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Abstract: In multigranulation environments, variable precision multigranulation rough set (VP-
MGRS) is a useful framework that has a tolerance for errors. Approximations are basic concepts
for knowledge acquisition and attribute reductions. Accelerating update of approximations can
enhance the efficiency of acquiring decision rules by utilizing previously saved information. In
this study, we focus on exploiting update mechanisms of approximations in VPMGRS with the
addition of granular structures. By analyzing the basic changing trends of approximations in VP-
MGRS, we develop accelerating update mechanisms for acquiring approximations. In addition, an
incremental algorithm to update variable precision multigranulation approximations is proposed
when adding multiple granular structures. Finally, extensive comparisons elaborate the efficiency of
the incremental algorithm.
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1. Introduction

As a classical framework for representing and handling uncertain or vague data, the
model of rough set theory (RST) has been typically applied in diverse areas from theoretic
and application viewpoints, such as rule induction, feature selection, three-way decisions,
and so on [1–5].

In real applications, various kinds of data vary over time. Due to the dynamic changing
of data, the naive method for knowledge discovery often cost too much running time. As a
consequence, how to effectively accelerate the calculation of useful information becomes
an essential issue. To alleviate this problem, incremental knowledge discovery under
various rough set models when the information system varies have gained continuous
interest [6–10]. Usually, the objects [11,12], attributes [13,14], and attribute values [15] may
change dynamically. Moreover, Li et al. established a dynamical framework to obtain
useful knowledge based on missing data [16]. Yang et al. developed an efficient framework
to acquire fuzzy probability three-way decisions rules [17]. Chen et al. established an
incremental model for handling noise data problems while objects dynamically alter [18].
Furthermore, Niu et al. presented the mechanisms for computing granular reduct and rules
with the newly available data [19]. Huang et al. established an effective strategy applied
for computing reduct under time-evolving data [20]. What is more, Hao et al. proposed an
effective scale selection method when adding an object [21]. Li et al. introduced a unique
approach to calculate dominated classes when a set of objects vary over time [22]. Moreover,
Luo et al. designed a matrix method under evolving three-way decision framework [23].
To process neighborhood data, Zhang et al. put forward fast approaches for obtaining
neighborhood-based approximations [24]. Luo et al. established an incremental set-valued
rough framework [25]. In addition, Chen et al. solved decision rule updating problems
when attribute values evolve [26]. To summarize, these extensive studies have attracted
continuously growing interests.
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Although RST has significant benefits in enhancing the performance of knowledge
reasoning, several well-established soft computing frameworks have been exploited for
intelligent decision making [27–29]. As an effective extension of RST, multigranulation
rough set (MGRS) was proposed [30]. In MGRS, the approximations are established by
a group of information granules derived from a set of equivalence relations and there
are two different models, called the optimistic and pessimistic MGRS, respectively. Since
then, multigranulation rough set offered useful insights into data analysis and its the-
ory progresses rapidly [31–33]. For example, Qian et al. developed a unique pessimistic
MGRS-based decision model based on seeking common ground [34]. Zhan et al. devel-
oped two novel covering based multigranulation fuzzy sets [35]. Zhang et al. developed
a multi-attribute group decision mechanism in light of the multi-granularity three-way
fuzzy context [36]. Li et al. investigated a unique method to construct three way cognitive
concept in presence of multi-granularity [37]. Dou et al. discussed two kind strategies
for constructing the framework of VPMGRS [38]. In dynamic environments, incremental
update of multigranulation knowledge has attracted widespread concerns [39–43]. For in-
stance, Li et al. discussed local multigranulation rough frameworks to handle incremental
evolving ordered systems [44]. Zhang et al. presented updating mechanisms to acquire
multigranulation knowledge in interval-valued approximate space [45]. The approxima-
tions of a concept which can be further used for rule acquisition and attribute reduction
provide an essential help in intelligence analysis [46,47]. Nevertheless, in variable preci-
sion multigranulation rough sets, how to effectively dynamic updating approximations
has rarely been concerned. Motivated from the above observations, we concentrate on
exploiting an incremental approach to accelerate updating of approximations in VPMGRS
with addition of granular structures.

The remainder of this study is structured as below. In Section 2, essential knowledge of
RST, and VPMGRS are given. In Section 3, the accelerate update mechanisms and algorithm
for computing approximations based on VPMGRS are proposed when adding multiple
granular structures. Extensive comparisons are performed to validate the performance in
Section 4. In Section 5, we give several remarks on the paper.

2. Preliminaries

This section briefly gives some notions in terms of RST and its extensions [33,34,38,48–50].

2.1. Rough Set and Variable Precision Rough Set

Definition 1 ([49,50]). Let S = (U, A, V, f ) be an information system, where U = {x1, x2, . . . , xn}
is a group of objects, namely the universe. A = {a1, a2, . . . , am} is a set of attributes. V =

⋃
a∈A Va

is a set of attribute values, where Va denotes the domain of attribute a. f refers to a decision function
and f (x, a) ∈ Va, for ∀x ∈ U.

Notably, an information system S = (U, A, V, f ) is abbreviated as S = (U, A) in
this study.

Definition 2 ([49,50]). Given S = (U, A) and B ⊆ A, an equivalence relation on U can be
expressed by:

RB = {(x, y)|(x, y) ∈ U ×U : f (x, a) = f (y, a), ∀a ∈ B} (1)

Obviously, a pair (U, RB) is treated as an approximate space. The equivalence relation
RB generates a partition of the universe, represented by U/RB, namely,
U/RB = {E1, E2, . . . , Em}. The equivalence class in terms of x is denoted by
[x]R = {y ∈ U : (x, y) ∈ RB}.

Definition 3 ([49,50]). Given S = (U, A) and X ⊆ U. [x]R refers to the equivalence class in
terms of RB. The lower and upper approximations of X are formalized by:

R(X) = {x ∈ U|[x]R ⊆ X} (2)
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R(X) = {x ∈ U|[x]R ∩ X 6= ∅} (3)

Definition 4 ([48]). Given S = (U, A) and X, Y ⊆ U. Then, the relative degree of misclassifica-
tion c(X, Y) is described by

c(X, Y) =

{
1− |X|∩|Y||X| , |X| > 0;

0, |X| = 0.
(4)

where | · | denotes the cardinality.

Definition 5 ([48]). Given S = (U, A) with X ⊆ U, and 0 ≤ β < 0.5. Then, β-lower
approximation, β-upper approximation are defined by:

Rβ(X) = ∪{E ∈ U/RB|c(E, X) ≤ β} (5)

Rβ(X) = ∪{E ∈ U/RB|c(E, X) < 1− β} (6)

Generally, β-positive region posβ(X), β-boundary region bndβ(X) and β-negative
region negβ(X) are expressed by: posβ(X) = Rβ(X), bndβ(X) = Rβ(X) − Rβ(X), and
negβ(X) = U − Rβ(X).

2.2. Variable Precision Multigranulation Rough Sets

Qian and Liang investigated multigranulation rough sets [33,34]. In MGRS, two
effective frameworks were investigated, i.e., optimistic MGRS and pessimistic MGRS.

Definition 6 ([33]). Given S = (U, A) with a1, a2, . . . , am ∈ A, X ⊆ U. The lower and upper
approximations of X in optimistic MGRS are formalized by ∑m

i=1 aO
i (X) and ∑m

i=1 aO
i (X), where,

m

∑
i=1

aO
i (X) = {x ∈ U|[x]a1 ⊆ X ∨ [x]a2 ⊆ X ∨ . . . ∨ [x]am ⊆ X} (7)

m

∑
i=1

aO
i (X) =∼

m

∑
i=1

aO
i (∼ X) (8)

where ∼ X denotes the complement of X.

Theorem 1. Given S = (U, A), and a1, a2, . . . , am ∈ A, X ⊆ U. Then, the following result holds:

m

∑
i=1

aO
i (X) = {x ∈ U|[x]a1 ∩ X 6= ∅∧ [x]a2 ∩ X 6= ∅∧ . . . ∧ [x]am ∩ X 6= ∅} (9)

Definition 7 ([34]). Given S = (U, A), and a1, a2, . . . , am ∈ A, X ⊆ U. The lower and upper
approximations of X in pessimistic MGRS are formalized by ∑m

i=1 aP
i (X) and ∑m

i=1 aP
i (X), where,

m

∑
i=1

aP
i (X) = {x ∈ U|[x]a1 ⊆ X ∧ [x]a2 ⊆ X ∧ . . . ∧ [x]am ⊆ X} (10)

m

∑
i=1

aP
i (X) =∼

m

∑
i=1

aP
i (∼ X) (11)
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Theorem 2. Given S = (U, A) and a1, a2, . . . , am ∈ A, X ⊆ U, the following result holds:

m

∑
i=1

aP
i (X) = {x ∈ U|[x]a1 ∩ X 6= ∅∨ [x]a2 ∩ X 6= ∅∨ . . . ∨ [x]am ∩ X 6= ∅} (12)

In what follows, the optimistic VPMGRS is established by using multiple granu-
lar structures.

Definition 8 ([38]). Given S = (U, A), and a1, a2, . . . , am ∈ A, X ⊆ U, 0 ≤ β < 0.5.
The lower and upper approximations of X in optimistic VPMGRS are defined as ∑m

i=1 aO
iβ(X) and

∑m
i=1 aO

iβ(X),

m

∑
i=1

aO
iβ(X) = {x ∈ U|c([x]a1 , X) ≤ β ∨ c([x]a2 , X) ≤ β ∨ . . . ∨ c([x]am , X) ≤ β} (13)

m

∑
i=1

aO
iβ(X) =∼

m

∑
i=1

aO
iβ(∼ X) (14)

Theorem 3. Given S = (U, A), and a1, a2, . . . , am ∈ A, X ⊆ U. Assume 0 ≤ β < 0.5, then
we have

m

∑
i=1

aO
iβ(X) = {x ∈ U|c([x]a1 , X) < 1− β ∧ c([x]a2 , X) < 1− β ∧ . . . ∧ c([x]am , X) < 1− β} (15)

Proof. It is immediate from Definitions 4 and 8.

Similarly, in the following, we introduce pessimistic VPMGRS.

Definition 9 ([38]). Given S = (U, A) and a1, a2, . . . , am ∈ A, X ⊆ U. Assume 0 ≤ β < 0.5,
the lower and upper approximations of X in pessimistic VPMGRS are formalized by ∑m

i=1 aP
iβ(X)

and ∑m
i=1 aP

iβ(X), where,

m

∑
i=1

aP
iβ(X) = {x ∈ U|c([x]a1 , X) ≤ β ∧ c([x]a2 , X) ≤ β ∧ . . . ∧ c([x]am , X) ≤ β} (16)

m

∑
i=1

aP
iβ(X) =∼

m

∑
i=1

aP
iβ(∼ X) (17)

where ∼ X is the complement of X.

Theorem 4. Given S = (U, A) and a1, a2, . . . , am ∈ A, X ⊆ U. Then, we have

m

∑
i=1

aP
iβ(X) = {x ∈ U|c([x]a1 , X) < 1− β ∨ c([x]a2 , X) < 1− β ∨ . . . ∨ c([x]am , X) < 1− β} (18)

Proof. It can be easily proved by Definitions 4 and 9.

Next, an illustrated example is shown to describe the process of computing approxi-
mations in VPMGRS.
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Example 1. Given an information system in terms of students’ comprehensive qualities evaluation
which is outlined in Table 1, where U = {x1, . . . , x8} is the universe of eight objects which are
viewed as eight students, and A = {a1, a2, a3, a4} is a multigranulation space consisting of four
granular structures. These granular structures denotes four courses of students. The value of each
granular structure indicates the grade level that each student achieves. Furthermore, d is a decision
attribute. Assume X = {x2, x3, x5, x6} is a target concept, then, by Definition 4, we can obtain the
partitions with reference to each granular structure below:

U/a1 = {{x1, x4, x5}, {x2, x3, x6}, {x7, x8}}, c([x1]a1 , X) = c([x4]a1 , X) = c([x5]a1 , X)
= 2/3, c([x2]a1 , X) = c([x3]a1 , X) = c([x6]a1 , X) = 0, c([x7]a1 , X) = c([x8]a1 , X) = 1.

U/a2 = {{x1, x3, x4, x5}, {x2}, {x6, x7, x8}}, c([x1]a2 , X) = c([x3]a2 , X) = c([x4]a2 , X)
= c([x5]a2 , X) = 1/2, c([x2]a2 , X) = 0, c([x6]a2 , X) = c([x7]a2 , X) = c([x8]a2 , X) = 2/3.

U/a3 = {{x1, x7}, {x2, x3}, {x4, x5, x6, x8}}, c([x1]a3 , X) = c([x7]a3 , X) = 1, c([x2]a3 , X)
= c([x3]a3 , X) = 0, c([x4]a3 , X) = c([x5]a3 , X)= c([x6]a3 , X) = c([x8]a3 , X) = 1/2.

U/a4 = {{x1, x4, x5, x6}, {x2, x3}, {x7, x8}}, c([x1]a4 , X) = c([x4]a4 , X) = c([x5]a4 , X)
= c([x6]a4 , X) = 1/2, c([x2]a4 , X) = c([x3]a4 , X) = 0, c([x7]a4 , X) = c([x8]a4 , X) = 1.

Assume β = 0.3, based on Definitions 8 and 9 and Theorems 3 and 4, we obtain the approxi-
mations of VPMGRS as follows: ∑m

i=1 aO
iβ(X) = {x2, x3, x6}, ∑m

i=1 aO
iβ(X) = {x2, x3, x4, x5, x6},

∑m
i=1 aP

iβ(X) = {x2}, and ∑m
i=1 aP

iβ(X) = {x1, x2, x3, x4, x5, x6, x7, x8}.

Table 1. A description of information system.

U a1 a2 a3 a4 d

x1 1 1 1 1 1
x2 2 3 2 2 2
x3 2 1 2 2 2
x4 1 1 3 1 1
x5 1 1 3 1 2
x6 2 2 3 1 2
x7 3 2 1 3 1
x8 3 2 3 3 1

From Example 1, when the parameter β keeps constant, the lower approximation of
optimistic VPMGRS is larger than that of pessimistic VPMGRS. Meanwhile, the upper
approximation of optimistic VPMGRS is smaller than that of pessimistic VPMGRS. These
decision strategies can help us to make better decision analysis according to different
requirements. Based on above discussion, we present a traditional algorithm for calculating
approximations in VPMGRS by using above definitions.

We outline the procedures of non-incrementally calculating variable precision multi-
granulation approximations in Algorithm 1 (Algorithm NACA). The complexity of obtain-
ing equivalence classes and relative degree of misclassification in Lines 4–8 takes O(mn2),
where m and n respectively denote the number of granular structures and objects. The com-
plexity of computing approximations of optimistic VPMGRS based on Definition 8 in Lines
9–26 takes O(2mn). The complexity of computing approximations of pessimistic VPMGRS
based on Definition 9 in Lines 27–44 takes O(2mn). The complexity of outputting the
approximations of VPMGRS in Line 45 takes O(n). Accordingly, the whole complexity of
Algorithm NACA takes O(mn2).
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Algorithm 1: A non-incremental algorithm for computing approximations in
VPMGRS (NACA).

Input: An information system S = (U, A), the granular structures A = {a1, a2, . . . , am}, a target
concept X ⊆ U, β.

Output: The approximations of X in VPMGRS: ∑m
i=1 aO

iβ(X), ∑m
i=1 aO

iβ(X), ∑m
i=1 aP

iβ(X), ∑m
i=1 aP

iβ(X).

1 begin
2 ∑m

i=1 aO
iβ(X)← ∅, ∑m

i=1 aO
iβ(X)← ∅, // Initialization;

3 ∑m
i=1 aP

iβ(X)← ∅, ∑m
i=1 aP

iβ(X)← ∅.

4 for i = 1 to m do
5 for each x ∈ U do
6 Compute [x]ai and c([x]ai , X);
7 end
8 end
9 for each x ∈ U do

10 for i = 1 to m do
11 if c([x]ai , X) ≤ β then
12 ∑m

i=1 aO
iβ(X) = ∑m

i=1 aO
iβ(X) ∪ {x}, break;

13 end
14 end
15 end
16 for each x ∈ U do
17 for i = 1 to m do
18 flag=1;
19 if c([x]ai , X) ≥ 1− β then
20 flag=0, break;
21 end
22 end
23 if flag==1 then
24 ∑m

i=1 aO
iβ(X) = ∑m

i=1 aO
iβ(X) ∪ {x};

25 end
26 end
27 for each x ∈ U do
28 for i = 1 to m do
29 flag=1;
30 if c([x]ai , X) > β then
31 flag=0, break;
32 end
33 end
34 if flag==1 then
35 ∑m

i=1 aP
iβ(X) = ∑m

i=1 aP
iβ(X) ∪ {x};

36 end
37 end
38 for each x ∈ U do
39 for i = 1 to m do
40 if c([x]ai , X) < 1− β then
41 ∑m

i=1 aP
iβ(X) = ∑m

i=1 aP
iβ(X) ∪ {x}, break;

42 end
43 end
44 end
45 return ∑m

i=1 aO
iβ(X), ∑m

i=1 aO
iβ(X), ∑m

i=1 aP
iβ(X), ∑m

i=1 aP
iβ(X).

46 end

3. Accelerating Update of Approximations of VPMGRS

In order to reduce computational cost, this section focuses on exploiting dynamical
strategies to obtain approximations in the case of addition of a single granular structure.
Under the addition of a new granular structure, the update of variable precision multigran-
ulation approximations is by using the traditional approach to recompute the new data sets,
which requires to scan all the objects and multigranulation structures. Nevertheless, it is
very time-consuming to obtain the valuable knowledge. To deal with this problem, a novel
incremental approach is investigated to update variable precision multigranulation rough
approximations by using the previous computational results which avoids to recalculate all
the objects and granular structures. Notably, the change of multiple granular structures
is treated as the iterative change of a single granular structure. Assume a1, a2, . . . , am ∈ A
are m granular structures in a multigranulation space. After adding a granular structure
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m + 1, the approximations should be updated in an incremental manner. To facilitate the
description, we denote the updated lower and upper approximations of X in optimistic
VPMGRS as ∑m+1

i=1 a∧O
iβ (X), and ∑m+1

i=1 a∧O
iβ (X), respectively. Similarly, after adding a gran-

ular structure m + 1, we denote the updated lower and upper approximations of X in
pessimistic VPMGRS as ∑m+1

i=1 a∧P
iβ (X), and ∑m+1

i=1 a∧P
iβ (X), respectively.

Proposition 1. Given S = (U, A) and a1, a2, . . . , am ∈ A, 0 ≤ β < 0.5, X ⊆ U. After adding a
single granular structure am+1, for the optimistic variable precision multigranulation approxima-
tions of X, we have,

(1) ∑m+1
i=1 a∧O

iβ (X) ⊇ ∑m
i=1 aO

iβ(X);

(2) ∑m+1
i=1 a∧O

iβ (X) ⊆ ∑m
i=1 aO

iβ(X).

Proof.
(1) If ∀x ∈ ∑m

i=1 aO
iβ(X), based on Definition 8, then c([x]ai , X) ≤ β holds, ∃i ∈

{1, 2, . . . , m}. With reference to addition of am+1, it implies c([x]ai , X) ≤ β for a given
i ∈ {1, 2, . . . , m + 1}. Therefore, x ∈ ∑m+1

i=1 a∧O
iβ (X). Hence, ∑m+1

i=1 a∧O
iβ (X) ⊇ ∑m

i=1 aO
iβ(X).

(2) With addition of am+1, for ∀x ∈ ∑m+1
i=1 aO

iβ(X), according to Theorem 3, it implies
c([x]ai , X) < 1− β for every i ∈ {1, 2, . . . , m + 1}. Obviously, c([x]ai , X) < 1− β for every

i ∈ {1, 2, . . . , m}. As a result, x ∈ ∑m
i=1 a∧O

iβ (X). Hence, ∑m+1
i=1 a∧O

iβ (X) ⊆ ∑m
i=1 aO

iβ(X).

According to Proposition 1, the lower approximation of optimistic VPMGRS has a
trend of increase whereas the upper approximation of optimistic VPMGRS has a trend
of decrease.

Proposition 2. Given S = (U, A), and a1, a2, . . . , am ∈ A, 0 ≤ β < 0.5, X ⊆ U. After adding a
single granular structure am+1, for the pessimistic variable precision multigranulation approxima-
tions, we have,

(1) ∑m+1
i=1 a∧P

iβ (X) ⊆ ∑m
i=1 aP

iβ(X);

(2) ∑m+1
i=1 a∧P

iβ (X) ⊇ ∑m
i=1 aP

iβ(X).

Proof.
(1) If ∀x ∈ ∑m+1

i=1 a∧P
iβ (X), then, c([x]ai , X) ≤ β holds for any i ∈ {1, 2, . . . , m + 1}

according to Definition 9. As a result, c([x]ai , X) ≤ β holds for any i ∈ {1, 2, . . . , m}.
Therefore, x ∈ ∑m

i=1 aP
iβ(X). This implies that ∑m+1

i=1 a∧P
iβ (X) ⊆ ∑m

i=1 aP
iβ(X).

(2) If ∀x ∈ ∑m
i=1 a∧P

iβ (X), based on Theorem 4, we have c([x]ai , X) < 1− β holds for a
given i ∈ {1, 2, . . . , m}. Therefore, c([x]ai , X) < 1− β holds for a given i ∈ {1, 2, . . . , m + 1}.
Hence, x ∈ ∑m+1

i=1 a∧P
iβ (X). As a result, ∑m+1

i=1 a∧P
iβ (X) ⊇ ∑m

i=1 aP
iβ(X).

In light of Proposition 2, we can conclude that the pessimistic variable precision
multigranulation upper approximation has a trend of increase while the pessimistic variable
precision multigranulation lower approximation has a trend of decrease.

In what follows, updating mechanisms for acquiring approximations of optimistic
and pessimistic VPMGRS are demonstrated.
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Theorem 5. Given S = (U, A), and a1, a2, . . . , am ∈ A, 0 ≤ β < 0.5, X ⊆ U, while adding
am+1, if x /∈ ∑m

i=1 aO
iβ(X), the following result holds,

(1) if c([x]am+1 , X) ≤ β, then ∑m+1
i=1 a∧O

iβ (X) = ∑m
i=1 aO

iβ(X) ∪ {x};

(2) otherwise ∑m+1
i=1 a∧O

iβ (X) = ∑m
i=1 aO

iβ(X).

Proof.
(1) Due to x /∈ ∑m

i=1 aO
iβ(X), according to Definition 8, it implies c([x]ai , X) > β for

any i ∈ {1, 2, . . . , m}, while adding am+1, if c([x]am+1 , X) ≤ β, then ∃i ∈ {1, 2, . . . , m + 1},
c([x]ai , X) ≤ β holds. So x ∈ ∑m+1

i=1 a∧O
iβ (X). Hence, ∑m+1

i=1 a∧O
iβ (X) = ∑m

i=1 aO
iβ(X) ∪ {x}.

(2) If x /∈ ∑m
i=1 aO

iβ(X), then we obtain c([x]ai , X) > β for any i ∈ {1, 2, . . . , m} by

Definition 8, while adding am+1, if c([x]am+1 , X) > β, then we obtain c([x]ai , X) > β

for any i ∈ {1, 2, . . . , m + 1}. Consequently, x /∈ ∑m+1
i=1 a∧O

iβ (X). Thus, ∑m+1
i=1 a∧O

iβ (X) =

∑m
i=1 aO

iβ(X).

In light of Theorem 5, we can update lower approximation of optimistic VPMGRS
with addition of a granular structure.

Example 2 (Continuation of Example 1). Table 2 indicates the candidate five courses that will
be added into the original multigranulation space. After adding a granular structure, the ap-
proximations applied for decision analysis may change. To verify incremental mechanism for up-
dating approximations of VPMGRS, we suppose that the candidate granular structure a5 shown
in Table 2 will be added into Table 1. Then, we can compute U/a5 = {{x1, x3, x4}, {x2, x5},
{x6, x7, x8}}. Based on Definition 4, we obtain, c([x1]a5 , X) = c([x3]a5 , X) = c([x4]a5 , X) = 2/3,
c([x2]a5 , X) = c([x5]a5 , X) = 0, c([x6]a5 , X) = c([x7]a5 , X) = c([x8]a5 , X) = 2/3. Be-
cause x5 /∈ ∑m

i=1 aO
iβ(X), and c([x5]a5 , X) = 0 < β = 0.3, according to Theorem 5, we obtain

∑m+1
i=1 a∧O

iβ (X) = ∑m
i=1 aO

iβ(X) ∪ {x5} = {x2, x3, x5, x6}.

Table 2. A description of added candidate granular structures.

U a5 a6 a7 a8

x1 1 2 2 1
x2 2 1 2 1
x3 1 1 3 1
x4 1 2 1 2
x5 2 1 3 3
x6 3 1 3 2
x7 3 3 1 3
x8 3 3 1 3

Theorem 6. Given S = (U, A), and a1, a2, . . . , am ∈ A, 0 ≤ β < 0.5, X ⊆ U, while adding
am+1 into the information system, if x ∈ ∑m

i=1 aO
iβ(X), the following result holds,

(1) if c([x]am+1 , X) ≥ 1− β, then ∑m+1
i=1 a∧O

iβ (X) = ∑m
i=1 aO

iβ(X)− {x};

(2) otherwise, ∑m+1
i=1 a∧O

iβ (X) = ∑m
i=1 aO

iβ(X).

Proof.
(1) If x ∈ ∑m

i=1 aO
iβ(X), according to Theorem 3, we obtain c([x]ai , X) < 1− β for any

i ∈ {1, 2, . . . , m}, while adding am+1, if c([x]am+1 , X) ≥ 1− β, it follows that c([x]ai , X) ≥
1 − β for a given i ∈ {1, 2, . . . , m + 1}. So x /∈ ∑m+1

i=1 a∧O
iβ (X). Hence, ∑m+1

i=1 a∧O
iβ (X) =

∑m
i=1 aO

iβ(X)− {x}.
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(2) If x ∈ ∑m
i=1 aO

iβ(X), according to Theorem 3, then we obtain c([x]ai , X) < 1− β for
any i ∈ {1, 2, . . . , m}, while adding am+1, if c([x]am+1 , X) < 1− β holds, then c([x]ai , X) <

1− β for any i ∈ {1, 2, . . . , m + 1}. Thus, x ∈ ∑m+1
i=1 a∧O

iβ (X). As a result, ∑m+1
i=1 a∧O

iβ (X) =

∑m
i=1 aO

iβ(X).

Based on Theorem 6, we can effectively acquire upper approximation of optimistic
VPMGRS with addition of a granular structure.

Example 3 (Continuation of Example 1). Assume the granular structure a6 in Table 2 is added
into Table 1, then we obtain U/a6 = {{x1, x4}, {x2, x3, x5, x6}, {x7, x8}}. By Definition 4,
we have, c([x1]a6 , X) = c([x4]a6 , X) = 1, c([x2]a6 , X) = c([x3]a6 , X) = c([x5]a6 , X) =

c([x6]a6 , X) = 0 and c([x7]a6 , X) = c([x8]a6 , X) = 1. Because x4 ∈ ∑m
i=1 aO

iβ(X) and c([x4]a6 , X)

= 1 ≥ 1− β = 0.7, according to Theorem 6, it follows that ∑m+1
i=1 a∧O

iβ (X) = ∑m
i=1 aO

iβ(X)−
{x4} = {x2, x3, x5, x6}.

Theorem 7. Given S = (U, A) and a1, a2, . . . , am ∈ A, X ⊆ U, 0 ≤ β < 0.5, while adding
am+1 into the information system, if x ∈ ∑m

i=1 aP
iβ(X), we have

(1) if c([x]am+1 , X) > β, then ∑m+1
i=1 a∧P

iβ (X) = ∑m
i=1 aP

iβ(X)− {x};

(2) otherwise ∑m+1
i=1 a∧P

iβ (X) = ∑m
i=1 aP

iβ(X).

Proof.
(1) If x ∈ ∑m

i=1 aP
iβ(X), according to Definition 9, c([x]ai , X) ≤ β holds for any

i ∈ {1, 2, . . . , m}, while adding am+1, if c([x]am+1 , X) > β, then c([x]ai , X) > β holds for
a given i ∈ {1, 2, . . . , m + 1}. Therefore, x /∈ ∑m+1

i=1 a∧P
iβ (X). As a result, ∑m+1

i=1 a∧P
iβ (X) =

∑m
i=1 aP

iβ(X)− {x}.
(2) If x ∈ ∑m

i=1 aP
iβ(X), according to Definition 9, then c([x]ai , X) ≤ β for any

i ∈ {1, 2, . . . , m}, while adding am+1, if c([x]am+1 , X) ≤ β, obviously, c([x]ai , X) ≤ β holds
for any i ∈ {1, 2, . . . , m + 1}. Therefore, x ∈ ∑m+1

i=1 a∧P
iβ (X). As a result, ∑m+1

i=1 a∧P
iβ (X) =

∑m
i=1 aP

iβ(X) holds.

On the basis of Theorem 7, we can update lower approximation of pessimistic VPM-
GRS with addition of a granular structure.

Example 4 (Continuation of Example 1). Assume the granular structure a7 in Table 2 is added
into Table 1, then we can compute U/a7 = {{x1, x2}, {x3, x5, x6}, {x4, x7, x8}}. Based on Def-
inition 4, we can achieve c([x1]a7 , X) = c([x2]a7 , X) = 1/2, c([x3]a7 , X) = c([x5]a7 , X) =
c([x6]a7 , X) = 0, c([x4]a7 , X) = c([x7]a7 , X) = c([x8]a7 , X) = 1. Because x2 ∈ ∑m

i=1 aP
iβ(X)

and c([x2]a7 , X) = 1/2 > β = 0.3, according to Theorem 7, we have ∑m+1
i=1 a∧P

iβ (X) =

∑m
i=1 aP

iβ(X)− {x2} = ∅.

Theorem 8. Given S = (U, A), and a1, a2, . . . , am ∈ A, X ⊆ U, 0 ≤ β < 0.5, while adding
am+1 into the information system, if x /∈ ∑m

i=1 aP
iβ(X), we have

(1) if c([x]am+1 , X) < 1− β, then ∑m+1
i=1 a∧P

iβ (X) = ∑m
i=1 aP

iβ(X) ∪ {x};

(2) otherwise ∑m+1
i=1 a∧P

iβ (X) = ∑m
i=1 aP

iβ(X).
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Proof.
(1) x /∈ ∑m

i=1 aP
iβ(X), in light of Theorem 4, we have c([x]ai , X) ≥ 1 − β for every

i ∈ {1, 2, . . . , m}, while adding am+1, if c([x]am+1 , X) < 1 − β, then c([x]ai , X) < 1 − β

holds for a given i ∈ {1, 2, . . . , m + 1}. So, x ∈ ∑m+1
i=1 a∧P

iβ (X). Hence, ∑m+1
i=1 a∧P

iβ (X) =

∑m
i=1 aP

iβ(X) ∪ {x}.
(2) x /∈ ∑m

i=1 aP
iβ(X), according to Theorem 4, it implied that c([x]ai , X) ≥ 1 − β

holds for every i ∈ {1, 2, . . . , m}, while adding am+1, if c([x]am+1 , X) ≥ 1− β holds, then

c([x]ai , X) > 1− β for every i ∈ {1, 2, . . . , m + 1}. As a result, x /∈ ∑m+1
i=1 a∧P

iβ (X). Therefore,

we have ∑m+1
i=1 a∧P

iβ (X) = ∑m
i=1 aP

iβ(X).

Based on Theorem 8, we can dynamically update upper approximation of pessimistic
VPMGRS with addition of a granular structure.

Example 5 (Continuation of Example 1). Assume a granular structure a8 in Table 2 is added
into Table 1, then we obtain U/a8 = {{x1, x2, x3}, {x4, x6}, {x5, x7, x8}}. Based on Definition 4,
we obtain c([x1]a8 , X) = c([x2]a8 , X) = c([x3]a8 , X) = 1/3, c([x4]a8 , X) = c([x6]a8 , X) = 1/2,
c([x5]a8 , X) = c([x7]a8 , X) = c([x8]a8 , X) = 2/3. For x2 ∈ U, c([x2]a7 , X) = 1/3 > β = 0.3,
by Theorem 7, we obtain ∑m+1

i=1 a∧P
iβ (X) = ∑m

i=1 aP
iβ(X)− {x2} = ∅. Due to ∀xi ∈ ∑m

i=1 aP
iβ(X),

there is no need to update ∑m+1
i=1 a∧P

iβ (X). According to Theorem 8, we obtain ∑m+1
i=1 a∧P

iβ (X) =

∑m
i=1 aP

iβ(X) = {x1, x2, x3, x4, x5, x6, x7, x8}.

In light of proposed theorems, we present an incremental algorithm for efficiently
obtaining approximations of VPMGRS when adding multiple granular structures.

We summarize the procedures of updating variable precision multigranulation ap-
proximations in Algorithm 2 (Algorithm IAUA). The complexity of initializing the approx-
imations in Lines 2–3 takes O(n), where n is the number of objects. The complexity of
calculating equivalence classes and relative degree of misclassification in Lines 4–8 takes
O(m′n2), where m is the number of granular structures. The complexity of updating lower
approximation of optimistic VPMGRS by Theorem 5 in Lines 9–15 takes O(m′n). The com-
plexity of updating upper approximation of optimistic VPMGRS based on Theorem 6 in
Lines 16–22 takes O(m′n). The complexity of updating lower approximation of pessimistic
VPMGRS based on Theorem 7 in Lines 23–29 takes O(m′n). The complexity of updating
upper approximation of pessimistic VPMGRS based on Theorem 8 in Lines 30–36 takes
O(m′n). The complexity of outputting updated approximations of VPMGRS in Line 37
takes O(n). Thus, the whole complexity of algorithm IAUA takes O(m′n2), which is less
than that of algorithm NACA when adding granular structures.
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Algorithm 2: An incremental algorithm for updating approximations of VPM-
GRS while adding multiple granular structures (IAUA).

Input: (1) S = (U, A), the original granular structures A = {a1, a2, . . . , am}, X ⊆ U. (2) Equivalence
classes: [x]ai , i = 1, 2, . . . , m for each x ∈ U. (3) The added granular structures:

am+1, am+2, . . . , am+m′ . (4) The parameter β. (5) ∑m
i=1 aO

iβ(X), ∑m
i=1 aO

iβ(X), ∑m
i=1 aP

iβ(X),

∑m
i=1 aP

iβ(X).

Output: The updated approximations of X in VPMGRS: ∑m+m′
i=1 a∧O

iβ (X), ∑m+m′
i=1 a∧O

iβ (X),

∑m+m′
i=1 a∧P

iβ (X), ∑m+m′
i=1 a∧P

iβ (X).

1 begin
2 ∑m+m′

i=1 a∧O
iβ (X)← ∑m

i=1 aO
iβ(X), ∑m+m′

i=1 a∧O
iβ (X)← ∑m

i=1 aO
iβ(X),

3 ∑m+m′
i=1 a∧P

iβ (X)← ∑m
i=1 aP

iβ(X), ∑m+m′
i=1 a∧P

iβ (X)← ∑m
i=1 aP

iβ(X).

4 for each x ∈ U do // Computer the equivalence classes and the relative degree with
respect to the added granular structures;

5 for i = m + 1 to m + m′ do
6 Compute [x]ai and c([x]ai , X);
7 end
8 end
9 for each x /∈ ∑m

i=1 aO
iβ(X) do // According to Theorem 5;

10 for i = m + 1 to m + m′ do
11 if c([x]ai , X) ≤ β then
12 ∑m+m′

i=1 a∧O
iβ (X) = ∑m+m′

i=1 a∧O
iβ (X) ∪ {x}, break;

13 end
14 end
15 end
16 for each x ∈ ∑m

i=1 aO
iβ(X) do // According to Theorem 6;

17 for i = m + 1 to m + m′ do
18 if c([x]ai , X) ≥ 1− β then
19 ∑m+m′

i=1 a∧O
iβ (X) = ∑m+m′

i=1 a∧O
iβ (X)− {x}, break;

20 end
21 end
22 end
23 for each x ∈ ∑m

i=1 aP
iβ(X) do // According to Theorem 7;

24 for i = m + 1 to m + m′ do
25 if c([x]ai , X) > β then
26 ∑m+m′

i=1 a∧P
iβ (X) = ∑m+m′

i=1 a∧P
iβ (X)− {x}, break;

27 end
28 end
29 end
30 for each x /∈ ∑m

i=1 aP
iβ(X) do // According to Theorem 8;

31 for i = m + 1 to m + m′ do
32 if c([x]ai , X) < 1− β then
33 ∑m+m′

i=1 a∧P
iβ (X) = ∑m+m′

i=1 a∧P
iβ (X) ∪ {x}, break;

34 end
35 end
36 end

37 return ∑m+m′
i=1 a∧O

iβ (X), ∑m+m′
i=1 a∧O

iβ (X), ∑m+m′
i=1 a∧P

iβ (X), ∑m+m′
i=1 a∧P

iβ (X).

38 end

4. Experimental Analysis

This section aims to evaluate the performance of incremental algorithm IAUA by
making use of extensive experiments. Experimental data sets are downloaded from UCI
(http://archive.ics.uci.edu/ml/datasets.html, accessed on 15 August 2022). The descrip-
tion of all data sets is listed in Table 3. In addition, experiments are run on a PC with
Win 10, Intel i5-1135G7 CPU @ 2.4 GHz, 16 GB RAM, and the algorithms are performed
through Java.

http://archive.ics.uci.edu/ml/datasets.html
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Table 3. The description of data sets.

ID Data Sets # Objects # Attributes # Classes

1 Sonar 208 60 2
2 SPECTF 267 44 2
3 Ionosphere 351 34 2
4 Libras 360 90 15
5 Dermatology 366 33 6
6 Wdbc 569 30 2
7 Diabetic 1151 19 2
8 Segmentation 2310 19 7

In the subsequent sections, we try to evaluate the algorithm IAUA and the algorithm
NACA from the following three aspects. The first one is to compare the efficiency be-
tween IAUA and NACA with different sizes of data sets. The second one is to verify the
efficiency between IAUA and NACA under different updating ratios of adding granular
structures. Furthermore, the last one is to evaluate the influence of the parameter β on the
algorithms IAUA and NACA with respect to computational time. Moreover, for the first
two experiments, when calculating variable precision multigranulation approximations,
the parameter β is fixed as 0.3. Additionally, in our experiments, each attribute in the data
sets is regarded as one single granular structure.

4.1. Comparison between IAUA and NACA with Different Sizes of Universe

In this subsection, we test algorithms IAUA and NACA under the circumstance of
different sizes of universe. To show efficiency of IAUA and NACA more intuitively, the data
sets are initially spit into ten equal parts. The first basic data is viewed as the first part,
the second basic data is combined with first one and the second part, and so on, the tenth
basic data is combined with all of ten parts. Additionally, in regard to the partition of
granular structures, the first 50% are treated as original granular structures while the rest
are treated as adding granular structures.

The computational times consumed by algorithms IAUA and NACA for acquiring
approximations of VPMGRS are depicted in Figure 1, where x-axis reveals different size of
universe, and y-axis indicates the time consumed for computing approximations. Accord-
ing to Figure 1, it is obvious that the NACA trend increases dramatically. This indicates
that the algorithm NACA spends increasingly more computational time than that of IAUA.
Computational time of the algorithm IAUA remains below that of the algorithm NACA,
because the algorithm NACA performs the calculations of approximations in VPMGRS
on the whole data sets without using the prior knowledge. On the contrary, the algorithm
IAUA updates the approximations by making use of the prior valuable knowledge and
thus reduces the computational time.
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Figure 1. A comparison of NACA and IAUA with different sizes of universe.

4.2. Comparison between IAUA and NACA with Different Updating Ratios

In this subsection, we verify the incremental algorithm IAUA under different updating
ratios of granular structures, and the number of objects is fixed. We select 30% of the whole
granular structures as the original part and the rest part is regarded as the candidate part.
Furthermore, updating radio is the ratio with reference to the number of adding granular
structures and that of candidate granular structures. Then, we select 10% to 100% of
granular structures with the increment step of 10% as adding granular structures.

Figure 2 depicts computational time regarding algorithms IAUA as well as NACA to
update approximations, where x-axis pertains to different updating ratios, while y-axis
denotes time consumed for updating approximations. As observed from Figure 2, the
algorithm IAUA reduces the computational time of updating approximations from each
data set in comparison with the algorithm NACA. The main reason is contributed to that
NACA has no updating mechanisms for making fully use of the prior useful information.
When adding granular structures, the algorithm NACA requires to be carried out from
beginning to obtain approximations of VPMGRS. Therefore, the incremental algorithm
IAUA is more efficient for dynamical maintenance of approximations of VPMGRS when
adding granular structures.
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Figure 2. A comparison of NACA and IAUA with different updating ratios.

4.3. Comparison between IAUA and NACA with Changing Values of the Parameter β

In this subsection, we aim to elaborate on the influence of changing values of the
parameter β on computational efficiency of the algorithms IAUA and NACA. To demon-
strate the time consumed with changing values of β, the value of β is considered to change
from 0.1 to 0.45 with incremental step of 0.05. For the algorithm NACA, we perform
experiments on the whole universe of each data set from scratch. For the algorithm IAUA,
the whole granular structures are divided into two parts, namely the original granular
structures and adding granular structures. The original part consists of 40% of the whole
granular structures while the adding part includes the rest of the granular structures. Fur-
thermore, the size of test data set is fixed by the whole universe when the algorithm IAUA
is carried out.

Figure 3 shows the times consumed by the algorithms IAUA and NACA on all data
sets with changing values of β. In two sub-figures of Figure 3, the x-axis refers to changing
values of β while the y-axis expresses computational time for all data sets. In light of
Figure 3, it clearly indicates that the time consumed by IAUA is consistently lower than
that of NACA. According to the algorithms IAUA and NACA, the computational times are
stable in terms of different values of β. Therefore, the time consumed by the algorithms
IAUA and NACA for updating approximations in VPMGRS fluctuates a little with the
variation of β .
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Figure 3. A comparison of NACA and IAUA with changing values of the parameter β.

5. Conclusions

In real applications, the granular structures in multigranulation environments evolve
over time. Therefore, the incremental technique by making use of prior knowledge can
efficiently maintain valuable knowledge in changing data context. Therefore, this study ex-
ploited an efficient algorithm for maintenance of approximations in VPMGRS after adding
multiple granular structures. We developed dynamical mechanisms for obtaining approxi-
mations in the presence of adding granular structures. At the same time, the incremental
algorithm was investigated with the purpose of enhancing the efficiency. Experimental
results on public available data sets validated the feasibility for updating approximations
in VPMGRS. In an information system, the values of attributes may change. Accordingly,
accelerating strategies for maintaining valuable knowledge will be developed by taking the
generalization of values of attributes into account so as to decrease the computational cost.
Meanwhile, it is possible to use the proposed algorithm for addressing some real-world
uncertainty reasoning problems.
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