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Abstract: To tackle the issues of semantic collision and inconsistencies between ontologies and the
original data model while learning ontology from relational database (RDB), a semi-automatic seman-
tic consistency checking method based on graph intermediate representation and model checking
is presented. Initially, the W-Graph, as an intermediate model between databases and ontologies,
was utilized to formalize the semantic correspondences between databases and ontologies, which
were then transformed into the Kripke structure and eventually encoded with the SMV program.
Meanwhile, description logics (DLs) were employed to formalize the semantic specifications of the
learned ontologies, since the OWL DL showed good semantic compatibility and the DLs presented an
excellent expressivity. Thereafter, the specifications were converted into a computer tree logic (CTL)
formula to improve machine readability. Furthermore, the task of checking semantic consistency
could be converted into a global model checking problem that could be solved automatically by
the symbolic model checker. Moreover, an example is given to demonstrate the specific process
of formalizing and checking the semantic consistency between learned ontologies and RDB, and
a verification experiment was conducted to verify the feasibility of the presented method. The
results showed that the presented method could correctly check and identify the different kinds of
inconsistencies between learned ontologies and its original data model.

Keywords: consistency checking; ontology learning; model checking; graph intermediate representa-
tion; relational database

1. Introduction

Knowledge-based integration was regarded as one of the efficient integration methods
due to the excellent semantic interoperability of knowledge bases (KB). Typically, the main-
stream methods for constructing knowledge bases are based on manual transformation
and mapping, hence it is a costly and tedious task to construct and maintain knowledge
bases by using the traditional manual mapping and transformation [1]. Ontology, one of
the representatives and formalized knowledge bases, provides a rich semantic reference
for the schema mapping and data integration due to its semantic interoperability and
rigorous mathematical foundation [2]. Similarly, the traditional methods for constructing
ontology from RDB are mainly based on predefined rules, in which a lot of effort and
domain expertise are required.

Ontology learning (OL) is a kind of knowledge representation learning method, aim-
ing to (semi-)automatically construct ontologies from various data, in which the entities
and relationships are usually identified and extracted based on semantic computation and
knowledge inference. The prevailing techniques of learning ontology could be classified
into four categories: association rule mining (ARM), formal concept analysis (FCA), induc-
tive logic programming (ILP), neural networks (NN), and machine learning [3]. To some
extent, ontology learning not only improves the efficiency of ontology construction but
also eliminates the biases and limitations of human knowledge [4].
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There is no doubt that ontology learning could free humans from the tedious mapping
and transformation and minimize the negative influence of human knowledge biases
while manually constructing ontologies. However, it is a common phenomenon that
some inconsistencies and semantic conflicts will inevitably occur during (semi-)automatic
ontology learning [5]. Due to the various naming conventions of entities and attributes,
and the different semantic contexts that exist in different databases, it is unavoidable that
semantic collisions and inconsistencies will occur between learned ontologies and their
original databases. Consequently, these inconsistencies will weaken the capabilities of the
semantic interoperability of learned ontologies. Therefore, the issues of inconsistencies and
redundancies are becoming the bottleneck in the scenario of (semi-)automatic ontology
learning from a relational database.

In general, ontology consistency could be manually checked in the ontology eval-
uation, in which several criteria are defined to evaluate the quality of ontology, e.g.,
consistency, completeness, conciseness, etc. [6]. Semantic consistency is a fundamental
criterion for evaluating the quality of ontology during ontology construction and merging.
The semantic consistency checking not only checks for consistency at the syntactic level,
but also at the semantic level. However, the ontology evaluation is a time-consuming and
laborious work [7]. There are even more inconsistencies that need to be checked and evalu-
ated when it comes to learning ontology from RDB, since the current ontology learning
algorithm is immature. In particular, the issues of inconsistencies and redundancies will get
much worse when learning ontology from multiple data sources. Hence, how to efficiently
identify the inconsistencies between learned ontologies and their original databases is one
of the critical tasks in the (semi-)automatic ontology learning from RDB.

To address the above issues, this article presents a semi-automatic semantic consistency
checking method based on the graph intermediate representation and model checking.
We formalized the semantic correspondences between databases and ontologies based on
labeled transition systems and Kripke structure by introducing the W-Graph, which is a
graph-based intermediate representation model. We initially encoded the specifications
of learned ontologies with DLs to leverage the excellent expressivity of description logics
(DLs) [8]. We translated the aforementioned semantic specifications of learned ontologies
from DLs to the CTL formula to improve machine readability. The remainder of this article
is organized as follows. The related work on the topic of semantic consistency checking of
ontologies is summarized in Section 2. The problem of the inconsistencies during learning
ontology from relational database are described and the preliminary definitions are given in
Section 3. The specific processes of the presented semantic consistency checking method are
given, and the corresponding verification experiment is conducted to verify the feasibility
and effectiveness of the presented method in Section 4. The conclusion is summarized, and
the future work is given in Section 5.

2. Related Work

Ontology consistency checking is a critical task in ontology construction, ontology
alignment, and ontology evolution, by which the inconsistencies could be identified and
eliminated. The prevailing methods for checking ontology consistency could be classified
into two categories: logical reasoning and graph intermediate representation.

2.1. Consistency Checking Based on Logical Reasoning

Logical reasoning is a classic method to check the consistency of knowledge bases, in
which the hypotheses, arguments, and consequences could be inferred and justified. To
ensure the consistency of ontologies, Baclawski et al. [9] designed a tool (ConsVISor) for
checking the consistency of ontology. ConsVISor could check whether a given ontology
is consistent by verifying the axioms based on inference of logic programming engine.
However, it simply identifies the inconsistency at the syntactic level, which may lead
to some errors when it meets some synonyms or abbreviations. As a result that the
OWL-DL reasoning mechanism provides automatic detection of inconsistencies by formal
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description logic, Neumann et al. [10] designed a reference architecture and prototype of
the ontological XML database system (OXDBS). In this system, the consistency validation
module was designed, in which the consistency is checked based on the formal validation
of the OWL-DL reasoner. Apart from using the First-Order Logic (FOL) and DLs, the
Semantic Web Rule Language (SWRL) was also utilized to formalize semantics. To resolve
semantic conflicts in the anti-fraud rule-based expert systems, del Mar et al. [11] proposed
a semantic conflict resolution method to check the consistency of rules in rule-based expert
systems. More specifically, different kinds of rules were formulated in SWRL, and then
the inconsistent, overlapping, and duplicate rules were detected in the rule-based expert
system by introducing the ontology reasoning mechanism.

In addition to checking ontology consistency based on logic reasoning, there are some
works focused on the issues of inconsistency prediction and elimination. To eliminate
the inconsistencies at an earlier time, Bayoudhi [12] predicated the logical inconsistencies
during updating OWL2-DL based on predefined rules, where the potential inconsistencies
could be detected and resolved at an earlier time. To tackle the issue of inconsistent
ontologies, Rosati et al. [13] presented a reasoner-based Quonto Inconsistent Data handler
(QuID). In this method, the semantic inconsistencies of ontologies in ABox could be repaired
automatically based on the data manipulation and query rewriting.

It is noteworthy that some unexpected results, e.g., unsatisfied class, erroneous corre-
spondences, etc., will occur while checking the ontology consistency based on reasoning.
In particular, it is ineffective for the reasoner to check the inconsistencies if there exists no
standard logic inconsistency [12]. In this case, the domain experts are required to manually
determine whether these unexpected results are acceptable [14]. To minimize the human
intervention in checking consistency during automatic ontology mapping and merging
system, Fahad et al. [15] proposed a method to identify semantic inconsistencies from
initial mappings by leveraging the subsumption analysis to analyze the elements of ontolo-
gies, i.e., concepts and properties. Aimed at semi-automatically constructing ontologies
from the Web corpus, Bai et al. [16] proposed a domain ontology learning approach, in
which a two-stage clustering approach and SOM neural network are utilized to extract
and build domain ontology from Chinese-document corpus. Accordingly, a consistency
checking method based on racer reasoner is presented to check the consistency of learned
ontologies. Additionally, to address the inconsistency between ABox and TBox during
ontology reasoning, Paulheim et al. [17] proposed a ABox consistency checking method
based on machine learning. In this method, an approximate reasoner was introduced
to check the ABox consistency, and it is eventually considered as a binary classification
problem, by which the ABox is translated to feature vectors for training the decision trees.

2.2. Consistency Checking Based on Graph Intermediate Representation

Considering that both ontology and RDB could be formalized as a directed graph, the
correspondences between them could be specified and formalized based on graph mapping.
In consequence, the consistency checking based on graph intermediate representation has
aroused scholar’s attention. To address the incapability of logical reasoning to provide an
explanation for the user to resolve the identified inconsistencies, Lam et al. [18] presented a
graph-based ontology inconsistency checking method. More specifically, the ontology was
formalized as a directed graph, in which the consistency between concepts was checked
by analyzing the paths of a graph. In order to identify the inconsistencies in building
ontology, Yang et al. [19] proposed a semantic consistency method based on a graph-based
intermediate model. In this method, the task of semantic consistency checking was referred
to as a problem of a semantic equivalent query over the isomorphism graph, which was
eventually solved by the model checker. However, an intermediate graph was constructed
based on the RDB schema and instance, which ignores the subtle difference between the
intermediate graph model and ontology. Strictly speaking, we could not conclude that the
constructed ontologies are consistent with the original database when the query result of
the sub-graph is consistent with the intermediate graph model.
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In addition to checking the ontology consistency during the construction of ontologies,
some works address the consistency checking based on graph-intermediate representation
during the ontology evolution and mapping. To tackle the inconsistency issue in updating
the ontologies, Mahfoudh et al. [20] proposed an a priori approach to resolve the ontology
inconsistencies based on the Simple PushOut (SPO) graph transformation. In this approach,
the ontology changes and inconsistencies were formalized as a typed attributed graph,
which provided a mechanism to avoid the inconsistent ontologies by controlling graph
transformations and rewriting rules with SPO graph transformations. Similarly, to avoid
the inconsistency in transforming RDB to Resource Description Framework (RDF) graph,
Jun et al. [21] focused on the semantics-preserving mapping method based on rules. In this
work, several rules were defined based on predicate logic to avoid semantic loss during
mapping of multi-column keys constraints into RDF constraints. However, the definition
of rules requires domain expertise, which is a tedious task as well.

2.3. Brief Summary

To recap, the existing works on the topic of ontology consistency checking could be
classified into two categories: logical reasoning [10,11,13,15–17], and graph-based interme-
diate representation [18–21]. Even if the consistency could be checked directly by using
the ontology reasoning mechanism, it is incapable of explaining to the user to resolve the
identified inconsistencies [18]. In particular, the performance of the consistency checking
heavily depends on the consistency and integrity of ontologies, therefore, the reasoning
of inconsistent ontologies may lead to some erroneous axioms and conclusions [9]. It is
worth mentioning that the ontology consistency checking based on reasoning could only
check the consistency between ABox and TBox of ontology [17], and it is incapable of
checking the consistency between ontologies and their original knowledge in the process
of building ontology.

Currently, the main knowledge still resides in relational databases, thus, it is a trivial
task to check the semantic consistency during learning ontologies from RDB. Nevertheless,
the existing methods of consistency checking mainly focus on checking the consistency of
learning ontology from the Web and document corpus [16], while there is less work focus
on checking the consistency of learning ontology from RDB. Therefore, how to efficiently
check the semantic consistency between ontology and its original RDB in the early phase
of ontology learning from the database remains an open question.

To address this question, we present a semi-automatic semantic consistency checking
method based on the graph intermediate representation and model checking. The current
work is similar to the [19] proposed method because both of us employ W-Graph as an inter-
mediate model to formalize semantic correspondence and check the ontology consistency.
As we previously mentioned, the equivalent sub-graph query over the intermediate graph
may lead to some incorrect results when RDB schema significantly differentiates ontologies.
To overcome this limitation, we directly refer to the task of consistency checking as a global
model checking rather than the equivalent sub-graph query over an intermediate graph
model. More specifically, we encode the specifications of learned ontologies with DLs,
and then we translate these specifications to the CTL formula. Hereafter, the ontology
consistency can be checked by the model checker by verifying whether the formalized
specifications are consistent with the graph-based intermediate model—Kripke structure.

3. Problem Statement and Preliminaries

In this section, we describe the problem of semantic consistency between ontologies
and databases when learning ontology from RDB, and we briefly introduce the formal
definitions of two intermediate graph models and logic languages.

3.1. Problem Statement

The semantics of an ontology O is formally defined by using the axioms of DLs. As
we all know, DLs are decidable fragments of FOL [22], thus the semantics of ontology could
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be directly defined by FOL formulae, denoted as ΣO . For each triple of an ontology, t ∈ O,
the semantics over the predicate triple are defined as ϕt. Accordingly, the semantics of
ontology O that encode with FOL formula are denoted as {ϕt | t ∈ O}.

Traditionally, the basic elements of relational database, i.e., database schema R, con-
straints Σ over R, instance I of R, could be mapped into RDF graph and OWL by using
direct mappingM. As we mentioned earlier, theM is defined based on the set of datalog
predicates and rules, in which a lot of experience and effort from domain experts are
required. We could say a direct mappingM is semantic preserving mapping [23], namely,
there is no semantic inconsistency between RDB and OWL, if for every database schema
R, set of constraints Σ (PKs and FKs), instance I of R, and semantics of the ontology ΣO ,
which satisfies: I |= Σ iff M(R, Σ, I).

It is worth mentioning that semantic collision and inconsistency will occur with
high probability while (semi-)automatically construct ontology from multiple databases.
The predominant semantic inconsistencies and redundancies are relationship redundancy,
concept or property redundancy, and fact inconsistency. The reasons behind these inconsis-
tencies and redundancies are various naming conventions among different databases. For
instance, the machine could recognize that Prof is the abbreviation of Professor, Title is
synonymous with Position in academic ranks, while it is quite difficult to identify that
the Assistant Professor is synonymous with Lecturer. Therefore, it is a crucial task to
detect and resolve these inconsistencies while (semi-)automatically learning ontology from
a relational database at an earlier stage.

3.2. Preliminaries

This subsection introduces the formal definitions of two kinds of directed graph
models, and the fundamental syntax and formula of logic language.

3.2.1. W-Graph

W-Graph is a graph-based formal language, which provides an intermediate and
semantic equivalent graph model between RDB and ontologies [24]. Essentially, it is a
directed labeled graph [25], and could be formalized as a triple WG = 〈N, E, `〉, where:

• N = {Na, Nc} is a finite set of nodes, Na is a finite set of atomic nodes that is depicted
as ellipses, and Nc is a finite set of composite nodes that is depicted as rectangles.

• E ⊆ Nc × (`×L )× N is a set of labeled edges in the form of triple, ` is a function
` : N → C × (L ∪ {⊥}), C = {solid, dashed} and L is a set of labels.

Similar to RDB and RDF, there are two kinds of models of W-Graph: W-Schema and
W-Instance. Conventionally, W-Schema represents the patterns of the knowledge, while
W-Instance represents the concrete contents of the knowledge. Formally, WI denotes the
instance of WG, for each edge e of the instance WI meets `C (e) = solid, and for each node
n of the instance WI meets `C (n) 6=⊥, where ⊥ represents the dummy nodes.

Based on the definition of W-Graph, the bi-simulation semantics could be defined.
Accordingly, the semantics-preserving mapping between RDB and ontologies could be
formalized by W-Graph.

3.2.2. Kripke Structure

Kripke structures are finite directed graphs that represent the transition of states [26].
In the state-transition graph, vertices are labeled with sets of atomic propositions (AP).
Formally, Kripke structure over a set of APs could be represented as a triple K= 〈S, I, R, L〉,
where:

• S is a finite set of states, I ⊆ S is a set of initial states, R ⊆ S× S is a set of transitions.
L is a labeling function: L : S→ 2AP, which associates each state with a set of AP.

• A sequence of states S and their transitions R is viewed as a path π = s0, s1, s2, ..., sn
in Kripke structure.

• Given an infinite path π, L(π) = L(s0), L(s1), L(s2), ..., L(sn) is an infinite sequence
set of atomic propositions.
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3.2.3. Computation Tree Logic

Computation tree logic (CTL) is a logic language for describing the properties of the
computation tree, in which many executions can be reasoned by formulas at once. Formally,
given a transition system T =< S,→, s0 >, the computer tree of T is the acyclic unfolding
graph. Let AP be a set of atomic propositions, accordingly, the set of CTL formulas over
AP are defined as follows:

• In essence, every AP is a CTL formula, formally, if ϕ1, ϕ2 are CTL formulas and a is an
element of AP, the CTL formulas are denoted as a binary function:

CTL formula =

{
a, a ∈ AP
ϕ1, ϕ2, else

• When ϕ1, ϕ2 are CTL formulas, the following syntaxes are defined:

¬ϕ1, ϕ1 ∨ ϕ2, EXϕ1, EFϕ1, EGϕ1, ϕ1EUϕ2, . . .

Given a Kripke structure K= 〈S, I, R, L〉, the semantics of CTL formula are denoted
as a set of states JϕKK. There are two kinds of CTL formulas, state formula and path
formula [27], which are employed to verify whether the given states and paths satisfy
the predefined specifications, respectively. Given an initial state s0 of Kripke structure K,
when it meets s0 ∈ JϕKK, the corresponding Kripke structure K satisfies the CTL formula
ϕ, denoted as K |= ϕ.

3.2.4. Description Logics

Description logics (DLs) is a formal logic language mainly used to specify knowledge
base KB, namely, DLs provide a mechanism to formalize and reason the knowledge
from various data [22]. In DLs, knowledge is usually represented as knowledge base
KB =< A, T >, while: A is a set of assertions of individuals (ABox), and T is a set of
terminologies (TBox). The basic elements of DLs could be categorized into three types:
individuals, concepts, and roles. Given an atomic concept A, common concepts C,D, and a
role R, the following syntax, assertions and axioms are defined:

• Syntax definitions: C,D→ A is an atomic concept, > denotes top concept, ⊥ denotes
bottom concept, ¬ C denotes negative concept, C t D denotes union of two concepts,
C u D denotes insertion of two concepts, ∃ R.C denotes existential restriction, and ∀
R.C denotes universal restriction.

• Assertions and axioms: C(a) and R(a,b) denote concept assertions and role assertions
for individuals a,b, concepts C, and roles R in ABox; Cv D denotes the axioms between
concepts C and D in TBox.

The DL reasoner provides a concept consistency checking mechanism to verify if
ABox is consistent with respect to TBox [28]. Given a terminology T and concept C, DLs
could verify if there exists a non-empty interpretation CI of C that satisfies each inclusion
dependency in T , which could be denoted as T |= CI [29].

4. Consistency Checking Based on Model Checking

This section introduces the specific process of a semantic consistency checking method
based on graph intermediate representation and model checking. To begin with, a general
framework of this method is presented, and the modeling process of the semantics between
ontology and RDB is described. In addition, an example is given to verify the feasibility
and effectiveness of the presented method.

4.1. General Description of Proposed Method

The reasoning of ontologies provides a mechanism for checking consistency, by which
only the consistency between ABox and TBox can be checked. In this work, we address
the consistency checking between ontologies and their original databases during learn-
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ing ontology from RDB, rather than the consistency checking between ABox and TBox
of ontologies.

Consistency between ontologies and databases is a state that satisfies the given con-
sistency criteria. Usually, these consistency criteria are defined based on rules, hence the
consistency is checked by verifying whether the constructed ontologies satisfy a given
consistency criterion. The basic consistency criteria of ontologies are completeness and
non-redundancy [6], however, it is a contradiction between these two criteria. Therefore, a
trade-off between ontology completeness and non-redundancy should be made.

Semantic consistency checking is a process of identifying semantic collisions, i.e.,
detect inconsistencies and duplicates, which is an essential step in constructing and main-
taining knowledge bases. Model checking is a computer-assisted method for analyzing
and verifying the dynamical systems by modeling them as state-transition systems [30].
Specifically, model checking could be utilized to verify whether a given model M satisfies
predefined specification ϕ, formally, it could be denoted as M |= ϕ.

To ensure the completeness and non-redundancy of ontologies when learning ontology
from relational database, a semantic consistency method based on model checking is
presented. This method could be employed to check the ontology consistency at an earlier
stage of ontology learning from RDB. To make it easier to understand, the main workflow
of the presented semantic consistency checking method is depicted in Figure 1.

OntologiesOntologies

Kripke 

Structure K

Model 

Checker

Check K╞  φ Semantic 

Specifications 

(DLs)

CTL 

(Computer 

Tree Logic) 

Formula φ 

Relational 

Database

(Semi-automatic) Ontology Learning

Intermediate Model

W-Graph

Formalization

TransformationFormalization

Encoding

Checking

Reverse 

EngineeringModelling
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Kripke 

Structure K

Model 

Checker

Check K╞  φ Semantic 

Specifications 

(DLs)
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(Computer 

Tree Logic) 

Formula φ 

Relational 

Database

(Semi-automatic) Ontology Learning

Intermediate Model

W-Graph

Formalization

TransformationFormalization

Encoding

Checking

Reverse 

EngineeringModelling

Figure 1. Semantic consistency checking for learning ontology from relational database.

As we can see in Figure 1, an intermediate model, W-Graph, is utilized to formalize the
semantic correspondences between ontologies and its original relational database, which
are transformed to the Kripke structure. Considering the semantic compatibility and the
available inverse roles of ALCI DL, ALCI DL are employed to formalize the semantic
specifications, which are eventually encoded by the CTL formula. Thereafter, the Kripke
structure is encoded by the SMV program, which along with the CTL formula is inter-
preted by the symbolic model checker. Thereby, the semantic consistency between learned
ontologies and their original database could be automatically checked by a model checker.

4.2. Introduction to Mini University Data Model

Considering that the current algorithm for learning ontology from RDB is still in its
exploratory stage, the Mini University ontology [31], and its corresponding database,
is selected as an example to describe the specific steps of semantic consistency checking
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based on model checking. Despite that the Mini University is not a complex example,
it is quite representative of a relational database because it almost contains the common
database elements. This is one of the reasons why the Mini University data model and
its corresponding ontology are selected to demonstrate the specific steps of this method.

TEACHERTEACHER

TEACHER_RANKTEACHER_RANK
REGISTERATIONREGISTERATION

STUDENTSTUDENT

PROGRAMPROGRAM

COURSECOURSE

TEACHER_IDTEACHER_IDPKPK

RANK_IDRANK_IDFKFK

IDCODEIDCODE

NAMENAME

AGEAGE

RANK_IDRANK_IDPKPK

RANK_NAMERANK_NAME

REGISTERATION_IDREGISTERATION_IDPKPK

COURSE_IDCOURSE_IDFKFK

STUDENT_IDSTUDENT_IDFKFK

STUDNET_IDSTUDNET_IDPKPK

PROGRAM_IDPROGRAM_IDFKFK

IDCODEIDCODE

NAMENAME

PROGRAM_IDPROGRAM_IDPKPK

NAMENAME

COURSE_IDCOURSE_IDPKPK

TEACHER_IDTEACHER_IDFKFK

PROGRAM_IDPROGRAM_IDFKFK

NAMENAME

COURSE_TYPECOURSE_TYPE

Figure 2. Database schema of Mini University.

Figure 2 shows the database schema of Mini University, we can see that there are
five regular entities, one associative entity (REGISTRATION). Meanwhile, there are different
kinds of associations, i.e., one-to-one, one-to-many, and many-to-many. In particular, it also
contains database constraints, i.e., primary key, foreign key, which represent the unique
identifier and associations, respectively.

4.3. Formalization of Relational Data Model

As we mentioned in Section 4.1, model checking could be utilized to check whether
the model satisfies the given specifications. To leverage the model checking to check the
semantic consistency of learning ontology from RDB, an intermediate model, W-Graph,
is utilized to model the semantics of Mini University data model. Furthermore, DLs
are employed to formalize the specification of semantic correspondence between initial
databases and target ontologies. Inspired by the model checking based on DLs [29], we
converted the problem of semantic consistency into a global model checking, which could
be automatically checked by the model checker.

4.3.1. Constructing Kripke Structure from Database

The formal definitions of the Kripke structure and W-Graph are given in Section 3.2.
Based on these definitions, we could construct the Kripke structure from the relational data
model by introducing the graph-based intermediate model. Accordingly, the semantics of
the data model could be modeled by W-Graph before constructing the Kripke structure
from W-Graph. The specific steps of constructing the Kripke structure from a relational
database could be split into two phases:

Modeling Semantics of Database by W-Graph. A relational database (RDB) is a table-
based data model, while W-Graph is a graph-based model. There are several differences
between these models, e.g., storage format, structure, and constraints, etc. This work aims
to check the semantic consistency of learning ontology from a relational database, we only
transform the semantics of the database into a W-Graph model. We map the entities and
relationships in RDB into nodes and edges of W-Graph, respectively, thereby, the W-Schema
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and W-Instance are built based on the definitions of W-Graph. Accordingly, the schema
and semantics of the Mini University database could be transformed into W-Instance,
which is shown in Figure 3.

Course n9
NameDatabase n10

Includes

Teacher_ID

1 n13Course_Type

Mandatory n12

Teacher  n1Name
Marco 

n2 Get_Academic_Rank

Teacher_ID

1 n5

Age

35 n4 Teaches

Student 
n14

Student_ID
4 

n15

Name

Dave 
n17

Enrolls

2 n19

IDCode

20200801 n16

Attends

Academic_Rank 
n6

Rank_ID
1001 n7

Name

Professor n8

Program n18

Program_ID Name

CSMSc n20

IDCode

201408 n3

2 n11

Course_ID

Figure 3. W-Instance of Mini University data model.

As shown in Figure 3, the W-Instance of Mini University database model could be
formally depicted as the following triple: WIMini University = 〈N, E, `〉, where:

• N = 〈{n1, n6, n9, n14, n18}, {n2, n3, n4, n5, n7, n8, n11, n12, n13, n15, n16, n17, n19, n20}〉.
• E = 〈(n1, (solid, Teaches), n9), (n1, (solid, Name), n2), (n1, (solid, IDCode),

n3), (n1, (solid, Age), n4), (n1, (solid, Teacher_ID), n5), (n1, (solid, Get_
Academic_Rank), n6), (n6, (solid, Level_Code), n7), (n6, (solid, Name), n8), (n9,
(solid, Name), n10), (n9, (solid, Course_ID), n11), (n9, (solid, Course_Type),
n12), (n9, (solid, Teacher_ID), (n14, (solid, Student_ID), n15), (n14, (solid,
IDCode), n16), (n14, (solid, Name), n17), (n14, (solid, Enrolls), n18), (n18, (solid,
Attends), n9), (n18, (solid, Program_ID), n19), (n18, (solid, Name), n20)〉.

• `(n1) = (solid, Teacher), `(n2) = `(n8) = `(n10) = `(n17) = `(n20) = (solid,
Name), `(n3) = `(n16) = (solid, IDCode), `(n4) = (solid, Age), `(n5) = `(n13)
= (solid, Teacher_ID), `(n6) = (solid, Get_Academic_Rank), `(n7) = (solid,
Rank_ID), `(n9) = (solid, Course), `(n11) = (solid, Course_ID), `(n12) =
(solid, Course_Type), `(n14) = (solid, Student), `(n15) = (solid, Student_
ID), `(n18) = (solid, Program), `(n19) = (solid, Program_ID).

Constructing Kripke Structure from W-Graph. As we mentioned in Section 3.2,
Kripke structure is a finite directed graph where the vertices are labeled with sets of AP.
Hence, given a W-Graph WG, the corresponding Kripke structure over atomic propositions
APG are defined as KG= 〈SG, IG, RG, LG〉 based on the following transformation rules:

• An atomic proposition APG is compound of a set of atomic nodes Na in WG, formally,
APG = {n | ∀n ∈ Na, n = `(n)}.

• A finite set of composite nodes Nc in WG are regarded as an initial state IG in Kripke
structure.

• The edge E between two nodes ni, nj, {ni, nj | ∀ni ∈ N, ∀nj ∈ N} is mapped into a
transition RG in Kripke structure.

• The edge labels, e.g., edge label, negative label (l̄), and inverse label (l−1) are trans-
formed into the labeling function LG in Kripke structure.

Based on the above transformation rules, the corresponding Kripke structure could be
constructed and depicted in Figure 4.
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Enrolls-1

Figure 4. Kripke structure of Mini University data model.

As shown in Figure 4, each node in W-Instance is transformed as a state, while the
label functions between two adjacent nodes in W-Instance are mapped as transitions. In
particular, the inverse transition, e.g., Age−1, Name−1, between two states is introduced for
modeling the possible state transitions. Formally, the atomic propositions, initial states,
transitions, and labeling functions could be defined as follows:

• APG = {Teacher, Marco, 201408, 35, 1, Academic_Rank, 1001, Professor,
Course,Database, 2, Mandatory, 1, Student, 4, 20200801, Dave, Program,
2, CSMSc}.

• SG = {n1, n2, n3, ..., n20}.
• IG = {n1}.
• RG = {(n1, Name, n2), (n2, Name−1, n1), (n1, IDCode, n3), (n3, IDCode−1, n1), (n1, Age,

n4), (n4, Age−1, n1), (n1, Teacher_ID, n5), (n5, Teacher_ID−1, n1), (n1, Get_Academic_
Rank, n6), (n6, Get_Academic_Rank−1, n6), (n6, Rank_ID, n7), (n7, Rank_ID−1, n6), (n6,
Teaches, n7), (n7, Teaches−1, n6), (n6, Name, n8), (n8, Name−1, n6), (n9, Name, n10), (n10,
Name−1, n9), (n9, Course_ID, n11), (n11, Course_ID−1, n9), (n9, Course_Type, n12), (n12,
Course_Type−1, n9), (n9, Teacher_ID, n13), (n13, Teacher_ID−1, n9), (n9, Attends, n14),
(n14, Attends−1, n9), (n14, Student_ID, n15), (n15, Student_ID−1, n14), (n14, IDCode,
n16), (n16, IDCode−1, n14), (n14, Name, n17), (n17, Name−1, n14), (n14, Enrolls, n18), (n18,
Enrolls−1, n14), (n18, Program_ID, n19), (n19, Program_ID−1, n18), (n18, Name, n20), (n20,
Name−1, n18), (n18, Includes, n9), (n9, Includes−1, n18)}.

• LG = {LG(n1) = (true, Teacher), LG(n2) = (true, Marco), LG(n3) = (true,
201408), LG(n4) = (true,35), LG(n5) = (true, 1), LG(n6) = (true, Academic_
Rank), LG(n7) = (true, 1001), LG(n8) = (true, Professor), LG(n9) = (true,
Course), LG(n10) = (true, Database), LG(n11) = (true, 2), LG(n12) = (true,
Mandatory), LG(n13) = (true, 1), LG(n15) = (true, Student), LG(n14) = (true,
4), LG(n15) = (true, 20200801), LG(n16) = (true, Dave), LG(n17) = (true,
Program), LG(n18) = (true, 2), LG(n19) = (true, 2), LG(n20) = (true, CSMSc)}.
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Based on the above definitions, the W-Instance was transformed into a Kripke struc-
ture. Essentially, it is a kind of finite-state model that can be easily encoded by the SMV pro-
gram.

4.3.2. Formalization of Specification

To check the consistency by using model checking, the semantic specification of
learned ontologies should be formalized by a logic formula. We suppose that the outputs
of the ontology learning from Mini University database are depicted in Figure 5.

owl:Thing

Person

has subclass

Course

has subclass

Program

has subclass

PersonID

has subclass

Student

has subclass

Teacher

has subclass

personID (Domain>Range)

MandatoryCourse

Professor

isTaughtBy(Subclass all)

takes (Domain>Range)

enrolls (Domain>Range)

has subclass

isTakenBy (Domain>Range)

isTaughtBy (Domain>Range)

OptionalCourse

has subclass

includes (Domain>Range)

has subclass

teaches (Domain>Range)

AsistantProfessor

has subclass

AssociateProfessor

has subclass

Page 1 of 1

2020-11-09file:///F:/Downloads/graphviz%20(2).svg

Figure 5. Example ontology of Mini University data model.

As shown in Figure 5, there are 12 concepts or properties, i.e., Person, Student, Teacher,
Professor, AssociateProfessor, AssistantProfessor, Program, Course, MandatoryCourse, Option-
alCourse, and their relationships or roles, including taxonomies, associative relationships,
and inverse relationships. The main taxonomies in this ontology are subsumption, e.g.,
Student and Teacher are subsumption of Person. The representative associative relationship
is Enrolls, Takes, Teaches, and Includes. Moreover, there exist many inverse relationships,
e.g., Teaches and Takes are inverse of isTaughtBy and isTakenBy respectively. In addition,
there are some constraint axioms, e.g., MandatoryCourse can only be TaughtBy Professor,
and cardinality, Student is a person who enrolls in at least one Program. Accordingly, the
semantic specification of learned ontologies could be formalized by usingALCI DL syntax
as follows:

Person v >, Person u∃ PersonID.String, Student v Person, Teacher v Person, Professor v
Teacher, AssociateProfessor v Teacher, AssistantProfessor v Teacher.
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Student ≡ Person u > 1 Enrolls.Program, Student ≡ Person u ∃ Takes.Course, Teacher ≡
Person u ∃ Teaches.Course, Professor ≡ Teacher u ∃ Teaches.MandatoryCourse,

∀ Teaches.Course v Professor t AssistantProfessor t AssociateProfessor t ¬ Student,
Teaches ≡ isTaughtBy−. Course v >, MandatoryCourse v Course, OptionalCourse v Course,
MandatoryCourse ≡ Course u ∀ isTaughtBy.Professor, OptionalCourse ≡ Course u ∀ isTaugh-
tBy.Teacher.

Programv>, Programv ∃ Includes.Course, Studentv ∃ Enrolls.Program, ∀ Enrolls.Program
v CSBSc t CSMSc t CSPhD.

Based on ALCI DL syntax, the semantic specifications of ontologies are formally
described by using the TBox syntax of DL. Thus, the following specifications of the corre-
sponding ontologies are formally defined by ABox of DL syntax as follows:

Marco: Person u Professor, Dave: Person u Student, Database: Course u MandatoryCourse,
CSMSc: Program

(Marco,Database): Teaches, (Dave,CSMSc):Enrolls, (CSMSc,Databse):Includes.
Thereby, the Professor whose name is Marco, he teaches Database that Includes in CSMSc

Program, EnrolledBy a Student, whose name is Dave could be formalized by using DLs
formula:

Professor (Marco) u ∃ Teaches.Course (Database) u ∃ IncludedBy.Program (CSMSc) u ∃
EnrolledBy.Student (Dave).

4.4. Consistency Checking Algorithm

As previously mentioned, we referred to the task of checking the consistency of on-
tologies as a global model checking. Accordingly, the symbolic model checker is employed
by considering that model checking could return the result of whether a finite-state model
(Kripke model) satisfies the given specification [32].

In the CTL model checking, the specifications encoded in the CTL formula are checked
by NuSMV to verify whether it satisfies with the given finite-state model [33], the model
checker returns a counterexample when it is unsatisfied. When it comes to semantic
consistency checking, the specifications of the ontology encoded by the CTL formula can
be checked. Accordingly, the model checker will return the results indicating whether the
specifications of the learned ontology satisfy the relational data model that is represented
and formalized by W-Graph and Kripke structure. Considering that nuXmv [34] is an
extended version of NuSMV, which provides a strong verification based on advanced
SAT-based algorithms, thereby the nuXmv is employed to verify the presented method.
The specific process of consistency checking based on graph intermediate representation
and model checking is shown in Algorithm 1.

Algorithm 1 Semantic Consistency Checking based on nuXmv Model Checker
Input:
KG : Kripke structure of original RDB represented based on W-Graph.
O: Ontologies generated from RDB schema and instanceR.

Output:
RC : The result of consistency checking: true or false.

1: procedure CONSISTENCY CHECKING
2: Encoding Kripke structure KG with SMV program.
3: Translating semantics of ontologies to CTL formula ϕ(O,R).
4: Verifying if the ϕ(O,R) satisfies the KG .
5: if KG |= ϕ(O,R) then
6: RC=true.
7: else if KG 6|= ϕ(O,R) then
8: RC=false.
9: end if

10: returnRC .
11: end procedure



Information 2021, 12, 188 13 of 17

As we can see in Algorithm 1, the inputs of consistency checking based on model
checking are the Kripke model and CTL logic formula, while the output is the result of
whether the input Kripke model satisfies the given semantic specification. In the following
subsection, we will verify the feasibility and effectiveness of the presented method in
checking the semantic consistency of learning ontology from RDB.

4.5. Verification

In the preceding subsection, we transformed W-Graph into Kripke structure and
formalized semantic specifications with logic formula. Thereby, in this subsection, we
verify the feasibility and effectiveness of the presented consistency checking method by
encoding the Kripke structure with SMV and running the nuXmv model checker. Figure 6
summarizes the main steps of the verification.

SMV Program
EncodingKripke Structure 

(LTSs)

Semantic 

Specifications

Reading Initial Model

Encoding Variables

Building Model

Checking Consistency 

CTL Formula
Encoding

nuXmv Model Checker

Figure 6. The main steps of the verification.

4.5.1. Encoding the Kripke Structure and LTSs with SMV Program

The nuXmv model checker is a kind of symbolic model verifier, which is usually
utilized to check the consistency of the state transition system. Considering that both the
Kripke structure and labeled transition system (LTS) are semantic models, which have
equivalent expressive [35], hence we can view the Kripke structure as a labeled transition
system. As a result that the state transition system encoded by the SMV program is
only readable by the nuXmv model checker, we encode the Kripke structure with the
SMV program.

In our case, the label in the Kripke structure of Mini University data model is
regarded as a state in a finite-state transition system, which is encoded by the SMV program.
During this encoding, the inverse labels (l−1) are encoded as a state variable with the prefix
of Inv_, e.g., Age−1 are encoded as Inv_Age, Attends−1 are encoded as Inv_Attends, etc.
In order to decrease the complexity of the model, we ignore the self-transition of the leaf
state in the Kripke model. Namely, we only define and assign the state, values, and the
transitions between these states and labels.

4.5.2. Translating Semantic Specifications from DLs Formula to CTL Formula

Considering that each pre-state can be succeeded by more than one post-state in CTL,
we translate the formal specifications of the ontologies that are encoded by ALCI DL
syntax into the CTL formula. Accordingly, the specification of a Professor whose name is
Marco, he teaches Database that Includes in MSC Program, EnrolledBy a Student, whose name
is Dave, which could be translated into CTL formula as follows:

(value=Teacher & EF(label=Name & EX value=Marco) & EF(label=Get_Academic_
Rank & EX value=Academic_Rank) & EF (label=Name & EX value=Professor) & EF
(label=Teaches & EX value=Course) & EF(label=Name & EX value=Database) & EF
(label=Inv_Includes & EX value=Program) & EF(label=Name & EX value=CSMSc) &
EF(label=Inv_Enrolls & EX value=Student) & EF(label=Name & EX value=Dave))

Based on the above translations, semantic consistency checking could be converted
into a global model checking problem that can be solved by a model checker.
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4.5.3. Checking Ontology Consistency Based on Model Checker

To verify the feasibility of this method, we ran the nuXmv model checker on the
Windows 10 machine with the Intel (R) Core (TM) i5 64-bit processor and 8GB RAM. Before
verifying whether the given specification satisfies the Kripke structure, it is necessary
to check if there exist deadlock states by using check_fsm command [36]. To verify the
effectiveness of the presented method in checking different kinds of inconsistencies, i.e.,
property inconsistency, relationship inconsistency, etc., we checked not only the specifi-
cations that are consistent with the original database but also the specifications that are
inconsistent with the original database. Accordingly, the result of the consistency checking
is shown in Figure 7.

Figure 7. Results of consistency checking based on nuXmv model checker.

In Figure 6, we can observe that there is no deadlock state in the current Kripke model.
The results given by nuXmv indicate whether the given specifications satisfy the specific
Kripke model. To begin with, we simply verified the relationship consistency. In the
first case, the semantic correspondence of whether there exists a Teacher who Teaches a
Course is checked, while the semantic correspondence of whether there exists a Teacher
who Teaches a Program is checked in the second case. The nuXmv model checker returns
the ture in first case, while the false and a counterexample are given in the second case.
These results indicate that the first specification is consistent with the original RDB, while
the second one is inconsistent with the original RDB. Namely, the relationship of Teacher
Teaches a Course is consistent with the original database, while the relationship of Teacher
Teaches the Program is inconsistent. Hereafter, we verified the specification that formalizes
from ontology and ALCI DL, the model checker returns the true, which indicates that
there are no inconsistencies in the current case.

5. Conclusions

In this work, we presented a (semi-)automatic semantic consistency checking method
based on the graph intermediate representation and model checking to check the semantic
consistency while learning ontology from RDB. We formalized the semantic correspon-
dence between ontologies and its original data model. We converted the problem of
semantic consistency checking into the global model checking problem that was eventually
solved automatically by the nuXmv model checker. In addition, we gave an example to
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demonstrate the specific process of the formalization and conducted a verification experi-
ment to verify the feasibility of the presented method. The results showed that this method
could correctly check and return the results of whether the given semantic specification of
the learned ontology satisfies the original RDB. Currently, this method is only verified in
the scenario of learning ontology from a single database, thus how to check the semantic
consistency of learning ontology from multiple databases could be investigated in the
future. Meanwhile, considering that the complexity of the model checking will increase
along with the volume and complexity of the data model, how to evaluate and optimize
the complexity of the transformations and model checking are worthy to be investigated
further. In addition to checking the semantic consistency, the more crucial work is to
eliminate the identified inconsistencies and redundancies, thus how to eliminate these
inconsistencies is meaningful work as well.
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6. Vrandečić, D. Ontology Evaluation. In Handbook on Ontologies; Staab, S., Studer, R., Eds.; Springer: Berlin/Heidelberg, Germany,

2009; pp. 293–313. [CrossRef]
7. Khadir, A.C.; Aliane, H.; Guessoum, A. Ontology learning: Grand tour and challenges. Comput. Sci. Rev. 2021, 39, 100339.

[CrossRef]
8. O’Regan, G. Overview of Formal Methods. In Concise Guide to Formal Methods: Theory, Fundamentals and Industry Applications;

Springer International Publishing: Cham, Switzerland, 2017; pp. 41–63. [CrossRef]
9. Baclawski, K.; Kokar, M.M.; Waldinger, R.; Kogut, P.A. Consistency Checking of Semantic Web Ontologies. In Proceedings of the

Semantic Web—ISWC 2002, Sardinia, Italy, 9–12 June 2002; Horrocks, I., Hendler, J., Eds.; Springer: Berlin/Heidelberg, Germany,
2002; pp. 454–459. [CrossRef]

10. Neumann, C.P.; Fischer, T.; Lenz, R. OXDBS: Extension of a Native XML Database System with Validation by Consistency
Checking of OWL-DL Ontologies. In Proceedings of the Fourteenth International Database Engineering & Applications
Symposium, Montreal, QC, Canada, 16–18 August 2010; Association for Computing Machinery: New York, NY, USA, 2010;
pp. 143–148. [CrossRef]

11. del Mar Roldán-García, M.; García-Nieto, J.; Aldana-Montes, J.F. Enhancing semantic consistency in anti-fraud rule-based expert
systems. Expert Syst. Appl. 2017, 90, 332–343. [CrossRef]

http://doi.org/10.1007/978-3-319-61893-7_11
http://dx.doi.org/10.1007/s13218-020-00656-9
http://dx.doi.org/10.1007/s10799-007-0019-5
http://dx.doi.org/10.3233/JIFS-169769
http://dx.doi.org/978-3-540-92673-3_13
http://dx.doi.org/10.1016/j.cosrev.2020.100339
http://dx.doi.org/10.1007/978-3-319-64021-1_3
http://dx.doi.org/10.1007/3-540-48005-6_40
http://dx.doi.org/10.1145/1866480.1866502
http://dx.doi.org/10.1016/j.eswa.2017.08.036


Information 2021, 12, 188 16 of 17

12. Bayoudhi, L.; Sassi, N.; Jaziri, W. OWL 2 DL Ontology Inconsistencies Prediction. In Proceedings of the 7th International
Conference on Web Intelligence, Mining and Semantics, WIMS ’17, Amantea, Italy, 19–22 June 2017; Association for Computing
Machinery: New York, NY, USA, 2017. [CrossRef]

13. Rosati, R.; Ruzzi, M.; Graziosi, M.; Masotti, G. Evaluation of Techniques for Inconsistency Handling in OWL 2 QL Ontologies.
In Proceedings of the The Semantic Web—ISWC 2012, Newcastle, UK, 18–22 June 2012; Cudré-Mauroux, P., Heflin, J., Sirin,
E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., et al., Eds.; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 337–349.

14. Pileggi, S.F.; Crain, H.; Yahia, S.B. An Ontological Approach to Knowledge Building by Data Integration. In Proceedings of the
Computational Science—ICCS 2020, Amsterdam, The Netherlands, 3–5 June 2020; Krzhizhanovskaya, V.V., Závodszky, G., Lees,
M.H., Dongarra, J.J., Sloot, P.M.A., Brissos, S., Teixeira, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020;
pp. 479–493.

15. Fahad, M.; Moalla, N.; Bouras, A. Detection and resolution of semantic inconsistency and redundancy in an automatic ontology
merging system. J. Intell. Inf. Syst. 2012, 39, 535–557. [CrossRef]

16. Bai, X.; Sun, J.; Li, Z.; Lu, X. Domain Ontology Learning and Consistency Checking Based on TSC Approach and Racer. In
Proceedings of the Web Reasoning and Rule Systems, Innsbruck, Austria, 7–8 June 2007; Marchiori, M., Pan, J.Z., Marie, C.d.S.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 148–162. [CrossRef]

17. Paulheim, H.; Stuckenschmidt, H. Fast Approximate A-Box Consistency Checking Using Machine Learning. In Proceedings of
the The Semantic Web. Latest Advances and New Domains, Heraklion, Crete, Greece, 29 May–2 June 2016; Sack, H., Blomqvist, E.,
d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 135–150.
[CrossRef]

18. Lam, S.C.; Sleeman, D.; Vasconcelos, W. Graph-based ontology checking. In Proceedings of the Workshop Ontology Management:
Searching, Selection, Ranking, and Segmentation in K-CAP 05, Banff, AB, Canada, 2 October 2005.

19. Yang, S.; Tan, H.; Wu, J. Semantic Consistency Checking in Building Ontology from Heterogeneous Sources. J. Appl. Math. 2014,
2014, 1–11. [CrossRef]

20. Mahfoudh, M.; Forestier, G.; Thiry, L.; Hassenforder, M. Algebraic graph transformations for formalizing ontology changes and
evolving ontologies. Knowl. Based Syst. 2015, 73, 212–226. [CrossRef]

21. Jun, H.G.; Im, D.H.; Kim, H.J. Semantics-preserving optimisation of mapping multi-column key constraints for RDB to RDF
transformation. J. Inf. Sci. 2020, 1–15. [CrossRef]

22. Baader, F.; Horrocks, I.; Lutz, C.; Sattler, U. A Basic Description Logic. In An Introduction to Description Logic; Cambridge
University Press: Cambridge, UK, 2017; pp. 10–49. [CrossRef]

23. Sequeda, J.F. Integrating Relational Databases with the Semantic Web: A Reflection. In Proceedings of the Reasoning Web.
Semantic Interoperability on the Web: 13th International Summer School, Tutorial Lectures, London, UK, 7–11 July 2017; Ianni,
G., Lembo, D., Bertossi, L., Faber, W., Glimm, B., Gottlob, G., Staab, S., Eds.; Springer: Cham, Switzerland, 2017; pp. 68–120.
[CrossRef]

24. Yang, S.; Zheng, Y.; Yang, X. Semi-automatically building ontologies from relational databases. In Proceedings of the 2010 3rd
International Conference on Computer Science and Information Technology, Chengdu, China, 9–11 July 2010; IEEE: New York,
NY, USA, 2010; pp. 150–154. [CrossRef]

25. Dovier, A.; Quintarelli, E. Applying model-checking to solve queries on semistructured data. Comput. Lang. Syst. Struct. 2009,
35, 143–172. [CrossRef]

26. Ziller, R.; Schneider, K. Combining Supervisor Synthesis and Model Checking. ACM Trans. Embed. Comput. Syst. 2005, 4, 331–362.
[CrossRef]

27. Kernberger, D.; Lange, M. Model Checking for the Full Hybrid Computation Tree Logic. In Proceedings of the 23rd International
Symposium on Temporal Representation and Reasoning (TIME), Kongens Lyngby, Denmark, 17–19 October 2016; pp. 31–40.
[CrossRef]

28. Nardi, D.; Brachman, R.J. An Introduction to Description Logics. In The Description Logic Handbook: Theory, Implementation and
Applications, 2nd ed.; Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F., Eds.; Cambridge University
Press: Cambridge, UK, 2007; pp. 1–44. [CrossRef]

29. Ben-David, S.; Trefler, R.; Weddell, G. Model Checking Using Description Logic. J. Log. Comput. 2008, 20, 111–131. [CrossRef]
30. Clarke, E.M.; Henzinger, T.A.; Veith, H. Introduction to Model Checking. In Handbook of Model Checking; Clarke, E.M., Henzinger,

T.A., Veith, H., Bloem, R., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–26. [CrossRef]
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