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Abstract: Speech signals carry various bits of information relevant to the speaker such as age,
gender, accent, language, health, and emotions. Emotions are conveyed through modulations
of facial and vocal expressions. This paper conducts an empirical comparison of performances
between the classical classifiers: Gaussian Mixture Model (GMM), Support Vector Machine (SVM),
K-Nearest Neighbors (KNN), Artificial neural networks (ANN); and the deep learning classifiers,
i.e., Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and Gated Recurrent
Unit (GRU) in addition to the ivector approach for a text-independent speaker verification task in
neutral and emotional talking environments. The deep models undergo hyperparameter tuning
using the Grid Search optimization algorithm. The models are trained and tested using a private
Arabic Emirati Speech Database, Ryerson Audio–Visual Database of Emotional Speech and Song
dataset (RAVDESS) database, and a public Crowd-Sourced Emotional Multimodal Actors (CREMA)
database. Experimental results illustrate that deep architectures do not necessarily outperform
classical classifiers. In fact, evaluation was carried out through Equal Error Rate (EER) along with
Area Under the Curve (AUC) scores. The findings reveal that the GMM model yields the lowest
EER values and the best AUC scores across all datasets, amongst classical classifiers. In addition,
the ivector model surpasses all the fine-tuned deep models (CNN, LSTM, and GRU) based on both
evaluation metrics in the neutral, as well as the emotional speech. In addition, the GMM outperforms
the ivector using the Emirati and RAVDESS databases.

Keywords: classical classifiers; deep neural network; emotional speech; feature extraction;
speaker verification

1. Introduction

Speaker recognition is broadly classified into two distinct areas, i.e., speaker identifica-
tion and speaker verification or authentication [1]. The former technology describes the
process of identifying the identity claim from a pool of already known users using specific
acoustic features embedded and retained in speech signals; whereas the latter details a
process used to check and inspect whether the claimed user identity is genuine (claimant)
or not (imposter/background) based on acoustic models stored in a database.

Speaker recognition systems come in two forms concerning spoken text: text-dependent
and text-independent. Text-dependent systems necessitate that the utterances under
evaluation utter the same text at training and testing levels, whereas systems with text-
independency have no constraint in terms of samples of speech being uttered in the training
and testing stages.

Presently, such verification systems are considered prevalent and have a wide range of
usages from biometric user verification, surveillance, and forensics, to security applications
including credit card payments, access control to computer networks, call monitoring, and
online banking access [2].
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In general, the speaker verification protocol involves three main phases: develop-
ment/training, enrollment, and evaluation [3]. The task of each stage is briefly stated below.

• Development/Training: internal representations are learned from the corresponding
speaker’s acoustic frames.

• Enrollment: voiceprints are derived from voice samples.
• Evaluation: verification is achieved by comparing the test utterance speaker represen-

tation against the speaker models [3].

This work carries out an empirical comparison of performance results among fine-
tuned Deep Neural Networks (DNNs) models, the ivector approach, and several classical
classifiers for speaker verification in emotional milieus using Mel Frequency Cepstrum
Coefficients (MFCCs) as the extracted features. For this task, the results demonstrate that
the traditional GMM classifier outperforms the ivector, as well as the fine-tuned deep
models using the private Arabic Emirati Speech database and the RAVDESS dataset. Using
the CREMA database, the ivector surpasses all other classifiers. This emphasizes the fact
that deep models are not always the best choice when dealing with machine learning, as per
Saez et al. [4]. Zappone et al. [5] stated that the system demands relatively large datasets
in order to achieve high performance in deep learning networks. For smaller datasets,
classical algorithms could surpass deep learning. In general, results show that GMM is
the best model amongst traditional models and that ivector surpasses the finetuned CNN,
LSTM, and GRU models.

The rest of this paper is structured as follows. In Section 2, a thorough literature review
is conducted followed by the contribution of our work. In Section 3, the emotional speech
corpora and feature extraction techniques are introduced. In Section 4, the fundamentals
of classical classifiers are presented along with their corresponding configurations and
verification systems. In Section 5, the DNN-based speaker verification setup is explained.
The decision threshold and the verification process are introduced in Section 6, while
the experimental results are discussed thoroughly in Section 7. Lastly, in Section 8, the
conclusions, limitations, and future work directions are provided.

2. Literature Review
2.1. Speaker Verification Using Classical Classifiers

There have been several efforts to study speaker verification in the neutral acoustic
environment using classical models [6–13].

Wan and Campbell [6] studied the speaker verification and speaker identification
performance of the SVM model on the YOHO database. The authors developed a novel
normalization technique of the polynomial kernel and the experimental results showed
that the achieved performance is comparable to that of the GMM model.

Vivaracho et al. [7] conducted a comparative study between GMM-based and ANN-based
models in text-independent speaker verification systems using the AHUMADA/GAUDI
Spanish dataset. The results using a GMM-based system and microphonic speech demon-
strated better verification performance. However, the ANN surpassed the GMM results when
testing in specific circumstances and with real telephone speech.

In [10], Alarifi et al. suggested and analyzed the performance of their novel Arabic
text-dependent speaker verification system using ANNs. The proposed system can be
used as an application for access control in cellular devices. Test results showed that the
verification performance obtained using the ANN model is better than that of the SVM.

On the other hand, limited studies have tackled speaker verification problems on emo-
tional speech using the traditional approaches [14–16]. Wu et al. [14] studied the influence
of emotional features on the verification performance in a GMM-UBM model. The authors
suggested an emotion-dependent score normalization approach for speaker verification
tasks under emotional data conditions. The results attained an average speaker verification
performance equivalent to 88.5%. Mittal and Dua [17] listed different approaches to the
design backend of Automatic Speaker Verification system. These approaches are based on
classical, as well as deep learning. The authors concluded that the latest artificial intelli-
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gence techniques do not properly target Mimicry and Twins attacks. Ferrer et al. [18] raised
the issues of speaker verification in unknown conditions during development. The authors
proposed a new model using an adaptive calibrator that modifies the standard backend
which yielded better results. Liu et al. [19] proposed a neural acoustic-phonetic approach
that assigns differentiated weights dynamically to spectral features for speaker verification.
The proposed model surpasses baseline models.

The standard approach involves modeling text-independent speaker recognition ap-
plications as (GMM) via Model (UBM) [20]. The GMM-UBM paradigm [21] was followed
sequentially by joint factor analysis (JFA) and the widely known ivector speaker representa-
tions [22,23]. The downside of these approaches is their unsupervised nature which is not
consistent with speaker verification tasks. Hence, they were further enhanced by propos-
ing certain techniques which supervise and handle the training of the abovementioned
models such as the SVM-based GMM-UBMs [14] and the Probabilistic Linear Discriminant
Analysis (PLDA)-based ivectors [24].

Current studies are focused on improving some classical classifiers by enhancing their
performances or making them hybrid, such as the study by Kumar and Bharathi [25]. With
both generative and discriminative classifiers, the presented work aims to evaluate the
behavior of a spoof detection countermeasure utilizing linear frequency cepstral coefficients.
The analysis is conducted on non-emphasized statements. Bidirectional long short-term
memory (discriminative) and Gaussian mixture model (generative) classifiers are employed.
The empirical findings reveal that the generative classifier significantly outperformed the
discriminative classifier in detecting spoof attacks under logical access conditions, and that
the discriminative classifier significantly outperformed the generative model in detecting
spoof attacks under physical access conditions.

2.2. Speaker Verification Using Deep Learning

Alam et al. in [26] studied the use of the low-variance multi-taper MFCC along with
perceptual linear prediction (PLP) features in an ivector speaker verification task in neutral
condition. The achieved results demonstrated that both MFCC and PLP features, calculated
through multi-tapers, yielded systematic improvements concerning recognition accuracy.

Chen et al. [27] suggested extracting local session variability vectors on diverse pho-
netic categories from the utterances rather than estimating the session variability through-
out the entire utterance as the ivector-based architecture does. The local vectors depicted
the session variability retained in specific phonetic content employing the posteriors driven
using a deep neural network which was modeled to classify phone states. Experimental
results indicated that the content-aware local vectors outperformed the DNN ivectors with
respect to test utterances of short durations.

Zhu et al. in [28] introduced a novel approach to identify speaker embeddings using
deep learning models. Their results demonstrated that the suggested self-attentive embed-
dings achieved superior performance compared to the classical ivector approach for both
long and short testing utterances.

Mobiny and Najarian [29] proposed a text-independent scenario for the speaker
verification problem using LSTM neural networks through MFCC speech features in an
end-to-end manner. The performance results demonstrated its superiority compared to
other traditional methods. EER results gave 22.9% using the proposed LSTM and 27.1%,
24.7%, 23.5% in GMM-UBM, ivector and ivector + PLDA, respectively.

In a different work, Hourri et al. [30] proposed the use of two-dimensional CNN filters
in order to extract speaker-specific information in speaker verification tasks. Moreover,
the authors proposed novel vectors called conVectors (i.e., a convolutional neural network
vector) to recognize speakers. The evaluation was conducted on the THUYG-20 SRE gender-
dependent database under three noise conditions: clean, 9 db, and 0 db. The results showed
that the use of the proposed vectors enhanced the verification performance compared to
the state-of-the-art methods for speaker verification.
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A recent study by Shahin et al. [31] discussed an empirical comparison examination
into the performance of text-independent speaker verification in emotional and stressful
talking conditions. The study used a combination of DNN deep models along with classical
models, producing a novel hybrid classifier as a result. Three datasets were used to
assist their experiments, namely an Arabic Emirati dataset, Speech Under Simulated and
Actual Stress (SUSAS) and Ryerson Audio–Visual Database of Emotional Speech and
Song (RAVDESS). Based on HMM-DNN, DNN-HMM, DNN-GMM, and GMM-DNN,
respectively, the average verification system based on the three databases yielded EERs
of 7.19, 16.85, 11.51, and 11.90%. In addition, in both talking conditions, the DNN-GMM
model showed the least computational complexity compared to the other hybrid models.

Another recent study by Mohammed et al. [32] focused on analyzing speaker identifica-
tion, recognition, and verification methods and technique. This study includes a summary
of speaker verification literature as well as statistical studies to depict the publications and
their categories.

2.3. Contribution

To the best of our knowledge, this work is the first of its kind where an empirical
study is conducted by executing a diligent assessment and a pragmatic comparison of
speaker verification performance between four classical classifiers (GMM, SVM, KNN,
and ANN) with three distinct deep learning models (CNN, LSTM, and GRU), using the
d-vector approach, in emotional talking environments, in addition to the ivector approach.
The tuning of hyperparameters using grid search is applied to deep models. Evaluation
is assessed on three different speech datasets: the private Arabic Emirati speech corpus,
CREMA database, and RAVDESS dataset.

• Unlike previous studies, the d-vector approach implemented in this work uses CNN,
as well as recurrent neural networks (LSTM and GRU) layers in order to extract
speaker intrinsic voice characteristics from unbiased utterances rather than using
CNNs and locally connected networks (LCNs) as in [33], or fully connected maxout
layers as in [34], or LSTM layers only as in [35].

• Optimum values of CNN, LSTM, and GRU model hyperparameters are computed
using the Grid Search (GS) tuning approach.

• In addition, all state-of-the-art studies examined the verification performance using
the d-vector as well as the ivector method on neutrally uttered speech only. However,
this paper focuses on neutral speech in addition to speech expressed as a function of
emotions, namely, anger, sadness, happiness, disgust, and fear.

3. Datasets

A total of three datasets were used for our experiments: A private Arabic Emi-
rati speech database (ESD), the Crowd-Sourced Emotional Multimodal Actors dataset
(CREMA), and the Ryerson Audio–Visual Database of Emotional Speech and Song
dataset (RAVDESS).

3.1. Arabic Emirati Speech Dataset

This speech dataset consists of 31 inexpert native Emirati speakers (22 females, 9 males),
with ages ranging from 15 to 50 years old. Each selected speaker was asked to utter eight
different local Arabic phrases commonly used in the United Arab Emirates. Every single
phrase was replicated nine times with a duration range between 2–5 s in both neutral
and emotional acoustic atmospheres. The acted emotions are: anger, fear, disgust, hap-
piness, sadness, and neutral. The utterances and their corresponding English translation
are presented in Figure 1. The training stage is composed of 24 speakers out of 31 speak-
ers (7 males and 17 females) articulating 5 out of the 8 sentences. During this phase,
each speaker replicates each sentence 9 times in the neutral state. Therefore, the over-
all number of utterances utilized in the training stage is equivalent to 1080 utterances
(24 speakers × 5 sentences × 9 replicates/sentence × neutral state). The enrollment and
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evaluation phases comprise each one of the remaining 7 speakers (2 males and 5 females).
In enrollment, the corresponding speakers utter the first 5 statements neutrally resulting in
a total of 315 utterances (7 speakers × 5 sentences × 9 replicates/sentence × neutral state).
In the test phase, the corresponding speakers expressed the remaining 3 sentences (out
of 8) with 9 replications per sentence under each of the neutral, angry, happy, sad, fear,
and disgust emotions. Hence, the test phase involves a total of 1134 utterances
(7 speakers × 3 sentences × 9 repetitions × 6 emotions). In other words, 189 utterances
are the total number of speech samples for neutral and each of the emotional states. This
privately collected database was recorded at the College of Communication at the Univer-
sity of Sharjah, United Arab Emirates. It was obtained using a speech acquisition board
through a 16-bit linear coding analog-to-digital converter and sampled at a rate of 44.6 kHz.
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3.2. Crowd-Sourced Emotional Multimodal Actors Dataset

The emotional CREMA dataset is a multimodal audio–visual English dataset composed
of 7442 clips issued from a total of 91 speakers (48 male and 43 female) of varied ages and
ethnicity [36]. Each speaker recorded 12 distinct utterances in six different emotional categories:
neutral, anger, sad, happy, fear, and disgust. Examples of utterances are: “Don’t forget a jacket
(DFA)”, “I think I’ve seen this before (ITS)”, “The surface is slick (TSI)” and “We’ll stop in a cou-
ple of minutes (WSI)”. In the training phase, 70 speakers out of 91 speakers are allocated. Each
speaker expresses 8 out of 12 sentences with one replication per sentence under the neutral emo-
tion. Therefore, the training phase involves a total of 560 sentences (70 speakers × 8 sentences
× 1 time/sentence × neutral state). For enrollment, the remaining 21 speakers uttering the
first 8 sentences in the neutral state are used. In enrollment, the total number of sentences
utilized is equal to 168 (21 speakers × 8 sentences × 1 time/sentence × neutral state). The
evaluation stage includes the remaining 21 speakers speaking the last remaining 4 sentences
under each of the emotional states. Therefore, the size of the dataset in the evaluation phase
is equivalent to 504 (21 speakers × 4 sentences × 1 time/sentence × 6 emotional classes).
Consequently, the number of utterances under each emotional state is 84.

3.3. Ryerson Audio–Visual Database of Emotional Speech and Song Dataset

RAVDESS is an English database with a total of 7356 recorded files involving a total of
24 professional actors and actresses (12 male and 12 female) [37]. It consists of two different
utterances expressed in a neutral North American English accent. The corpus contains 1440 au-
dio files (60 trials/speaker × 24 speakers), 1012 song files (44 trials/speaker × 23 speakers),
and 4904 video and audio–visual files. In this work, only audio and song files are used. The
RAVDESS dataset comprises eight different emotional classes. Only six of them are consid-
ered which are neutral, anger, sad, happy, fear, and disgust. The training stage involves
20 speakers (10 male and 10 female) out of 24 speakers expressing the first utterance (out of
2) with a replication of 2 times per utterance expressed in the neutral emotion. Therefore,
the total number of utterances in the training phase is equal to 78 utterances originating
from both audio and song files: 40 utterances from the audio files (20 speakers × 1 sentence
× 2 trials/sentence × neutral state) + 38 utterances from the song files (19 speakers ×
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1 sentence × 2 trials/sentence × neutral state). The remaining 4 speakers (2 male and
2 female) are utilized for enrollment and test stages. For enrollment, the corresponding
speakers utter the first statement neutrally resulting in a total of 8 utterances from audio
files (4 speakers × 1 sentence × 2 trials/sentence × Neutral state) + 8 utterances from the
song files (4 speakers × 1 sentence × 2 trials/sentence × Neutral state). For the test phase,
the corresponding speakers speak the second utterance neutrally and under each of the
emotional conditions. Therefore, a total of 176 utterances from both audio and song files
are designated for the test phase. Under the neutral state, a total of 16 utterances (8 from audio
and 8 from song files) (4 speakers× 1 sentence× 2 trials/sentence×Neutral state). Under each
of Disgust, Angry, Sad, Happy and Fear emotions: a total of 32 utterances (16 from audio and 16
from song files) are utilized (4 speakers× 1 sentence× 4 trials/sentence× 5 emotional states).

3.4. Feature Extraction

Various aspects are involved in uniquely characterizing one’s voice such as the struc-
ture of the vocal tract, regional accents, intonation, mood, and speaking style. Similarly,
audio signals are affected by several parameters which vary with the different recording
circumstances such as background noise, microphone distortion, etc. Consequently, the
need for a robust feature extraction process is vital in automatic speaker recognition systems
to grasp only informative and non-redundant linguistic content [14,38].

In this study, MFCC features are the coefficients utilized to characterize the phonemic
content and to learn a compact representation of the spectrogram of audio signals in both
speech corpora [39].

The feature extraction uses a concatenation of MFCCs, MFCCs-delta and delta-delta.
In this work, 40-dimensional audio features were extracted using the libROSA pack-
age designated for music and audio analysis in Python [40]. Features were resampled
to 16 kHz, then segmented into frames of 32 ms with a Fast Fourier Transform (FFT)
window length of 2048 and frame length of 512 which yielded 75% overlap between
successive frames.

4. Classical Classifiers
4.1. Gaussian Mixture Models

A Gaussian mixture model is considered as a probabilistic clustering model which rep-
resents the existence of normally distributed subpopulations within an overall
population [21,41].

The mixture density utilized for the likelihood function can be numerically expressed
as follows [41],

P(x|λ) =
M

∑
i=1

wi pi(x) (1)

where x is the D-dimensional feature vector, pi(x) is defined as a weighted linear combina-
tion of M unimodal Gaussian densities, each parameterized by a mean D× 1 vector, ui and
a D × D covariance matrix, ∑ i, [41]:

pi(x) =
1

(2 π)
D
2 |∑ i|

1
2

exp
{
−1

2
(x− ui)

′ (∑ i
)−1

(x− ui)

}
(2)

4.2. Support Vector Machines

SVM is considered a binary discriminative model defined by a linear decision bound-
ary or a hyperplane that optimally separates given points into two predefined classes [9].

The SVM classifier is constructed from sums of a known kernel function K(., .) in order
to outline a hyperplane

f (x) =
N

∑
i=1

∝i yiK(x, xi) + b (3)



Information 2022, 13, 456 7 of 23

where yiε {−1, 1} denotes the target values, ∑N
i=1 ∝i yi = 0 and ∝i> 0.

4.3. K-Nearest Neighbors

The KNN is a supervised learning algorithm and is a nonparametric method; meaning
no prior underlying assumptions are needed about data distribution. It can be used in
both classification and regression problems. When KNN is used for the classification
problem, the output can be predicted as the class with the highest frequency from the
K-most identical instances [42].

In this paper, KNN has been selected to perform classification tasks with K = 5.
The distance between the different data points is computed using the Euclidean distance
calculated as the square root of the sum of the squared differences between a new point yi
and an existing point xi across all input attributes k.

Euclidean =

√
∑k

i=1(xi − yi)
2 (4)

4.4. Artificial Neural Networks

Similar to neurons in a biological brain, an artificial neural network is a computational
network that is based on a collection of partially linked units or nodes, arranged in layers.
In addition, they contain interconnections between the nodes of successive layers [43].
Figure 2 demonstrates a schematic diagram of the basic configuration of a single neuron or
node within a neural network model which consists of inputs, an activation function, and
a single output. The nodes are linked through weights. The weights W characterize the
relative importance of the connection between neurons. Yi represents the output [43].
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4.5. Model Configuration and Verification

The configuration of each of the GMM, SVM, KNN, and ANN models for the Emirati
database are explained in the subsequent paragraphs. The Scikit-learn machine learning
library in Python was utilized.

4.5.1. The GMM Model

In the training phase, every speaker is characterized by a unique GMM model which
is parameterized by 16 Gaussian mixture components, each having its diagonal covariance
matrix with 200 iterations of the EM algorithm. For the Emirati database, each model is
obtained using the first 5 sentences. Each speaker repeats each sentence 9 times with neutral
emotion. This results in a total of 45 utterances (5 sentences × 9 repetitions/sentence) for
each speaker model. In the evaluation stage, the remaining 3 sentences were involved. A
total of 837 utterances (31 speakers × 3 sentences × 9 repetitions/sentence) were used in
each emotional category.

Upon the arrival of a test utterance, MFCC audio features are first extracted from the
raw signal, then log-likelihood scores are computed using Equations 10 and 11 to obtain
true (claimants) speakers and false speakers’ scores (imposters), respectively. Figure 3
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shows the histograms of scores for true and false speakers of neutral and emotional speech
for the GMM model using the Emirati database.
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The conditional probability of the observation sequence O given that it comes from
the true speaker P(O

∣∣λmodel, C) is defined by:

log P(O
∣∣λmodel, C) =

1
T

T

∑
T=1

log(ot
∣∣λmodel, C) (5)

where, O = o1, o2, . . . , ot, . . . , oT and T is the duration of an utterance.
The probability of the observation sequence O given that it comes from a false

speaker P
(

O
∣∣∣λmodel, C

)
is calculated using a set of B imposter speaker models{

λmodel, C1
, λmodel, C2

, . . . , λmodel, CB

}
as follows:

log P
(

O
∣∣∣λmodel, C

)
=

1
B

B

∑
b=1

log
[(

O
∣∣∣λmodel, Cb

)]
(6)

4.5.2. SVM, KNN and ANN Models

For the SVM model, this work utilizes a C-support vector classification with radial
basis function kernel or RBF kernel. For the KNN model configuration, the number of
neighbors is set to 5 with the Euclidean distance metric. The ANN model uses one hidden
layer with 100 neurons with a stochastic gradient descent solver for weight optimization.

Training or fitting of each of the SVM, KNN, and ANN models is accomplished by
providing the set of scaled training data as well as their corresponding target values (class
labels). The training data are the 40-order vertically stacked MFCC vectors + 40-order
MFCC-deltas + 40-order MFCC-delta-delta, whereas the class labels represent the number
of speakers available in the dataset.

5. Deep Neural Networks
5.1. System Overview

Figure 4 depicts an overview of the model’s DNN-based topology used in this verifi-
cation problem. In general, the verification task is composed of the following three stages:
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development/training, enrollment and testing. Each phase comprises input and output.
During training, each input of the DNN model is the set of training utterances 1, . . . , N,
while the output is the predicted probabilities relevant to every speaker.
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During the development stage, three distinct and independent supervised DNN-based
models (CNN, LSTM, and GRU) operating at the frame level, are designed and eventually
trained in order to learn speaker specific features. The utterances expressed neutrally
form the input of the DNNs. As DNNs assume a fixed size window of input vectors, the
utterances are framed at a sufficiently large window size (frame length), and then vertically
stacked and used as the input of the DNN. In this work, the input feature map size is equiv-
alent to 120× 120 which corresponds to frame length× number of coefficients. The number
of coefficients is the result of the concatenation of 40 MFCCs + 40 deltas + 40 delta-deltas.
Using the Emirati database, 24 speakers out of 31 speakers (17 females, 7 males) are desig-
nated for the training phase.

Using the Emirati database, 7 unseen and new speakers (5 females and 2 males) are
designated for both enrollment and evaluation phases. The enrollment utterances are
composed of the first 5 sentences, out of 8 sentences, expressed by each enrollment speaker
in the neutral state. Hence, there is a total of 315 utterances from the enrollment phase
(7 speakers × 5 sentences × 9 replicates/sentence × neutral state). During this phase, each
input to the DNN network is the enrollment utterances 1, . . . , N issued from corresponding
speakers, whereas the output is the speaker models.

In the testing phase, the input is the test utterance to be verified and the output is a
single node indicating admission or rejection of the speaker identity claim.

5.2. CNN Model
5.2.1. Development Phase

The design of the CNN model during the development phase consists of one con-
volutional hidden layer made of 128 units and a Rectified Linear Unit (ReLU) activation
function followed by one pooling layer. The output from the latter layer is flattened and
forwarded to a Dense layer with 128 units. Eventually, the resultant vector is fed to the
output layer. This layer is a dense layer with SoftMax activation function which correlates
to the number of speakers, 24, involved in this phase. The target labels are encoded and
represented as a binary class matrix ranging from 0 to N where the only component not
equivalent to zero is allocated to the corresponding speaker identity S. The model is trained
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using the categorical cross-entropy criterion and stochastic gradient descent optimizer
with a learning rate of 0.02. Figure 5 shows the background DNN model’s topology for
learning speaker audio features during the training phase. The input of the CNN model is
the stacked MFCC features of the development utterances. The output is the classification
probabilities relevant to each speaker.
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5.2.2. Enrollment Phase

First, the MFCC features are extracted from the enrollment utterances, framed, and
then stacked. Second, they are fed to the pretrained CNN model then forward propagated
through the network whose weights are kept static upon completion of model training
during the development phase. Then, the d-vector speaker discriminative information is
obtained from output activations of the last hidden layer for all frames of an utterance
(before the output layer). Each sentence engenders one d-vector. Voiceprints are given by
averaging the d-vectors of the corresponding speaker enrollment utterances.

5.2.3. Evaluation Phase

In this phase, test utterances under each of the emotional categories are framed,
stacked, and fed to the pretrained CNN model obtaining the test d-vectors. The evaluation
is performed for each utterance where the cosine distance is computed, first, between the
test d-vector and the real speaker identity model and, second, against all other speaker
models forming the true speakers and false speakers’ scores, respectively. Ultimately, the
distance is compared to a pre-defined threshold allowing for a verification decision to be
made. The value of a scoring function of an utterance X and a test speaker spk S(X, spk) is
given by:

S(X, spk) =
[

f (X)Tmspk

]
/
[
‖ f (X)‖‖mspk‖

]
(7)

where f (X) is the speaker representation and, mspk is the speaker model.

5.3. LSTM Model
5.3.1. Development Phase

The input of the LSTM model is the stacked MFCC features of the training utterances.
The LSTM model comprises one LSTM layer with 64 units followed by a Dense layer whose
units are equivalent to 64. The output vector is ultimately fed to the output layer and
predicted probabilities of each speaker are generated.
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5.3.2. Enrollment Phase

The MFCC coefficients are extracted from the enrolment utterances and fed to the
pretrained LSTM model. The d-vector speaker information is obtained from the last hidden
layer for all frames of an utterance. At the end of this stage, speaker models are produced
by averaging the d-vectors of the corresponding speaker enrollment utterances.

5.3.3. Evaluation Phase

Test utterances under each emotion are fed to the pretrained LSTM model. The
corresponding test d-vectors are obtained from the output of the last hidden layer and
speaker verification is performed as described in Section 5.2.3.

5.4. GRU Model
5.4.1. Development Phase

The GRU model is designed as follows: one GRU layer with 64 hidden units fol-
lowed by a Dense layer then an output layer. The input of the GRU model is the set of
MFCCs relevant to the enrolment utterances. The output is the predicted probability for
each speaker.

5.4.2. Enrollment Phase

The MFCC coefficients are extracted from the enrolment utterances and fed to the
pretrained GRU model. The d-vector speaker information is retrieved from the last hidden
layer for all frames of an utterance. The output from this phase is the corresponding
speaker models.

5.4.3. Evaluation Phase

During this phase, the test utterances are fed to the pretrained GRU model. The
test d-vectors are obtained from the last hidden layer and the verification of speakers is
achieved as explained in Section 5.2.3. Table 1 shows the configuration of the DNN models.

Table 1. Configuration of DNN-based models using the Emirati database.

DNN Model Layers #Layers Units Other Params.

CNN
Conv2d 1 128 Relu 1, kernel = 7, strides = 2

MaxPool2D 1 - pool_size = 2, strides = 2
Dense

Dense (Output layer) 1 128
24

-
SoftMax

LSTM
LSTM 1 64 Relu
Dense

Dense (Output layer) 1 64
24

-
SoftMax

GRU
GRU 1 64 -

Dense
Dense (Output layer) 1 64

24
-

SoftMax
1 Rectified Linear Unit activation function.

5.5. Enrollment Phase

Using the ESD database, 7 unseen and new speakers (5 females and 2 males) are
designated for both enrollment and evaluation phases. The enrollment utterances are
composed of the first 5 sentences, out of 8 sentences, expressed by each enrollment
speaker in the neutral state. Hence, a total of 315 utterances from the enrollment phase
(7 speakers × 5 sentences × 9 replicates/sentence × neutral state). First, the enrollment
utterances of a given speaker S are forward propagated through the pre-trained supervised
DNN model whose weights are kept static upon completion of model training during the
development phase. Then, the d-vector speaker discriminative information is obtained
from output activations of the last hidden layer for all frames of an utterance (before the
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SoftMax layer). Each sentence engenders one d-vector. Voiceprints are given by averaging
the d-vectors of the corresponding speaker enrollment utterances.

5.6. Evaluation Phase

Likewise, test utterances under each of the emotional categories are stacked and fed to
the DNN models, at the evaluation stage, obtaining the test d-vectors. The evaluation is
performed for each particular phrase where the cosine distance is computed, first, between
the test d-vector and the real speaker identity model and, second, against all other speaker
models forming the true speakers and false speakers’ scores, respectively. Ultimately, the
distance is compared to a pre-defined threshold allowing for a verification decision to
be made.

The value of a scoring function of an utterance X and a test speaker spk S(X, spk) is
given by [35],

S(X, spk) =
[

f (X)Tmspk

]
/
[
‖ f (X)‖‖mspk‖

]
(8)

where f (X) is the speaker representation and, mspk is the speaker model.

6. Decision Threshold and Verification Process

Speaker authentication systems commonly use a threshold to determine whether a
claimed identity counterpart is a formerly enrolled voiceprint or not. It is a paramount
parameter and a critical factor in verification and binary decision tasks. In this setup, two
potential forms of errors may arise: False Rejection (FR) and False Acceptance (FA). A
false rejection error occurs when a genuine speaker identity claim is declined; on the other
hand, a false acceptance error occurs when an imposter speaker identity claim is admitted.
The value where the False Rejection Rate (FRR) is equivalent to the False Acceptance
Rate (FAR) is called EER and it is broadly utilized as one of the key performance metrics
in authentication systems. Values where FRR is not equivalent to FAR are commonly
evaluated and assessed with detection error trade-off (DET) curves which include FRR at
the y-axis and FAR at the x-axis.

The equal error rate (EER) is calculated at different threshold values using FAR and
FRR. The EER is equivalent to when both rates are equal.

EER is where : FAR == FRR (9)

The last step in the authentication procedure is to compete for the “log-likelihood
ratio” with the “threshold” θ to admit or decline the requested speaker, i.e.,

Accept the claimed speaker if the log− likelihood ratio ≥ θ

Reject the claimed speaker if the log− likelihood ratio < θ

The log-likelihood ratio is given by the following formula:

log−likelihood ratio = log
[
P(O

∣∣λmodel, C)
]
− log

[
P
(

O
∣∣∣λmodel, C

)]
(10)

7. Results and Discussion

In order to evaluate and assess the verification performance, EER values along with
AUC scores are computed for each of the private Emirati dataset, CREMA dataset, and
RAVDESS. Table 2 demonstrates that utterances expressed neutrally have the lowest EER
percentage value in comparison with other phrases spoken in the different emotional
categories based on classical classifiers as well as on deep learning classifiers and ivector.
On the other hand, results report that phrases that are portrayed with Anger have the
highest error rates based on all classifiers.
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Table 2. Percentage EER values of classical and deep models using Emirati dataset.

Equal Error Rate (EER) (%) Collected Emirati Dataset

GMM
EER AUC

KNN
EER AUC

SVM
EER AUC

ANN
EER AUC

ivector
EER AUC

CNN
EER AUC

LSTM
EER AUC

GRU
EER AUC

Neutral 1.43 0.99 19.00 0.16 9.00 0.09 10.00 0.09 8.55 0.97 12.83 0.93 9.13 0.95 8.91 0.96

Anger 12.49 0.94 42.00 0.24 29.00 0.21 37.00 0.23 12.83 0.94 13.89 0.91 12.70 0.94 14.77 0.92

Happy 5.32 0.98 35.00 0.23 21.00 0.17 23.00 0.18 10.1 0.95 14.86 0.92 11.64 0.94 12.79 0.94

Sad 2.63 0.98 45.00 0.25 25.00 0.19 25.00 0.19 9.08 0.97 15.34 0.91 12.74 0.95 10.54 0.94

Fear 3.70 0.99 45.00 0.25 24.00 0.18 23.00 0.18 9.18 0.97 13.89 0.91 12.26 0.94 11.77 0.95

Disgust 2.27 0.99 29.00 0.20 15.00 0.13 16.00 0.13 10.1 0.96 16.58 0.91 10.11 0.95 11.66 0.94

Average 4.64 0.97 35.83 0.22 20.5 0.16 22.33 0.16 9.97 0.96 14.56 0.92 11.43 0.94 11.74 0.94

Based on EER results using the Emirati database shown in Table 2, it is apparent that
the ivector surpasses the fine-tuned deep models CNN, LSTM, and GRU under neutral
and emotional conditions with average error rates equivalent to 9.97% compared to 14.56%,
11.43%, and 11.74%, respectively. For this dataset, the ivector consists of 512 UBM compo-
nents and 64 total variability space (TVS) rank. The total number of eigenvectors in the
projection matrix and the number of dimensions in the probabilistic linear discriminant
analysis (PLDA) are both set to 16.

The GMM model performs the best amongst the classical classifiers when phrases are
uttered neutrally and emotionally; followed by the SVM, then the ANN, and eventually
the KNN models. The GMM model yields the lowest percentage EER value equiva-
lent to EER = 4.64% compared to 20.5%, 22.33%, and 35.83% based on SVM, ANN, and
KNN, respectively.

Figure 6 depicts the plots of the ROC curves which compare the verification perfor-
mance based on each of the GMM, CNN, LSTM, GRU, and ivector models at different
classification thresholds using the Emirati speech database in the neutral and emotional
conditions. The performance of each classifier is measured by considering the area un-
der the ROC curve or the AUC score. The area covered by the curve is the entire area
underneath the ROC curve. A larger area indicates better performance. The ROC plots
demonstrate that the performance of the GMM model outperforms each of the fine-tuned
CNN, LSTM, GRU, ivector as well as all classical models under both neutral and emotional
conditions with AUC = 0.99 in the neutral condition compared to 0.09, 0.09, 0.16, 0.97, 0.94,
0.96 and 0.93 based on SVM, ANN, KNN, ivector, LSTM, GRU, and CNN, respectively.

Based on the plots in Figure 6, we deduce the superiority of the ivector approach over
the fine-tuned CNN, LSTM, and GRU models. The ivector succeeds in achieving a larger
area underneath the ROC curves corresponding to each of the emotional categories as well
as the neutral speech.

In order to validate our results, we conducted the non-parametric Wilcoxon test to
observe whether the winning model among the conventional classifiers is statistically
different from other models based on 95% confidence interval. Based on the results in
Table 3, we find that the GMM model is statistically different from the ANN, KNN, and
SVM models in all emotions based on a 95% confidence interval, where all the p-values
obtained are less than alpha = 0.05. In addition, we conclude that a significant difference
does exist between the ivector model and each of the LSTM and GRU deep models for
neutral as well as emotional speech. In addition, we notice that ivector is different from the
CNN model in Neutral, Anger, Happy, and Sad. However, the ivector fails to be different
from CNN in Fear and Disgust emotional states.
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Table 3. p-value using Wilcoxon test for classical models and deep models using the Emirati database.

Wilcoxon Test

KNN SVM ANN

GMM

CNN GRU LSTM

ivector

Neutral 0.003 0.000 0.000 0.000 0.000 0.000

Anger 0.000 0.000 0.000 0.000 0.000 0.000

Happy 0.000 0.000 0.000 0.009 0.000 0.000

Sad 0.000 0.000 0.000 0.000 0.005 0.000

Fear 0.000 0.000 0.000 0.588 0.000 0.000

Disgust 0.000 0.000 0.000 0.059 0.000 0.000

When shedding light upon deep models, we deduce that in the neutral state, the
calculated AUC value of the GRU model is higher than that of the LSTM and the CNN
models; 0.96, 0.93, and 0.95 for GRU, CNN, and LSTM, respectively. In all emotional states,
the AUC scores obtained through the LSTM model are higher than that of the CNN model.
Likewise, the AUC scores of the LSTM model are better than the GRU model except for the
neutral and fear emotions. The average EER result attained by the LSTM model is lower
than that achieved by GRU (11.43% compared to 11.74%). Figure 7 portrays the graphical
plots of the DET curves based on each of the aforementioned classifiers.
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7.1. CREMA Database

The CREMA database is employed in order to assess the verification performance
for each GMM, SVM, KNN, ANN, CNN, LSTM, GRU, and ivector. Based on the results
in Table 4, it is evident that the ivector approach yields the best verification performance
amongst the fine-tuned CNN, LSTM, and GRU, as well as the classical classifiers with
an average percentage EER equivalent to 20.41%, compared to 33.00%, 26.91%, 29.65%,
30.5, 51%, 34% and 44.5% based on CNN, LSTM, GRU, GMM, KNN, SVM, and ANN,
respectively. For this dataset, the ivector consists of 512 UBM components and 64 TVS rank.
The total number of eigenvectors in the projection matrix and the number of dimensions in
PLDA are both set to 16.

Table 4. Percentage EER and AUC scores using the CREMA database.

Equal Error Rate (EER) (%) CREMA

GMM
EER AUC

KNN
EER AUC

SVM
EER AUC

ANN
EER AUC

ivector
EER AUC

CNN
EER AUC

LSTM
EER AUC

GRU
EER AUC

Neutral 21.00 0.84 44.00 0.07 22.00 0.11 30.00 0.15 12.54 0.94 21.94 0.86 18.75 0.9 17.19 0.91

Anger 35.00 0.70 50.00 0.02 40.00 0.08 47.00 0.05 25.28 0.80 38.54 0.66 36.25 0.69 40.62 0.65

Happy 33.00 0.74 53.00 0.05 35.00 0.10 47.00 0.09 23.61 0.84 32.29 0.73 32.66 0.72 32.81 0.74

Sad 29.00 0.76 54.00 0.10 32.00 0.16 47.00 0.17 16.66 0.89 32.33 0.74 21.88 0.86 22.03 0.86

Fear 37.00 0.69 53.00 0.09 38.00 0.14 50.00 0.14 20.87 0.85 38.54 0.69 25.31 0.8 37.19 0.72

Disgust 28.00 0.78 52.00 0.09 37.00 0.14 46.00 0.14 23.52 0.85 34.38 0.72 26.61 0.8 28.07 0.81

Average 30.5 0.75 51 0.07 34 0.12 44.5 0.12 20.41 0.86 33.00 0.73 26.91 0.8 29.65 0.78

Among classical models, GMM yields the lowest EER values under neutral and
emotional environments with a percentage EER equivalent to 21.00% compared to 44.00%,
22%, and 30% based on KNN, SVM, and ANN, respectively, using the neutral speech.
When utterances are expressed with Anger, the percentage EER recorded is equivalent to
35.00%, 50.00%, 40.00%, and 47.0% based on GMM, KNN, SVM, and ANN, respectively.
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Likewise, the AUC scores attained by each classifier indicate that the ivector outper-
forms all classifiers in achieving the largest AUC scores and the best ROC curves under
both neutral and emotional environments, as portrayed in Figure 8. Figure 9 shows the
DET curves based on each of the CNN, LSTM, GRU, ivector and GMM classifiers.
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Based on the Wilcoxon results presented in Table 5, it is apparent that GMM is statisti-
cally different than KNN, SVM, and ANN when sentences are expressed both neutrally
and emotionally. Moreover, the results demonstrate that ivector is statistically different
than both LSTM and GRU models in neutral and all emotional categories. Nevertheless,
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the ivector model fails to be different from the CNN model in the Sad emotional state with
alpha = 0.814.

Table 5. p-value using Wilcoxon test for classical and deep models using the CREMA database.

Wilcoxon Test

KNN SVM ANN

GMM

CNN GRU LSTM

ivector

Neutral 0.000 0.000 0.000 0.045 0.000 0.000

Anger 0.000 0.000 0.000 0.000 0.000 0.000

Happy 0.000 0.000 0.000 0.000 0.000 0.000

Sad 0.000 0.000 0.000 0.814 0.000 0.000

Fear 0.000 0.000 0.000 0.000 0.000 0.000

Disgust 0.000 0.000 0.000 0.000 0.000 0.000

7.2. RAVDESS Database

The RAVDESS database is utilized in order to assess the speaker verification perfor-
mance attained using classical and deep neural models. The percentage EER values of
both classical, ivector, and the fine-tuned deep models for the RAVDESS speech dataset
are tabulated in Table 6. Based on the results in Table 6, the EER values under the neutral
speech are the lowest in comparison to each of the emotional categories. The ivector ap-
proach surpasses each of the fine-tuned CNN, LSTM, and GRU models. For this dataset,
the ivector is composed of 32 UBM components and 16 total variability space rank. The
total number of eigenvectors in the projection matrix and the number of dimensions in the
probabilistic linear discriminant analysis (PLDA) are both set to 16.

Table 6. Percentage EER values of classical and deep models for the RAVDESS dataset.

Equal Error Rate (EER) (%) RAVDESS Dataset

GMM
EER AUC

KNN
EER AUC

SVM
EER AUC

ANN
EER AUC

ivector
EER AUC

CNN
EER AUC

LSTM
EER AUC

GRU
EER AUC

Neutral 2.13 0.98 4.00 0.04 7.00 0.07 2.00 0.02 12.5 0.89 25.00 0.85 12.50 0.89 12.50 0.91

Anger 23.40 0.81 62.00 0.24 52.00 0.25 61.00 0.24 28.65 0.72 36.98 0.74 25.00 0.74 43.23 0.63

Happy 27.13 0.83 46.00 0.25 48.00 0.25 47.00 0.25 28.13 0.79 28.12 0.78 24.48 0.80 30.73 0.69

Sad 17.02 0.91 40.00 0.24 40.00 0.24 39.00 0.24 21.88 0.77 21.88 0.85 25.00 0.83 18.75 0.88

Fear 20.48 0.83 63.00 0.23 57.00 0.25 59.00 0.24 28.13 0.75 31.77 0.71 25.52 0.81 31.25 0.68

Disgust 22.40 0.80 64.00 0.23 65.00 0.23 60.00 0.24 19.79 0.89 30.21 0.82 31.25 0.77 37.50 0.70

Average 18.76 0.86 46.50 0.21 44.83 0.21 44.67 0.20 23.18 0.80 28.99 0.79 23.96 0.81 28.99 0.75

Furthermore, we conclude that the fine-tuned CNN, LSTM, and GRU models in
addition to ivector approach perform poorly compared to the classical GMM model at
emotional as well as neutral speech levels using the RAVDESS database. The obtained
results are in accordance with our test results achieved using the collected Emirati dataset.

The results in Table 6 reveal that both LSTM and GRU models outperform the CNN
in terms of average EER values as well as average AUC scores at the neutral state and all
emotional categories except for the Sad and Disgust emotions. The Sad emotion records a
percentage EER equal to 25.00% compared to 21.88% and AUC scores equivalent to 0.83
compared to 0.85 based on LSTM and CNN, respectively.

Figure 10 represents the ROC curves of the performance for each of the GMM, CNN,
LSTM, GRU and ivector models using the RAVDESS database under the neutral and
emotional environments. It is evident that the GMM model achieves the lowest percentage
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EER values, and the largest AUC scores based on the plots (a), (b), (c), (d) and (e) for the
neutral, Anger, Sad, Happy and Fear emotional states. However, ivector surpasses the
GMM for the Disgust emotion with AUC scores equivalent to 0.89 and 0.8 based on ivector
and GMM, respectively. Additionally, Figure 11 represents 10 DET curves of RAVDESS
database based on CNN, LSTM, GRU, ivector, and GMM.
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In order to validate our results, we conducted the non-parametric Wilcoxon test to
observe whether the winning model among the conventional classifiers is statistically
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different from other models based on 95% confidence interval. The results in Table 7 show
that GMM is, indeed, statistically different from KNN, SVM, and ANN models, according
to the Wilcoxon test.

Table 7. p-value using Wilcoxon test for the classical and fine-tuned deep models using the RAVDESS
database.

Wilcoxon Test

KNN SVM ANN

GMM

CNN GRU LSTM

ivector

Neutral 0.000 0.000 0.000 0.000 0.000 0.000

Anger 0.000 0.000 0.000 0.000 0.000 0.000

Happy 0.000 0.000 0.000 0.000 0.000 0.000

Sad 0.000 0.000 0.000 0.000 0.000 0.000

Fear 0.000 0.000 0.000 0.000 0.000 0.000

Disgust 0.000 0.000 0.000 0.004 0.586 0.000

Based on EER and AUC evaluation metrics, we deduce that the ivector is the winning
model amongst deep learning models. To test statistical dissimilarity between the latter
model and other models, we conducted the Wilcoxon test between ivector-CNN, ivector-
LSTM, and between ivector-GRU, as shown in Table 7. From the achieved results, we
observe that there is a significant difference between ivector and CNN and between ivector
and LSTM. The ivector model fails to be different from the GRU model when utterances
are expressed with Disgust (alpha = 0.586).

In order to validate our results using the Emirati dataset, we conducted statistical tests
between the winning models amongst classical classifiers; the GMM and the other models
(KNN, SVM, and ANN). Likewise, we perform the test between ivector and each of the
LSTM, GRU, and CNN models. Based on the Kolmogorov–Smirnov test, we find that the
error rates are not normally distributed. For this reason, we use the Wilcoxon test which is
a non-parametric test.

In Table 6, it is clear that GMM outperforms the deep learning models as well as
the ivector at the neutral and the emotional speech levels using Emirati and RAVDESS
databases. This emphasizes the fact that deep models are not always the best option when
dealing with machine learning, as per Saez et al. [4]. Zappone et al. [5] stated that to
achieve high performance, deep learning networks necessitate relatively large datasets. For
smaller datasets, classical algorithms could outperform deep learning. Therefore, in our
specific task, deep classifiers do not provide statistically better verification results, even
with hyperparameters finetuning, compared to the classical GMM, the winning classifier
among classical methods. These results are consistent with previous work in [4] and [44].

7.3. Comparison with Other Related Work

Our work demonstrates the preeminence of the GMM model over all other models
in terms of verification performance using Emirati and RAVDESS databases. Therefore,
and as an additional experimental setup, we compare the error rates achieved by GMM
with a variety of classifiers previously deployed in a text-independent speaker verification
system [45] using the same set of databases.

As can be observed from Table 8, the performance of the GMM model, for the Emirati
database, surpasses that of HMM1, HMM2 as well as HMM3 classifiers in the neutral
speech with error rates equivalent to 1.43%, 11.5%, 9.6%, and 4.9%, respectively. The
literature work did not address emotional speech.
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Table 8. Equal error rates (%) for the GMM and different classifiers for the Emirati database.

Models Neutral

HMM1, HMM2, HMM3 [45] 11.5, 9.6, 4.9
GMM [our winning model] 1.43

7.4. Computation Performance Study

Regarding the computation performance study, Table 9 shows the calculated average
testing time, measured in seconds, of each machine learning classifier using ESD, CREMA,
and RAVDESS databases over Google Colab. The results demonstrate that the fine-tuned
CNN model has the fastest test time among deep classifiers and that the GMM is the
slowest among classical classifiers across all databases.

Table 9. Testing time (in seconds) of classical, ivector, and deep models.

Models Emirati RAVDESS CREMA

Classical
Classifiers

GMM 94.530 13.149 66.375
KNN 35.365 3.446 11.898
SVM 6.949 1.153 5.161
ANN 19.231 2.455 7.203

Deep Classifiers

CNN 0.963 1.482 0.767
LSTM 1.054 2.058 2.269
GRU 0.980 1.526 2.203

ivector 90.850 6.4542 34.6124

The ivector approach has the longest test time compared to the fine-tuned CNN,
LSTM, GRU as well as SVM, KNN, and ANN yet it yields the best speaker verification
results using the CREMA database. The GMM model attains the best verification results
using Emirati and RAVDESS databases, yet it has the longest test time in comparison to all
classical classifiers (KNN, SVM and ANN), ivector and deep models.

Among the deep network models, it is evident from the results reported in Tables 2, 4 and 6
that the LSTM model achieves the best verification performance, followed by the GRU,
and then the CNN in both neutral and emotional talking environments across all datasets.
Based on our results in Table 9, the GRU model optimizes more rapidly compared to the
LSTM model while attaining equal error rates within a narrow margin to it. The CNN
optimization is the fastest, yet, the model yields the least verification performance. This is
because recurrent neural networks (LSTM and GRU), unlike the feed-forward networks
(CNN), can use their internal memory in order to store information for a long period of
time [29].

8. Conclusions, Limitations, and Future Work

This study focuses on performance appraisal of text-independent speaker verification
tasks in emotional acoustic environments using three different datasets: Arabic Emirati-
accented, English CREMA dataset, and RAVDESS database. We compare the following
classical classifiers: GMM, SVM, KNN, and ANN with i-vector and three DNN-based
systems, namely CNN, LSTM, and GRU. Hyperparameter tuning is applied to each of
the CNN, LSTM, and GRU models using Grid Search. From the reported findings, we
observe the superiority of the GMM classical classifier over the deep neural network and
ivector classifiers in neutral environments as well as in emotional milieus using the private
Emirati dataset as well as the RAVDESS databases. For the CREMA dataset, the ivector
model yields the most accurate and the best verification results in terms of EER and AUC
compared to all other models although at higher computational complexity in comparison
to SVM, KNN, ANN, CNN, LSTM, and GRU models.

In terms of test time, the SVM is the fastest amongst all other classical classifiers, while
the CNN attains the lowest computational performance compared to deep learning models.
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However, CNN surpasses SVM with respect to the average percentage values of EER and
AUC by a large margin.

In the future, we aim to scrutinize the performance of hybrid DNN-based classifiers,
such as HMM-DNN, for speaker verification applications in stressful and emotional talking
environments, and subsequently compare it with the verification performance of HMM
alone, DNN alone, and with many classical classifiers.
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