class-list, the box will be highlighted with the class-name on the top of the newly opened
class-box, and space for adding the attributes or methods are enabled on each class-box.
The increment in the score table and attempt/solution will only be updated once the player
completes the details of the identified attributes, i.e., access specifier, attribute type, and
attribute name (it is the same as attribute the name identified and written automatically
if the player clicks on identified attributes). Initially, the attribute types’ combo-box is
populated with basic data types and will incrementally be populated with class names, as
the class can also be the type of any attribute. However, the strict validation of these details
is limited to the scope of this research.

In Level-4, the player is supposed to learn the concept of creation and deletion of the
objects and their effects on the class. The player must identify the objects available in the
game story or they can create new objects. If the object for a class is available in the game
story, and the player drags and drops the object on the relevant class correctly, they will be
notified with appropriate feedback as shown in Figure 4e. The player can also create as
many objects for a class that they want. However, they have to keep the object name the
same as that of the class followed by a digit, e.g., for class “patient”, the player can create
objects patient1, patient2, and so on. The player will also learn that if an object for a class is
destroyed, it will not affect the class itself. However, if any class is destroyed, all its objects
will automatically be destroyed.

In the Level-5, the player is supposed to learn the concept of creating the relationship
between the classes. The player can activate any class from the class-list and select their par-
ent from the top-right combo-box available on the class-box. The hierarchical relationship
between the classes will also appear on the screen’s playing region, as shown in Figure 4f.
The player can also check the multi-level hierarchy by pressing the class name from the
class-list if there is any. The player is also notified with appropriate feedback if they have
made any logical mistake for creating the relationship between the classes, such as if the
player selects base-class as sub-class or selects the same class both for child and parent-class
or if any class is missing between the hierarchy attempt to be made by the player.

6.2. Logfile Generated as a Result of playing OOsg

The log files are generated once the user creates their profile shown in Figure 3a.
This file keeps all the interactions that players made with the game: the first row shows
the variable names for which data are gathered from OOsg, while the remaining rows
show the values received for those variables. The example log file for Level-1 is shown in
Figure 5; in this example, detailed information about players attempts such as how many
time the player attempted to select the attributes, method, or object as a class, what is
the total number of classes a player is supposed to identify, and how many classes are
remaining will be recorded. The log file records many other concrete details such as total
wrong and correct attempts, score, performance (calculated as correct attempts/total No
of Solutions × 100), total time played, date and time of playing, and correctly attempted
solution. The log file is generated locally for the player of each level in a separate file. The
information recorded in the log file helps to evaluate the students, who learned basic OOP
concepts using OOsg.

Figure 5. Sample log file generated because of interaction with Level-1. Taken from [38].
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7. Experimental Evaluation and Results
7.1. Experimental Setup

The experimental study includes 83 students from local universities of Pakistan, 39
(47%) were male, whereas 44 (53%) were female students. The age reveals 59 (71%) students
belonged to the age group of 15–18 years, whereas 24 (29%) students’ age ranged from 19
to 24 years, and all were enrolled in various computer science related degree programs.
Potential students to participate in the study were selected voluntarily. The students’
information about their prior computer programming experience or gaming experience
was also asked, because these questions would help to find any potential threats to the
validity on pre and post-test scores. The responses show that 61 (74%) participants had
no prior programming language experience, whereas 22 (26%) participants had previous
programming experience. The responses for prior gaming responses showed that 37 (45%)
participants had no prior game experience, whereas 46 (55%) participants had previous
gaming experience. Among those 46 (55%) participants, only 12 (14%) participants had
prior experience playing educational games, whereas all other participants had experience
in other games.

The control and experimental groupings were done according to pre-test scores to
ensure that they are grouped according to their OOP performance. After grouping the
participants, the intervention session introduces the environment to learn and practice to
the control and experimental groups. The control group was treated with the traditional
teaching method to grasp the OOP concepts in the classroom setting, whereas, the experi-
mental group was presented with OOsg to interact with. After the intervention sessions,
the post-test session started. In the post-test session, the participants were presented with
an OOP scenario and questions which needed to be solved in the given time. The scenarios
used in pre and post-tests (for information about the pre-and post-test scenarios, and rele-
vant question see Pre and post-test scenarios and associated questions https://drive.google.
com/drive/folders/1T5Zk3qSb6cjYhCs79CjNbYwUR014ZG8j?usp=sharing, accessed on 5
February 2021) and the story embedded in the OOsg were designed by keeping the basic
quarks of OOP in mind. However, the questions that needed to be solved were kept the
same to ensure the responses’ accuracy.

In the pre-test learning activity session, all 83 participants were provided with an
OOP learning scenario and were asked to answer the given questions. Before the start of
the pre-test, the researchers briefly described the purpose of the study. However, students
were not informed of the existence of the experimental and control groups. After the
pre-test session, the teaching and practice session started with the introduction session
in which the domain area of the scenarios needed to be solved, and the procedure to
write the solutions was introduced to both groups. After the introduction session, the
intervention session begins to learn about the essential feature of OOP. The intervention
session is the practice session in which the control group students learn and practice the
OOP concepts in the traditional classroom environment. In contrast, the experimental
group students were demonstrated with the OOsg to learn and practice by interacting
with it. The researcher for both the groups serves as a teacher and facilitator in different
sessions. At the end of the intervention session, the post-test session was conducted to
assess the learning of students. After the completion of the post-test session, the evaluation
session was started. In the evaluation session, the survey form was given to students of
both groups separately. The evaluation session was intended to obtain evidence about
the effect of using OOsg or traditional teaching methods. There was no time limit set for
conducting the evaluation session.

7.2. Threats to Validity of Findings

The effectiveness of the OOsg is to obtain sufficient scientific data to provide a detailed
explanation of the experimental research findings. Threats to validity are concerns and
situations which may misrepresent such facts and thus support (or discard) predicted
findings incorrectly. Each threat to validation should be expected and addressed a priori in

https://drive.google.com/drive/folders/1T5Zk3qSb6cjYhCs79CjNbYwUR014ZG8j?usp=sharing
https://drive.google.com/drive/folders/1T5Zk3qSb6cjYhCs79CjNbYwUR014ZG8j?usp=sharing
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order to achieve unbiased outcomes or reduce them with appropriate countermeasures at
least. For finding the potential threats, first the Pearson product-correlation coefficient was
calculated, but we cannot rely on the R squared value, as we are not checking correlation
between two continuous variables. We are checking the correlation between a nominal
and continuous variable, so we have calculated the η2 by using cross tables. Hence, the
following threats to validity were analyzed prior to performing the experimental analysis:

7.2.1. Threats of Having Prior Game-Playing Experience

Prior game playing experience may affect the post scores of the students. Hence,
Eta values were calculated for a nominal variable “prior game playing experience” and
post-test scores of the experimental group. The results of the analysis are provided in
Table 2. The η2 value is very close to zero, which proves there is no significant effect of
student’s prior game-playing experience on the experimental group’s post-test scores.

7.2.2. Threats of Having Prior Computer Programming Experience

Prior computer programming experience may affect the pre and post scores of the
students. Hence, Eta values were calculated for a nominal variable “prior computer pro-
gramming experience”, and pre and post-test scores of both the control and experimental
groups. The results of the analysis are provided in Table 2. All the η2 values for prior
computer programming experience and pre and post-test scores of both the control and ex-
perimental groups are close to 0, which proves that there is no significant effect of student’s
prior computer-programming experience on pre and post-test scores of both the groups.

Hence, it is proved that the experimental analysis was unbiased to potential threats to
the validity of the results.

Table 2. Threats to the validity of the results.

Var1 Var2 r Value η
2

Exp_Group: Post-test score Prior Game Playing Experience 0.07 0.000

Control_Group: Pre-test score Prior Programming experience 0.217 0.047

Control_Group: Post-test score Prior Programming experience 0.080 0.006

Exp_Group: Pre-test score Prior Programming experience 0.264 0.069

Exp_Group: Post-test score Prior Programming experience 0.100 0.01

7.3. Result of Experimental Analysis

The experimental analysis compares the pre and post-test scores of both the experi-
mental and control groups. The details of the studies are discussed in the following section.

7.3.1. Measuring Students’ Performance for Learning OOP with and without the
Intervention of Prototype

In this analysis, both the experimental and control groups’ pre-test scores are compared
with the post-test scores. The main aim was to determine whether the difference between
means for the two sets of scores (pre-test and post-test) is the same or different. The control
group revealed that (40) = 0.933, p > 0.05, which indicates homogeneous results or no
significant difference in the average of the pre-test scores and the post-test scores for the
control group. The paired t-test results for the experimental group show that t(41) = 14.11,
p < 0.005, and indicates a significant difference in the average of the pre-test scores and
averages of post-test scores. The paired t-test result for the control and experimental groups
are given in Table 3.
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Table 3. Measuring student’s performance for learning OOP with and without the intervention of
the prototype.

Test-Data Mean Statistical Test t-Value df Sig. (2-Tailed)

Control Group

Post-Test 14.341
Paired t-test 0.933 40 0.356

Pre-Test 13.829

Experimental Group

Post-Test 33.285
Paired t-test 14.11 41 0.000

Pre-Test 15.190

7.3.2. The Difference in Students’ NLG for Learning OOP with and without the
Intervention of Prototype

The NLG is the rough measure of the prototype’s effectiveness in promoting concep-
tual understanding of the subject. The amount that students learned was divided by the
amount they could have learned [39]. The formula for calculating the normalized gain,
proposed by [39], is given below:

NLG = (PostTestScore− PreTestScore)\(100− PreTestScore) (1)

For this analysis, each participant’s NLG from the control and experimental groups
was first calculated by using the Formula (1). The average NLG shown in Figure 6 indicates
that the control group shows the NLG was 0.01 or 1% learning gain was found, whereas
the experimental groups show 0.21 or 21% gain in the learning of the participants.

Figure 6. Control and experimental group’s average Normalized Learning Gain (NLG).

The paired t-test results in Table 4 reveal that t(40) = 12.499, p < 0.05, which indicates
the significant difference between the average NLG of the control and experimental groups.

Table 4. The difference in students’ NLG for learning OOP with and without the intervention
of prototype.

Test-Data Mean Statistical Test t-Value df Sig. (2-Tailed)

Experimental Group-NLG 0.2105
Paired t-test 12.499 40 0.000

Control Group-NLG 0.0056
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7.3.3. The Effect of the Perceived Motivation on Student’s Learning

Learner’s perception of their motivations refers to how they perceive their motivations
while playing OOsg. Although we cannot measure players’ direct motivation by any scale,
we can estimate players’ perceived motivation. Students of both groups evaluated the
learner’s motivations. The quantitative data were generated using scale Instructional
Materials Motivation Survey (IMMS). The four subcategories of the IMMS scale include
attention, relevance, confidence, and satisfaction. The mean alpha reliability of their
subcategories and overall scale is shown in Figure 7. The quantitative analysis of these
subcategories is as follows:

Figure 7. Reliability measure for Instructional Materials Motivation Survey (IMMS).

For designing the serious game model, we have first to understand whether a single
game attribute leads to learning or enhancing perceived motivation or a combination of
multiple attributes within a game has a more substantial effect. In addition, which game
elements mainly help to produce which learning outcomes? The details about Gagne’s
instructional events, OOsg activities, game attributes, and type of the motivational aspects
are supposed to be achieved. The attention subcategory is about acquiring and continuously
focusing on the learning environment [40], it is a measure of how much students are aware
of the instructional design materials used. The game attributes control, and sensory stimuli
used in OOsg activities, such as welcoming a player with their chosen name, background
music, presenting the game objectives, outcomes, or about information or providing the
warm-up scenarios, help in achieving the attention subcategory.

The relevance aims that learning content should not only be accurate, but also con-
sistent with the learning outcomes. The purpose of this category is to determine whether
students think that the instructional method, i.e., OOsg or traditional teaching, is related
to their existing knowledge, interests, experience, and real life. It shows the learners that
their success is a direct result of their efforts and can enhance personal needs and traits
related to relevance. They are providing feedback to access learners’ efforts which helps
in increasing the sense of achievement. In the design of the OOsg, the game attributes,
like rules, goals, fantasy, and sensory stimuli used in OOsg activities like providing or
presenting the information regarding rules and goals of each level, increase and decrease
in points/score, how to get hints, win/lose strategies, help develop relevance between the
learning contents and learning outcomes.

Confidence is about students’ expectancy of success and learning failure [41].
Keller [42] indicated that confidence is related to the learners’ feeling of personal con-
trol and its influence on learning effort and performance. In the OOsg, fantasy, rules/goals,
sensory stimuli used for presenting the game levels needed to play, performing actions in
the levels, or providing feedback on players action taken in the game, helps to develop
confidence in the learners.
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The last subcategory, satisfaction, is about accomplishments in learning. Several
factors can affect satisfaction, such as feedback. Using a comprehensive feedback process,
learning iterations, and experiences can support learner self-confidence, maintaining the
relationship between attention and learning activities. Establishing clear learning goals
can avert adverse effects on learners. Therefore, providing a clear and concise guide will
enable learners to make a difference. The game attributes such as fantasy, sensory stimuli,
challenge, and mystery provided in activities like providing game score, information for
correct and wrong attempts, remaining tasks, etc., or to provide the previous information
in the upcoming levels with increased challenge or complexity, help the learners to satisfy
their level of satisfaction.

The comparison between the average score for all the IMMS scale subcategories for
both the control and experimental groups is shown in Figure 8. The comparison results
revealed that the experimental group students’ motivation levels were positive for all the
subcategories of IMMS.

Figure 8. Comparison between the control and experimental group’s perceived motivational level.

The overall means score, frequency, standard deviation, and percentage of the learner’s
perception of motivation for the experimental group are presented in Table 5. The highest
percentage (47.61%) of the mean score indicates that the majority of the participants have
means score between 4.01 to 5.00, for the attention subcategory. The satisfaction subcategory
also has the highest percentage (47.61%) for the means score between 3.1 to 4.0. The overall
mean score of subcategories of the IMMS scale shows that participants have the high score
in attention (3.87) followed by relevance (3.66).

Table 5. Overall mean score, frequency, standard deviation, and percentage about the learner’s
perception of motivation towards learning OOP using OOsg.

IMMS Mean Score Mean Score Mean Score Mean Score Mean SDSubcategories 1.00–2.00 2.1–3.00 3.1–4.00 4.1–5.00 Score

Attention 1 4 17 20 3.87 0.65
(2.38%) (9.52%) (40.47%) (47.61%)

Relevance 2 11 13 16 3.66 0.75
(4.76%) (26.19%) (30.95%) (38.10%)

Confidence 7 6 15 14 3.45 0.97
(16.66%) (14.28%) (35.71%) (33.33%)

Satisfaction 8 5 20 9 3.28 1.07
(19.04%) (11.90%) (47.61%) (21.42%)

8. Discussion

This research’s primary focus is to design and develop SG prototypes to improve
students’ performance learning OOP. Initially, students regarded learning programming
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languages as a difficult task, which led to low motivation for learning object-oriented and,
in many cases, the dropout rate of computer science or related courses was high. Therefore,
the prototype was developed and designed to provide an environment where students
can learn and practice OOP concepts in a stimulating and engaging way in which the
motivation to learn is enhanced without having to worry about failure.

It is discovered that many misconceptions and difficulties hinder the students in learn-
ing OOP. The result of reviewed studies showed that many research studies have concluded
that programming is difficult for the first time, regardless of the type of programming
language [26,43–47] they are learning. In summary, the overall results indicate that students
have difficulties and bewilderedness in understanding almost all OOP quarks. However,
incorporating all these difficulties into the design and development of SG prototypes is
beyond the research scope. Therefore, this study is limited to considering cognitive difficul-
ties related to classes, attributes, behaviors, objects, and hierarchies. Difficulties related to
motivation issues are also considered, because the method of teaching OOP concepts was
not attractive enough, the complexity of the learning and practice environment was the
primary cause for student’s lack of interest in learning. Hence, the designed model focused
on fostering learning outcomes and improving learning performance by rather starting
with the technical details of OOP, students would be provided with an environment where
the basic concepts of OOP at the beginning of the course are taught using an entertaining
and engaging environment. The students can be motivated to learn boring topics by en-
joying the experience. The current literature also revealed paucity in the use of learning
theories and instructional designs in the design and development of SG prototypes for
learning OOP [3,15,37,48–55]. Despite some promising results obtained from the current
literature, it does not show the presumed link between the motivation provided by the
games and actual learning outcomes supposed to be achieved by incorporating SG for
learning OOP [28].

Therefore, by considering the limitations of the existing SG, the new model was
effectively designed. In the formulated model shown in Figure 2, the components discussed
in existing SG, i.e., instructional contents or learning difficulties, game attributes, learning
theories, required competencies, and motivational aspects, are logically placed in the
presentation, practice, and performance phases. The developed SG for learning OOP is
named OOsg. To provide the evidence for the effectiveness of OOsg, an experimental
evaluation was carried out to analyze the student’s performance for learning OO with and
without using the developed SG prototype. The pre-test scores of both the experimental
and control groups are compared with the post-test scores. The results of the study showed
that the experimental group’s post-test scores are higher than the pre-test scores. However,
no significant difference was found in the post-test and pre-test scores of the control group
(p < 0.005, paired t-test). The average NLG is estimated to measure the effectiveness
of the prototype in promoting conceptual understanding of the subject. The result of
mean scores for average NLG indicates that only 1% of the gain has been observed for the
control group, whereas the experimental groups showed a 21% gain in the participants’
learning. The experimental analysis showed that students’ NLG was more significant for
the experimental group than those of the control group (p < 0.005, paired t-test).

The evaluation of perceived motivation was conducted using a 5-point IMMS scale.
The result showed the highest mean score for attention x = 3.87 followed by relevance
x = 3.66 subcategories. The score percentage indicates that the highest percentage of 47.61%
for subcategories attention and satisfaction is at a rating of 4.01 to 5.00 and between 3.1 to
4.0, respectively.

9. Conclusions

The design and development of the OOsg fulfilled the missing evidence found in
existing SG, such as considering the difficulties and misconceptions, incorporation of
learning theories, instructional designs, mapping of the game, and learning attributes. The
second is the statistical contribution for providing the missing rigorous statistical evidence
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between the students who used to learn via traditional teaching methods and the developed
prototype. Thus, investigation on the students’ difficulties has been done to be considered
guidelines for the incorporation as instructional content. As a result, the competency model
was designed to determine the major competencies required for mastering the skill of
OOP. The competency model is also used as the expected learning outcomes intended to
achieve by the developed prototype. Paucity in learning theories, instructional designs,
and mapping of the game attributes was expedited by designing a new model for SG.
The formulated model is designed based on the extensive review conducted to identify
students’ difficulties and pitfalls in the existing SG models. OOsg prototype was created to
demonstrate the implementation of the designed model. The experimental analysis results
showed that the prototype proved to help the students improve the learning outcomes of
OOP concepts in which they were facing difficulties.

Through the strong results obtained from the prototypes that have been developed,
our work has made an important contribution in encouraging the use of OOsg to learn OO
in a fun and engaging environment.
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