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Abstract: In Internet of Things (IoT) environments, privacy and security are among some of the
significant challenges. Recently, several studies have attempted to apply blockchain technology to
increase IoT network security. However, the lightweight feature of IoT devices commonly fails to
meet computational intensive requirements for blockchain-based security models. In this work, we
propose a mechanism to address this issue. We design an IoT blockchain architecture to store device
identity information in a distributed ledger. We propose a Blockchain of Things (BCoT) Gateway to
facilitate the recording of authentication transactions in a blockchain network without modifying
existing device hardware or applications. Furthermore, we introduce a new device recognition
model that is suitable for blockchain-based identity authentication, where we employ a novel feature
selection method for device traffic flow. Finally, we develop the BCoT Sentry framework as a
reference implementation of our proposed method. Experiment results verify the feasibility of our
proposed framework.

Keywords: IoT; blockchain; authentication

1. Introduction

Commonly, an IoT device equipped with tags or sensors is attached to “a thing” and
collects, stores, and transmits information via an IoT network. The management of the
network is typically achieved through a centralized architecture [1,2]. In recent years,
the total number of IoT devices has grown exponentially. It was expected that the number
of connected devices in use in 2019 was 14.2 billion, and this number is expected to increase
to 25 billion by 2025 [3,4].

Meanwhile, cyberattacks against IoT devices and networks have become more fre-
quent. The consequences could be devastating and lead to major threats to society [5]. For
instance, the Mirai virus is a typical example of malicious attacks against device authentica-
tion. It targets the security vulnerability of IoT devices, turns them into remote-controlled
”zombie” devices, and uses them for DDoS attacks. A well-known incident happened in
2016 when Mirai attacked the US DNS service provider Dyn, which nearly took down half
of the Internet service in the United States [6].

Existing efficient security solutions are often centralized infrastructure (such as PKI),
which relies on trusting third-party service providers. However, this mechanism suffers
from single point of failure (SPOF), many-to-one traffic, and reduced scalability. Unlike
full functional computing nodes, IoT devices generally have limited security measures for
authentication. It is necessary to propose a new authentication system for IoT that has
the following characteristics: (1) allows an easy integration of new IoT devices; (2) fully
adapted to IoT requirements and needs; and (3) does not depend on the type of device, nor
on the use case architecture and design [7].
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IoT devices are distributed via connections between different types of physical net-
works. Devices communicate with IoT applications or other devices through various
network protocols, such as ZigBee, Z-Wave, and MQTT. By their nature, IoT devices exist
in a heterogeneous distributed network environment, and a huge number of devices are
capable of peer-to-peer communication. These features can be directly linked to blockchain
architecture, which is also based on a decentralized infrastructure and uses a distributed
computational paradigm. It involves three key concepts [8]: (1) encrypted chain-like blocks
for data storage; (2) distributed node and consensus algorithms for data generation and
updates; (3) smart contracts for data manipulation and operation.

The concept of BCoT is therefore proposed to merge IoT with blockchain [9]. However,
IoT device security is still an open research field in BCoT research and practices, especially
device identity authentication, which remains an active research direction in both academia
and industry [10].

Most of the IoT devices are enabled with IP-connected network functionality yet lim-
ited resources for computational intensive security models [11]. Specifically, the following
questions need to be addressed: (a) How to deploy blockchain in IoT scenarios, i.e., how to
manage IoT data through blockchain? (b) How to store device identity information in a
blockchain network where participant nodes have limited computational power? (c) How
to utilize the smart contract mechanism to enhance device identity authentication?

Goals and Contributions. This paper responds to the above questions by proposing
BCoT Sentry—a framework that integrates blockchain with an IoT network and enhances
network security by analyzing device traffic flow patterns obtained from data storage
in blockchain.

The main contributions of this study are listed as follows:

1. We design an IoT blockchain architecture to store device identity information in a
distributed ledger.

2. We propose a BCoT Gateway to facilitate the recording of authentication transactions
in a blockchain network without modifying existing device hardware or applications.

3. We propose a new device recognition model that is suitable for blockchain-based
identity authentication, where a novel device traffic flow feature selection method is
proposed.

4. We develop a BCoT Sentry framework as a reference implementation of our pro-
posed method.

This paper is organized as follows: First, in Section 2, we describe the motivation and
related works, and then in Section 3, we lay out the framework design and propose our
device recognition model. In Section 4, we introduce the reference implementation of our
model and framework. In Section 5, we explain the experiments and evaluation metrics.
Finally, we summarize our conclusion and the potential future directions.

2. Motivation and Related Work
2.1. IoT Network Security

IoT integrates sensors, transmitters, and controllers through various communication
networks. Powered by advanced data analysis and other technologies, IoT greatly improves
manufacturing efficiency and product quality, and meanwhile, reduces product costs and
resource consumption.

In a typical industrial IoT scenario, a gateway device is commonly applied to isolate
terminal sensors and controllers from the upper-layer network. Data collected by sensors
are transmitted to centralized IoT applications that may remotely control executable units
in order to achieve certain business logic requirements. However, this type of setting has
known vulnerability. For instance, Stuxnet damaged the property of a number of parties
outside Iran, which sustained only 60% of the Stuxnet infections [12]. In the local industrial
infrastructure, the programmable logic controllers (PLCs) from Siemens were attacked.

Moreover, industrial robots exposed directly to the Internet could also be attacked
via FTP services or industrial routers [13,14]. Among the total 83,673 robots surveyed in
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their studies, 5105 devices do not have an authentication mechanism at all; 59 devices have
known embedded vulnerabilities, and 6 devices identified with new security holes.

Another widely adopted IoT scenario is an intelligent warehouse management system
(WMS). It involves electronic labels, RFID scanners, and various warehouse supporting
facilities. Different types of environmental sensors and safeguard devices need to be
properly identified and inter-communicated in a stable and robust network environment.
If the WMS is equipped with less-secure sensors or robots, attackers can tamper with
raw sensor data and execute malicious operations through the robots, which might cause
significant loss.

Gope et al. [15] propose a computationally efficient lightweight and privacy-preserving
mutual user authentication scheme. In the proposed scheme, physical security of devices
as well as the sensor nodes deployed in the open hostile environment are protected. These
devices and sensor nodes are not required to store any sensitive information, such as secret
credentials on the sensing devices. However, this research uses a centralized architecture,
which has limited scalability and is vulnerable to SPOF.

The concept of ’Smart City’ is referred to as the safe, secure, environmental, and
efficient urban center of the future with advanced infrastructures, such as sensors, electronic
devices, and networks, to stimulate sustainable economic growth and a high quality of
life [16].

For example, transportation is the artery of a city and an important part of smart city
construction. Intelligent traffic management applies IoT technologies, such as wireless
communication, cloud computing, perception technology, video vehicle surveillance, and
GPS. Intelligent transportation employs various IoT devices, such as microcontrollers
for connected cars, RFID devices, microchips, video camera equipment, GPS receivers,
and navigation systems. By analyzing the real-time traffic information of people, cars,
and traffic in the entire area from various perceptions, the platform controls traffic through
traffic signals, ramp flow control, and dynamic traffic information signs.

Mohit et al. [17] propose an authentication protocol based on a user ID and password
for a vehicular system in WSN to tackle the problem of vehicles running on the road, such
as avoidance of traffic jams and other related problems. All of the vehicle sensors are
registered through a registration authority. However, there is no additional measure taken
to verify the identity of the device.

Despite the advantages IoT offers in a smart city, new security threats are also intro-
duced, especially in transportation, where cyberattacks (such as device hijacking) could
lead to devastating consequences.

The issue we are trying to address here is to enhance the device authentication with-
out introducing extra computational burden on the end devices, yet take advantage of
distributed reliability from blockchain.

2.2. Related Work
2.2.1. Blockchain and Smart Contract

Blockchain is a distributed shared ledger. In 2008, Satoshi Nakamoto proposed
tBitcoin [18], explaining the architectural concept of an electronic cash system based on P2P
network, encryption, time stamp, and Merkel tree, etc. As the underlying technology of
digital cryptocurrencies such as Bitcoin, blockchain technology was originally designed to
solve the long-term double payment problem [19] and the Byzantine generals problem [20].

In 2015, Ethereum [21] and Hyperledger [22] were proposed as a representative of a
new generation of blockchain. They provide a decentralized computing platform, which
allows a smart contract to be deployed as a manager so that the transaction can be executed
with the contractual terms of an agreement [23]. A smart contract can encode any set of rules
represented in its programming language. For instance, a contract can execute transfers
when certain events happen (e.g., payment of security deposits in an escrow system).
Accordingly, smart contracts can be applied to a wide range of applications, including
financial instruments (e.g., sub-currencies, financial derivatives, savings wallets, wills)
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and self-enforcing or autonomous governance applications (e.g., outsourced computation,
decentralized gambling) [24].

Since 2017, recent research, for instance, the cross-chain technology [25], sharding [26],
and redesigned blockchain structure (e.g., directed acyclic graph (DAG)) [27], has im-
proved the throughput, reduced the delay of transaction confirmation, and expanded the
application scenarios of blockchain. These technologies allow the blockchain to be widely
used in various fields, indicating a new era of blockchain.

2.2.2. Security Challenges in IoT

Generally, IoT security should address issues such as data authentication, access
control, and user privacy. Meanwhile, the lightweight feature and limited computing
power of IoT devices should be well considered when designing security models [28,29].

Several representative related studies are listed as follows:

• Mnif et al. [30] propose a new method adapted to resource-constrained wireless sensor
networks, where only legitimate users can access node resources, and unauthorized
users are denied access.

• Markus et al. [31] propose a system capable of automatically identifying the types
of devices being connected to an IoT network and enabling enforcement of rules for
constraining the communications of vulnerable devices to minimize damage resulting
from their compromise.

• There are some research and development works in the fields of wireless sensor
networks and RFID [32,33].

Exploration and implementation of security technologies in IoT is still an open chal-
lenge, and the issue of the security architecture of IoT still has room for improvement [34].

In the PKI framework, the single CA model is a commonly used model in an enterprise
environment, and a CA is used to issue and manage certificates for all end users in the
network. We list the advantages and drawbacks of blockchain and single CA model in
Table 1 to show the improvements brought by the blockchain [35,36]:

Table 1. Comparison of blockchain-based model and PKI.

Comparison Item Single CA Model Blockchain-Based Model

How to Build Trust? Based on users
subjective trust Based on mathematics

Trust Anchor Public key of the CA Cryptography method
and Consensus mechanism

Vulnerable to SPOF Yes Naturally immune

Vulnerable to Replay Attack? Additional applications
need to be deployed

Each of transactions is
verified by timestamp,

nonce, transaction ID, etc.

In the existing PKI method, the CA periodically updates and releases Certificate
Revocation Lists (CRL). One drawback of this method is that the time granularity of
revocation is limited to the CRL release period. During this period, the revoked certificate
is still trusted, and malicious attackers can illegally obtain data through revoking delay
attacks. In addition, the existing revocation certificate inspection scheme is centralized,
which will cause security bottlenecks.

If blockchain is used to manage the operation of certificates, the security bottleneck
caused by the existing centralized solution can be effectively eliminated. In addition,
the smart contract can make the operation and revocation verification of certificates effective
and rapid response.

2.2.3. Convergence of Blockchain and IoT

Blockchain has the following characteristics that meet the needs of IoT [37]:
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(1) Decentralization. Distributed nodes maintain data consistency on the blockchain
network through a consensus algorithm without third parties.

(2) Persistency. In blockchain, invalid transactions will not be identified by miners, so
transactions that have been confirmed cannot be deleted.

(3) Auditability. Each transaction can be easily verified and tracked for every pack-
aged transaction on the blockchain and can point to the transaction packaged in the
previous block.

The main goal of the convergence includes: (1) to introduce trust and secure data
exchange between IoT devices (systems) by taking advantages of blockchain; (2) to
record, identify, and verify IoT transactions using cryptographic mechanisms provided
by blockchain technology while balancing the network overhead and device computing
capability; (3) to enable the secure P2P interactions between IoT devices without centralized
third-party intervention by using blockchain nodes and smart contracts.

In BCoT, IoT data are synchronized to all nodes after reaching a consensus. A con-
sensus mechanism is used to ensure the consistency of the system in Blockchain. There
are several common consensus algorithms, such as Proof of Work (PoW) [38] states that
generating a piece of data must satisfy certain requirements, which is difficult to produce
but easy to verify. Proof of Stake (PoS) [39] states that miners can mine or validate block
transactions based on the amount of cryptocurrency coins the miner holds. Practical Byzan-
tine Fault Tolerance (PBFT) [40] is a method to solve the Byzantine Generals Problem that
can be used in a real production environment.

In order to optimize the resource consumption of the blockchain and make it suitable
for IoT devices, Karlsson et al. [27] propose a permissioned, DAG structured blockchain
suitable for power-constrained environments with limited network connections. Liu et al. [41]
propose LightChain, which has the characteristic of resource-efficient without affecting the
traceability and nonrepudiation of blockchain, and propose a novel consensus mechanism
to reduce the consumption of computing power. Prescilla et al. [42] propose a sliding
window mechanism that stores only a limited part of the blockchain and maintains the
whole blockchain in the private cloud to make the blockchain suitable for IoT devices.
Ellul et al. [43] describe a split virtual machine that allows devices to interact with the
blockchain system. These studies target blockchain structure optimization in order to
incorporate IoT devices as direct blockchain nodes. However, device identity authentication
is not fully covered in this research.

Gochhayat et al. [44] design a multi-user model composed of cloud storage servers
and group users. Users encrypt files and store them in the district. On the blockchain,
the cloud storage of files is done after the data are on the chain. Yakubov et al. [35] and
Louise et al. [45] propose a feasible PKI identity authentication scheme in the blockchain.
Cruz et al. [46] used blockchain to solve the cross-organizational access control problem in
role base access control (RSAC) and realized the cross-organizational authentication of user
roles. Bouras et al. [47] propose IoT-CCAC, a decentralized capability-based access control
architecture designed for IoT consortium networks where a blockchain-based database
is utilized. Cui et al. [48] propose a data management model based on the blockchain
platform, where multiple IoT devices are controlled by a management center and the man-
agement center obtains access rights through a third party. Bouras et al. [49] propose a
lightweight architecture and the associated protocols for consortium blockchain-based
identity management to address privacy, security, and scalability issues in a centralized
system for IoT. These studies improve the existing methods from the perspectives of cloud,
PKI system, and access control. However, the work of identity authentication for IoT
devices has room for improvement.

In order to solve the aforementioned identity authentication problem of IoT devices:
Omar et al. [50] use function-based tokens based on the ERC721 standard to provide
secure identity verification and authorization for IoT devices. Ujjwal et al. [51] propose a
verification mechanism based on physical unclonable functions (PUFs), which generates
a unique device ID for IoT devices. The registered manufacturer uploads each device ID
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to a blockchain network. When registering a new device, the end user verifies whether
the hash value exists in the blockchain. Alblooshi et al. [52] proposed a traceable medical
IoT device management solution to solve the problem of counterfeit devices through two
smart contracts.

In the above-surveyed literatures, the authors propose new methodologies and meth-
ods for the integration of IoT and blockchain. A few studies focus on identity authentication
through global registration on the public chain. These approaches lay out a theoretically
feasible solution; however, it is challenging for IoT manufacturers to adopt the idea due
to foreseeable cost trade-off. In this research, we intend to explore a practically feasible
consortium blockchain solution for IoT device authentication.

3. The BCoT Sentry Methodology

Due to the cost-performance factor, the limited resources of most IoT devices could
hardly support complex security models or algorithms. Practically, a security mechanism
is implemented in different IoT applications in order to realize various business logic re-
quirements. The cost of modifying existing applications could be extremely high; therefore,
our end goal is to propose a new mechanism that could enhance security through a more
complex blockchain-based security model without introducing a practically unfeasible cost
increase due to the modification of end-device hardware design or the reconstruction of
IoT applications.

We propose BCoT Sentry, a system that integrates blockchain with an IoT network
and enhances network security by analyzing device traffic flow patterns. In BCoT Sentry,
BCoT Gateways are blockchain nodes where an IoT device security module is employed
through a smart contract.

Kanhere et al. [53] propose a lightweight blockchain-based architecture for IoT that
virtually eliminates the overheads of classic blockchain while maintaining most of its secu-
rity and privacy benefits. The constituent nodes in a P2P network are grouped in clusters,
each cluster selects a Cluster Head (CH), and then CHs maintain a public blockchain. They
verify the effectiveness of the proposed architecture against DOS, modification attack,
dropping attack, and appending attack. Finally, they evaluate the traffic overhead and
processing overhead of the architecture.

Ours work stores device fingerprints in the consortium blockchain through a specially
designed BCoT Gateway, which facilitates the recording of authentication transactions in a
blockchain network.

3.1. BCoT Sentry Architecture

The BCoT Sentry architecture is depicted in Figure 1, which includes the following
components.

Figure 1. BCoT Sentry system design.

(1) IoT Physic Network: An IoT physic network is a communication network composed
of numerous tiny devices with limited capabilities. The IoT physic network can
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operate in an independent environment, or it can be connected to the Internet through
a gateway.

In our proposed framework, IoT devices join the blockchain network through spe-
cial gateways, and therefore, existing hardware and software applications can be easily
integrated without additional cost.

(2) Blockchain Network: In our framework, the blockchain network is a consortium chain.
Nodes communicate with the blockchain through a reserved interface. Transaction
logs and device records are maintained on the blockchain by each node and are
decentralized and cannot be tampered with.

(3) Cloud Applications: In a smart city scenario, IoT devices are typically utilized by
cloud-based applications, such as smart transportation, smart home, and telemedicine.
Our framework should also support the blockchain-based device authentication across
the lower layer and upper layer of cloud applications.

(4) BCoT Gateway: In our framework, the BCoT Gateway is essentially an IoT gate-
way [54] with blockchain node capability. BCoT Gateway can provide the functionali-
ties of protocol conversion and device management:

The BCoT Gateway manages the sensor node connected to acquire the node’s identifi-
cation, status and properties, and realizes remote startup, shutdown, control, and analysis.

The BCoT Gateway supports protocol interworking between the traditional network
and IoT physic network, which includes Zigbee, Z-Wave, and MQTT.

(5) Traffic Flow Analyzing: This module monitors the behavior of an individual IoT device
and sends a device traffic flow feature to the Smart Contract via blockchain transaction.

(6) Smart Contract and Interface: The device identity authentication mechanism de-
scribed in this paper is realized by a single smart contract. The IoT device’s identity
information and related operations are defined in smart contracts and triggered by
blockchain transactions. The smart contract enforces the access permission policies
through defined operations and ensures that only authorized entities could modify or
access the device identity information.

Once the smart contract is deployed, it will generate a unique contract address. We
specify the contract address and Application Binary Interface (ABI) of the deployed contract
in the web3.py interface, so the traffic flow analyzing module can trigger smart contract
through blockchain transactions to verify device identity.

3.2. Decentralized Identity Authentication Mechanism

The procedure of the decentralized identity authentication mechanism has three phase:
In the initialization phases, (a) BCoT Gateways join the blockchain network so that

each of them will keep a copy of the blockchain. (b) Smart contracts are deployed on the
blockchain, and each BCoT Gateway records its contract address and ABI. (c) A blockchain
externally owned account (EOA) is created and bounded to each BCoT Gateway.

In the device registration phase, the management entity of the system extracts the
traffic flow features of IoT devices and trains the model, then triggers smart contracts
through blockchain transactions, and uploads device identity information and weight
information to the smart contract. The device identity information will be synchronized to
all blockchain nodes when a consensus is reached.

In the device authentication phase, when a device is connected to the network, BCoT
Gateway extracts the traffic flow features of the device through a traffic flow analyzing
module, then calls the smart contract to identify the types or to detect whether the identity
of the device is fraudulently through the web3.py interface.

3.3. Device Authentication Model

In our device authentication model, we define a device fingerprint to discriminate
types of IoT devices.
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The fingerprint represents the unique network traffic pattern of the device. When
an IoT device connects to the gateway, the device traffic will follow a specific process
established by the device manufacturer. This process usually consists of a distinguishable
communication sequence initiated by an IoT device, and our fingerprint attempts to capture
this characteristic sequence.

The IoT Devices reduce the rate of sending data packets, which can be used to deter-
mine whether the initialization phase is complete.

In the proposed device authentication mode, let D be an IoT device, let Ω be the
universal set of devices, let C = {C1, C2, . . . , Ck} be all types the of devices, let PD =

{p1, p2, . . . , pn} be the data packets during the initialization phase, let
−−→
FPD be the finger-

print of device D, let
−−→
FPC be the fingerprint of types of device C.

Our device authentication model can be divided into two parts:
Register: Register and identify the types of new devices that are discovered in the

network. For an unknown device D1 with fingerprint FP1, determine the type of the device
C1, which is defined by:

J1(D1, FP1) = C1

Fraud Detection: Fraud detection verifies and confirms the identity of registered IoT
devices. For an IoT device D2 with fingerprint FP2 that claims to be type C2, determine
whether the identity of the device is correct. This model is defined by:

J2(D2, FP2, C2) =

{
1, if device type matched
0, else

3.3.1. Device Fingerprint

Features that are used to build a fingerprint are shown in Table 2.
The feature vector constituted by a packet pi can be expressed as:

fi = { fi,1, fi,2, fi,3, · · · , fi,16}, i ∈ {1, · · · , n}

Hence, the behavior of the device during the initialization phase can be described by
a n ∗ 16 feature matrix:

F =


f1,1 f1,2 · · · f1,16
f2,1 f2,2 · · · f2,16
...

...
...

fn,1 fn,2 · · · fn,16


Consider that the number of packets sent in the initialization phase of the device, n, is

also an important feature, so
−−→
FPD is given by:

−−→
FPD =

{
∑

j
f j,1, ∑

j
f j,2, ∑

j
f j,3, · · · , ∑

j
f j,16, n

}
, j ∈ {1, · · · , n}

Hence,
−−→
FPC is given by:

−−→
FPC = mean(

−−→
FPD), D ∈ ΩCi
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Table 2. Description of the packet features.

Type Features Representation

Link layer protocol (2) ARP/LLC packet number
Network layer protocol (3) IP/ICMP/EAPoL packet number
Transport layer protocol (2) TCP/UDP packet number

Application layer protocol (9)
HTTP/HTTPS/DHCP
/BOOTP/SSDP/DNS

/MDNS/NTP/TELNET
packet number

– Packet length number of packets in a pcap file

3.3.2. Weight Assignment

The importance of each feature in device fingerprints should be evaluated from three
perspectives (as shown in Table 3):

Table 3. The components of weight.

Components Description

Discrimination The association between a feature and corresponding category
Stability The stability of a feature in the same category

Sensitivity The sensitivity of the feature to change

(1) Discrimination. Discrimination here refers to the degree of association between a
feature and corresponding category.

The maximum information coefficient (MIC), proposed by David [55], is used to
measure the discrimination of IoT devices and is widely used for feature selection in
machine learning. In our application scenario, devices that have the same type should
generate traffic flow with the same features in the same phase. The number of connected
IoT devices will keep growing over time, so it conforms to the characteristics of the MIC
“big data set”. The MIC is obtained by the following equation:

I[x; y] ≈ I[X; Y] = ∑
X,Y

p(X, Y) log2
p(X, Y)

p(X)p(Y)

MIC[x; y] = max
|X||Y|<B

I[X; Y]
log2(min(|X|, |Y|))

where X is the column vector composed of the values of attribute x in all samples, and Y
the column vector composed of labels corresponding to each sample. B is the auxiliary
variable that is usually set to the 0.6 power of the amount of data sets.

Let
−−→
dicsC be the discrimination vector and given by:

−→
dics = {MIC[x1; y], MIC[x2; y], . . . , MIC[x17; y]}

(2) Stability. Stability refers to the change of a feature in the same category. A device
may be classified into the wrong category due to poor stability of its feature field.
Therefore, the stability of each feature needs to be considered.

We use the coefficient of variation (CV), a dimensionless quantity, to measure the
stability of a feature.

CV is only defined when the average is not 0, but there are several features of which
the average is 0. In the IoT scenario, the standard deviation will be 0 if the average of
a feature is 0. So a supplementary definition is made to make CV meaningful when the
average is 0. For a feature i with average µ and standard deviation σ, its CVi is:
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CVi =

{
σ
µ µ 6= 0

0 µ = 0

The stability of the feature i in device type C can be expressed as:

stabi =

{
1− CVi CVi < 1
0 CVi ≥ 1

Let
−−→
stabC be the stability vector for device type C and given by:

−−→
stabC = {stab1, stab2, stab3 . . . , stab17}

Hence, the stability of all types of device
−−→
stab is given by:

−−→
stab = mean(

−−→
stabC), C ∈ Ω

(3) Sensitivity. Sensitivity is defined as a measure of how sensitive the feature is to change.
Features with a lower frequency should be sensitive to changes; on the contrary, higher
frequency features are relatively insensitive to changes.

For example, when a device is infected by the Mirai virus, numerous Telnet requests
will appear on the network. In our scenario, protocols like TELNET should not or rarely
appear, so that the infected device may be identified through the TELNET protocol [56].

The proportion of the occurrence times of each protocol in P is given by the follow-
ing equation:

−→
Focc =

{
∑j f j,1

n
,

∑j f j,2

n
,

∑j f j,3

n
, · · · ,

∑j f j,17

n
, 1
}

, j ∈ {1, · · · , 17}

Let
−−→
senC be the sensitivity vector of types of device C and given by:

−−→
senC =

 1

1 + ∑j f j,1
n

,
1

1 + ∑j f j,2
n

,
1

1 + ∑j f j,3
n

, · · · ,
1

1 + ∑j f j,n
n

,
1
2

, j ∈ {1, · · · , 17}

(4) Weight of Fingerprints. In summary, the weight
−−−−→
weightC corresponding to a type of

device C is given by:
−→
WC = α ∗

−→
dics + β ∗

−−→
stab + γ ∗

−−→
senC (α + β + γ = 1)

Here, the values of α, β, γ can be freely specified; in this paper, we set α = 0.4, β = 0.3,
γ = 0.3.

3.3.3. Arbitration

(1) Register: To identify the type of a new device that is discovered in the network, the
weighted distance between the devices is needed, and devices of the same type will
have a minimum weighted distance. For a newly connected device Dx and a certain
type of device C ∈ Ω, the distance vector will be:

−→
Dis = |FPDx − FPC|

The device type of Dx should be C that minimizes the d in the universal set Ω,
the weighted distance of device D and type of device C is:

d(Dx, C) =
−→
Dis ·

−→
WC
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(2) Fraud Detection: To verify and confirm the identity of registered IoT devices. Let ind
be the fraud indicator, which is used to determine whether the identity of a registered
device has been fraudulently used.

The standard deviation of device type C is
−−−→
std(C) = {σ1, ...σ17}, so that ind can be

defined by:

ind(C) =
−−−→
std(C) ·

−→
WC

Therefore, whether device Dx belongs to category C can be derived from:

F2(Dx, FPDx , C) =

{
1, distance(Dx, C) < ind(C)
0, else

4. Implementation

We develop a prototype of BCoT Sentry for testing and evaluation. The deployment
of the system is shown in Figure 2. In this paper, we use an Ubuntu virtual machine to
simulate the function of the BCoT Gateway that provides a Python3 environment.

Figure 2. System implementation.

4.1. Device Registration

Scapy [57] is a Python program and library that enables the user to send, sniff, and
dissect and forge network packets. This capability allows the construction of tools that can
probe, scan, or attack networks.

IoT devices will follow the procedure established by the manufacturer and register
themselves to the network. The characteristic network traffic flow will be generated. We
use the Scapy tool to collect and analyze traffic flow to get the feature vector of IoT devices
and the corresponding weight vector.

4.2. Smart Contract Interface

Web3.py [58] is a Python library for interacting with Ethereum. It is commonly found
in decentralized apps (dapps) to help with sending transactions, interacting with smart
contracts, reading block data, and a variety of other use cases. The original API was
derived from the Web3.js Javascript API but has since evolved toward the needs and
creature comforts of Python developers.

The feature vector and weight vector will be uploaded to the blockchain in the form
of transactions through the JSON-RPC interface, which is achieved through web3.py in the
python3 environment.



Information 2021, 12, 203 12 of 20

4.3. Blockchain Network

The Ethereum Virtual Machine (EVM) used in this paper is Geth with the Golang
programming language.

We develop a proof of concept (PoC) implementation of the BCoT Sentry in an
Ethereum private chain under a generic genesis block in order to test and evaluate it.
In the private blockchain, five BCoT Gateways participate in competitive mining as a
full-featured blockchain node. We set the time to generate a new block to about 5 s by
adjusting the difficulty of mining. The communication with the blockchain is supported by
the API provided based on the HTTP-RPC interface.

4.4. Smart Contract

Solidity [59] is a statically-typed curly-braces programming language designed for
developing smart contracts that run on the EVM.

The smart contract in our framework is implemented using Solidity. The device identity
information and authentication operations are shown in Figure 3. We assign access rights to
the functions in the contract to protect the device’s identity authentication information.

Figure 3. Some details of the smart contract.

Since Solidity does not support floating-point data types, we need to find alternative
representation. We build an IoT device authentication model and also modified the device
features and weights by reserving a fixed number of decimal places for float numbers and
multiplying them by a factor that always converts them to integers.

5. Evaluation
5.1. Dataset

The public dataset used in our work comes from [31], which includes traffic flow data
of 27 types of devices that are representative of the devices commonly seen in the consumer
market. In order to enable each tested device to generate enough training data, the setting
process is repeated 20 times. The traffic flow data during each initialization process is
packaged into a pcap file.

Most of these devices are connected to the network via WiFi or Ethernet, while a
few devices use other IoT protocols (such as ZigBee, Z-Wave) to connect to the network
indirectly through a HUB.
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5.2. Evaluation Setting

All experiments were performed on a server with 36 hyperthreading Intel(R) Xeon(R)
Gold 6140 CPU @ 2.30 GHz cores, 128 GB of memory, and VMware ESXi™ 6.7.0 was used
to build a computer virtualization platform.

We deployed 5 virtual machines as the baseline environment (as shown in Figure 4),
each of them configured with a 2-core CPU, 2 GB RAM, and a hard disk space of 40 GB,
running Ubuntu 16.04.2 LTS with GUN/Linux 4.8.0-36-generic kernel. All of them were
full nodes (miners) of our private blockchain where a new block was generated in 5 s.

Figure 4. Settings of evaluations.

5.3. Result Analysis

First, we extracted the features of the IoT devices and designed the corresponding
weights. The discrimination and stability of different protocols are shown in Table 4. It is
worth noting that the TELNET protocol does not appear in the data set, which leads to a
situation where the discrimination is 0 while the stability is 1.

Table 4. Discrimination and stability of different protocols.

Protocols Discrimination Stability

ARP 0.8567 0.5540
LLC 0.5555 0.8068
IP 0.8741 0.3977

ICMP 0.6492 0.8519
EAPoL 0.8516 0.6648

TCP 0.8869 0.5943
UDP 0.8086 0.5039

HTTP 0.8926 0.8501
HTTPS 0.9285 0.8019
DHCP 0.8432 0.5693
BOOTP 0.8432 0.5693

DNS 0.7929 0.6232
NTP 0.7925 0.7318

TELNET 0.0000 1
Packet length 0.9292 0.7661

Gas [21] is used to measure the “workload” of a behavior or a series of behaviors in
Ethereum. Figure 5 shows the execution result of the operation that needs to modify the
data on the blockchain in proposed model. The Gas consumption is shown in Table 5.
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(a)

(b)

(c)

(d)

Figure 5. (a) Describe the result of smart contract deployment. (b) Describe the result of add device
fingerprint to smart contract. (c) Describe the result of modify device fingerprint in smart contract.
(d) Describe the result of delete device fingerprint in smart contract.
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Table 5. Gas consumption.

Type Transaction Cost Execution Cost

Create Contract 1,487,038 1,080,766
Add Device Fingerprint 291,998 262,726

Modify Device Fingerprint 160,963 131,691
Delete Device Fingerprint 33,301 11,261

We evaluated the accuracy of our model and the method from [31] on the same data set.
We performed a five-fold cross-validation on the data set. The results (as shown in Figure 6)
show that in 17 of 27 types of devices, our mechanism achieved parallel results, but in the
remaining 10 types, our method achieved a significant lead, although our feature vectors
have a lower dimensionality. The reason is that our model uses a better feature extraction
method: the features extracted by our model come from all the network traffic packets
of the device in the initialization stage, while our counterparties only utilize the first 12
packets of this stage.

Figure 6. Method comparison.

Another experiment shows the accuracy of Fraud Detection, which is used to detect
fraudulent device identity behavior, and the result is shown in Figure 7.

In this experiment, we first specified the device type C, and then randomly extracted
100 pcap files from the public data set to simulate the traffic flow data in the initial-
ization phase of 100 IoT devices D = {D1, D2, . . . , D100}, so that these 100 devices in-
clude both normal and fraudulent identities. Finally, we used the model Fraud Detection:
J2(Di, f eatureDi , C), Di ∈ D to determine whether the device identity is being used fraudu-
lently.

The results in Figure 7 show that for 25 of the 27 types of IoT devices, the accuracy of
detecting device identity fraud exceeds 80%, and 21 of which exceed 90%. However, large
errors are shown on devices HueSwitch and D-Linkcam. We find that their traffic flow data
are extremely unstable, resulting in a large variance in the sample data. As a result, devices
that do not originally belong to HueSwitch and D-Linkcam are wrongly classified.
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Figure 7. The accuracy of detecting fraudulent use of device identity.

5.4. Time Complexity

When we verify the identity of the IoT device, our model does not modify any data
on the blockchain, which means that we can use the call() method to trigger the contract in
order to save the transaction fee. The execution results of Register() and Detective() using
call() are shown in Figure 8.

(a)

(b)

Figure 8. (a) Execution results of Register(). (b) Execution results of Detective().

In the Ethereum private chain, the throughput of transactions depends on the block
size and the time to generate new blocks. The problem of transaction delays due to
congestion can usually be solved by increasing transaction fees.

We made 1000 calls to the functions Register() and Detective() on each BCoT Gateway,
and obtained the average response time. We calculated the number of requests that each
BCoT Gateway can respond to per second, and the result is shown in Figure 9.



Information 2021, 12, 203 17 of 20

Figure 9. The number of requests responded by each BCoT Gateway per second.

Assuming that the type of IoT device is n and there are m IoT devices that require
identity authentication, the two parts of our proposed IoT authentication model Register
and Fraud Detection have a time complexity of O(m ∗ n), and O(m).

6. Conclusions and Future Works

Blockchain is a promising security solution for IoT. However, the lightweight feature of
IoT devices commonly fails to meet computational intensive requirements for a blockchain-
based security model. In this paper, we propose BCoT Sentry, which uses BCoT Gateway to
facilitate the recording of authentication transactions in a blockchain network. Furthermore,
we introduce a novel device recognition model based on device traffic flow.

We implement a prototype to prove our design and validate the device recognition
model on a public dataset. In terms of device recognition, accuracy was more than 95%,
and 12 of 27 had 100%. In terms of fraudulent identity detection, our model has an accuracy
of over 95% in 21 of 27 types of devices. The number of BCoT Gateways that can respond
to Register() requests per second is about 215, and to Detective() is about 220. These results
demonstrate the effectiveness of the proposed framework.

There is still room to improve the current work. Firstly, we tested our framework
only on open datasets, and its effectiveness remains to be tested. Secondly, the identity
authentication model we proposed is static in terms of the threshold setting and feature
weight setting, which requires regular training to update the threshold and feature weight.

In our future work, we will deploy our framework in a real environment for further
testing and study how to dynamically adjust the threshold value and feature weight when
new data arrives to improve the performance of the model.
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