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Abstract: The analysis of social networks has attracted a lot of attention during the last two decades.
These networks are dynamic: new links appear and disappear. Link prediction is the problem of
inferring links that will appear in the future from the actual state of the network. We use information
from nodes and edges and calculate the similarity between users. The more users are similar, the
higher the probability of their connection in the future will be. The similarity metrics play an
important role in the link prediction field. Due to their simplicity and flexibility, many authors
have proposed several metrics such as Jaccard, AA, and Katz and evaluated them using the area
under the curve (AUC). In this paper, we propose a new parameterized method to enhance the AUC
value of the link prediction metrics by combining them with the mean received resources (MRRs).
Experiments show that the proposed method improves the performance of the state-of-the-art metrics.
Moreover, we used machine learning algorithms to classify links and confirm the efficiency of the
proposed combination.

Keywords: social recommendation; link prediction; similarity measures; area under the curve;
machine learning; regression models; network behaviors

1. Introduction

Many real-world complex systems are represented by graphs, where nodes are entities
such as universities, people or even proteins and edges represents the relations between
the nodes. The most central property of these networks is their evolution, where edges
are added and deleted over time. Link prediction (LP) is one of the most important tasks
in social network analysis. It has many applications in various areas: spam E-mail [1];
disease prediction [2]; system recommendations [3]; and viral marketing [4]. The authors
in [5] used a network-based technique to assess multimorbidity data and build algorithms
for forecasting which diseases a patient is likely to develop in their research. A temporal
bipartite network is used to describe multimorbidity data, with nodes representing patients
and diseases, and a link between these nodes indicating that the patient has been diagnosed
with the condition. The link prediction problem is defined as: let G(V,E) be an undirected
graph, V is the set of nodes that refer to users of a social network (SN), E is the set of links
or edges that represent relations between nodes. Given a snapshot of links at time t, could
we infer the links that will be established at time t + ∆t?

To solve this issue, authors have proposed various approaches. The authors in [6] have
compared several similarity measures using AUC, and their results show that the Adamic
Adar metric (AA) [7] performs best in four of the five datasets followed by Jaccard [8];
the difference between those two metrics is that (AA) [7] assumes that the rare common
neighbors are heavily weighted; however, Jaccard [8] measures the probability that two
nodes have a common neighbor. The authors in [9] have an proposed adaptive degree
penalization metric (ADP). They proposed a generalized formula for the existing degree
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penalization local link prediction method in order to provide the degree penalization
level. Then, the penalization parameter for a network is predicted using logistic regression.
In [10,11], we proposed a similarity metric based on the path depth from a source node to a
destination node and their degrees. In addition, we found a strong correlation between the
clustering coefficient and area under the curve. Machine learning algorithms were used
to solve the link prediction problem where the enhancement was by 40% in the power
grid dataset.

In [12], the authors solved the link prediction problem as a binary classification task,
where they set the precision as an objective function, and then transform the link prediction
problem into an optimization problem where the authors defined a feature set for each edge.
This set contains state-of-the-art metrics, the used class label was +1 for existing links and
−1 for non-existing links. In [13], the authors collected four different data, namely: node
feature subset, topology features subset, social features subset (following or followed) and
collaborative filtering for the voting feature subset, then they trained SVM, naive Bayes,
random forest and logistic regression classifiers. In [14], the authors used the importance of
neighborhood knowledge in link prediction that has been proven. As a result, they suggest
extracting structural information from input samples using a neighborhood neural encoder.

In [15], the authors proposed a combination of the preferential attachment metric
(PA) and (AA) to solve the link prediction problem using weights for each used metric
and then obtained good accuracy for the GitHub dataset: Scomb(x, y) = 0.7 ∗ sPA(x, y) +
0.3 ∗ sAA(x, y). The same idea was applied in [16] where the authors proposed common
neighbor and centrality-based parameterized algorithm (CCPA): Sxy = α× (Γ(x) ∩ Γ(y)) +
(1− α)× N

dxy
, α is a parameter between [0; 1]. It is used to control the weight of common

neighbors and centrality, Γ(x) represents the neighbors of node x, the fraction N
dxy

represents
the closeness centrality between the nodes x and y, where N is the number of nodes in the
network, and dxy is the shortest path between x and y.

As shown previously, recent decades have witnessed a tremendous growth in the
amount of research seeking to provide precise predictions of links. Researchers have only
focused on proposing new metrics and compared their results using area under the curve
(AUC) against the state-of-the-art metrics. However, there is still a need for a unique
method that enables the users of state-of-the-art metrics to improve their results in terms of
accuracy. This paper proposes a solution to a link prediction (LP) problem based on the
combination of state-of-the-art metrics and mean received resources (MRRs). This method
is parameterized to grant full control to the user/system to give the importance to the link
prediction metric or the MRRs. The main goal is to improve the area under the curve (AUC)
of the state-of-the-art measures and any other local metric that could or will be proposed.
We proved that the proposed combination has a meaningful effect on the results. Then, we
used machine learning algorithms to classify the links. The results show the superiority of
machine learning models whenever we add our proposed metric as an additional feature.
Furthermore, we found that the decision tree performs best using the proposed metric.

To summarize, the principal contributions of this paper are:

1. We proposed a new parameterized link prediction metric that grants the user or system
the full control of metric. Note that the proposed metric enhances the performance of
the state-of-the-art metrics;

2. We compared the performance of the proposed metric against the state-of-the-art
metrics using the AUC;

3. We studied the impact of using the parameter on each enhanced version of link
prediction;

4. We studied the correlation between the parameter and the network features;
5. We used machine learning algorithms to confirm the efficiency of the proposed method.

This paper is organized as follows: in Section 2, we describe the state-of-the-art metrics
and introduce the proposed metric. Section 3 presents the evaluation metric AUC and the
datasets used to compare the proposed metric with the state-of-the-art metrics. In Section 4,
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we report the results. In Section 5, we used machine learning algorithms to classify the
links. We conclude our paper in Section 6.

2. Methods

In this section, we introduce the state-of-the-art metrics, particularly the local metrics,
their merits and drawbacks. Then, we present the proposed metric which is based on the
mean received resources and a local similarity metric.

2.1. Related Works

According to [17], the authors classified the link prediction approaches into three
major categories. In the first approach, link prediction is solved using the dimensionality
reduction, the second approach relies on probabilistic and maximum likelihood models
(note that we cannot use the first and second category of approaches for large-scale networks
because of their high computational cost), the last approach uses similarity-based methods,
which is divided into three sub-categories, namely: global metrics, quasi-local metrics and
local similarity metrics. The most used metrics are local metrics because of their reasonable
computational coast and the high AUC results they provide; some of these metrics are
designed for a specific domain (such as cosine similarity, which is used in information
retrieval and text mining [18]).

In this work, we only focused on local metrics, also known as neighborhood-based
metrics (see Table 1). Through this paper, we use ex,y to refer to the link between nodes x
and y, Γ(x) is the set of neighbors of x. |Γ(x)| is the degree of node x (how many neighbors
the node x has). ShortestPaths(x,y) is the set of all shortest paths between x and y.

Table 1. Neighborhood-based similarity metrics.

Metric Name Equation

Preferential attachment (PA) [19] PA(x, y) = |Γ(x)| · |Γ(y)| (1)

Common neighbor (CN) [20] CN(x, y) = |Γ(x) ∩ Γ(y)| (2)

Hub promoted (HP) [21] HP(x, y) =
|Γ(x) ∩ Γ(y)|

min{|Γ(x)|, |Γ(y)|} (3)

Hub depressed (HD) [21] HD(x, y) =
|Γ(x) ∩ Γ(y)|

max{|Γ(x)|, |Γ(y)|} (4)

Jaccard coefficient (JA) [8] JA(x, y) =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)| (5)

Leicht–Holme–Nerman (LHN) [22] LHN(x, y) =
|Γ(x) ∩ Γ(y)|
|Γ(x)| · |Γ(y)| (6)

Parameter dependent (PD) [23] PD(x, y) =
Γ(x) ∩ Γ(y)
(Γ(x) · Γ(y))δ

(7)

Adamic/Adar (AA) [7] AA(x, y) = ∑
z∈|Γ(x)∩Γ(y)|

1
log|Γ(z)| (8)

Salton [24] Salton(x, y) =
|Γ(x) ∩ Γ(y)|√
|Γ(x)| · |Γ(y)|

(9)

Sorensen [25] Sorensen(x, y) =
2.|Γ(x) ∩ Γ(y)|
|Γ(x)|+ |Γ(y)| (10)

Resource allocation (RA) [26] RA(x, y) = ∑
z∈Γ(x)∩Γ(y)

1
|Γ(z)| (11)

The neighborhood-based metrics presented in Table 1 rely on simple assumptions;
for instance, the authors in [20] assumed that the more two nodes have common friends,
the higher the probability is that they will be connected in the future. The authors in [19]
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assumed that the more both nodes have friends, the higher the probability that they will
be connected. This assumption follows the principle “The rich get richer” from the field
of economics. In conclusion, we can notice that each author has a different point of view
with respect to this problem, but the end point is to provide a metric that performs well in
term of AUC. The motivation of this work was to propose a new approach that enables
researchers to power up the AUC of the metrics. We propose a parameterized expression
based on the mean received resources MRR and a local metric. Note that we can apply
the proposed enhancement to all the existing local metrics by adjusting the combination
parameter for any type of dataset.

2.2. The Proposed Metric

Let G (V, E) be a simple graph (no loop or multiple edges are allowed). Motivated by
the RA [26] index, where the authors used the flow of resources transferred from a source
node to a destination node through common neighbors; considering two non-connected
nodes A and B, the node A can transfer some resources (we assume that A has only one
resource to share) to target node B, that the common neighbors play the role of transmitters,
the node A distributes the resource to all their neighbors, and every neighbor will do the
same until the resource reaches the node B. We extended this metric to a global scale and
considered the mean received resources from the source node through the shortest paths.
Because neighborhood-based metrics could not capture global relations, we used MRR
as the second criterion to enhance the precision of the link prediction metrics previously
introduced in Table 1. We define the mean received resources as

MRRA,B =
1

|Shortest_Paths(A, B)| × ∑
path∈Shortest_Paths(A,B)

( ∏
node∈path

1
|Γ(node)| ) (12)

The following example describes one limitation of the neighbor-based metrics (such
as resource allocation) and shows the advantages of the mean received approach. Let G (V,
E) be a graph, x and y are two unconnected nodes. On the first hand, if |Γ(x) ∩ Γ(y)| = 0,
then the resource allocation cannot capture the interaction between nodes x and y. On the
other hand, the MRR will capture the interactions between x and y using the shortest paths.
We clarify the problem with a simple graph of six nodes as shown in Figure 1. If we use the
RA measure or any other neighbor-based metric presented in the previous section, then
sX,Y = 0 (see Figure 1). However, the use of the mean received resources provides the
capture of the interactions between the two nodes. There are three shortest paths between
the two nodes (x, y):

1. The path through the nodes A and B: s1 = 1
|X| ×

1
|A| ×

1
|B| ×

1
|Y| =

1
3 ×

1
5 ×

1
4 ×

1
2

2. The path through the nodes C and B: s2 = 1
|X| ×

1
|C| ×

1
|B| ×

1
|Y| =

1
3 ×

1
8 ×

1
4 ×

1
2

3. The path through the nodes C and D: s3 = 1
|X| ×

1
|C| ×

1
|D| ×

1
|Y| =

1
3 ×

1
8 ×

1
3 ×

1
2

MRRx,y = 1
3 × (s1 + s2 + s3).

Each similarity measure captures different information data. The combination of
these information data allows us to group them into a single equation and optimize
the classification task. We power up each local measure (LM) presented in the previous
subsection by combining them with Equation (12) using the weighted sum model (weighted
combination [27]). We define the weighted combination as

PSIx,y = α× sigmoid(LM(x, y)) + (1− α)× sigmoid(MRR(x, y)) (13)

where α is a combination parameter, α ∈ [0; 1]. This parameter controls the contribution of
each part of the equation; for some datasets, the MRR gives good results, but for others,
the LM leads to higher prediction efficiency. Therefore, we used α to adjust the amount
of contribution of each part. The MRR gives values in the range of [0; 1], however, other
metrics such as CN provide values which are superior to 1. Therefore, we should normalize
the local metric and MRR. To this end, we used the sigmoid function [28].
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Figure 1. A simple undirected graph.

3. Evaluation

In this section, we introduce the methodology and the evaluation metric commonly
used in the field. We define the datasets used to compare our metric against state-of-the-art
metrics. We also describe the characteristics of each network.

3.1. Methodology

Each dataset is separated into two graphs: training GT and probe GP, which are distinct and
non-overlapping. The training graph GT is created by sampling the original graph G at random.
GP is formed by the remaining edges that are not included in GT. Similarly, the set of edges
in GT refers to ET, whereas those in GP are referred to as EP, i.e., E = ET + EP. It is essential
to mention that ET and EP are mutually exclusive. However, the nodes in GT and GP may
overlap. For our experiments, ET represents 90% of the edges and EP contains the remaining
10%. Because the graph GT (and hence GP) is generated at random, we repeat the trials 10 times
to guarantee that the results were not acquired by coincidence. We generate GT (and thus GP)
at random for each run. GT was then used as an input of the algorithm, which produced the
final graph G′. Then, we calculated AUC (see Section 3.2). The average values of the 10 runs
were used to evaluate the proposed method. The value of the combination parameter was from
the interval [0, 1]. We provide the average results for α = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

3.2. Evaluation Criterion

Let G(V,E) be a simple graph (loops and multi-edges are not allowed). We split our
graph into GT(V, ET) and GP(V, EP). Note that the training set contains 90% edges and
the test set contains 10% edges. E = EP ∪ ET and EP ∩ ET = O. We used AUC to evaluate
all metrics; AUC is defined as the probability that a link randomly chosen from EP has a
higher score than an edge randomly chosen from Ē:

AUC =
N′ + 0.5× N′′

N
(14)

N′ is the number of times an edge from EP and an edge from Ē have the same score.
N′′ is the number of times that the edges from EP have a higher score than the edges from
Ē. N is the number of independent comparisons.

3.3. Datasets

Real-world datasets were used to evaluate the proposed and state-of-the-art algorithms.
We selected eight popular real-world datasets to test the accuracy of our algorithm. Note
that the closer the value of AUC is to 1, the better the metric will be. A brief description of
each dataset is presented in Table 2:

• YeastS dataset [29,30] consists of a protein–protein interaction network being described
and analyzed.
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• Power Grid [31,32] is a network of the power grid for the western states of the United
States of America, where edges represent a power supply line and nodes are either a
generator, a transformator, or a substation.

• USAir [33] is the US air transportation network. The nodes represent airports, and
links indicate routes.

• Florida [34]—in this network, the nodes are compartments and edges represent di-
rected carbon exchange in the Florida bay.

• Football [35] represents the American football games between Division IA colleges
during regular season in Fall 2000.

• Political network [31] is a directed network of hyperlinks between political blogs about pol-
itics in the United States of America. Note that we considered this network as undirected.

• Les Misérables [36] is an undirected network that contains co-occurrences of characters
in Victor Hugo’s novel ’Les Misérables’. The nodes represent a character and edges
show that two characters appeared in the same chapter of the book.

• Zachary Karate Club [31] in this network, a node represents a member of the club
(Zachary Club), and each edge represents a tie between two members of the club. The
network is undirected.

Table 2. Network features.

Network N M C r Average Degree D H e

YeastS 2284 6646 0.134 −0.099 5819 4.37 2.84 0.233
Power Grid 4941 6594 0.08 0.003 2669 18,989 1.45 0.063
USAir 332 2126 0.625 −0.207 12,807 2738 3,463 0.406
Florida 128 2075 0.334 −0.111 32,421 1776 1237 0.622
Football 115 613 0.403 0.162 10.66 2508 1006 0.45
Political Network 105 440 0.481 −0.132 8.38 3092 1.41 0.396
Les Misérables 77 253 0.559 −0.163 6571 2651 1829 0.434
Zachary 34 77 0.485 −0.478 4529 2424 1668 0.489

Table 2 describes the characteristics of the networks, namely the number of nodes N,
M is the number of edges, e the efficiency of the network [37], C and r are the clustering
coefficient [32] and the assortative coefficient [38], respectively, (note that nodes with degree
1 are excluded from the calculation of the clustering coefficient), D is the diameter of the
graph and H is the degree of heterogeneity [39].

4. Results

In our study, we used 90% of the graph as a training set and 10% as a test set. We tested
the different value of α from 0 to 1 with a step of 0.1 to show the impact of the contribution
of MRR and LM on the AUC values.

In Table 3, we used Equation (13) with different values of α, from α = 0 where the MRR
provides the scores of links, to α = 1 where the state-of-the-art metric defines the scores of links.
The x axis defines the value of α, the y axis defines the AUC value. From Zachary’s results, we
can conclude that the best combination is between MRR and RA for a value of α = 0.6. As
we can notice, the curve is above all other combinations with a high AUC value. The results
of YeastS highlight that MRR and AP combination outperforms all other combinations and
gives good results (since the gap between the AP and MRR combination and other metrics
curves is huge) for all values of α ( the best α = 0.2). From USAir results, we can notice that
the curve of the combination between MRR and RA has a minor advantage over the curve of
the combination of MRR and AA for α = 0.1. Power grid results show that all combinations
provide great results with no big difference except for CN when the accuracy decreases for α > 0.
At α = 0, we obtain the best accuracy value. This proves that the only use of MRR can give
promising results for some datasets. The results of political networks exhibit that both the CN
and MRR combination and PD and MRR combination offer the best results in term of AUC, and
the curves of other methods are very close except for the AP metric. The curve of Les Misérables
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dataset shows that the PD metric performs very well in comparison with other metrics. Football
curves make it clear that the majority of combinations have very close performance. Moreover,
the test shows that the best combination for this dataset is the combination of LHN with MRR.
From Florida dataset results, we can sum up that the combination of RA and MRR provides the
best accuracy.

Table 3. x axis represents the values of α and the y axis represents the values of AUC using
Equation (13).
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We then compare our proposed metric Equation (13) against the state-of-the-art algo-
rithms on eight datasets from different fields—using the maximum AUC found in Table 3.

From Table 4, we can draw the following conclusions: the improved version of the
Jaccard metric offers a great enhancement in terms of accuracy. Furthermore, the average
AUC value of the improved Jaccard is better than the average value of simple Jaccard by
6.7% in terms of AUC. The results of AA show that the improved version has refined the
certainty of the algorithm for all datasets except for the Florida dataset. The improvement
of the average value of AUC in all datasets was by 6.5% in the terms of AUC. We found that
the improved version of AP amplifies the AUC results of the simple AP, for instance, the
AUC of AP for Football dataset is 0.271 which is lower than pure chance, and the improved
version reaches 0.864. For the Florida dataset, the overall improvement was by 6.18% on
average, and the improved version of CN outperforms the simple version by 6.18%. The
best improvement was 14% in the Power Grid dataset. The same conclusions can be drawn
for the rest of algorithms, for the promoted hub the enhancement was 6.38%; for LHN,
the enhancement was by 7.13%; RA was improved by 6.4%; and the Salton and Sorensen
improvement was by 7.8% and 6.7%, respectively.

Table 4. AUC results of both simple metrics and improved metrics, cells in green represent the
metrics having the highest AUC values for each dataset, and cells in red represent the metrics having
the smallest AUC values for each dataset.

Les Misérables Political Network Football USAir Power Grid Zachary Florida YeastS

AA 0.895 0.902 0.819 0.941 0.59 0.643 0.625 0.715
Improved AA 0.938 0.925 0.89 0.947 0.733 0.843 0.624 0.754
jaccard 0.83 0.882 0.833 0.898 0.59 0.464 0.536 0.712
Improved jaccard 0.884 0.923 0.905 0.911 0.733 0.629 0.549 0.751
AP 0.74 0.695 0.271 0.87 0.446 0.721 0.743 0.771
Improved AP 0.834 0.852 0.864 0.756 0.7 0.714 0.501 0.794
Hub D 0.826 0.869 0.83 0.89 0.59 0.443 0.529 0.712
Improved Hub D 0.876 0.916 0.908 0.9 0.733 0.629 0.546 0.751
Hub P 0.814 0.886 0.831 0.874 0.582 0.564 0.542 0.713
Improved Hub P 0.868 0.916 0.905 0.876 0.733 0.714 0.553 0.751
LHN 0.787 0.848 0.832 0.778 0.584 0.45 0.4 0.711
Improved LHN 0.828 0.909 0.91 0.785 0.733 0.614 0.431 0.751
PD 0.878 0.89 0.832 0.929 0.585 0.536 0.608 0.714
Improved PD 0.934 0.932 0.902 0.942 0.733 0.721 0.622 0.753
RA 0.9 0.904 0.819 0.949 0.59 0.657 0.63 0.714
Improved RA 0.934 0.925 0.89 0.955 0.733 0.857 0.631 0.754
CN 0.882 0.893 0.82 0.928 0.59 0.593 0.621 0.714
Improved CN 0.93 0.932 0.902 0.941 0.733 0.721 0.622 0.753
Salton 0.834 0.886 0.833 0.905 0.584 0.479 0.539 0.712
Improved Salton 0.88 0.925 0.905 0.92 0.733 0.671 0.551 0.752
Sorensen 0.83 0.882 0.833 0.898 0.59 0.464 0.536 0.712
Improved Sorensen 0.884 0.923 0.905 0.911 0.733 0.629 0.549 0.751

In Figure 2, we calculate the mean of every row of Table 4 to obtain the average AUC
on all datasets. This allows us to globally compare the performance of every algorithm on
all datasets.

According to the results of Figure 2, we notice that for all algorithms, the improved
version has a higher AUC average than the existing metrics. For the preferential attachment
metric, the improved AP is superior by 6.8%. We can draw the same conclusion for the rest
of metrics.

The experiment shows that the proposed metric outperforms the existing local metrics.
Furthermore, it demonstrates that any local metric may be improved in terms of precision.
As expected, our metric gives a higher score to links in the Etest against the links in Ē. Then,
the probability that a link exists in the graph G(V,E) is high compared to a link from G(V, Ē).



Information 2022, 13, 35 9 of 19

For instance, in the Power Grid dataset, LM has AUC = 0.59 while the proposed weighted
combination reached AUC = 0.73.

Figure 2. Average AUC of the algorithms.

From Figure 3, we can conclude that for the majority of datasets used to test the
validity of our algorithm, the best α ∈ [0, 5; 1]. Furthermore, we can notice that all the
algorithms have the same best α for the same dataset, for instance, the best α is 0.9 for the
YeastS network using all algorithms and 0.5 for all algorithms on Power Grid dataset. We
then try to find a correlation between the best α and any network feature presented in
Table 2.

Figure 3. The α distribution on each dataset.

From Table 5 and using the rule of thumb, we can conclude that for AA and PA, we
have a strong correlation between the best alpha and the average degree of the networks.
For Jaccard, hub depressed, hub promoted, LHN and Sorensen, we have moderately strong
correlation with r. For the metrics PD, CN and Salton, we have a moderately strong
correlation with H. The RA index is the only metric to have a moderately strong correlation
with C. Consequently, the parameter α can be written as a product of the network feature
and a constant. For instance, α = average_degree× Constant for AA and PA.
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Table 5. Correlation between the best α of each algorithm and the network features.

Correlation Best α
for AA

Best α for
Jaccard

Best α
for PA

Best α
for HD

Best α
for HP

Best α
for LHN

Best α
for PD

Best α
for RA

Best α
for CN

Best α for
Salton

Best α for
Sorensen

N −0.347 −0.175 −0.328 0.097 0.052 −0.137 −0.183 0.113 −0.183 −0.183 −0.499
M 0.044 0.055 0.055 0.343 0.361 0.22 −0.12 0.1 −0.12 −0.12 0.055
C 0.034 0.143 0.123 −0.15 −0.209 −0.032 −0.229 −0.446 −0.229 −0.229 0.143
r 0.161 0.521 0.197 0.541 0.555 0.6 0.219 0.291 0.219 0.219 0.521
Average
Degree 0.695 0.285 0.594 0.098 0.426 0.394 0.251 −0.237 0.251 0.251 0.285

D −0.511 −0.277 −0.509 −0.048 −0.107 −0.218 −0.277 −0.078 −0.277 −0.277 −0.277
H 0.267 0.295 0.431 0.389 0.313 0.325 −0.547 −0.439 −0.547 −0.547 0.295
e 0.42 0.062 0.41 −0.234 −0.047 0.008 0.289 −0.124 0.289 0.289 0.062

5. Link Prediction Using Machine Learning Algorithms

In this section, we apply supervised learning algorithms to study the link predic-
tion problem as a classification problem. We use random forest [40], k-nearest neigh-
bors [41], support vector machine (SVM) [42], artificial neural network [43], and logistic
regression [44]. Then, we compare the different supervised learning algorithms using the
accuracy to evaluate their performance.

5.1. Methodology

To evaluate the performance of the proposed metric when modeling the link prediction
as a classification task, we use the classification accuracy:

Accuracy =
Number o f correct predictions

Total number o f predictions made
(15)

Let G(V, E) be an undirected and unweighted graph. In order to transform the link
prediction problem into a binary task, we construct two sub-sets:

The first one contains the edges of E, the second one contains randomly chosen edges from
Ē. Then, we attribute a null value to the edges from Ē and 1 to those of E. We split them into
test set and training set where the test size = 10%. Finally, we train our classifier on the training
set and then predict the test set. We use the Sklearn framework [45] to apply machine learning
algorithms. Note that we use the best α of the improved RA for each dataset (see Figure 3).

5.2. Results

Table 6 shows the results of the KNN algorithm in two cases. The curve in blue
represents the first case when we use only the state-of-the-art algorithms. The curve in
orange represents the case in which we use the state-of-the-art algorithms along with the
proposed metric. We can notice that the orange curve always has the highest accuracy,
and we can conclude that the classification task becomes accurate when we add the PSI
(Equation (13)) as an additional feature.

Table 7 shows the results of logistic regression. We obtain a higher orange curve
when we apply PSI metric (Equation (13)) with the state-of-the-art algorithms as additional
features of logistic regression. The curve in blue represents the case in which we only use
the state-of-the-art algorithms. Note that for the Political Network, USAir and Zachary
datasets, the logistic regression did not converge, and therefore we did not see a clear
advantage.

Table 8 shows the results of the random forest algorithm in two cases. We can notice
that the orange curve has greater accuracy compared to the blue curve. Note that the curve
in blue represents the first case in which we only use state-of-the-art algorithms. The curve
in orange represents the case in which we use the state-of-the-art algorithms along with the
proposed metric.

Table 9 shows the importance of each feature used in the random forest algorithm (see
Table 8). We can confirm that the proposed metric (Equation (13)) contributes more than
the other metrics to the decision process.
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Table 6. The x axis represents the number of neighbors in the KNN model and the y axis is the
accuracy.

Football dataset Les Misérables dataset

Political Network dataset Power Grid dataset

USAir dataset YeastS dataset

Zachary dataset Florida dataset
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Table 7. The x axis represents the inverse of regularization strength. The y axis is the accuracy of the
logistic regression model.

Football dataset Les Misérables dataset

Political Network dataset Power Grid dataset

USAir dataset YeastS dataset

Zachary dataset Florida dataset
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Table 8. The x axis represents the number of trees. The y axis represents the accuracy of the random
forest model.

Football dataset Les Misérables dataset

Political Network dataset Power Grid dataset

USAir dataset YeastS dataset

Zachary dataset Florida dataset
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Table 9. Random forest feature importances.

Football dataset Les Misérables dataset

Political Network dataset Power Grid dataset

USAir dataset YeastS dataset

Zachary dataset Florida dataset
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Table 10 represents the weights of every hidden unit. The blue area represents large
positive values, while the white area represents negative values. For every dataset, if the
color of cells are darker, this means that the used parameter is important to the process. We
notice that, for most of the datasets, our proposed metric has the darkest row. Thus, it plays
a role in the decision-making process.

Table 10. Results of the neural network.

Football dataset

Les Misérables
dataset

Political
Network
dataset

Power Grid
dataset
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Table 10. Cont.

USAir dataset

YeastS dataset

Zachary dataset

Florida dataset

From the Table 11, we can conclude that PSI (see Equation (13)) enhances the accuracy
of KNN, especially for the Football, Power Grid and YeastS datasets. For the logistic
regression algorithm, the best performance was for the Power Grid, Football, YeastS and
Florida datasets. For the random forest model, we can notice that PSI enhanced the
performance in all datasets; in addition, it further contributed to the decision process. We
can draw the same conclusion for the neural network. Overall, decision tree has the best
accuracy on all datasets. The results show that for all datasets, the performance increased
when we used the PSI metric as an additional feature.
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Table 11. Results of support vector machine (SVM), neural network and decision tree.

Les
Misérables

Political
Network Football USAir Power

Grid Zachary Florida YeastS

SVM with PSI 0.902 0.858 0.756 0.942 0.995 0.677 0.763 0.808
SVM without PSI 0.892 0.852 0.756 0.892 0.638 0.677 0.760 0.801

neural network with PSI 0.922 0.862 0.768 0.968 0.999 0.774 0.778 0.834
neural network without PSI 0.912 0.852 0.760 0.913 0.643 0.710 0.761 0.819

decision tree with PSI 0.971 0.875 0.959 0.969 0.998 0.903 0.740 0.985
decision tree without PSI 0.873 0.841 0.760 0.885 0.641 0.742 0.761 0.806

6. Conclusions

This paper presents a new parameterized metric for link prediction in social networks.
We based the proposed metric on both mean received resources (MRRs) and a state-of-the-
art local similarity measure (LM). The proposed metric is parameterized, and as a result,
the system/user can adjust the importance of the factor under consideration. We tested the
performance of the proposed metric using the AUC value on eight datasets from different
fields, and we compared its results with 11 existing metrics.

The finding of this study shows that the proposed metric has a very high performance
over the local similarity metrics in all datasets. It captures the interactions between un-
connected nodes, even if they do not have common neighbors. Furthermore, we found a
correlation between the parameter α and some networks’ features. In addition that, we
used machine learning algorithms to classify links. The results show that whenever we use
the proposed metric as an additional parameter, the accuracy of any algorithm increases;
also, we concluded that the decision tree algorithm has the best performance in terms
of accuracy.

This study can be extended to various networks such as directed networks, weighted
networks. In addition, because most real-world networks are highly sparse, with a small
number of positive cases relative to negative examples, dealing with imbalanced datasets
in link prediction may be a real challenge.
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