
 information

Article

A Comprehensive Survey on Machine Learning Techniques for
Android Malware Detection

Vasileios Kouliaridis 1,† and Georgios Kambourakis 2,*,†

����������
�������

Citation: Kouliaridis, V.;

Kambourakis, G. A Comprehensive

Survey on Machine Learning

Techniques for Android Malware

Detection. Information 2021, 12, 185.

https://doi.org/10.3390/info12050185

Academic Editor: Christoforos

Ntantogian

Received: 1 April 2021

Accepted: 23 April 2021

Published: 25 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information and Communication Systems Engineering, University of the Aegean,
83200 Samos, Greece; bkouliaridis@aegean.gr

2 European Commission, Joint Research Centre, 21027 Ispra, Italy
* Correspondence: georgios.kampourakis@ec.europa.eu or gkamb@aegean.gr
† These authors contributed equally to this work.

Abstract: Year after year, mobile malware attacks grow in both sophistication and diffusion. As the
open source Android platform continues to dominate the market, malware writers consider it as their
preferred target. Almost strictly, state-of-the-art mobile malware detection solutions in the literature
capitalize on machine learning to detect pieces of malware. Nevertheless, our findings clearly indicate
that the majority of existing works utilize different metrics and models and employ diverse datasets
and classification features stemming from disparate analysis techniques, i.e., static, dynamic, or
hybrid. This complicates the cross-comparison of the various proposed detection schemes and may
also raise doubts about the derived results. To address this problem, spanning a period of the last
seven years, this work attempts to schematize the so far ML-powered malware detection approaches
and techniques by organizing them under four axes, namely, the age of the selected dataset, the
analysis type used, the employed ML techniques, and the chosen performance metrics. Moreover,
based on these axes, we introduce a converging scheme which can guide future Android malware
detection techniques and provide a solid baseline to machine learning practices in this field.

Keywords: android malware; mobile malware detection; machine learning and classification

1. Introduction

According to a recent report from McAfee [1], 2020 was the year of mobile sneak
attacks. Namely, cybercriminals and state-sponsored actors are persistently seeking in-
genious ways to acquire user data. Likewise, malware writers continue to come up with
new ways of hiding their attacks and frauds, making it increasingly difficult to identify
and neutralize. On the positive side, new mobile malware detection techniques are also
evolving to counter these threats. Indeed, machine learning (ML) has long proved its
decisive role in this ecosystem given that the vast majority of mobile malware detection
solutions proposed in the literature so far are based on some kind of ML-driven scheme.

Traditionally, ML is exploited in anomaly-based detection methods. Anomaly-based
detection comprises two basic phases, namely the training and the detection or testing
one. That is, such solutions employ ML to detect malicious behavior, i.e., deviation from a
model built during the training phase. Anomaly-based detection can be further categorized
depending on the type of analysis, i.e., static, dynamic, and hybrid. Static analysis is
performed in a non-runtime environment, which analyzes an app’s internal structure.
Dynamic analysis, on the other hand, adopts the opposite approach, taking place during
the app’s normal operation.

As shown in Table 1, assorted app features can be extracted depending on the analysis
type, either static, dynamic, or hybrid. Each of these features has its advantages and
limitations. Namely, features stemming from the static analysis have proven efficient
against older malware apps [2], but tend to be ineffective against code obfuscation and
encryption techniques [3].

Information 2021, 12, 185. https://doi.org/10.3390/info12050185 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-4233-5998
https://orcid.org/0000-0001-6348-5031
https://doi.org/10.3390/info12050185
https://doi.org/10.3390/info12050185
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12050185
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12050185?type=check_update&version=1

Information 2021, 12, 185 2 of 12

Table 1. Feature extraction options per analysis method.

Analysis Type Feature Extraction Method Features Extracted

Manifest analysis Package name, Permissions, Intents,
Activities, Services, Providers

Static Code analysis
API calls, Information flow, Taint
tracking, Opcodes, Native code,
Cleartext analysis

Network traffic analysis URLs, IPs, Network Protocols,
Certificates, Non-encrypted data

Code instrumentation Java classes, intents, network traffic
Dynamic System calls analysis System calls

System resources analysis CPU, Memory, and Battery usage,
Process reports, Network usage

User interaction analysis Buttons, Icons, Actions/Events

When feeding additional features extracted through dynamic analysis to malware
detection models, they can typically cope significantly better with the newest and more
challenging pieces of malware [4]. However, hybrid analysis systems are inherently more
complex, due to the several extra components mandated by dynamic analysis, such as a
virtual or real platform, and a user event and input emulator to exercise the app. On top of
that, some sophisticated malicious apps can recognize when being executed in emulated
environments and avoid detection [5].

Classification is the process of categorizing data into classes. This process starts with
predicting the class of given data points. The classes are often referred to as target, label,
or categories. From an ML model’s perspective, classification requires a training dataset
with multiple instances from which the chosen ML model learns. Much like app analysis
methods, each ML model also has its pros and cons based on the supplied data [6]. As
detailed in Section 3, the majority of mobile malware detection works in the literature
demonstrate a different ML algorithm as the best performer for mobile malware detection.
For this reason, several performance optimization techniques have been used throughout
the literature to further enhance classification performance. These techniques include:

• Feature ranking and selection by calculating feature importance scores.
• Dimensionality reduction transforms features into a lower dimension to reduce bias

and noise.
• Ensemble models combine the output of multiple base models to improve the overall

classification performance and can be used in conjunction with any of the previous
two techniques.

Given the growing impact of ML-aided mobile malware detection schemes, a deeper
literature review is needed, considering all state-of-the-art works available and exploring
the details behind each efficient detection model. Unfortunately, while there are many
contributions in the literature leveraging ML for mobile malware detection on the Android
platform, most of them rely on diverse metrics, classification models, and performance im-
provement techniques. The absence of a common baseline in this field can cause confusion,
lead to half-true or even incorrect generalizations, and even mislead future research. In an
effort to mitigate these issues, the work at hand contributes to the following goals:

• Provides a detailed mapping of the contemporary ML techniques regarding Android
malware detection proposed in the literature during the last 7 years, namely from
2017 to 2021.

• Categorizes each contribution based on four distinct criteria, i.e., the chosen metrics,
dataset age, classification models, and performance improvement techniques.

• Introduces a converging, i.e., decision-making scheme to guide future work in
this ecosystem.

Information 2021, 12, 185 3 of 12

The remainder of this paper is organized in the following manner. The next section
discusses similar surveys in the literature. Section 3 details ML-driven Android malware
detection schemes proposed in the literature so far and categorizes each work based on a
quartet of criteria. Section 4 provides a discussion on the main findings and introduces the
proposed scheme. Section 5 draws a conclusion.

2. Relevant Surveys

As of today, the topic of Android malware detection has received plenty of attention
in the literature. However, few works focus on the ML methodologies employed and,
to the best of our knowledge, none of them provides a clear classification of mobile
malware detection systems based on the metrics and ML techniques used. Focusing on a
period spanning from 2017 to 2021, this section chronologically identifies such literature
contributions and places them vis-à-vis the current work.

Yan et al. [7] offered a thorough survey on dynamic mobile malware detection ap-
proaches, summarizing a number of criteria and performance evaluation metrics for mobile
malware detection. Additionally, the authors analyzed and compared the until then existing
mobile malware detection systems based on the analysis methods and evaluation results.
Finally, the authors pointed out open issues in the field and future research directions.

Odusami et al. [8] surveyed mobile malware detection techniques in an effort to
identify gaps and provide insight for effective measures against unknown Android mal-
ware. Their work showed that approaches which rely on ML to detect malicious apps
were more promising and produced higher detection accuracy as opposed to signature-
based techniques.

Kouliaridis et al. [9] provided a holistic review of works on the topic of mobile malware
detection and categorized each of them under a unique classification scheme. Precisely,
the latter groups each work based on its target platform, feature selection method, and
detection techniques, namely signature-based or anomaly-based detection.

Liu et al. [10] presented a comprehensive survey of Android malware detection
approaches that utilize ML techniques. The authors analyzed and summarized several
key topics, including sample acquisition, data preprocessing, feature selection, ML models,
algorithms, and detection performance. Finally, they elaborated on the limitations of ML
approaches and offered insights for potential future directions.

Gibert et al. [11] surveyed popular ML techniques for malware detection and in
particular, deep learning techniques. The authors explained research challenges and
limitations of legacy ML techniques and scrutinized recent trends and developments in the
field with a focus on deep learning schemes. They categorized the surveyed works into
three groups, namely static, dynamic, and hybrid.

As shown in Table 2, none of the above works offers a complete classification of each
approach based on the features listed in Section 1, namely, metrics, classification models,
dataset, and performance improvement techniques. Furthermore, none of them concentrate
on performance improvement techniques for ML-based detection systems. The current
work aspires to fill this gap and additionally introduce an overarching, decision-making
scheme that will potentially guide future ML-based methodologies on deciding which
analysis method, ML performance optimization technique, and metric is most fitting based
on the employed dataset.

Information 2021, 12, 185 4 of 12

Table 2. Important topics addressed by the related works. PEM: performance evaluation metrics, DT: detection techniques,
ML: machine learning, AM: analysis methods, FE: features and feature extraction, DL: deep learning, ML PI: ML performance
improvement.

Work Year Performance PEM DT ML AM FE DL Datasets ML PI

[7] 2017 + + - - - - - - -
[8] 2018 - + + + - - - - -
[9] 2020 + - + - + + - - -

[10] 2020 + - - + - + - + -
[11] 2020 - - - + - - + - -

Current 2021 + + + + + + - + +

3. Literature Survey

This section provides a detailed review of major published works devoted to the
detection of Android malware in the last seven years. Table 3 categorizes each work in
chronological order based on the following four criteria, while Table 4 offers a condensed
view of the common criteria across all contributions.

• The analysis type, namely static, dynamic, or hybrid.
• The feature extraction method, namely Manifest Analysis (MA), source Code Analysis

(CA), Network Traffic Analysis (NTA), Code Instrumentation (CI), System Calls Anal-
ysis (SCA), System Resources Analysis (SRA), and User Interaction Analysis (UIA).

• The features collected, as it has been listed in Table 1.
• The classification approach, i.e., base models and possible performance improvement

techniques, including Feature importance (FI) metrics, Dimensionality Reduction
(DR), and Ensemble Learning (EL).

Shabtai et al. [12] contributed a system that detects malicious behavior through
network traffic analysis. This is done by logging user-specific network traffic patterns per
examined app and subsequently identifying deviations that can be flagged as malicious.
To evaluate their model, they employed the C4.5 algorithm, achieving an accuracy of up
to 94%.

Canfora et al. [13] suggested an Android malware detection scheme that analyzes op-
code frequency histograms; this is accomplished by observing the frequency of occurrences
of each group of op-codes. Precisely, their detection model capitalizes on a vector of
features obtained from eight Dalvik op-codes. These op-codes are usually used to alter
the app’s control flow. Six classification models were employed during the evaluation,
namely LadTree, NBTree, RandomForest, RandomTree and RepTree. The proposed model
were applied separately to the eight features and the three groups of features. The first
group includes the move and the jump features, the second involves two well-known
distance metrics, namely Manhattan and Euclidean distance, and the last embraces all the
four features. The proposed method was evaluated on the Drebin dataset using several
classifiers, namely J48, LadTree, NBTree, Random Forest, Random Tree and RepTree, and
achieved an accuracy of 95%.

Jang et al. [14] developed Andro-AutoPsy, an anti-malware system based on Android
malware similarity matching. To train the proposed model, the authors gathered malware
information from antivirus mobile threat reports, malware repositories, and community
sites via web crawling. They chose five footprints as features, namely the serial number of
a digital certificate, API call sequence, permissions, intents, and system commands. Ac-
cording to the authors, Andro-AutoPsy can detect zero-day malware. Andro-AutoPsy was
evaluated with nearly 1K malware apps obtained from the VirusShare [15] and Contagio
mobile datasets, [16] and more than 109K benign samples collected from Google Play [17].

Yerima et al. [18] proposed an ensemble classification model capitalizing on critical
Android and Java API calls stemming from the source code, as well as on app permissions
extracted from the manifest file. In all the experiments, McAfee’s internal (private) dataset

Information 2021, 12, 185 5 of 12

was utilized. During the evaluation phase, several classifiers were employed, namely
Naive Bayes, Simple Logistic, Decision Tree and Random Tree, scoring an AUC of up to
99.3% and accuracy of 97.5%.

Coronado-De-Alba et al. [19] presented a mobile malware detection approach based
on a meta-ensemble algorithm. They conducted static analysis on a corpus of 1531 malware
apps collected from the Drebin dataset [20] and 765 benign apps, to get permissions and
intents. The authors employed the RandomForest and RandomCommittee algorithms,
achieving an accuracy of up to 97.5% with the use of the former.

Milosevic et al. [21] put forward a detection method that concentrates on the extraction
of non-trivial and beneficial to detection malicious patterns. This has been achieved by
examining the usefulness of source code in terms of detection, as well as the permissions
set of features when combined with either classification or commonly used clustering
techniques, respectively. In their experiments, the M0Droid corpus [22] was considered.
Several classifiers were used during the evaluation process, such as the C4.5, Random
forest, Naive Bayes, Support Vector Machine (SVM), JRip, and Logistic Regression. Their
results showed an accuracy of up to 95.6%.

By using a static app analysis approach, Idrees et al. [23] contributed an Android
malware detection method based on ensemble learning to augment the performance of base
classification models. They collected Android apps from a variety of corpora, including
Contagio dump, MalGenome [24], theZoo [25], Malshare [26], and Virushare [15]. For
each app, they extracted permissions and intents. The features with the highest feature
importance score, calculated using the information gain (IG) algorithm, were selected
to train the model. The authors employed the Naive Bayes, Decision Tree, Decision
Table, Random Forest, and Multilayer perceptron (MLP) classifiers. Their evaluation tests
demonstrated a best AUC and accuracy score of up to 99.8%.

DroidNative has been introduced by Alam et al. [27] as a solution for detecting
Android malware. This scheme considers both bytecode and native code analysis, and
according to the authors, DroidNative is the first to build cross-platform (x86 and ARM)
semantic-based signatures for Android. Specifically, during app analysis, bytecode is
passed to an Android Runtime (ART) [28] compiler to generate native binary code. This
code is then disassembled and translated into Malware Analysis Intermediate Language
(MAIL) code. To evaluate their approach, the authors collected over 5490 malware from
the Drebin and Contagio mobile corpora. Their results showed a detection rate of up to
93.57% and an AUC score ranging from 97.86% to 99.56%.

Kouliaridis et al. [29] proposed Mal-warehouse, an open-source tool performing
data collection-as-a-service for Android malware behavioral patterns. To this end, they
developed an open-source tool called “MIET” to extract statistical data in terms of memory,
CPU, battery, and network utilization over a period of time from Android devices when
running an app. Mal-warehouse is also equipped with a detection module, which the
authors evaluated via the use of a series of base classifiers, namely k-NN, Random Forest,
SVM, Naive Bayes and AdaBoost, and achieved a top AUC score of 85.4%.

Tao et al. [30] introduced MalPat, an automated malware detection system that scans
for malicious patterns in Android apps. Specifically, MalPat detects malicious patterns by
analyzing API calls. The authors collected 31,195 benign apps and 15,336 malware samples.
A repeated process was followed to evaluate MalPat using the Random Forest model,
in which they randomly selected a percentage of both malicious and benign datasets as
the training set, and the remaining part was taken as the testing set. In their evaluations,
MalPat achieved a 98.24% F1 score using the SVM classifier.

A mobile malware detection scheme that relies on information flow analysis has
been suggested by Shen et al. [31]. They introduced the notion of complex-flow as a new
representation approach for information flows. According to them, complex-flow is a set of
simple flows that share a common portion of code. For example, “if an app is able to read
contacts, store them and then send them over the Internet, then these two flows would be
(contact, storage) and (contact, network)”. According to the authors, their approach can

Information 2021, 12, 185 6 of 12

detect malicious information flows based on the app’s behavior along with the flow. That
is, for each examined app, their approach compares the app’s behavior motif, obtained
from the complex-flows representation of the app, to decide whether it is malicious or not.
This is done by means of two-class SVM classification. Precisely, to test the performance
of their method, the authors used four different datasets, totaling 8598 apps. Their model
achieved the best accuracy of 94.5%.

Wang et al. [32] proposed a malware detection method that employs network traffic
analysis and uses the c4.5 algorithm. According to the authors, c4.5 is capable of identifying
Android malware with very high accuracy. The authors tested their model on the Drebin
dataset [20]. The obtained results showed that the proposed model performs well when
compared with state-of-the-art approaches and attains a detection rate of up to 97.89% with
the aforementioned algorithm.

Kouliaridis et al. [4] proposed a plain heterogeneous ensemble malware detection
method. The ensemble model is created by averaging the output of several base models
based on either static or hybrid analysis. The features extracted pertain to permissions,
intents and API calls, Java classes, network traffic, and inter-process communications.
The performance of this method is evaluated against several corpora, namely Drebin [20],
VirusShare [15], and AndroZoo [33]. The authors evaluated their model using more than
a handful of classifiers, namely Logistic Regression, Naive Bayes, Random Forest, k-NN,
AdaBoost, Stochastic Gradient Descent (SGD), and SVM. Additionally, the authors used
the most challenging dataset, i.e., AndroZoo, and achieved accuracy and AUC score of
97.8% and 97.7%, respectively. Finally, feature importance was calculated for each dataset
and feature.

Potha et al. [34] examined the effect of an ensemble model when external instances of
different sizes and types are used. This novel ensemble model works by combining the
output of several base models, namely Logistic Regression, MLP, and SGD. Their results
demonstrated that ensemble models based on a larger and possibly homogeneous size of
external instances are exceptionally effective alternatives to ensemble models which com-
prise smaller sizes, and feasibly more heterogeneous external instances. Additionally, they
examined the effect of using either the entire feature set or a random subspace of features
of instances, and showcased that the latter aids an extrinsic ensemble model to further
augment its performance. The authors reported 99.4%, 99.3%, and 99.7% AUC and 98.3%,
98.7%, and 99.1% accuracy on the AndroZoo, VirusShare, and Drebin datasets, respectively.

DL-Droid, a deep learning system that detects malicious Android apps with dynamic
analysis using stateful input generation, has been proposed by Alzaylaee et al. [35]. They
collected more than 31,000 apps of which more than 11,000 being malware. DL-Droid runs
on an automated platform, which is able to perform both static and dynamic analysis. The
evaluation was carried out using a real Android device, and the reported required time for
analyzing each app was approximately 190 sec. Using the Random Forest classifier, DL-
Droid achieved a detection rate of up to 97.8% when only considering features stemming
from dynamic analysis and 99.6% when also adding features derived from static analysis.

Taheri et al. [36] developed four malware detection methods based on Hamming
distance. Their models aim to discern similarities between samples which are first nearest
neighbors (FNN), all nearest neighbors (ANN), weighted all nearest neighbors (WANN),
and k-medoid based nearest neighbors (KMNN). The authors extracted permissions, in-
tents and API Calls from three datasets, namely Drebin [20], Contagio mobile [16], and
MalGenome [24]. Using a Random Forest Regressor feature selection algorithm, the authors
selected 300 important features. The evaluation was carried out using several classifiers,
namely SVM, Decision Tree, Random Forest, and MLP, and achieved an accuracy between
90% and 99%.

Millar et al. [37] presented DANdroid, a mobile malware detection model which
uses deep learning to classify apps. DANdroid capitalizes on a triad of features, namely
Opcodes, permissions, and API calls. Their model was evaluated with apps from the

Information 2021, 12, 185 7 of 12

Drebin dataset, obfuscated with five techniques, which in turn produced a total of nearly
70K apps. Their results demonstrated a F-score of up to 97.3% using the CNN algorithm.

Cai et al. [38] proposed JOWMDroid, an Android malware detection scheme based on
feature weighting, with the joint optimization of weight-mapping and classifier parameters.
Eight feature categories were extracted from Android apps, and then the most important
features were selected using the IG algorithm. The proposed model calculates weights per
feature with three base models, and then five weight-mapping models are designed to map
the initial weights to the final ones. Finally, the parameters of the weight-mapping model
and the base model are jointly optimized by the differential evolution algorithm. The
authors collected malware from two datasets, namely Drebin and AMD. They used several
classifiers to assess their approach, i.e., SVM, Random Forest, and Logistic Regression,
scoring the best accuracy of 98.1%.

The effect of two well-known dimensionality reduction techniques, namely PCA
and t-SNE, when applied on base models as well as ensembles has been examined by
Kouliaridis et al. [2]. It was demonstrated that both these transformations are able to
considerably increase the performance of each base model as well as the constructed
ensembles. Static analysis was employed to extract permissions and intents from 1000
apps in the AndroZoo dataset. The authors evaluated their model using several classifiers,
namely AdaBoost, k-NN, Logistic Regression, Naive Bayes, MLP, SGD, Random Forest
and SVM, and achieved a 95.1% and 91.7% AUC and accuracy scores, respectively.

Table 3. Outline of the surveyed works.

Work Year Analysis Method(s) Feature(s) Dataset(s) ML Technique(s)

[12] 2014 Dynamic NTA Network traffic N/A Base models
[13] 2015 Static CA Opcodes Drebin Base models, DR

[14] 2015 Static MA, CA Package name, Permissions,
API calls, Intents, Opcodes

Contagio Mobile,
VirusShare Base models

[18] 2015 Static CA Permissions, API Calls McAfee EL
[19] 2016 Static CA Permissions, Intents Drebin EL
[21] 2017 Static CA Permissions, Source code M0Droid EL

[23] 2017 Static CA Permissions, Intents
Contagio, MalGenome,
theZoo, Malshare,
VirusShare

FI, EL

[27] 2017 Static CA Native code Contagio Mobile,
Drebin Base models

[29] 2018 Dynamic SRA
CPU, Memory, and Battery
usage, Process reports,
Network usage

N/A Base models

[30] 2018 Static CA API calls N/A Base models
[31] 2018 Static CA Information flow N/A Base models
[32] 2019 Dynamic NTA Network traffic Drebin Base models

[4] 2020 Hybrid MA, CA, CI

Permissions, Intents, API calls,
Java classes, inter-process
communication,
network traffic

Drebin, VirusShare,
AndroZoo Base models, FI, EL

[34] 2020 Static MA Permissions, Intents Drebin, VirusShare,
AndroZoo Base models, EL

[35] 2020 Hybrid MA, CA, UIA Permissions, Intents, API Calls,
Actions/Events McAfee Base models, FI

[36] 2020 Static MA, CA Permissions, Intents, API Calls Drebin, Contagio
mobile, MalGenome Base models, FI

[37] 2020 Static MA, CA Permissions, Opcodes,
API Calls Drebin Base models

[38] 2021 Static MA, CA
Permissions, Intents, Features,
Components, API Calls,
Intents, Shell commands

Drebin, AMD Base models plus
weighted-mapping, FI

[2] 2021 Static MA Permissions, Intents AndroZoo Base models, EL, DR

Information 2021, 12, 185 8 of 12

Table 4. Summary of key characteristics observed across the surveyed works.

Category Option No. of Works

Static 14
Analysis type Dynamic 3

Hybrid 2

Source Code analysis 14
Manifest analysis 8

Feature extraction method Network traffic analysis 2
Code instrumentation 1
System resources analysis 1
User interaction analysis 1

2010 to 2014 11
Dataset age 2015 to 2016 5

2017 to 2020 3

Base models 15
ML techniques Ensemble learning 7

Feature importance 5
Dimensionality reduction 2

Accuracy as a metric 13
Metrics AUC as a metric 7

Other metric 4

4. Discussion

This section wraps up a number of key findings based on the surveyed works in
Section 3. Precisely, as shown in Tables 3 and 4, most contributions, i.e., 14 out of 19,
rely on static analysis alone, while only 3 and 2 take advantage of dynamic and hybrid
analysis, respectively. Additionally, the following important observations can be made
about performance optimization techniques:

• Ensemble models are considered by 7 works, i.e., roughly the one-third.
• Feature importance scores are calculated in 5 works, i.e., about the one-fourth.
• Dimensionality reduction techniques are used in only 2 works.

Ensemble models have started to appear in the relevant literature after 2015. Specif-
ically, such models are used in 6 out of 11 works employing static analysis from 2015 to
2020, and in all of the works in the same year span, which make use of a regularly updated
malware dataset, namely VirusShare or AndroZoo.

As shown in Table 4, source code analysis is the most common analysis technique
exploited in the surveyed literature. Moreover, the most widespread classification features
among the surveyed works are Permissions, Intents, and API Calls, used in 12, 9, and
7 works, respectively.

As shown in Table 4, when focusing on the datasets employed, it is deduced that
numerous works rely on outdated (and no more updated) datasets. Specifically, Drebin,
dated back to 2012, is the most used dataset, utilized in almost half of the surveyed
works. On the other hand, Contagio Mobile and MalGenome are used in 4 and 2 works,
respectively. However, the former is dated back to 2010, while the latter to 2012. Recall
that previous work has shown that feature importance changes across datasets of different
age [6,39].

Additionally, previous work has demonstrated that when extracting multiple feature
categories from a large collection of apps, the number of features substantially increases [4],
as does the computational cost and risk of overfitting due to the resulting model com-
plexity. Therefore, when evaluating a mobile malware detection approach, the choice of
the dataset should play a key role in choosing the classification models and performance-
enhancing techniques, such as ensemble learning. On the positive side, works dated after

Information 2021, 12, 185 9 of 12

2015 seem to also employ newer datasets, such as VirusShare and AndroZoo, which are
regularly updated.

Another important factor when assessing an ML-based approach is the primary metric
used to evaluate its classification performance. The top used metrics shown in Table 4
reveal that the Accuracy and AUC are the most commonly used. However, by inspecting
the contributions included in Section 3, one can easily conclude that a wide variety of
metrics has been utilized to measure classification performance, namely detection rate
(DR), true positive rate (TPR), Precision, Recall, F1, Accuracy, and Area Under the Curve
(AUC). This assortment can cause a series of issues, including (a) inability to compare with
state-of-the-art when the same metric is not available, and (b) incorrect metrics can produce
inaccurate or over-estimated results, as in the case when using the accuracy metric with
imbalanced datasets [4].

Finally, Figure 1 illustrates the most popular base classification models among the
surveyed works. The Random forest seems to be the most popular classifier used in
11 works, followed by SVM and Naive Bayes used in 8 and 6 works, respectively.

Figure 1. Number of works utilizing each base classification model per year.

In an effort to address the aforementioned issues, we introduce an overarching, con-
verging parameter selection scheme shown in Figure 2. Precisely, the proposed scheme aims
to aid future mobile malware detection methodologies, by suggesting a unified baseline for
designing more comparable and well-engineered ML-based malware detection solutions.
This is achieved by considering all four key parameters into a unified typology. Simply put,
the “parameters” term here refers to feature importance across corpora of different age, the
increase in performance when using ensemble models instead of base models, the merit
of dimensionality reduction techniques in mobile malware detection, and the advantages
of each of the classification metrics. Under this mindset, Figure 2 comprises four steps,
namely dataset age selection, analysis method selection, ML techniques selection, and
performance metrics selection.

Specifically, the proposed scheme guides one in picking optimal ML techniques based
on the dataset age and analysis method chosen in the first and second step, respectively.
Namely, the first two steps associate the age of the dataset used for evaluation with one
of the three analysis methods. The third step indicates the ML classification techniques
to be used based on the choice made during the preceding steps. The final step depends
on whether the dataset used is balanced in terms of malware and benign apps. This will
determine if accuracy is indeed a trustworthy metric. In all cases, however, the AUC metric
is preferable, as it constitutes a more conclusive and realistic evaluation of models, even
when substantially imbalanced datasets are utilized [40]. Generally, AUC quantifies the
effectiveness of each examined approach for all possible score thresholds. As a rule, the

Information 2021, 12, 185 10 of 12

value of AUC is extracted by examining the ranking of scores rather than their exact values
produced when a method is applied to a dataset. On top of everything else, AUC does not
depend on the equality of distribution between positive and negative classes.

Figure 2. Baseline scheme for mobile malware detection models.

5. Conclusions

This work provides a state-of-the-art survey on ML-powered Android malware de-
tection techniques. To do so, we categorize and succinctly analyze state-of-the-art works
in the literature during the last seven years, i.e., from 2014 to 2021, based on the analysis
type, feature extraction method, dataset, ML classification techniques, and metrics used
in their performance evaluation. Additionally, we elaborate on our findings and research
trends, as well as possible issues and future directions. From the results, it becomes obvious
that the majority of the approaches embrace a different set of basic parameters, including

Information 2021, 12, 185 11 of 12

the dataset, the analysis (feature collection), and the detection evaluation metrics. To
moderate this issue, we proposed a four-step converging scheme to serve as a baseline and
springboard for future mobile ML-based Android malware detection approaches. Future
work could consider providing an initial evaluation of the proposed converging scheme
by juxtaposing findings stemming from its different trajectories in terms of dataset age,
analysis method, and ML techniques selected.

Author Contributions: Conceptualization, V.K. and G.K.; writing—original draft preparation, V.K.
and G.K.; writing—review and editing, V.K. and G.K.; supervision, G.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mobile Threat Report 2020. Available online: https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-

Threat-Report.pdf (accessed on 10 March 2021).
2. Kouliaridis, V.; Potha, N.; Kambourakis, G. Improving Android Malware Detection Through Dimensionality Reduction Tech-

niques. In Machine Learning for Networking; Springer International Publishing: Paris, France, 2021; pp. 57–72. [CrossRef]
3. Bacci, A.; Bartoli, A.; Martinelli, F.; Medvet, E.; Mercaldo, F.; Visaggio, C. Impact of Code Obfuscation on Android Malware Detection

based on Static and Dynamic Analysis; Funchal: Madeira, Portugal, 2018; pp. 379–385. [CrossRef]
4. Kouliaridis, V.; Kambourakis, G.; Geneiatakis, D.; Potha, N. Two Anatomists Are Better than One—Dual-Level Android Malware

Detection. Symmetry 2020, 12, 1128. [CrossRef]
5. Petsas, T.; Voyatzis, G.; Athanasopoulos, E.; Polychronakis, M.; Ioannidis, S. Rage against the virtual machine. In Proceedings of

the Seventh European Workshop on System Security—EuroSec ’14, Amsterdam, The Netherlands, 13 April 2014; ACM Press:
New York, NY, USA, 2014. [CrossRef]

6. Roy, S.; DeLoach, J.; Li, Y.; Herndon, N.; Caragea, D.; Ou, X.; Ranganath, V.; Li, H.; Guevara, N. Experimental Study with
Real-World Data for Android App Security Analysis Using Machine Learning. In Proceedings of the 31st Annual Computer
Security Applications Conference, ACSAC 2015, Los Angeles, CA, USA, 7–11 December 2015; Association for Computing
Machinery: New York, NY, USA, 2015; pp. 81–90. [CrossRef]

7. Yan, P.; Yan, Z. A survey on dynamic mobile malware detection. Softw. Qual. J. 2017, 26, 891–919. [CrossRef]
8. Odusami, M.; Abayomi-Alli, O.; Misra, S.; Shobayo, O.; Damasevicius, R.; Maskeliunas, R. Android Malware Detection: A Survey.

In Communications in Computer and Information Science; Springer International Publishing: New York, NY, USA, 2018; pp. 255–266.
[CrossRef]

9. Kouliaridis, V.; Barmpatsalou, K.; Kambourakis, G.; Chen, S. A Survey on Mobile Malware Detection Techniques. IEICE Trans.
Inf. aSyst. 2020, E103.D, 204–211. [CrossRef]

10. Liu, K.; Xu, S.; Xu, G.; Zhang, M.; Sun, D.; Liu, H. A Review of Android Malware Detection Approaches Based on Machine
Learning. IEEE Access 2020, 8, 124579–124607. [CrossRef]

11. Gibert, D.; Mateu, C.; Planes, J. The rise of machine learning for detection and classification of malware: Research developments,
trends and challenges. J. Netw. Comput. Appl. 2020, 153, 102526. [CrossRef]

12. Shabtai, A.; Tenenboim-Chekina, L.; Mimran, D.; Rokach, L.; Shapira, B.; Elovici, Y. Mobile malware detection through analysis
of deviations in application network behavior. Comput. Secur. 2014, 43, 1–18. [CrossRef]

13. Canfora, G.; Mercaldo, F.; Visaggio, C.A. Mobile Malware Detection using Op-code Frequency Histograms. In Proceedings of the
12th International Conference on Security and Cryptography, SCITEPRESS—Science and and Technology Publications, Colmar,
France, 20–22 July 2015. [CrossRef]

14. Jang, J.; Kang, H.; Woo, J.; Mohaisen, A.; Kim, H.K. Andro-AutoPsy: Anti-malware system based on similarity matching of
malware and malware creator-centric information. Digit. Investig. 2015, 14, 17–35. [CrossRef]

15. Virusshare. Available online: https://virusshare.com/ (accessed on 10 September 2020).
16. Contagio. Available online: http://contagiominidump.blogspot.com/ (accessed on 10 September 2020).
17. Google Play. Available online: https://play.google.com/ (accessed on 10 September 2020).
18. Yerima, S.Y.; Sezer, S.; Muttik, I. High accuracy android malware detection using ensemble learning. IET Inf. Secur. 2015,

9, 313–320. [CrossRef]
19. Coronado-De-Alba, L.D.; Rodríguez-Mota, A.; Escamilla-Ambrosio, P.J. Feature selection and ensemble of classifiers for Android

malware detection. In Proceedings of the 2016 8th IEEE Latin-American Conference on Communications (LATINCOM), Medellin,
Colombia, 15–17 November 2016; pp. 1–6.

https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf
https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf
http://doi.org/10.1007/978-3-030-70866-5_4
http://dx.doi.org/10.5220/0006642503790385
http://dx.doi.org/10.3390/sym12071128
http://dx.doi.org/10.1145/2592791.2592796
http://dx.doi.org/10.1145/2818000.2818038
http://dx.doi.org/10.1007/s11219-017-9368-4
http://dx.doi.org/10.1007/978-3-030-01535-0_19
http://dx.doi.org/10.1587/transinf.2019INI0003
http://dx.doi.org/10.1109/ACCESS.2020.3006143
http://dx.doi.org/10.1016/j.jnca.2019.102526
http://dx.doi.org/10.1016/j.cose.2014.02.009
http://dx.doi.org/10.5220/0005537800270038
http://dx.doi.org/10.1016/j.diin.2015.06.002
https://virusshare.com/
http://contagiominidump.blogspot.com/
https://play.google.com/
http://dx.doi.org/10.1049/iet-ifs.2014.0099

Information 2021, 12, 185 12 of 12

20. Arp, D.; Spreitzenbarth, M.; Huebner, M.; Gascon, H.; Rieck, K. Drebin: Efficient and Explainable Detection of Android Malware
in Your Pocket. In Proceedings of the 21th Annual Network and Distributed System Security Symposium (NDSS), San Diego,
CA, USA, 23–26 February 2014; Volume 12, p. 1128.

21. Milosevic, N.; Dehghantanha, A.; Choo, K.K.R. Machine learning aided Android malware classification. Comput. Electr. Eng.
2017, 61, 266–274. [CrossRef]

22. Damshenas, M.; Dehghantanha, A.; Choo, K.K.; Mahmud, R. M0Droid: An Android Behavioral-Based Malware Detection Model.
J. Inf. Priv. Secur. 2015, 11, 141–157. [CrossRef]

23. Idrees, F.; Rajarajan, M.; Conti, M.; Chen, T.M.; Rahulamathavan, Y. PIndroid: A novel Android malware detection system using
ensemble learning methods. Comput. Secur. 2017, 68, 36–46. [CrossRef]

24. Android Malware Genome Project. Available online: http://www.malgenomeproject.org/ (accessed on 11 August 2020).
25. The Zoo Aka Malware DB. Available online: https://thezoo.morirt.com/ (accessed on 11 August 2020).
26. MalShare Project. Available online: https://malshare.com/about.php (accessed on 11 August 2020).
27. Alam, S.; Qu, Z.; Riley, R.; Chen, Y.; Rastogi, V. DroidNative: Automating and optimizing detection of Android native code

malware variants. Comput. Secur. 2017, 65, 230–246. [CrossRef]
28. Android Runtime (ART) and Dalvik. Available online: https://source.android.com/devices/tech/dalvik (accessed on

10 September 2020).
29. Kouliaridis, V.; Barmpatsalou, K.; Kambourakis, G.; Wang, G. Mal-Warehouse: A Data Collection-as-a-Service of Mobile Malware

Behavioral Patterns. In Proceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted
Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Guangzhou, China, 8–12 October 2018; pp. 1503–1508. [CrossRef]

30. Tao, G.; Zheng, Z.; Guo, Z.; Lyu, M.R. MalPat: Mining Patterns of Malicious and Benign Android Apps via Permission-Related
APIs. IEEE Trans. Reliab. 2018, 67, 355–369. [CrossRef]

31. Shen, F.; Vecchio, J.D.; Mohaisen, A.; Ko, S.Y.; Ziarek, L. Android Malware Detection Using Complex-Flows. In Proceedings of
the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp.
2430–2437. [CrossRef]

32. Wang, S.; Chen, Z.; Yan, Q.; Yang, B.; Peng, L.; Jia, Z. A mobile malware detection method using behavior features in network
traffic. J. Netw. Comput. Appl. 2019, 133, 15–25. [CrossRef]

33. Allix, K.; Bissyandé, T.F.; Klein, J.; Traon, Y.L. AndroZoo: Collecting Millions of Android Apps for the Research Community. In
Proceedings of the 13th International Conference on Mining Software Repositories, Austin, TX, USA, 14–15 May 2016; ACM:
New York, NY, USA, 2016; pp. 468–471.

34. Potha, N.; Kouliaridis, V.; Kambourakis, G. An extrinsic random-based ensemble approach for android malware detection.
Connect. Sci. 2020, 1–17. [CrossRef]

35. Alzaylaee, M.K.; Yerima, S.Y.; Sezer, S. DL-Droid: Deep learning based android malware detection using real devices. Comput.
Secur. 2020, 89, 101663. [CrossRef]

36. Taheri, R.; Ghahramani, M.; Javidan, R.; Shojafar, M.; Pooranian, Z.; Conti, M. Similarity-based Android malware detection using
Hamming distance of static binary features. Future Gener. Comput. Syst. 2020, 105, 230–247. [CrossRef]

37. Millar, S.; McLaughlin, N.; del Rincon, J.M.; Miller, P.; Zhao, Z. DANdroid: A Multi-View Discriminative Adversarial Network for
Obfuscated Android Malware Detection; Association for Computing Machinery: New York, NY, USA, 2020. [CrossRef]

38. Cai, L.; Li, Y.; Xiong, Z. JOWMDroid: Android malware detection based on feature weighting with joint optimization of
weight-mapping and classifier parameters. Comput. Secur. 2021, 100, 102086. [CrossRef]

39. Kouliaridis, V.; Kambourakis, G.; Peng, T. Feature Importance in Android Malware Detection. In Proceedings of the 2020 IEEE
19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Guangzhou, China,
29 December 2020–1 January 2021; pp. 1449–1454. [CrossRef]

40. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]

http://dx.doi.org/10.1016/j.compeleceng.2017.02.013
http://dx.doi.org/10.1080/15536548.2015.1073510
http://dx.doi.org/10.1016/j.cose.2017.03.011
http://www.malgenomeproject.org/
https://thezoo.morirt.com/
https://malshare.com/about.php
http://dx.doi.org/10.1016/j.cose.2016.11.011
https://source.android.com/devices/tech/dalvik
http://dx.doi.org/10.1109/SmartWorld.2018.00260
http://dx.doi.org/10.1109/TR.2017.2778147
http://dx.doi.org/10.1109/ICDCS.2017.190
http://dx.doi.org/10.1016/j.jnca.2018.12.014
http://dx.doi.org/10.1080/09540091.2020.1853056
http://dx.doi.org/10.1016/j.cose.2019.101663
http://dx.doi.org/10.1016/j.future.2019.11.034
http://dx.doi.org/10.1145/3374664.3375746
http://dx.doi.org/10.1016/j.cose.2020.102086
http://dx.doi.org/10.1109/TrustCom50675.2020.00195
http://dx.doi.org/10.1016/j.patrec.2005.10.010

	Introduction
	Relevant Surveys
	Literature Survey
	Discussion
	Conclusions
	References

