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Abstract: In this paper, first, we extend the analytical expression of the optimal solution of the
constrained OWA aggregation problem with two comonotone constraints by also including the
case when the OWA weights are arbitrary non-negative numbers. Then, we indicate an iterative
algorithm that precisely indicates whether a constraint in an auxiliary problem is either biding or
strictly redundant. Actually, the biding constraint (or two biding constraints, as this case also may
occur) are essential in expressing the solution of the initial constrained OWA aggregation problem.
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1. Introduction

Since the introduction of ordered weighted averaging operators (OWA operators)
by Yager in [1], this topic has attracted huge interest in both theoretical and practical
directions. For detailed accounts on the state of the art, we recommend, for example,
the works [2–5]. In this paper, our goal is to continue the investigation of the so-called
constrained OWA aggregation problem. Here, the goal is to optimize the OWA operator
under linear constraints. Yager started this research in [6] by proposing an algorithm for
the maximization problem that can solve the problem in some special cases. Then, in [7],
the authors solve the problem in the special case when we have one restriction and all
coefficients in the constraint are equal. In paper [8], the result is generalized; this time, the
coefficients in the single constraint are arbitrary. Another approach for this case can be also
found in the recent paper [9]. The minimization problem in the case of a single constraint is
solved in [10]. Recently, in the paper [3], the authors found a way to solve the maximization
and minimization problems in the case when we have two comonotone constraints. In
this contribution, we continue the work started in [3]. We will discuss the maximization
problem since the results for the minimization problem can be easily deduced using the
patterns from the papers [3,10]. First, we find a simple way to generalize the main results
in [3] for the case when the OWA weights are arbitrary non-negative numbers. In [3], we
assumed these weights to be strictly positive to avoid division with zero in some cases.
However, these cases can be eliminated as they will give some redundant constraints.
In this way, the results apply for OWA operators having some weights that can be equal to
zero, such as, for example the Olympic weights (see, e.g., [2]). We reiterate again as in others
of our papers that for solving such problems, it seems that one effective approach is to use
the dual of some linear programs derived from the initial constrained OWA aggregation
problem. Other optimization problems also use the dual of linear programs (see [11,12]).
In the papers mentioned earlier, the idea is to optimize the OWA operator under some
linear constraints. Another problem which is of great interest among researchers is to
optimize the OWA weights under some additional constraints (see, e.g., [2,5,13,14]). Finally,
let us also mention that the study of OWA type operators and their generalizations is a
dynamic process, and numerous interesting directions have opened in recent years (see,
e.g., [15–19]).
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In Section 2, we present the constrained OWA aggregation problem with comonotone
constraints and, in the special case of two comonotone constraints, we extend the main
results proved in [3] for the case when the OWA weights are arbitrary non-negative num-
bers. In Section 3, we present the iterative algorithm for an auxiliary problem associated
with the initial problem that finds at every step a constraint that is either binding or strictly
redundant. In Section 4, we test this algorithm on concrete examples, and we also discuss
its proficiency. The paper ends with conclusions that sum up the main contributions as an
important step to the general setting of an arbitrary number of constraints.

2. Constrained OWA Aggregation with Comonotone Constraints

In this section, we recall briefly the basics on the constrained OWA aggregation problem.
These details can be found in numerous papers, and we use here similar arguments as in [3].

Suppose we have the non-negative weights w1, . . . , wn such that w1 + · · ·+ wn = 1
and define a mapping F : Rn → R,

F(x1, . . . , xn) =
n

∑
i=1

wiyi,

where yi is the i-th largest element of the sample x1, . . . , xn. Then consider a matrix A
of type (m, n) with real entries and a vector b ∈ Rm. A constrained maximum OWA
aggregation problem corresponding to the above data is the problem (see [6])

max F(x1, . . . , xn) subject to Ax ≤ b, x ≥ 0. (1)

Let us recall now two particular problems where the coefficients in the constraints can
be rearranged to satisfy certain monotonicity properties. The maximization problem is

max F(x1, . . . , xn) ,
αi1x1 + · · ·+ αinxn ≤ 1, for all i = 1, ..., m,

x ≥ 0, αij > 0,
(2)

and there exists a permutation σ ∈ Sn such that

αiσ1 ≤ αiσ2 ≤ · · · ≤ αiσn , i = 1, m. (3)

Here, Sn denotes the set of all permutations of {1, . . . , n}, and for some σ ∈ Sn, we
use the notation σk for the value σ(k) for any k ∈ {1, . . . , n}. From now on, we will say
that the constraints in problem (2) are comonotone whenever condition (3) is satisfied.
The minimization problem is

min F(x1, . . . , xn) ,
αi1x1 + · · ·+ αinxn ≥ 1, for all i = 1, ..., m,

x ≥ 0, αij > 0,
(4)

and, again, there exists σ ∈ Sn such that

αiσ1 ≥ αiσ2 ≥ · · · ≥ αiσn , i = 1, m. (5)

Obviously, in the minimization problem above, the constraints are comonotone as well.
Considering the general problem (1), Yager used a method based on mixed integer

linear programming to approach the optimal solution. The method is quite complex since
it requires to introduce auxiliary variables, sometimes causing difficulties in calculations.
When the single constraint is particularized to x1 + · · ·+ xn = 1, the problem was solved
completely in [7] by providing an analytical solution as a function of the weights. Further-
more, considering arbitrary coefficients in the single constraint, in paper [8], the analytical
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solution was obtained as a function depending on the weights and on the coefficients in
the constraint. This problem can be formulated as

max F(x1, . . . , xn) subject to α1x1 + · · ·+ αnxn ≤ 1, x ≥ 0. (6)

The following theorem recalls the main result from [8]. In what follows, Sn denotes
the set of permutations of the set {1, . . . , n}.

Theorem 1 (see [8], Theorem 3). Consider problem (6). Then:

(i) If there exists i0 ∈ {1, . . . , n} such that αi0 ≤ 0, then F is unbounded on the feasible set, and
its supremum over the feasible set is ∞;

(ii) If αi > 0, i ∈ {1, . . . , n}, then taking (any) σ ∈ Sn with the property that ασ1 ≤ ασ2 ≤
· · · ≤ ασn , and k∗ ∈ {1, . . . , n}, such that

w1 + · · ·+ wk∗

ασ1 + · · ·+ ασk∗
= max

{
w1 + · · ·+ wk
ασ1 + · · ·+ ασk

: k ∈ {1, . . . , n}
}

,

then (x∗1 , . . . , x∗n) is an optimal solution of problem (6), where

x∗σ1
= · · · = x∗σk∗

=
1

ασ1 + · · ·+ ασk∗
,

x∗σk∗+1
= · · · = x∗σn = 0.

In particular, if 0 < α1 ≤ α2 ≤ · · · ≤ αn, and k∗ ∈ {1, . . . , n} is such that

w1 + · · ·+ wk∗

α1 + · · ·+ αk∗
= max

{
w1 + · · ·+ wk
α1 + · · ·+ αk

: k ∈ {1, . . . , n}
}

,

then (x∗1 , . . . , x∗n) is a solution of (6), where

x∗1 = · · · = x∗k∗ =
1

α1 + · · ·+ αk∗
,

x∗k∗+1 = · · · = x∗n = 0.

An analogue to the minimization problem can be found in [10] (see Theorem 2 there).
Let us now discuss the case when we have two comonotone constraints. We will

discuss the maximization problem here by briefly recalling the reasoning used in [3].
Consider the problem 

max F(x1, . . . , xn) ,
α1x1 + · · ·+ αnxn ≤ 1,
β1x1 + · · ·+ βnxn ≤ 1,

x ≥ 0,

(7)

in the case when 0 < α1 ≤ α2 ≤ · · · ≤ αn and 0 < β1 ≤ β2 ≤ · · · ≤ βn. In what
follows, we consider the special case when the weights are positive. To obtain an analytical
representation of the optimal solution, several linear programs are associated with this
problem. By Theorem 1 in [3], any solution of problem

max(w1x1 + · · ·+ wnxn) ,
α1x1 + · · ·+ αnxn ≤ 1,
β1x1 + · · ·+ βnxn ≤ 1

x1 ≥ · · · ≥ xn ≥ 0,

(8)

is a solution of problem (7). Note that both problems have nonempty solution sets.
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To solve (8), we need its dual, which is

min(t1 + t2),
α1t1 + β1t2 − t3 ≥ w1,

α2t1 + β2t2 + t3 − t4 ≥ w2,
α3t1 + β3t2 + t4 − t5 ≥ w3,

·
·
·

αn−1t1 + βn−1t2 + tn − tn+1 ≥ wn−1,
αnt1 + βnt2 + tn+1 ≥ wn

t1 ≥ 0, t2 ≥ 0, · · ·, tn+1 ≥ 0.

(9)

Furthermore, we can simplify this problem by introducing the problem

min(t1 + t2),
α1t1 + β1t2 ≥ w1,

(α1 + α2)t1 + (β1 + β2)t2 ≥ w1 + w2,
·
·(

k
∑

i=1
αi

)
· t1 +

(
k
∑

i=1
βi

)
· t2 ≥

k
∑

i=1
wi,

·
·(

n
∑

i=1
αi

)
· t1 +

(
n
∑

i=1
βi

)
· t2 ≥

n
∑

i=1
wi,

t1 ≥ 0, t2 ≥ 0.

(10)

Here, we make the first improvement with respect to the reasoning used in [3]. Namely,
if wk = 0 for some k ∈ {1, ..., n}, then constraint number k is redundant in (10). Therefore,
problem (10) is equivalent to problem

min t1 + t2,(
k
∑

i=1
αi

)
· t1 +

(
k
∑

i=1
βi

)
· t2 ≥

k
∑

i=1
wi, k ∈ In

t1 ≥ 0, t2 ≥ 0,

(11)

where In = {k ∈ {1, ..., n} : wk > 0}. This improvement will allow us to investigate prob-
lems where some of the weights can be equal to 0, such as, for example the Olympic weights
(see, e.g., [2]). As we mentioned in [3], if

(
t∗1 , t∗2 , . . . , t∗n+1

)
is a solution of problem (9), then(

t∗1 , t∗2
)

is a feasible solution for problem (10), and consequently, it is feasible for problem
(11). Now, suppose that

(
t1, t2

)
is a solution of problem (11). One can easily prove (see

again [3]) that
(
t1, t2

)
extends to a feasible solution

(
t1, t2, t∗3 , . . . , t∗n+1

)
of problem (9). Thus,

considering only the first two components of the feasible solutions of problem (9), we obtain
the same set as for the feasible set of problem (11). Obviously, both problems will have the
same minimal value, which in addition is finite.

In order to find a solution for problem (11), we need to investigate a problem given as
min(t1 + t2),

ak · t1 + bk · t2 ≥ 1, k ∈ In,
t1 ≥ 0, t2 ≥ 0.

(12)
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It will suffice to consider only the case when ak > 0 and bk > 0 for all k ∈ {1, . . . , n}.
Taking

ak =

k
∑

i=1
αi

k
∑

i=1
wi

and bk =

k
∑

i=1
βi

k
∑

i=1
wi

, k ∈ In, (13)

problem (11) becomes exactly a problem of type (12). Therefore, solving problem (12) will
result in solving problem (11) as well.

We need the following auxiliary result proved in [3].

Lemma 1. (see [3], Lemma 7) Consider problem (12), where ak and bk are given in (13), k ∈ In.
Suppose that k1, k2 ∈ In are such that ak1 ≥ bk1 and ak2 ≤ bk2 . If

(
t∗1 , t∗2

)
is a solution of the system{

ak1 t1 + bk1 t2 = 1,
ak2 t1 + bk2 t2 = 1,

and if
(
t∗1 , t∗2

)
is feasible for problem (12), then

(
t∗1 , t∗2

)
is an optimal solution for problem (12).

All the information above will be very useful in the next section, where we will propose
an iterative algorithm to approach the solution of problem (7).

Actually, we can now characterize the optimal solution of problem (7) by slightly
improving Theorem 8 in [3]. We omit the proof since one can easily deduce the necessary
modifications comparing to the statement of Theorem 8 in [3] coupled with Lemma 1 from
above, which stays at the bases of the next theorem.

Theorem 2. (see also Theorem 8 in [3] covering the case when the weights are strictly positive,
that is, In = {1, ..., n}) Consider problem (7) in the special case when 0 < α1 ≤ α2 ≤ · · · ≤ αn
and 0 < β1 ≤ β2 ≤ · · · ≤ βn. Then consider problem (12) where ak and bk are obtained
using the substitutions given in (13), k ∈ In. Furthermore, take l = arg min{ak : k ∈ In} and
p = arg min{bk : k ∈ In}. We have the following cases (not necessarily distinct but covering all
possible scenarios) in obtaining the optimal solution and the optimal value of problem (7).

(i) If al ≥ bl , then (x∗1 , ..., x∗n) is a solution of problem (7), where

x∗1 = ... = x∗l =
1

α1 + ... + αl
,

x∗l+1 = ... = x∗n = 0.

In addition, w1+···+wl
α1+...+αl

is the optimal value of problem (7).
(ii) If ap ≤ bp, then (x∗1 , ..., x∗n) is a solution of problem (7), where

x∗1 = ... = x∗p =
1

β1 + ... + βp
,

x∗p+1 = ... = x∗n = 0.

In addition, w1+···+wp
β1+...+βp

is the optimal value of problem (7).

(iii) If in problem (12) there exists a binding constraint Ck0 such that ak0 = bk0 , then (x∗1 , ..., x∗n)
is a solution of problem (7), where

x∗1 = · · · = x∗k0

=
1

α1 + · · ·+ αk0

,

x∗k0+1 = · · · = x∗n = 0.
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In addition,
w1+···+wk0
α1+···+αk0

is the optimal value of problem (7).

(iv) If in problem (12) the optimal solution satisfies with equality the constraints Ck1 and Ck2 ,
where k1 < k2 and

(
ak1 − bk1

)
·
(
ak2 − bk2

)
< 0, then (x∗1 , ..., x∗n) is a solution of problem (7),

where

x∗i =

k2

∑
i=k1+1

(βi − αi)(
k1

∑
i=1

αi

)
·
(

k2

∑
i=k1+1

βi

)
−
(

k1

∑
i=1

βi

)
·
(

k2

∑
i=k1+1

αi

) , i = 1, k1

x∗i =

k1

∑
i=1

(αi − βi)(
k1

∑
i=1

αi

)
·
(

k2

∑
i=k1+1

βi

)
−
(

k1

∑
i=1

βi

)
·
(

k2

∑
i=k1+1

αi

) , i = k1 + 1, k2,

x∗k2+1 = · · · = x∗n = 0.

In addition, the optimal value of problem (7) is equal to(
k1

∑
i=1

wi

)
·
(

k2

∑
i=k1+1

(βi − αi)

)
+

(
k2

∑
i=k1+1

wi

)
·
(

k1

∑
i=1

(αi − βi)

)
(

k1

∑
i=1

αi

)
·
(

k2

∑
i=k1+1

βi

)
−
(

k2

∑
i=k1+1

αi

)
·
(

k1

∑
i=1

βi

) .

Remark 1. Using the above theorem, we can also generalize the results given in Theorems 9 and
10, respectively, in paper [3]. In Theorem 9, we considered the case when there exists a permutation
σ ∈ Sn such that 0 < ασ1 ≤ ασ2 ≤ · · · ≤ ασn and 0 < βσ1 ≤ βσ2 ≤ · · · ≤ βσn . Then, in Theorem
10, we considered the case when 0 < α1 = α2 = · · · = αn = α. Obviously, in view of Theorem 3
from above, all these results can be extended for the more general case when the weights in problem
(7) are only assumed to be non-negative. Then, of course, we can state similar refinements for the
case of minimization problem. They are easily deduced from the corresponding results obtained in
paper [3] (see Theorems 11–13, respectively, in [3]).

3. An Iterative Algorithm to Achieve the Optimal Solution

In this section we propose an iterative algorithm to obtain the optimal solution in
Problem (7). Although the computer implementation of Theorem 2 can be done in a very
convenient way based on the Simplex algorithm (see the examples in [3]), the following
algorithm has an interesting particularity; namely, it can identify a constraint that is either
binding or redundant. In this way, we can eliminate the constraints one by one until we
obtain the optimal solution. We also hope this algorithm can be generalized for the case
when we have more than two comonotone constraints; however, this remains an interesting
open question in our opinion.

To construct our algorithm, we need to investigate Problem (12), where ak and bk are
given in (13), k ∈ In. We also need some concepts and notations that are well-known in
linear programming. Let us denote with Ck constraint number k of problem (12), k ∈ In.
Then, we denote with U the feasible region of problem (10). Next, for some k ∈ In, let
Pk = In \ {k} and

Uk = {(t1, t2) ∈ [0, ∞)× [0, ∞) : ai · t1 + bi · t2 ≥ 1, i ∈ Pk}.

In other words, Uk is the feasible region of any optimization problem which keeps
all the constraints from Problem (12) except for constraint Ck. The constraint Ck is called
redundant if U = Uk. In other words, the solution set of the optimization problem with
feasible region U coincides with the solution set of the optimization problem that has the
same objective function and all the constraints except for Ck. This means that constraint
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Ck can be removed when solving the given problem. The constraint Ck is called strongly
redundant if it is redundant and

akt1 + bkt2 > 1, for all (t1, t2) ∈ U.

Therefore, Ck is strongly redundant if and only if the segment which corresponds to the
solutions of the equation akt1 + bkt2 = 1, t1 ≥ 0, t2 ≥ 0, does not intersect U. A redundant
constraint that is not strongly redundant is called weakly redundant. The constraint Ck is called
binding if there exists at least one optimal point which satisfies this constraint with equality.
This means that the segment corresponding to the equation akt1 + bkt2 = 1, t1 ≥ 0, t2 ≥ 0,
contains an optimal point of the problem. Note that it is possible for a weakly redundant
constraint to be binding as well. All these concepts were discussed with respect to our Problem
(12), but of course, they can be defined accordingly for any kind of optimization problem.

Now, with these new tools, we can investigate Problem (12). As we said in the
introduction, searching for binding constraints may be just as difficult as solving the
program. However, we can easily spot some binding constraints in Problem (12). We also
believe it is worthwhile to do that as otherwise all constraints are needed when performing
the algorithm, and therefore, this calculation will be more complex than those used to
eliminate the redundant constraints. In general, if k1, k2 ∈ In are such that ak1 ≤ ak2 and
bk1 ≤ bk2 , then constraint Ck2 is redundant, and it can be eliminated. Using this fact, we
propose a simple method to eliminate some redundant constraints. First, we set M1 = In
and let N1 be the subset of M1 such that al = min{ak : k ∈ M1}, for all l ∈ N1. Then, let p1
be the index with the minimum value (just to make a choice if more indices would satisfy
the following property) in N1 such that bp1 = min{bk : k ∈ N1}. We keep constraint Cp1

and eliminate all the other constraints indexed in N1 since they all are redundant. Next,
for any k ∈ M1 \ N1, we compute

(
ap1 − ak

)
· (bp1 − bk). If this value is strictly negative,

then we keep constraint Ck, and if not, then we eliminate Ck because it is redundant. Let
M2 be the set of indices that correspond only to the constraints that were not eliminated and
which does not contain p1. We continue with the same reasoning, with the only difference
that now we take M2 instead of M1, then define N2 with respect to M2 the same way we
defined N1 with respect to M1. We then define p2 the same way we defined p1 and so on,
M3, N3 and p3, and so on,..., until we get that Mk is the empty set. Note that k is at most
equal to n− 1. At every step k, we select in a set that we denote with J, the index of each
constraint that was not eliminated from Nk, that is, p1, p2, and so on. Thus, the constraints
indexed by J will give the same feasible region as the initial set of n constraints. In addition,
if k1, k2 ∈ J, k1 6= k2, then

(
ak1 − ak2

)
· (bk1 − bk2) < 0. Then, there exists at most one index

k ∈ J such that ak = bk. There are other methods to obtain the set J, but in our opinion, this
one is between the fastest when using the computer. In all that follows in this paper, the set
J will be the one obtained with the above technique. Please note that it still may be possible
to have redundant constraints among those indexed in J. Just before our first key result, we
explain why it is not useful to search such constraints outside the proposed algorithm.

We are now in position to present a key result that will then give us a fast algorithm to
solve Problem (12). What is really interesting in the following theorem is that we present
a precise and simple method to search a constraint that will prove to be either a binding
constraint or a strongly redundant constraint. This happens rarely in linear programming,
and it also explains why it is not necessary to search for redundant constraints separately.
This is indeed an important advantage mainly because the techniques to find redundant
inequalities involve a lot of computation.

Theorem 3. Consider Problem (12), where ak and bk are given in (13), k ∈ In. Then, let J ⊆ In be
the set of indices obtained by the technique described just before Lemma 1). Then, Let J1 = {k ∈ J :
ak ≥ bk} and J2 = {k ∈ J : ak ≤ bk}. In addition, suppose that both J1 and J2 are nonempty. Then,
let k1 ∈ J1 be such that ak1 = min{ak : k ∈ J1} and bk2 = min{bk : k ∈ J2} (by the construction
of J, it follows that ak1 and bk2 are unique minimizers). Then, constraint Ck1 is either binding, or it
is strongly redundant. Similarly, constraint Ck2 is either binding, or it is strongly redundant.
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Proof. Due to the absolutely similar reasoning of the assertions, we prove only the first one.
Suppose that Ck1 is not strongly redundant. Again, let f (t1, t2) = t1 + t2 be the objective
function. We have two cases: (i) the point

(
1/ak1 , 0

)
belongs to the feasible region and (ii)(

1/ak1 , 0
)

does not belong to the feasible region.
For case (i), since ak1 ≤ bk1 , with reasoning as in the proof of Lemma 1, it follows that

f
(
1/ak1 , 0

)
≤ f (t1, t2) ≤ f

(
0, 1/bk1

)
for any feasible point (t1, t2) that satisfies constraint

Ck1 with equality. Now, if (t1, t2) is an arbitrary feasible point, it is clear that the intersection
of the segments [(0, 0), (t1, t2)] and

[(
1/ak1 , 0

)
,
(
0, 1/bk1

)]
is nonempty. Let (u1, u2) be in

this intersection. With reasoning as in the proof of Lemma 1, we obtain that f (t1, t2) ≥
f (u1, u2) ≥ f

(
1/ak1 , 0

)
. This means that

(
1/ak1 , 0

)
is an optimal solution of Problem (12).

For case (ii), from all the feasible points that satisfy constraint Ck1 with equality, we
chose the one for which the first component has the maximum value. In other words,
considering the intersection of

[(
1/ak1 , 0

)
,
(
0, 1/bk1

)]
with the feasible region, we take the

point which is nearest to
(
1/ak1 , 0

)
with respect to the usual Euclidean metric in R2. Let us

denote this point with
(
t∗1 , t∗2

)
. Note that since the feasible region is a closed and convex

subset of R2, this intersection is a closed segment; therefore, the construction of
(
t∗1 , t∗2

)
is

correct. Suppose that a0 = min{ak : k ∈ J}. It is immediate that 1/a0 is a feasible point
of Problem (12). As 1/ak1 is not, it necessarily follows that ak1 > a0. From this property
it results that there exists a constraint Cl such that

(
t∗1 , t∗2

)
satisfies this constraint with

equality and such that al < ak1 . This property can be easily deduced using some elementary
geometrical reasoning. For the sake of correctness, let us give a rigorous proof. Let us choose
arbitrary k ∈ J such that ak < ak1 (such element exists since ak1 > a0). In this case, the
solution of the system ak1 t1 + bk1 t2 = 1, akt1 + bkt2 = 1, must have its (unique) solution on
the segment

[(
t∗1 , t∗2

)
,
(
1/ak1 , 0

)]
. Otherwise, then (0, 0) and

(
t∗1 , t∗2

)
would be on the same

semispace with respect to the separating line akx + bky = 1; hence, akt∗1 + bkt∗2 < 1. This
implies that

(
t∗1 , t∗2

)
is not feasible, which is a contradiction. Now, let us choose an arbitrary

k ∈ J such that ak > ak1 . In this case, the unique solution of system ak1 t1 + bk1 t2 = 1,
akt1 + bkt2 = 1, t1 ≥ 0, t2 ≥ 0, lies on the segment

[(
t∗1 , t∗2

)
,
(
0, 1/bk1

)]
. Otherwise, we

obtain the same contradiction as above. Now, by way of contradiction, suppose that for
any k ∈ J, such that ak < ak1 , we have akt∗1 + bkt∗2 6= 1. Using the properties mentioned
just above, we obtain that akt∗1 + bkt∗2 > 1. Then, if k ∈ J is such that ak > ak1 , we obtain
that akt1 + bkt2 ≥ 1 for all (t1, t2) ∈

[(
t∗1 , t∗2

)
,
(
1/ak1 , 0

)]
. All these imply that there exists

(t1, t2) ∈
[(

t∗1 , t∗2
)
,
(
1/ak1 , 0

)]
sufficiently close to

(
t∗1 , t∗2

)
, such that t1 > t∗1 and such that

akt1 + bkt2 ≥ 1, for all k ∈ J. This means that (t1, t2) is a feasible point for Problem (12).
On the other hand, (t1, t2) satisfies constraint Ck1 with equality and t1 > t∗1 . This contradicts
the construction of t∗1 . Therefore, there exists a constraint Cl such that

(
t∗1 , t∗2

)
satisfies this

constraint with equality and such that al < ak1 . By the construction of ak1 , it follows that
al < bl . Therefore,

(
t∗1 , t∗2

)
is a feasible point which is a solution of the system{

ak1 t1 + bk1 t2 = 1,
alt1 + blt2 = 1,

where ak1 ≥ bk1 and al < bl . By Lemma 1, it follows that
(
t∗1 , t∗2

)
is an optimal solution

for Problem (12). The proof is complete now. In the case of constraint Ck2 , the reasoning is
identical. In this case, if Ck2 is binding, then the optimal solution is the feasible point that
satisfies Ck2 with equality and which is the nearest to

(
0, 1/bk2

)
, which equivalently means

that from all feasible points that satisfy Ck2 with equality, it has the the minimum value for
the first component.

From the above theorem, we can actually describe precisely the optimal point. We did
that in the proof, but it is worthwhile to highlight this fact in the following corollary given
without proof since it is nothing else but an analytical characterization of the optimal
solution obtained in the previous theorem.
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Corollary 1. Consider all hypotheses and notations from Theorem 3. If Ck1 is binding, then let
[α, β] be the solution set of variable t1 obtained after we solve the system of the constraints with the
substitution t2 =

(
1− ak1 t1

)
/bk1 (as Ck1 is binding, this solution set is always nonempty). Then

an optimal solution of problem (12) is
(

β,
(
1− ak1 β

)
/bk1

)
and the optimal value is

(
1− ak1 /bk1

)
β

+ 1/bk1 . Then, if Ck2 is binding, denote again with [α, β] the solution set of variable t1 using the sub-
stitution t2 =

(
1− ak2 t1

)
/bk2 . Then, an optimal solution of problem (12) is

(
α,
(
1− ak2 α

)
/bk2

)
,

and the optimal value is
(
1− ak2 /bk2

)
α + 1/bk2 .

Now, we are in position to present an algorithm that will give us a solution of
Problem (12). Obviously, there are two methods to approach the solution. Either we
search the binding constraint in the set J1 or we search in the set J2. If we would make
simulations on very large numbers of such problems, we believe that we would obtain
on average the same running time. In general, we will apply the algorithm using J1 if its
cardinal is less than or equal to the cardinal of J2; otherwise, we will apply the algorithm
using J2. We can also propose an algorithm that takes into consideration both sets J1 and J2.
First, we search the binding constraint on J1 taking the constraint Ck1 as described in the
statement of Theorem 3. If Ck1 is binding, then we find the optimal solution as described in
the previous corollary. If Ck1 is redundant, then we check the constraint Ck2 in J2 selected
exactly as in the statement of Theorem 3. If Ck1 is binding, then we find the optimal solution
as described in the previous corollary. If not, then we update J1 = J1 \ {k1} and search
again for the constraint in J1 according to the construction in Theorem 3, and so on. We
omit this second variant because we think it is slower in general.

In Algorithm 1, we search for the binding constraint from beginning to end either in
J1 or in J2. The first two steps are essential in our choice. For that, we need to compute
ak∗ = min{ak : k ∈ J} and bk∗∗ = min{bk : k ∈ J}. Note that besides computing ak∗ and
bk∗∗ , we will also need to identify the indexes ak∗ and bk∗∗ .

Algorithm 1: solution
Step 1
If ak∗ ≥ bk∗ , then (1/ak∗ , 0) is an optimal solution of Problem (12), and 1/ak∗ is the
optimal value of Problem (12). If ak∗ < bk∗ , then go to step 2.

Step 2
If ak∗∗ ≤ bk∗∗ , then (0, 1/bk∗∗) is the optimal solution of Problem (12) and 1/bk∗∗ is
the optimal value of Problem (12). If ak∗∗ > bk∗∗ then go to step 3.

Step 3
If we reached this step of the algorithm, it means that both J1 and J2 are nonempty.
What is more, both of them contain at least one index corresponding to a binding
constraint. Let us explain for J1, since for J2, the explanation is identical.
As ak∗∗ > bk∗∗ , it follows that k∗∗ is in J1. If Ck would be strongly redundant for
any k ∈ J1 such that ak < ak∗∗ , then by Theorem 3, it easily follows that constraint
Ck∗∗ is binding. Here, we need to decide if we search the binding constraint
considering the set J1 or the set J2. We can impose a selection criterion.
For example, we choose to go with J1 if its cardinal is less than or equal to the
cardinal of J2 and with J2 otherwise. In what follows, we explain the algorithm
when the option is J1, and at the end of it, we explain in a remark the very small
differences that occur in the case when the option is J2.

Take al1 = min{ak : k ∈ J1}. We solve the system of the constraints indexed in J with
the substitution t2 =

(
1− al1 t1

)
/bl1 . If we obtain for variable t1 the solution [α, β]

then an optimal solution of problem (12) is
(

β,
(
1− al1 β

)
/bl1

)
, and the optimal

value is
(
1− al1 /bl1

)
β + 1/bl1 . If this system has no solution, then go to step 4.

Step 4
We set J := J \ {l1} and J1 := J1 \ {l1}, and we repeat all steps 1–3 for the newly

obtained J and J1.
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We observe that step 3 is repeated until we get the first binding constraint, and we
know that in the worst case this binding constraint is Ck∗∗ . We also have to notice that
we have a maximum of n− 1 iterations in terms of repeatedly applying step 3. What is
more, if we chose to go with J1 because its cardinal does not exceed the cardinal of J2,
then we have at most [|J|/2] + 1 iterations (here, [·] stands for the integer part of a real
number). The most important utility of Algorithm 1 is that it helps us to indicate the
binding constraint or the binding constraints, respectively, in Theorem 2, corresponding to
case (iii) or (iv), respectively.

Remark 2. If we go with J2 instead of J1, then we just need to adapt the calculations in step 3. First,
we take bp1 = min{bk : k ∈ J2}. Then, we solve the system of the constraints with the substitution
t2 =

(
1− ap1 t1

)
/bp1 . If we obtain for variable t1 the solution [α, β], then the optimal solution

of problem (12) is
(
α,
(
1− ap1 α

)
/bp1

)
and the optimal value is

(
1− ap1 /bp1

)
α + 1/bp1 . If this

system has no solution, then go to step 4, where this time, we set J := J \ {p1} and J2 := J2 \ {p1},
and we repeat step 3 for the newly obtained J and J2.

Remark 3. Another useful remark is that we can slightly accelerate the algorithm at step 3. Suppose
again that we choose to go with J1. Instead of solving the system of constraints with the substitution
t2 =

(
1− al1 t1

)
/bl1 , we can use a different approach. For any k ∈ J2, we solve the system

al1 t1 + bl1 t2 = 1, akt1 + bkt2 = 1. From all solutions, we select the one for which the first
component has the minimum value. Suppose this solution is

(
t∗1 , t∗2

)
. If

(
t∗1 , t∗2

)
satisfies all the

constraints indexed in J2, then
(
t∗1 , t∗2

)
is the optimal solution of problem (12). Otherwise, if there

exists a constraint indexed in J2 that is not satisfied by
(
t∗1 , t∗2

)
, then constraint Cl1 is strongly

redundant, and we move to step 4. It seems that, in general, this method is slightly faster than the
one described in the algorithm in the cases when n is sufficiently large.

4. Some Concrete Examples

In what follows, first, we present some examples on which we test Algorithm 1. Finally,
we apply the algorithm to solve a concrete constrained OWA aggregation problem.

Example 1. Let us consider the problem

t1 + t2 → min ,

subject to 
2t1 + 4t2 ≥ 1,
4t1 + t2 ≥ 1,
3t1 + 2t2 ≥ 1,
7t1 + 5t2 ≥ 1,

t1, t2 ≥ 0.

We observe that ak∗ = min{ak : k ∈ J} = 2 and bk∗∗ = min{bk : k ∈ J} = 1. Since
bk∗ = 4 > ak∗ and ak∗∗ = 4 > bk∗∗ , it follows that we can move to step three in Algorithm 1. It
is easily seen that J1 = {2, 3, 4} and J2 = {1} . Clearly, the simplest way to reach the solution is
to go with J2 since it has just one element. Practically, this means that constraint C1 is binding.
According to the first algorithm, we solve the system of the constraints in the special case when
t2 = 1−2t1

4 . Thus, we obtain the system of inequalities

4t1 +
1−2t1

4 ≥ 1,
3t1 + 2 · 1−2t1

4 ≥ 1,
7t1 + 5 · 1−2t1

4 ≥ 1,
1− 2t1 ≥ 0,

t1 ≥ 0.
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By simple calculations, the above system has the solution t1 ∈
[

1
4 , 1

2

]
. By using the first

algorithm we get that t∗1 = 1
4 and by the substitutions used here, we get that t∗2 =

1−2t∗1
4 = 1

8 .

Therefore,
(

1
4 , 1

8

)
is the optimal solution of our problem, and t∗1 + t∗2 = 3

8 is the optimal value.
Even if J1 has three elements, we do not need more iterations. Indeed, al1 = min{ak : k ∈ J1} = 3.
Thus, we need to solve the system of the constraints under the substitution t2 = 1−3t1

2 . By simple

calculations, we obtain t1 ∈
[

1
5 , 1

4

]
; hence, we obtain the optimal solution at the first attempt. Note

that with the second algorithm, no additional iterations are needed.

The following example shows that sometimes we may need step 4 of the first algorithm.

Example 2. Let us consider the problem

t1 + t2 → min ,

subject to 

1
2 t1 +

1
6 t2 ≥ 1,

1
3 t1 +

1
12 t2 ≥ 1,

1
4 t1 +

1
4 t2 ≥ 1,

1
5 t1 +

1
3 t2 ≥ 1,

1
6 t1 +

1
2 t2 ≥ 1,

t1, t2 ≥ 0.

Again, we cannot obtain the solution in the first two steps of Algorithm 1. Therefore, we move
again to the third step. We have J1 = {1, 2, 3} and J2 = {3, 4, 5}. First, let us apply the algorithm
for J1. We observe that ak∗ = min{ak : k ∈ J1} = a3 = 4. Therefore, we have to solve the system
of the constraints in the special case when t2 = 4− t1. After simple calculations, we get that this
system has no solution. This means that constraint C3 is redundant. This means that we have to go
to step 4. We set J1 := J1 \ {3}. Now, min{ak : k ∈ J1} = a2 = 1/3. We have to solve the system
of constraints in the special case when t2 = 12− 4t1. We obtain the system

1
2 t1 +

1
6 · (12− 4t1) ≥ 1,

1
4 t1 +

1
4 · (12− 4t1) ≥ 1,

1
5 t1 +

1
3 · (12− 4t1) ≥ 1,

1
6 t1 +

1
2 · (12− 4t1) ≥ 1,

12− 4t1 ≥ 0,
t1 ≥ 0.

Example 3. Let us now find the optimal solution of a constrained OWA aggregation problem with
two comonotone constraints. We noticed that most often, we obtain a lot of redundant constraints in
the auxiliary Problem (12). However, sometimes, we can obtain situations where Step 3 is needed in
Algorithm 1. In our example, we consider the case n = 3, which we believe suffices to explain how
the algorithm work. Since Algorithm 1 can easily be implemented on computer, one may consider
higher values for n.

Consider the problem 
max

(
1

26 y1 +
5

26 y2 +
10
13 y3

)
,

1
6 x1 +

17
6 x2 +

7
2 x3 ≤ 1,

1
2 x1 +

1
2 x2 +

11
2 x3 ≤ 1,

x1, x2, x3 ≥ 0.

(14)
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Clearly, we have two comonotone constraints here; therefore, we need the auxiliary problem (12),
and by simple calculations this problem is

min(t1 + t2),
13
3 t1 + 13t2 ≥ 1,

13t1 +
13
3 t2 ≥ 1,

13
2 t1 +

13
2 t2 ≥ 1,

t1, t2 ≥ 0.

(15)

We have
ak∗ = min{ak : k ∈ {1, 2, 3}} = a1 =

13
3

< b1

and
bk∗∗ = min{bk : k ∈ {1, 2, 3}} = b2 =

13
3

< a2.

This means that we need Step 3 in Algorithm 1. We have J1 = {2, 3} and min{ak : k ∈
J1} = a3 = 13

2 . Therefore, we solve the system of constraints in (15) in the special case when

t2 =
1− 13

2 t1
13
2

=
2− 13t1

13
,

that is, when constraint 3 is satisfied with an equality. After simple calculations, we obtain the
solution of this system as the interval

[
1

26 , 3
26

]
. This means that case (iii) in Theorem 2 is applicable,

and by applying the formula for this case, we obtain that an optimal solution for problem (14) is

x1 = x2 = x3 =
1

α1 + α2 + α3
=

2
13

and the optimal value of this problem is 2
13 .

5. Conclusions

In this paper, we extended the solving of the constrained OWA aggregation problem
with two comonotone constraints to the case when the OWA weights are arbitrary non-
negative numbers. Moreover, we proposed an iterative algorithm to approach the optimal
solution. This algorithm indicates a constraint that is either biding or strictly redundant.
We hope this is a first step towards the solving of constrained OWA aggregation problems
with an arbitrary number of constraints.
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