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Abstract: The adoption of deep learning-based solutions practically pervades all the diverse areas of
our everyday life, showing improved performances with respect to other classical systems. Since
many applications deal with sensible data and procedures, a strong demand to know the actual
reliability of such technologies is always present. This work analyzes the robustness characteristics of
a specific kind of deep neural network, the neural ordinary differential equations (N-ODE) network.
They seem very interesting for their effectiveness and a peculiar property based on a test-time
tunable parameter that permits obtaining a trade-off between accuracy and efficiency. In addition,
adjusting such a tolerance parameter grants robustness against adversarial attacks. Notably, it is
worth highlighting how decoupling the values of such a tolerance between training and test time
can strongly reduce the attack success rate. On this basis, we show how such tolerance can be
adopted, during the prediction phase, to improve the robustness of N-ODE to adversarial attacks.
In particular, we demonstrate how we can exploit this property to construct an effective detection
strategy and increase the chances of identifying adversarial examples in a non-zero knowledge attack
scenario. Our experimental evaluation involved two standard image classification benchmarks. This
showed that the proposed detection technique provides high rejection of adversarial examples while
maintaining most of the pristine samples.

Keywords: neural ordinary differential equation; adversarial defense; image classification

1. Introduction

Deep learning models have had huge success, mainly thanks to their undeniable
performance with respect to many complex tasks, e.g., visual perception, natural language
processing, self-driving cars, and multimedia analysis. Notwithstanding this, various
flaws and drawbacks still need to be tackled. Indeed, when neural networks are called to
work in an unfair environment, as can happen in multimedia security applications, they
have demonstrated crucial vulnerabilities that a malevolent user could exploit through
the design of ad hoc adversarial manipulations in order to induce the model into a wrong
evaluation. Such an incorrect decision might be crucial for the consequent action to be
taken. In the context of image classification, also focused on in this work, an adversary can
control and mislead a deep neural network classifier by introducing a limited malicious
perturbation into the input image [1].

The aforementioned phenomenon has been vastly analyzed with several neural net-
work architectures in multiple tasks. Attacking a deep model seems relatively easy due to
its differentiability and complexity (many successful adversarial generation approaches ex-
ist [2–4]), but counteracting and defending from attacks is still an open problem. However,
multiple approaches aiming at strengthening the attacked model [5–7] achieve robustness
to weak adversaries, but stronger attacks usually can mislead also enhanced ones: ad-
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versarial examples appear to be an intrinsic shortcoming affecting every common deep
learning architecture.

This work focuses on the phenomenon of adversarial examples against neural or-
dinary differential Equation (N-ODE) networks, which represent a recent deep learning
model that generalizes deep residual networks through the solution of parametric ODEs.
Among its peculiar properties, we are interested in the ability to tune at test time the
precision–efficiency trade-off of the network by changing the tolerance of the adaptive
ODE solver with respect to that used in the forward computation. Thanks to this property,
neural ODE nets exhibited increased robustness to projected gradient descent (PGD) attacks
with respect to standard architectures such as ResNets, as evidenced in [8]; higher tolerance
values provided increased robustness at a negligible expense to the accuracy of the model.
In reference [9], we further investigated how these phenomena occur under a stronger at-
tacks, such as the Carlini and Wagner attack. In particular, we tested its performance when
the values of the solver tolerance used for the adversarial generation and for the prediction
phase are decoupled. Starting from this, ODE solver’s tolerance has been introduced as a
defensive property of neural ODEs against adversarial attacks, and adversarial detection
approaches can be designed accordingly. Test-time tolerance randomization is presented as
a possible defense approach in image classification benchmarks under the assumption of a
zero-knowledge adversary—i.e., the attacker can access the model but does not know about
the defense strategy. Moreover, for the sake of completeness, we have also investigated the
more general and challenging case of an adaptive attack scenario where the attacker knows
that there is a defense procedure based on the ODE solver tolerance, and both the attacker
and the defender can play with it. We have specifically analyzed how the attack success
rate can vary in different circumstances.

The contributions of the present work are the following:

• We provide a complete study on neural ODE image classifiers and on how their
robustness can vary by playing with the ODE solver tolerance against adversarial
attacks such as the Carlini and Wagner one;

• We demonstrate the defensive properties offered by ODE nets in a zero-knowledge
adversarial scenario;

• We analyze how the robustness offered by Neural ODE nets varies in the more strin-
gent scenario of an active attacker that changes the attack-time solver tolerance.

The rest of the paper is organized as follows: Section 2 introduces related work, and
Section 3 briefly recalls background knowledge on neural ODE nets and the Carlini and
Wagner adversarial attack. In Section 4, the robustness to adversarial samples of neural
ODEs in relation to the ODE solver tolerance is debated, and in Section 4.1, we introduce
an adversarial detection scheme harnessing this property. Section 5 is dedicated to a
novel analysis that takes into account an adaptive attacker and studies the effect of the
solver tolerance on the attacker side. In Section 6, we report the implementation details of
our experimental evaluation (code and resources to reproduce the experiments presented
here are available at https://github.com/fabiocarrara/neural-ode-features/tree/master/
adversarial, accessed on 1 August 2022). Section 7 draws some conclusions and lays out
future research directions.

2. Related Work

In the scientific literature, the vulnerability to adversarial examples is studied diffusely.
The majority of the analyzed deep models focus on deep convolutional network image
classifiers [1,10,11] under a variety of attacks, such as PGD [12] or the stronger CW [4].
Defensive methodologies against adversarial samples have been devised specifically for
attacks, such as model enhancement via distillation [6] and adversarial sample detection
via statistical methods [13] or auxiliary models [14,15]. Among them, the most promising
methods are based on the introduction of randomization in the prediction process [16,17].
Feinman et al. [18] proposed a detection scheme based on randomizing the output of the
network using dropout. This approach relates to the rationale of our proposed detection

https://github.com/fabiocarrara/neural-ode-features/tree/master/adversarial
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method, as both resort to the stochasticity of the output [19]. Not so many works deal
with analyzing and defending neural ODE architectures. Our previous works include
Carrara et al. [8,9], which analyzes ODE nets under PGD and CW attacks and finds their
superior robustness with respect to standard architectures. Such intrinsic resilience is
also evidenced in Yan et al. [20], which presents an extended empirical study on this
phenomenon and proposes a regularization based on the time-invariance property of
steady states of ODE solutions in order to improve robustness. Finally, relevant to our
proposed method is also the work of Liu et al. [21] that exploits stochasticity by injecting
noise in the ODE to increase robustness to perturbations of initial conditions, including
adversarial ones.

3. Background

This section is dedicated to introducing the neural ordinary differential equation
(N-ODE) networks and the Carlini and Wagner adversarial attack used in the present work.

3.1. The Neural ODE Networks

Hereafter, a basic description of neural ODE (ordinary differential equations) is pro-
vided; a more detailed discussion can be found in [22].

A neural ODE network is a parametric model which includes an ODE block. The
computation of such a block is defined by a parametric ordinary differential equation
(ODE) whose solution gives the output result. The input of the ODE block is indicated with
h0, and it coincides with the initial state ODE at time t0, as in Equation (1):{

dh(t)
dt = f (h(t), t, θ)

h(t0) = h0
. (1)

The function f (·), which depends on the parameter θ, defines the continuous dynamic
of the state h(t). The output of the block h(t1) at a time t1 > t0 is obtained by integrating
the ODE (see Equation (2)).

h(t1) = h(t0) +
∫ t1

t0

dh(t)
dt

dt = h(t0) +
∫ t1

t0

f (h(t), t, θ)dt . (2)

The above integral can be computed with standard ODE solvers, such as Runge–
Kutta or multi-step methods. Thus, the computation performed by the ODE block can be
formalized as a call to a generic ODE solver:

h(t1) = ODESolver( f , h(t0), t0, t1, θ) . (3)

Generally, in image classification applications, the function f (·) is implemented by
means of a small, trainable convolutional neural network. During training, the gradients of
the output h(t1) with respect to the input h(t0) and the parameter θ can be obtained using
the adjoint sensitivity method.

One of the more interesting properties shown by ODE networks and determined by
their intrinsic structure is definitely the accuracy–efficiency trade-off, which is tunable
at inference time by controlling the tolerance parameter τ of adaptive ODE solvers. The
ODE-Net image classifier we consider in this work (see Figure 1 bottom part, ODE) is
constituted by an ODE block (based on Equation (3)) responsible for the whole feature
extraction chain. Before this block, a pre-processing stage comprised of a single K-filter
4 × 4 convolutional layer is inserted; it linearly maps the input image in a proper state
space. The f (·) function in the ODE block is implemented as a standard residual block used
in ResNets (described below). After the ODE block, the classification step is implemented
with a global average-pooling operation followed by a single fully-connected layer with
softmax activation.
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Figure 1. Convolutional layers are written in the format kernel width × kernel height [/ stride], n. filters;
padding is always set to 1. For MNIST, K = 64, and for CIFAR-10, K = 256.

In addition to this, we consider also a standard ResNet (Figure 1 top part, RES) as
baseline [22] for comparison with the ODE-Nets. It is composed of a 64-filter 3 × 3 convo-
lutional layer and 8 residual blocks. Each residual block follows the standard formulation
defined in [23], where group normalization [24] is used instead of batch one. The sequence
of layers comprising a residual block is GN-ReLU-Conv-GN-ReLU-Conv-GN, where GN
stands for group normalization with 32 groups, and Conv is a 3 × 3 convolutional layer.
The first two blocks downsample their input by a factor of 2 using a stride of 2, and the
subsequent blocks maintain the input dimensionality. Only the first block uses 64-filters
convolutions, and the subsequent ones employ K-filter convolutions, where K varies with
the specific dataset. The final classification step is the same as before.

3.2. The Carlini and Wagner Attack

This section briefly introduces the Carlini and Wagner (CW) attack [4] that has been
used in our work to test and evaluate the robustness of the ODE-Net to adversarial samples.
The CW attack is currently considered one of the strongest available adversary techniques
with which to attack neural networks designed for the image classification task. Among
the three existing versions (different metrics used to measure the perturbation), we have
considered the CW-L2, which is formalized as in Equation (4):

min
(

c · g
(

xadv
)
+
∥∥∥xadv − x

∥∥∥2

2

)
(4)

with

g(xadv) = max
(

max
i 6=t

Z(xadv)i − Z(xadv)t,−κ

)
(5)

xadv =
tanh(w) + 1

2
, (6)

where g(·) is the objective function (misclassification), xadv is the adversarial example in
the pixel space, and w is its counterpart in the tanh space in which the optimization is
carried out. Z(·) are the logits of a given input, t is the target class, κ is a parameter that
allows adjusting the confidence with which the misclassification occurs, and c is a positive
constant whose value is set by exploiting a binary search procedure. The rationale behind
the attack is to minimize at each iteration the highest confidence among non-target classes
(first term of Equation (4)) while retaining the smallest possible perturbation (second
term). It is worth mentioning the use of the term tanh(w) that represents a change in
variable that allows one to move from the pixel to the tanh space. This helps regularize the
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gradient in extremal regions of the perturbation space, thereby facilitating optimization
with gradient-based optimizers.

4. Robustness via Tolerance Variation

Though ODE-Nets are very promising and perform well, they are vulnerable to the
same attacks as the standard networks. However, one of their properties, namely, the
ability to change the ODE solver tolerance τ at prediction time, is demonstrated to provide
some degree of robustness against basic adversarial attacks [8]. Changing the tolerance
value of an adaptive ODE solver causes the solver to adopt different step sizes during the
computation of the ODE solution, and this leads to a perturbation of the forward pass that
increases the adversarial robustness. Such property is observed even under the CW attack,
which represents one of the strongest adversarial algorithms to fool neural networks in
image classification specifically. To prove this, a neural ODE model trained on the MNIST
and CIFAR-10 datasets, two well-known 10-class image classification benchmarks, has
been considered. We used the train split (50k images) of each dataset to train the model
and half of the test split (5k images) to generate adversarial samples with the CW attack
(examples are reported in Figure 2). The training procedure was performed once with
a fixed tolerance value, and we considered multiple values of the tolerance when doing
inference and generating adversarial samples.

MNIST

O
ri

g.
A

dv
.

D
iff

.

CIFAR-10

O
ri

g.
A

dv
.

D
iff

.

Figure 2. Adversarial examples found with the Carlini and Wagner attack on our neural ODE network
on MNIST and CIFAR-10 datasets. Adversarial perturbations (Diff.) of CIFAR-10 samples have been
amplified by a factor 10 for visualization purposes.

In Table 1, we report the classification error on the test subset, the attack success rate
(in percentage), and the mean L2 norm of the adversarial perturbation for each tested
tolerance value on the two datasets; just for comparison, the results obtained by a standard
residual network classifier were inserted. Details on the datasets, models, and adversary
generation are available in Section 6. Note that the basic behavior of both the standard
residual (RES) and ODE-Net (ODE) models is similar: they show a limited error rate on
original images, but on the contrary, the CW attack achieves a very high attack success rate.
However, in ODE-Nets, the value of the ODE solver tolerance τ plays an essential role in
determining the success rate of an attack; when we increase the value of the tolerance τ
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used at test time and by the attacker (τtest = τattack), the classification error rate is rather
stable, but the required attack budget increases. This is quite clear for the MNIST dataset,
where the attack success rate quickly decreases, but it is also appreciable for CIFAR-10
when looking at the mean perturbation introduced by the attack. Though the attack success
rate continues to be 100%, an increasing cost is paid in terms of applied distortion. While
this witnesses again to the strength of the CW attack, on the other hand, it confirms that the
sensibility to the tolerance variations, found in the case of the projected gradient descent
(PGD) attack [8], is also shown by the CW attack, suggesting this being a more general
defensive property of ODE-Nets.

Table 1. Classification error (Err, %), Carlini and Wagner attack success rate (ASR, %), and mean L2

norm perturbation (Pert) of RES and ODE on MNIST and CIFAR-10 test sets; obviously only for ODE
are quantities varying the test-time adaptive solver tolerance τ (τattack = τtest) listed.

MNIST CIFAR-10

Err (%) ASR (%) Pert (×10−2) Err (%) ASR (%) Pert (×10−5)

RES 0.4 99.7 1.1 7.3 100 2.6
ODE τ = 10−4 0.5 99.7 1.4 9.1 100 2.2
ODE τ = 10−3 0.5 90.7 1.7 9.2 100 2.4
ODE τ = 10−2 0.6 74.4 1.9 9.3 100 4.1
ODE τ = 10−1 0.8 71.6 1.7 10.6 100 8.0
ODE τ = 100 1.2 69.7 1.9 11.3 100 13.7

Intuition suggests that introducing a decoupling (τattack 6= τtest) between attacker and
defender should increase robustness. To verify such hypothesis, we generated adversarial
samples by setting a fixed tolerance τattack and measuring the model’s accuracy when
varying the test-time tolerance τtest. By considering a zero-knowledge scenario, the value
of attack tolerance τattack = τtrain was taken from the best choice the attacker can make.

At prediction time, the tolerance was drawn from a log-uniform distribution with the
interval [10−5, 10−1] centered in τtrain = 10−3; 20 values were sampled for each image to
be classified. Figure 3 reports the accuracy of the ODE-Net classifier on original inputs
(blue lines) and adversarial examples (orange lines) for MNIST and CIFAR-10 datasets,
respectively; the tolerance on the x-axis is binned (21 bins) in the log space.

It is evident that accuracy on natural inputs (blue lines) is always stable and very high
for each tolerance value, averagely around the original network accuracy (100% for MNIST
and 90% for CIFAR-10); this means that varying the tolerance does not significantly affect
accuracy on standard pristine samples. On the contrary, accuracy on CW-created adversarial
inputs (orange lines) is quite poor (this demonstrates the power of such a technique again),
but it is very interesting to note that in the central bin (around τtrain = 10−3) the attack has
the highest effectiveness; this seems to mean that when the tolerance at test time coincides
with that adopted by the CW attacker, the classifier is strongly induced to misclassify.
Furthermore, it can also be appreciated that if τtest is moved away from the central value
used by the CW attacker, accuracy increases. This means that changes in the tolerance can
provide robustness against CW attack, achieving, for instance, accuracy on adversarial
inputs of about 60% (and corresponding accuracy of around 90% on original images) for
the CIFAR-10 dataset (see Figure 3 on the extreme right). Finally, it is worth observing
that the trend of growth of the orange lines is asymmetric with respect to the central value
τtrain = 10−3, and higher values were achieved for the right side: this shows, as generally
expected, that increasing the tolerance permits one to gain in robustness.
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Figure 3. Accuracy vs. test-time solver tolerance τtest. For each image, we sampled 20 values for τ

from a log-uniform distribution within the [10−5, 10−1] interval. We report the mean accuracy of the
ODENet classifier on natural and adversarial examples for each tolerance bin (in log space, points’
x-coordinates indicate the bin centers).

4.1. Defensive Tolerance Randomization

In light of these findings, we exploited tolerance variation as an active measure against
adversarial attacks and measured to which extent this defensive property can be effective
in an adversarial detection scenario where the defender is asked to discern adversarial
samples from authentic ones.

We considered a white-box attack scenario in which the attacker has access to the
trained ODE-Net and knows the parameter settings of the classifier—specifically, the
solver tolerance τtrain used during the network training. An attack is successful if the
CW algorithm finds an adversarial perturbation leading to a misclassification without
exceeding a prefixed attack budget defined as the maximum number of optimization
iterations. According to this, we have introduced an adversarial detection strategy based
on ODE-Net, tolerance randomization, which collects several predictions with different
randomly drawn test-time tolerance parameters τtest, to detect whether the classification
system is subjected to an adversarial sample. τtest is sampled uniformly from a range
centered on τtrain such that τtrain = τattack 6= τtest. Introducing such a variability also
helps the defendant against knowledgeable adversaries, as simply changing τtest to a
different fixed value can be easily counteracted by the adversary also changing τattack to
the new value. By indicating with V the number of voting members (i.e., the number of τ
values randomly drawn) belonging to the ensemble, we will declare that an adversarial
sample is detected if vagree < vmin, where vagree is the largest amount of members that
have reached the same decision on the test image (size of the majority), and vmin is the
minimum consensus threshold required for assessing the authenticity (non-maliciousness)
of the input.

The performance of this adversarial detection scheme is depicted in Figure 4. We can
see that, once establishing the size V of the voting ensemble (different colored lines), by
varying the threshold vmin with a step of 1, ROC curves can be obtained in terms of TPR
versus FPR, where true positive indicates the correct classification of a natural input. Such
graphs demonstrate that high TPRs can be registered in correspondence with limited FPRs.
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This is particularly visible for the MNIST dataset (see Figure 4a), but it is still true for CIFAR-
10; if, just for example, we refer to Figure 4b when V = 20 (purple line), by increasing the
value of vmin (going down along the curve), we can reduce the FPR while maintaining a
high TPR: with vmin=20 a TPR=92% and a corresponding FPR=15% are achieved (see the
bottom-left corner of Figure 4b). This experiment basically demonstrates that if the ODE-
Net is subjected to a zero-knowledge Carlini and Wagner attack in a white-box scenario, by
resorting to test-time tolerance randomization, it is possible both to preserve classification
performances on natural images and significantly reduce the capacity of the CW attack to
fool the ODE classifier at the expense of performing multiple inferences.
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(a) MNIST

25% 50% 75% 100%

FPR

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

T
P

R

in
cr

ea
sin

g
v m

in

Ensemble Size V

5

10

15

20

(b) CIFAR-10

Figure 4. Analysis of the detection performance with the randomized tolerance ensemble. ROC
curves (TPR vs. FPR, where TP = “correctly detected natural input” and FP = “adversarial input
misdetected as natural”) are obtained after varying the minimum majority size vmin, i.e., if the number
of majoritarian votes vagree in the ensemble is greater than vmin, the input is considered authentic
(positive), and otherwise, adversarial (negative).

5. Robustness under Adaptive Attackers

To date, we have studied tolerance variation for defensive purposes under the as-
sumption of a non-adaptive adversary. In this section, we extend the analysis described in
Sections 4 and 4.1 by also exploring the effect of the attacker’s tolerance when generating
adversarial samples.

As the defender, the attacker can vary the solver’s tolerance to generate malicious
samples. While we observed that the defender should set τtest to a value away from
the τattack, the attacker instead aims at setting τattack = τtest, where he is certain about
the success of the attack. We explored how the CW attack success rate varies over the
(τattack, τtest) ∈ R2 space. Instead of a randomized exploration of this space, we performed
a logarithmic grid sampling of tolerance values by setting τ = 10i , i ∈ {−4,−3,−2,−1, 0}
independently for τattack and τtest. As in previous sections, CW attacks were performed on
our trained neural ODE classifiers using the first halves of the MNIST and CIFAR-10 test
sets with the solver’s tolerance set to τattack. We report results in Figure 5, where for each
(τattack, τtest) couple, we show the percentage of successful attacks (adversarial samples
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that fooled the network as intended, in red), the percentage of failed attacks (adversarial
samples that were either “recovered” as such or correctly classified by the network, in
green), and the percentage of successful but changed attacks (adversarial samples that
were still misclassified but were classified differently from what the attacker expected, in
yellow). For this experiment, we ignored samples on which the attack failed to generate an
adversarial perturbation in the first place, i.e., we discarded samples that failed to generate
an adversarial sample when τattack = τtest, thus having an attack success rate of 100% in
the diagonal entries. This permits focusing only on the effect of tolerance decoupling on
the attack success rate while discarding the contributions to robustness already studied
and presented in Table 1. It is quite evident that tolerance decoupling between attack and
defense can be disruptive for an attacker. For instance, this led to an attack failure rate of
up to 78.3% for MNIST when (τattack, τtest) = (100, 10−3), and 66.2% for CIFAR-10 when
(τattack, τtest) = (10−3, 100). In general, higher values of recovery tend to be concentrated
where the discrepancy between τattack and τtest is maximum, but this trend seems to saturate
as this discrepancy decreases.

(a) MNIST
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Figure 5. Attack success rate (in red) and recovery rate (in green) when varying τattack (on y-axis)
and τtest (on x-axis). In yellow, the percentage of classifications that changed with respect to the one
induced by the attack but are still adversarial.
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6. Experimental Details

This section reports the implementation details of the experiments described in the
previous sections of the paper.

6.1. Datasets: MNIST and CIFAR-10

All the models used in this analysis were trained on two standard and well-known
image classification benchmarks: MNIST [25] and CIFAR-10 [26]. MNIST is composed of
60,000 grayscale images subdivided into training (50,000) and testing (10,000) sets; images
are 28 × 28 pixels and represent hand-written digits (from 0 to 9, so it consists of 10 classes).
MNIST is substantially the de fact standard baseline for novel machine learning algorithms
and is nearly the only dataset used in research concerning ODE networks. The second
dataset taken into account in our analysis was CIFAR-10; it is a 10-class image classification
dataset too, comprised of 60,000 RGB images (size 32 × 32 pixels) of common objects
subdivided into training/testing sets (50,000/10,000).

6.2. The Training Phase

Both considered models, RES and ODE, apply dropout before the fully-connected
classifier with a drop probability of 0.5, and the SGD optimizer has a momentum of 0.9;
the weight decay is 10−4, batch size is 128, and the learning rate is 10−1 reduced by a
factor 10 every time the error plateaus. The number of filters K in the internal blocks
is differently set for each dataset: 64 for MNIST and 256 for CIFAR-10. For the ODE
net model, containing the ODE block, we used the Dormand–Prince variant of the fifth-
order Runge–Kutta ODE solver (implemented in https://github.com/rtqichen/torchdiffeq,
accessed on 1 August 2022); in such an algorithm, the step size is adaptive and can be
controlled by a tolerance parameter τ (τtrain = 10−3 was used in our experiments during
the training phase). The value of τ constitutes a threshold for the maximum absolute and
relative error (estimated using the difference between the fourth-order and the fifth-order
solution) tolerated when performing a step of integration; if such a step error exceeds τ,
the integration step is discarded, and the step size decreased. Both models, RES and ODE,
the achieved classification performances are comparable with the current state-of-the-art
performances on MNIST and CIFAR-10 datasets (see Table 1).

6.3. Carlini and Wagner Attack Implementation Details

The CW attack was implemented by resorting to Foolbox 2.0 [27] on PyTorch models.
We adopted Adam to optimize Equation (4), setting the maximum iterations to 100 and
performing 5 binary search steps to tune c starting from 10−2. The learning rate of 0.05
was used for MNIST and 0.01 for CIFAR-10. The first 5000 images of each test set were
selected as original samples to be perturbed, discarding the images naturally misclassified
by the classifier.

7. Conclusions and Future Works

In this paper, we have presented an analysis of the robustness of neural ODE image
classifiers in an uncontrolled environment, and the behavior of N-ODE nets against the
Carlini and Wagner (CW) attack was specifically studied. The CW attack was considered,
as it is one of the most performing adversarial attacks for the image classification task.
Furthermore, we have focused on how the tolerance parameter of the adaptive ODE solver,
which is generally used in neural ODE networks to tune the computational precision-
efficiency trade-off, can affect the robustness against such attacks. We have observed that
modifying the tolerance used during the prediction phase from that used when generating
adversarial inputs tends to undermine attacks while maintaining high accuracy on pristine
samples. According to this, we have proposed using the tolerance as a defensive property
of neural ODE nets and demonstrated that it is possible by introducing a novel adversarial
detection strategy for ODE nets based on tolerance randomization and a major voting
ensemble scheme.

https://github.com/rtqichen/torchdiffeq
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Our evaluation performed on two standard image classification benchmarks (MNIST
and CIFAR-10) has shown that our simple detection technique can reject roughly 80%
of strong CW adversarial examples while maintaining +90% of original samples under
white-box attacks and zero-knowledge adversaries. We have also hypothesized that to
overcome our method, the adversary should require high attack budgets to attack a wide
range of tolerance values and distill them in a unique malicious input.

We have also explored the defensive properties of tolerance variation in the scenario
with adaptive adversaries and shown that the simple decoupling of attack and test toler-
ances, without any additional defensive procedures, increases adversarial robustness up to
roughly 78% and 66% for MNIST and CIFAR-10 datasets, respectively.

Future works will be dedicated to gathering deeper insights into the relationship
between attacker and defender tolerance settings by exploring the tolerance space on
a finer scale. In addition, we would be interested to investigate the dynamic scenario
in which both the attacker and the defender try to adapt each other and analyze it in a
game-theoretic framework.
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