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Abstract: Efforts have been dedicated by researchers in the field of natural language processing
(NLP) to detecting and combating fake news using an assortment of machine learning (ML) and deep
learning (DL) techniques. In this paper, a review of the existing studies is conducted to understand
and curtail the dissemination of fake news. Specifically, we conducted a benchmark study using a
wide range of (1) classical ML algorithms such as logistic regression (LR), support vector machines
(SVM), decision tree (DT), naive Bayes (NB), random forest (RF), XGBoost (XGB) and an ensemble
learning method of such algorithms, (2) advanced ML algorithms such as convolutional neural
networks (CNNs), bidirectional long short-term memory (BiLSTM), bidirectional gated recurrent
units (BiGRU), CNN-BiLSTM, CNN-BiGRU and a hybrid approach of such techniques and (3) DL
transformer-based models such as BERTbase and RoBERTabase. The experiments are carried out
using different pretrained word embedding methods across four well-known real-world fake news
datasets—LIAR, PolitiFact, GossipCop and COVID-19—to examine the performance of different
techniques across various datasets. Furthermore, a comparison is made between context-independent
embedding methods (e.g., GloVe) and the effectiveness of BERTbase-contextualised representations
in detecting fake news. Compared with the state of the art’s results across the used datasets, we
achieve better results by solely relying on news text. We hope this study can provide useful insights
for researchers working on fake news detection.

Keywords: fake news; misinformation; machine learning; deep learning; transformer-based models

1. Introduction

Traditionally, people fundamentally consume news and information through news-
papers and television (TV) channels. However, with the advent of the Internet and its
intrusion into our lifestyle, the former has become less prominent [1]. Today, social media
and live streaming platforms play a fundamental role compared with television as major
news sources, as 62 percent of U.S. people gained news from social media in 2016, while
49 percent watched news through social media in 2012 (http://www.journalism.org/2016
/05/26/news-use-across-social-media-platforms-2016/) (accessed on 3 March 2022).

Nowadays, the role of online social networks (OSNs) has significantly increased
due to their convenient access. As a result, it is no longer limited to being a window for
communication between individuals; rather, it has become an important tool for exchanging
information and influencing and shaping public opinions [2].

The other side of the coin is fake news dissemination, specifically on OSNs, which
poses a great concern to the individual and society due to the lack of control, supervision
and automatic fact-checking, leading to low-quality and fake content generation. As a
result, the general public is prone to countless disinformation and misinformation on OSNs,
including fake news (i.e., news stories created intentionally with falsified information to
mislead readers) [3,4]. Figure 1 illustrates the increase in fake news cases over the last
two years.
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Figure 1. Fake news trends (2019–2022) [5].

It is not surprising to see falsehoods in information disseminated rapidly on OSNs, gen-
erating some degree of anonymity. For example, fake news has led to significant impacts on
real-world events, where a piece of fake news from Reddit caused a real shooting (https://
www.rollingstone.com/politics/politics-news/anatomy-of-a-fake-news-scandal-125877/)
(accessed on 15 March 2022). In the 2016 U.S. presidential election, for instance, over one
million posts were found to be related to a piece of fake news known as PIZZAGATE

(https://tinyurl.com/z38z5zh) (accessed on 15 June 2022). Furthermore, during this period,
the top 20 fake news pieces were reported to be larger than the top 20 most discussed
real stories (https://tinyurl.com/y8dckwhr) (accessed on 15 June 2022). As stated by
research on fake news velocity, tweets including falsified information on Twitter reach
people six times faster than trustworthy tweets [6], resulting in fear, panic and financial
loss in society [7]. According to a report in China, fake information constitutes more than
one third of trending events on microblogs [8]. All these indicate how terribly fake news
disseminates and how it can have an adverse social impact. According to [9], on Twitter,
fake news, particularly political news, is usually retweeted by more users and disseminates
extremely rapidly. In fact, some popular sources of information considered genuine, such
as Wikipedia, are also subject to false information or fake news [10].

Without news verification, fake news would spread rapidly through OSNs, resulting
in real consequences [11]. Therefore, researchers in the field of NLP dedicate their efforts
to detecting fake news using various ML and DL algorithms. To better understand the
performance of these algorithms and explore the directions for future study, in this paper,
using four real-world fake news datasets, we compare the performance of seven classical
ML algorithms—LR, SVM, NB, DT, RF, XGB and a voting ensemble ML method—with two
scenarios of word representation methods: statistical (sparse) word vector representation
methods and context-free (dense) pretrained word representation models. In addition, we
also compare the performance of eight advanced ML models and two advanced transformer-
based models: CNN, BiLSTM, BiGRU, CNN-BiLSTM, CNN-BiGRU, a hybrid model of
CNN-BiLSTM-BiGRU (with two types of text representation methods: context-free and
context-aware embedding models), BERTbase and RoBERTabase. Note that the presented
approaches concentrate only on the structure without considering word sense (i.e., resolving
ambiguities in context).

The key contributions of this paper are as follows:

• This paper surveys various feature-based methods and an assortment of ML and state-
of-the-art transformer-based models used in the literature for fake news detection.

• This paper provides a benchmark study for a wide range of classical and advanced ML
algorithms with pretrained word-embedding methods (i.e., context-free and context-
aware) as well as advanced pretrained transformer-based models using various datasets.

• The experimental results indicate that no single technique can deliver the best perfor-
mance scores across all datasets.

• In general, advanced PLMs such as BERTbase and RoBERTabase are effective at detecting
fake news.

2. Problem Definition

We consider the problem of fake news detection as a binary classification, where a
model is created to predict the credibility of a piece of news as either fake or real based on

https://www.rollingstone.com/politics/politics-news/anatomy-of-a-fake-news-scandal-125877/
https://www.rollingstone.com/politics/politics-news/anatomy-of-a-fake-news-scandal-125877/
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given attributes. Formally, assume A = {a1, a2, . . . , aL} is a set of news articles, statements
or tweets (where L is the length of the input). The goal of fake news detection is to predict
whether the input text represents fake or real content.

3. Related Works

ML and DL techniques have significantly contributed to detecting and categorising
fake news. Earlier research in fake news detection mainly relied on linguistic features to
engineer relevant information. The textually based features were divided broadly into two
groups, according to [12]: (1) general features and (2) latent features.

3.1. Classical ML Algorithms

General textual features are those typically used with a traditional ML context. Such
features are the catalyst for describing content style w.r.t. four linguistic language levels:
lexicon, syntax, discourse and semantic [13]. At the lexicon level, some statistical techniques,
such as the bag-of-word (BoW) model, are mainly applied to evaluate the frequency
statistics of lexicons [14]. The main task of the syntax level is to assess part-of-speech
(POS) (e.g., nouns and verbs) frequencies using part-of-speech (POS)-taggers [14,15]. At the
discourse level, rhetorical parsing tools and rhetorical structure theory (RST) can be used to
capture rhetorical relations as features based on their frequencies among sentences [14,16].

For example, Pisarevskaya [17] modelled language markers and rhetorical relations
using SVM and random forest classifiers and achieved an F-score of 0.65. At the semantic
level, these frequencies can be assigned to lexicons or expressions corresponding to each
psycho-linguistic category [12], such as those determined in Linguistic Inquiry and Word
Count (LIWC) [18]. The underlying assumption of text-based methods is that textually and
linguistic-based features differ between fake and real claims.

It is common for fake news stories to contain inflammatory and opinionated language,
since the purpose of their creation is usually financial or political gain, as opposed to
reporting objective information. In addition, fake news content often contains clickbait (i.e.,
to incentivise consumers to read the full article by clicking on a provided link) or incites
confusion [19]. Linguistic-based features (e.g., lexical and syntactic features) refer to those
features that can capture particular writing styles and sensational headlines [20].

Different linguistic-based features were extracted from the news text content and
explored by existing works for fake news detection. In [18], the authors used a set of
linguistic-based features and conducted learning experiments to develop robust fake news
detectors. First, they analysed the various features of the news articles (including n-grams,
LIWC, punctuation, grammar and readability). Then, based on these features, a linear SVM
classifier was trained. In this study, computational linguistics was shown to be useful in
detecting fake news automatically. Fuller et al. [21] proposed a linguistic-based method
for deception detection consisting of 31 linguistic features, where 3 classifiers were to be
used to refine them to only 8 cues. Such clues were based on the different feature sets in
the linguistic field proposed earlier [22,23], in addition to others.

The use of a relatively simple approach based on term frequency (TF) and term
frequency–inverse document frequency (TF-IDF) has been shown to be effective in some
previous studies. Riedel et al. [24] applied a multilayer perceptron (MLP) in the context of
the fake news challenge dataset, and they showed that using a relatively simple approach
based on TF and TF-IDF yielded a good accuracy score of 88.5%. Ahmed et al. [25] ap-
plied a linear support vector machine (LSVM) using TF-IDF and with unigram features
on a dataset of 2000 news pieces, yielding an accuracy of 92%. Bharadwaj [26] exper-
imented with different features such as TF and TF-IDF with n-gram features, and the
results showed that random forest (RF) with bigram features achieved the best accuracy of
95.66%. In [27], the authors experimented with character and word n-grams to study their
effect on detecting fake news and concluded that the former contributed more towards
improving fake news detection performance compared with word n-grams. The TF-IDF
method and CountVectorizer (CV) were used by [28] as a feature extraction technique.



Information 2022, 13, 576 4 of 28

They demonstrated that their approach was more accurate than state-of-the-art approaches
such as Transformers’ Bidirectional Encoder Representations (BERT). Linguistic features
have been used in both supervised and unsupervised learning approaches. It is essential to
recognise that prospective deceivers use short sentences, certain phrasal verbs as well as
certain verb tenses as part of their language, which has been revealed by some cooperative
experiments between psychologists, linguists and computer scientists [22,29–32]. For ex-
ample, 16 language variables were investigated by Burgoon et al. [29] in order to see if they
may help distinguish between deceptive and truthful communications. They conducted
two experiments in order to construct a database, in which they set up face-to-face or
computer-based discussions with one volunteer acting as the deceiver and the other acting
genuinely. Then, such discussions were transcribed for further processing, and they came
up with certain linguistic cue classes that could reveal the deceiver. The authors utilised
the C4.5 decision tree (DT) technique with 15-fold cross-validation to cluster and construct
a hierarchical tree structure of the proposed features. Their proposed method achieved
an overall accuracy of 60.72 per cent on a short sample of 72 cases. They concluded that
noncontent words (e.g., function words) should be included when studying social and
personality processes. According to the authors, in addition to specific nouns and verbs,
linguistic style markers such as pronouns, articles and prepositions are equally important
in revealing what someone is thinking and feeling. Therefore, liars are more likely to tell
less self-relevant, less complicated and more negative stories. Moreover, liars were more
likely than truth-tellers to utilise negative emotion (more negative feeling) terms [31].

Liars may feel guilty, either for the lie they said or for the topic they lied about [33].
Knapp et al. [34] observed that liars were far more likely than truth-tellers to make dis-
paraging statements about their communication partners. In addition, they observed that
the use of other references is more common among liars than among truth-tellers. How-
ever, this is inconsistent with what [31] found, where they observed that compared with
truth-tellers, liars used fewer third-person pronouns. Horne et al. [35] applied an SVM
classifier with a linear kernel using several linguistic clues. The authors cast the prob-
lem as a multi-class classification to identify whether an article was real, fake or satire,
where classes were equally distributed. After a 5-fold cross-validation with BuzzFeed
News (https://www.buzzfeednews.com/article/craigsilverman/viral-fake-election-news-
outperformed-real-news-on-facebook) (accessed on 5 May 2022) that was enriched with
satire articles, they reached 78 percent accuracy. Their feature set mainly consisted of POS
tags and specific LIWC word categories.

A wide range of stylistic, morphological and grammatical text and punctuation could
serve as useful cues to detect news veracity. These sets of features were adopted by
Papadopoulou et al. [36] using a two-level text-based classifier in order to detect click-
bait. Similarly, Rubin et al. [37] used some of these features, such as punctuation and
grammatical features. Sentiment analysis, opinion mining and opinionated and inflam-
matory language as factors for fake news detection have also been explored [19,37–46].
Bhelande et al. [47] applied a naive Bayesian classifier using a bag of positive and negative
words (i.e., sentiment analysis). Syntactic features (e.g., sentence-level features such as POS
and n-grams) [4,13,18,25,37,39,44,48–50], and lexical features for salient content words (i.e.,
character-level and word-level features) [8,18,20,25,35,37,40,44,51–56] have been adopted
by existing research. Castillo et al. [40] analysed and assessed information credibility
on Twitter by adopting a list of rudimentary content-based features. In [57], the authors
aimed to gauge the credibility of web claims by exploiting language stylistic features.
They claimed that the language style of the reporting articles plays a crucial role in un-
derstanding their credibility. Da Silva et al. [58] examined ML approaches to identify and
detect fake news. They found that neural networks composed of statistical classification
algorithms heavily concentrate on analysing lexicons as the main features for detection
to perform best. Potthast et al. [20] used news content to extract style features for fake
news prediction. Psycholinguistic cues (i.e., additional indicators of persuasive language)
such as sadness, anger and others and signals of biased language have been adopted in

https://www.buzzfeednews.com/article/craigsilverman/viral-fake-election-news-outperformed-real-news-on-facebook
https://www.buzzfeednews.com/article/craigsilverman/viral-fake-election-news-outperformed-real-news-on-facebook
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detection as well [9,18,37,46,49,54]. More work on fake news detection relying on linguistic
cues can be found in [52,59,60]. A systematic mapping study was conducted in [61] to
analyse and synthesise studies regarding the use of ML techniques for detecting fake news.
Klyuev [62] discussed different approaches and techniques to fight fake news. They also
discussed how important it is to define text features using NLP methods to build a text
document profile. However, it turns out that straightforward approaches such as n-grams
and POS tags tend to ignore different writing style features and cannot capture cues across
long news articles. Indeed, irrelevant (noisy) text inevitably exists in fake news datasets,
particularly those extracted from OSNs such as Twitter. If not processed, this would end up
with classification performance leading to inaccurate predictions. This poses the challenge
of how to encode such data so as to mitigate such a problem. Various dedicated efforts
have been put forward to respond to this challenge using neural network-based models.
Each provides a unique set of informative and useful features that can help discriminate
fake news from real news.

3.2. Advanced ML and DL Models

Latent textual features are those used for news text representations which can be applied
at the word level [63,64], sentence level [65,66] or document level [66], resulting in vector
representations that can be used for further processing (i.e., as an input to a classifier).
For example, one study on detecting rumours on Twitter applied Word2Vec in order to
create vector representation [67,68]. Another study on detecting fake news based on the
content [69] applied convolutional neural networks (CNNs) and bidirectional long short-
term memory (BiLSTM) for embedding the textual and speaker metadata information for
fake news detection. Quian et al. proposed two-level CNNs, where the first level produces
embedding for a sentence using words and the second level uses the sentence embedding to
generate article embedding [70]. Using CNNs and pretrained word embeddings, Goldani
et al. [71] proposed a capsule network model based on the ISOT and LIAR datasets for
(binary and multi-class) fake news classification. Their results showed that the best accuracy
obtained using binary classification on ISOT was 99.8%, while multi-class classification
using the LIAR dataset yielded 39.5% accuracy. Similarly, Girgis et al. [72] performed fake
news classification using the LIAR dataset. The authors employed three different models: a
vanilla recurrent neural network (RNN), a gated recurrent unit (GRU) and long short-term
memory (LSTM). Regarding accuracy, the GRU model resulted in 21.7% accuracy, slightly
higher than the other two models (LSTM = 21.6% and RNN = 21.5%). The authors presented
a DL model in [73] for automatically detecting fake news in Slovak. In addition, several
local online news sources were used to gather data related to the COVID-19 pandemic to
train and evaluate various DL models. A model combining a bidirectional long-short-term
memory network with one-dimensional convolutional layers achieved an average macro F1
score of 94% on an independent test set. Thus, advanced ML methods perform substantially
better when used to classify fake news on a binary scale but perform much worse when
used to classify fake news on a more refined level.

In fake news detection, it is important to capture contextualised features. In contrast to
those unidirectional models that read the text input sequentially, BERT offers clear advan-
tages over encoding models in the literature, where it basically reads the entire sequence
of words at once and flows it through a stack of transformer encoders. The transformer
is simply an attention-based neural network model which alleviates the currency-related
issues in RNNs by handling long-term dependency in the text more efficiently using an
attention mechanism. The attention mechanism is a module that interprets how significant
a word is for the subsequent representation of the current word by assigning each word a
weight based on the context (relevance of all other words in different positions in a sentence
against the current word at the current position). Generally speaking, unlike feature-based
engineering methods, which failed to fully exploit the rich semantic and syntactic informa-
tion in the content, the results obtained by DL-based methods show superior improvements.
Furthermore, as a state-of-the-art model, BERT can capture deep contextualised informa-
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tion. The technique of learning how to transfer knowledge is known as transfer learning,
which stores and applies the knowledge gained from performing a specific task to another
problem. Learning this way is useful for training and evaluating models with relatively
small amounts of data. In recent years, pretrained language models (PLMs) have become
mainstream for downstream text classification [74] thanks to transformer-based structures.
Major advances have been driven by the use of PLMs, such as ELMo [75], GPT [76] or
BERT [74]. BERT and RoBERTa, the most commonly utilised PLMs, were trained on huge
corpora, such as those containing over three billion words for BERT [74]. The success of
such approaches raises the question of how such models can be used for downstream text
classification tasks. Over the PLMs, task-specific layers are added for each downstream
task, and then the new model is trained with only those layers from scratch [74,77,78] in a
supervised manner. Specifically, these models use a two-step learning approach. First, in a
self-supervised manner, they learn language representations by analysing a tremendous
amount of text. This process is commonly called pretraining. Second, feature-based and
fine-tuning approaches can then be used to apply these pretrained language representations
to downstream NLP tasks. The former uses pretrained representations and includes them
as additional features for learning a given task. The latter introduces minimal task-specific
parameters, and all pretrained parameters are fine-tuned for the downstream tasks. These
models are advantageous in that they can learn deep context-aware word representations
from large unannotated text corpora, namely large-scale self-supervised pretraining. This
is especially useful when learning a domain-specific language with insufficient available
labelled data.

As we will further discuss in later sections, this paper exploits the power of BERTbase
and its variations in building robust fake news predictive models. Few studies have been
conducted using such models, despite using different methodologies and different scenar-
ios, which have shown promising results. One recent example is a study conducted by
Kula et al. [79], which presents a hybrid architecture based on a combination of BERT and
an RNN. Alghamdi et al. [80] presented a computational framework for automatic fake
news detection using BERTbase. The authors applied BERTbase to encode the input text, and
then the resulting output sequence was fed into a CNN network to extract the salient local
features. The metadata were then encoded using a CNN followed by a BiLSTM and then a
classification layer. Their study achieved state-of-the-art performance on the LIAR dataset.
Aggarwal et al. [81] showed that BERT, even with minimal text preprocessing, provided
better performance compared with that of the LSTM and gradient-boosted tree models.
Jwa et al. [82] adopted BERT for fake news detection by analysing the relationship between
the headline and the body text of news using the FNC dataset, where they achieved an F1
score of 0.746. In an attempt to automatically detect fake news spreaders, Baruah et al. [83]
proposed BERT for the classification task, achieving an accuracy of 0.690.

Given that BERT is more complex to train (depending on how large the number
of parameters being used is), a variation of BERT, the so-called DistilBERT method [84],
provides a simpler and more reasonable number of parameters compared with that of
BERT (reducing BERT by 40% in size while retaining 97% of its language understanding
abilities), thus leading to faster training (60% faster). With a larger dataset, larger batches
and more iterations, a robust BERT model was developed: the so-called RoBERTa [78].
A benchmark study of ML models for fake news detection was provided in [85], where
the authors formulated the problem of fake news detection using three different datasets,
including the LIAR dataset [69] (see Section 4.6.1 for more details about the dataset), as a
binary classification. Their experimental results showed the power of advanced PLMs such
as BERT and RoBERTa. A summary of the previous related studies on the LIAR dataset
(binary classification) can be seen in Table 1.
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Table 1. A summary of exiting work on the LIAR dataset.

Models Metrics
Accuracy Precision Recall F1

RoBERTabase [85] 0.62 0.63 0.62 0.62
SVM [86] 0.62 NA NA NA

Using a composite fake news dataset called FakeNewsNet (see Section 4.6.2 for more
details about the dataset), which includes two datasets—PolitiFact and GossipCop—the
authors of [87] employed an autoencoder with LSTM of two layers for both encoders
and decoders and also used another network of LSTM with two layers to capture the
temporal pattern of user engagements. The authors later presented a DL model based
on the hierarchical attention network for fake news detection using the same datasets
where their proposed framework achieved state-of-the-art results [88]. Using the PolitiFact
dataset, a deep neural network model with various representations was proposed in [89].
A summary of the previous related work on the FakeNewsNet dataset can be seen in
Tables 2 and 3.

Table 2. A summary of exiting work on (FakeNewsNet) PolitiFact dataset.

Models Metrics
Accuracy Precision Recall F1

Social Article Fusion [87] 0.69 0.64 0.79 0.71
Logistic Regression (N-Gram) [90] 0.80 0.79 0.78 0.78

BiLSTM-BERT [91] 0.8558 NA NA NA
LNN-KG [89] 0.880 0.9011 0.880 0.8892
DEFEND [88] 0.904 0.902 0.956 0.928

Table 3. A summary of exiting work on (FakeNewsNet) GossipCop dataset.

Models Metrics
Accuracy Precision Recall F1

CNN [87] 0.723 0.751 0.701 0.725
Logistic Regression (N-Gram) [90] 0.82 0.75 0.79 0.77

DEFEND [88] 0.808 0.729 0.782 0.755

In [92], the authors applied a pretrained transformer model, the so-called XLNet
model, combined with Latent Dirichlet Allocation (LDA) by integrating contextualised
representations generated from the former with topical distributions produced by the latter.
Their model achieved an F1 score of 0.967. In the same vein, a fine-tuned transformer-based
ensemble model was proposed in [93]. The proposed model achieved a 0.979 F1 score on
the Constraint@AAAI2021-COVID19 fake news dataset (see Section 4.6.3 for more details
about the dataset). Similarly, the authors of [94] carried out several experiments on the
same dataset, and they proposed a framework for detecting fake news using the BERT
language model by considering content information and prior knowledge as well as the
credibility of the source. According to the results, the highest F1 scores obtained ranged
from 97.57 to 98.13. By applying several supervised advanced ML models such as CNNs,
LSTM and BERT to detect COVID-19 fake news, the authors of [95] achieved the best
accuracy of 98.41% using the BERT-based version. A summary of the previous related
studies on the COVID-19 dataset can be seen in Table 4.
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Table 4. A summary of exiting work on the COVID-19 dataset.

Models Metrics
Accuracy Precision Recall F1

SVM+LR+NB+biLSTM [96] NA NA NA 0.94
SVM [97] 0.9570 0.9571 0.9570 0.9570

SNN(LM+KG) [89] 0.9570 0.9533 0.9652 0.9569
BERT-Based [95] 0.9841 NA NA NA

Ensemble Transformer Models [93] 0.9799 0.9799 0.9799 0.9799
XLNet with Topic Distributions [92] NA 0.968 0.967 0.967

SVM [98] 0.9332 0.9333 0.9332 0.9332

To summarise, classical ML algorithms are easy to comprehend and perform well
on small datasets, but they (1) require complex feature engineering and (2) fail to capture
substantial semantical contextual knowledge for a specific input text. To overcome this,
advanced ML techniques such as CNN- and RNN-based methods are well suited for com-
plicated classification problems powered by massive data and can learn more complicated
(latent) features. However, CNNs typically struggle with capturing long-term contex-
tual dependencies, while RNN-based methods perform suboptimally in handling such
dependencies. As such, a combination of these two architectures may overcome some of
their inherent limitations. Aside from the fact that surface-level features cannot effectively
capture semantical patterns in text, the lack of sufficient data constitutes a bottleneck for DL
models. Thus, to address this, the power of the DL transformer-based models, such as BERT
and its variations, can be effectively leveraged to build robust fake news predictive models.

4. Comparative Study

Based on thorough literature review analysis, we conducted this comprehensive
comparative study by selecting several popular, well-discussed classical and advanced
ML and DL models for fake news detection. In this section, we will first present different
word-embedding techniques developed in NLP and then introduce different traditional and
advanced ML algorithms as well as DL models for fake news detection and the benchmark
datasets, which will be used to conduct the comparative study. The objective is to examine
the performance of a wide range of ML techniques, including classical and advanced ML
models as well as DL approaches, across various datasets for fake news detection.

4.1. Embeddings

Word embedding is considered the centre of any NLP task and is basically a form
of word representation that bridges the human understanding of language to that of
a machine. Word embeddings are typically learned from a large corpus of text. The
distributed representational vector that captures the semantics of the input text can be
obtained using two main alternatives that have been used for several text classification
tasks in NLP. Modelling text is challenging because it is messy, and techniques such as ML
algorithms require well-defined, fixed-length inputs and outputs. ML algorithms require
the text to be converted into numbers (specifically vectors of numbers) as they cannot
directly work with raw text. These vectors capture more linguistic properties of the text,
as “in language processing, the vectors x are derived from textual data, in order to reflect
various linguistic properties of the text” [99] (p. 65). Textual data requires a numerical
representation and, most importantly, an efficient representation for computation and
manipulation. Various statistically and contextually based methods have been developed
to represent text numerically. The former is based only on statistical metrics, which typically
generate a sparse vector space, while the latter is based on the concept of word context,
which produces a rather dense vector space.

Several approaches have applied such methods (e.g., the bag-of-words [100], n-
gram [101] and TF–IDF methods [102]) as input for text classification using ML (e.g., NB
classifiers [103], K-NN algorithms [104] and SVM [105]). Nevertheless, the contextualised
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representation that allows for efficient computation and captures the underlying patterns
is urgently needed, especially with the massive amounts of textual data. These statistically
based representation methods are computationally efficient and have achieved promising
results where they are traditionally considered the centre of any text classification task.
However, these methods focus entirely on capturing the frequency features of a particular
word, and the contextual information of a text is fully disregarded, making it difficult to
capture semantic-based information. To capture more semantical information, pretrained
language representation models (a.k.a context-independent models) were developed, such
as Word2Vec and GloVe, which captured those semantics patterns but did little to capture
context information. A significant amount of attention has been devoted to developing
context-aware representations of textual data, including transformer-based models such
as BERT, which has led to outstanding results in most NLP mainstream tasks. Overall,
these techniques try to model the following problem. Assume we have a corpus of n
documents S = {d1, d2, . . . , dn}, each of which consists of m words W = {w1, w2, . . . , wm}
and a vocabulary V. The embedding vector representation ~wi is defined as mapping each
word wi in a specific document di into a continuous space Rd, where d is the dimension of
the vector space. Mathematically, the words in a document can be mapped as follows:

wi → ~wi, ~wi ∈ Rd (1)

4.1.1. Non-Contextualised Embeddings: Sparse Vector Representation-Based

In this subsection, we present two statistical methods that generate sparse vector
representations of documents. The first one is a popular and simple feature extraction
method with text data: the bag-of-words (BoW) method. The second one is the TF-IDF
method, which overcomes the problem of the former.

Bag of words (BoW): The bag-of-words model, or BoW for short, is very popular,
simple and flexible, and it can be used in a myriad of ways for extracting features from
the text in order to be used for modelling using ML algorithms. It is a representation of
text that describes the occurrence of words within a specific document. The idea of this
distributional representation of features was investigated and proposed by Harris [106].
The BoW model, as the name implies, discards any information about the order or structure
of words in the document and is only concerned with whether known words occur in the
document and not where they occur in the document, thus failing to capture semantic
patterns. To illustrate this, given two sentences (the NLP is difficult, not easy at all, and
the NLP is easy, not difficult at all) with completely opposite semantic meanings, the BoW
model would give them the exact same representation just because they have the exact
same words but in a different order, which is not effective. Another issue of such a model
is that as the vocabulary size increases, so does the dimension of the vector space since,
in this model, the number of words in the vocabulary forms the dimension of the vector
representation of a document, resulting in what are called sparse representations. Such
large dimensions, however, are bound to result in the so-called curse of dimensionality,
making it easy to fall into overfitting and resulting in terrible out-of-sample performance.

Term frequency–inverse document frequency (TF-IDF): The problem with the BoW
method is that it treats all words as equally important, and this is attributed to the fact that
BoW methods score each word based on its frequency in a document. Thus, frequently
occurring words dominate others in the document with a larger score, which is problematic,
especially when such words are not as informative to the model as less-occurring words.
Rescaling the frequency of words by penalising the scores of the most frequent words across
all documents is one approach to dealing with this issue. This approach is the so-called
TF-IDF metric proposed in [107], and it has been widely used in many NLP tasks. The
TF-IDF method allows for quantifying words by reflecting how important a word is to
a document in a corpus of documents. This method is premised on the idea that each
word is assigned its own weight wij based on its appearance in the document and across
all of the documents. These weights highlight words that are distinct and contain useful
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information in a given document. “Thus the idf of a rare term is high, whereas the idf
of a frequent term is likely to be low” [108] (p. 118). For each word in a document j, the
TF-IDF value is calculated by first calculating the term frequency (TF), which counts the
number of occurrences of words in a document, and then the inverse document frequency
(IDF), which is the catalyst for ensuring that words appear less commonly are assigned
more weights compared with those occurring more frequently (e.g., stop words), which is
calculated as follows:

log(
|D|
d fi

) (2)

where d fi denotes the number of documents that contains a word i and |D| refers to the
number of documents in the corpus. The TF-IDF metric is calculated as follows:

wi = t fij · log(
|D|
d fi

(3)

where t fij, d fi and |D| refer to the number of appearances of a word i in the document
j, the number of documents containing a word i and the number of documents, respec-
tively. However, this method cannot capture semantic patterns, making it only useful for
lexical features.

4.1.2. Non-Contextualized Embeddings: Dense Vector Representation-Based

Word embedding: Perhaps one of the key breakthroughs for the remarkable perfor-
mance of ML methods in a suit of NLP tasks is a way of representing words (i.e., a learned
representation) in a given text by allowing words with similar meanings to have a similar
representation. It is this approach that generates a dense vector that carries more informa-
tive information. This can have many advantages, as “one of the benefits of using dense
and low-dimensional vectors is computational: the majority of neural network toolkits do
not play well with very high-dimensional, sparse vectors” [99] (p. 92). This also allows the
model to generalise well. Contrary to classical word representation methods such as BoW,
which generate sparse word representations using thousands or millions of dimensions,
the rationale behind the word-embedding approach is premised on the idea of assigning
each word a densely distributed representation (i.e., a real-valued vector) with often tens
or hundreds of dimensions.

Word2Vec: Contrary to the previously discussed word representation methods that
fail to capture the semantic and syntactic relations between the words, producing sparse
vector representations, Word2Vec and GloVe (discussed next) can generate dense semantic
representations. Word2Vec, developed by Tomas Mikolov et al. at Google in 2013 [109],
is a statistical method that leverages the use of neural networks for efficiently learning a
standalone word embedding from a given text corpus. This approach is considered a de
facto standard for developing pretrained word embedding. The learned vectors of such
an approach can be analysed, and interesting results can be found. Two different learning
approaches have been proposed to model the algorithm architecture: the continuous bag-of-
words (CBOW) and the skip-gram models. The CBOW model uses the context of a current
word in order to predict that word. In other words, it learns the embedding by predicting
the current word based on its context. Alternatively, the continuous skip-gram model learns
by predicting the surrounding words given a current word. The Word2Vec approach is
advantageous in that efficient and high-quality word embeddings can thankfully be learned
with less space and time complexity, and this shows the key benefit of this approach, where
it can handle larger corpora of a text by allowing larger dimensional embeddings to be
learned (more dimensions) from such corpora. Here, the Gensim library is used to retrieve
Word2Vec embeddings. The text is first cleaned, then stemming is used, and stop words
are removed. The models were initialised with Word2Vec embeddings of a vector size set
to 300-d and maximum length tokens set to 128.



Information 2022, 13, 576 11 of 28

GloVe: By extending the previous word-embedding approach (Word2Vec), the Global
Vectors for Word Representation method, or GloVe for short, was developed by Pennington
et al. [64] in order to learn word vectors more efficiently. This approach generally results
in better word embeddings. This is because GloVe combines global statistics from matrix
factorisation techniques such as latent semantic analysis (LSA) and local context-based
learning methods such as Word2Vec. In short, “GloVe, is a new global log-bilinear regres-
sion model for the unsupervised learning of word representations that outperforms other
models on word analogy, word similarity, and named entity recognition tasks.” [64]. Here,
the models are initialised with 100-dimensional pretrained GloVe embeddings.

4.1.3. Contextualized Embeddings: Context-Aware Embeddings

Bi-Directional Encoder Representations from Transformers (BERT): PLMs (vector
representations of words and embeddings) trained on massive amounts of textual data have
formed the basis of many language-based tasks nowadays. As context-independent neural
embeddings, Word2Vec and Glove extracted from shallow neural networks are examples
of the most frequently pretrained word embedding techniques prior to the advent of recent
trends (PLMs shined in 2018). Yet, nevertheless, these techniques failed to capture deeper
contextual relations, since they mostly model indirect relationships by capturing only
short-range context based on a specific co-occurrence window. In fact, since 2018, the inter-
est of the NLP community in these kinds of pretrained word-embedding techniques has
constantly been fading in favour of the most recent trend of transfer learning. Examples in-
clude Universal Language Model Fine-Tuning (ULMFiT) [110], Embedding from Language
Models (ELMo) [75], OpenAI Generative Pretrained Transformer (GPT) [76], and Google’s
BERT model [74]. ULMFiT [110] is pretrained on a universal language model on a general
domain corpus which then can be fine-tuned on the target task data. Radford et al. [76] gen-
erated a transformer-based language model, the so-called OpenAI GPT model, which is a
unidirectional language model. Unlike OpenAI GPT, BERT, generated by Devlin et al. [74],
is the first deeply bidirectional and unsupervised language representation that employs a
multi-layer bidirectional transformer encoder which jointly conditions both the left and
the right contexts in all layers. The transformer architecture comprises two blocks, an
encoder and a decoder, to read the text and produce a prediction, respectively. BERT uses
only the encoder portion of the transformer. BERT [74] is a language representation model
which Google AI introduced. Before discussing how BERT works, we first discuss some
key points behind its prominent success. As the first-of-its-kind language representation,
BERT contains several transformer encoders stacked together that can be used to pretrain
deep bidirectional representations. The concept of bidirectionality in BERT allows it to
consider left and right contexts. In other words, BERT is based on a self-attention layer
jointly conditioning both the left and the right contexts in all layers, and thus, BERT gen-
erates context-aware embeddings. This is the key differentiator between BERT and its
predecessor OpenAI GPT, where the former is deeply bidirectional whereas the latter is a
unidirectional pretrained model (left-to-right language model pretraining). More details
about its architecture will be introduced later.

4.2. ML Algorithms

In this subsection, we mainly describe the classification models we used.

4.2.1. Classical ML Models

The six models that were chosen for investigation, as previously stated in the intro-
duction, were SVM, LR, MNB, DT, RF and XGB with both TF-IDF features and pretrained
Word2Vec representations. A plethora of ML algorithms have been explored and tested in
the literature for fake news detection. Below is the list of those approaches implemented in
this work:

• Logistic Regression (LR): LR is a statistical model applied as a great baseline algo-
rithm in a wide range of text classification tasks.
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• Support Vector Machine (SVM): The SVM classifier is a strong classifier that yields
promising results in a suite of NLP tasks.

• Multinomial Naive Bayes (MNB): MNB is a kind of probabilistic algorithm (a Bayesian
learning approach) that is also popular and yields great results in different NLP tasks.

• Decision Tree (DT): This is a tree-based algorithm whose end nodes represent high-
level features. A branch represents an output, while a leaf represents a label class.
There are internal nodes that test one attribute and branch from a node that selects one
value for the attribute. The leaf node is used to predict the class label. Classification is
carried out based on supervised learning, which involves mapping the features and
values to desired outcomes.

• Random Forest (RF): RF models consist of a set of decision trees, each trained from a
random selection of features.

• XGBoost (XGB): This is an ensemble ML algorithm. The XGB algorithm uses a
gradient-boosting framework whose algorithm is based on decision trees. Through
boosting, the trees are constructed sequentially, with each one (i.e., weak learners)
aimed at reducing the errors of the previous one. With the help of these weak learn-
ers, the boosting technique is able to combine these weak learners to produce a
strong learner.

• Ensemble: This is a hard voting ensemble learning method that combines the ML
algorithms, including LR, SVM, DT, MNB, RF and XGB, which is built for
better performance.

4.2.2. Advanced ML Models

Developing an automatic fake news detection model is more important than ever
before, given how much data a single person can curate daily. Just think of solutions
for detecting and categorising social users’ tweets on social media to understand the
characteristics of fake and real content. Moreover, detecting fake content from text has
already shown its importance in the literature, where adding features extracted from text is
essential for good performance in fake news classification. Advanced ML and DL methods
have proven their effectiveness in the field of NLP. Here, we investigate the power of
10 different advanced ML models—CNNs, BiLSTM, BiGRU, CNN-BiLSTM and CNN-
BiGRU, an ensemble of a CNN, BiLSTM and BiGRU—as well as the transformer-based
models BERTbase and RoBERTa which are used for fake news detection. The workflow
of processing advanced ML models is shown in Figure 2. As shown in the figure, the
embedding layer (initialised using Word2Vec, GloVe or BERTbase) was used to embed the
data. Then, the resultant representations were fed into the model (CNN, BiLSTM, etc.),
followed by a fully connected layer (FC) comprising a single neuron that was activated
using a sigmoid function for classification. The models are described below with their
experimental set-ups. Table 5 lists the hyperparameters used in the advanced ML models.
Binary cross-entropy and an Adam optimiser were used to train the models:

Figure 2. The structure of advanced ML models.

• CNN: A one-dimensional convolutional neural network is a powerful ML approach
for automatically extracting features from text inputs. A CNN can extract local features
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automatically but is less computationally expensive than other ML algorithms. Here,
the architecture includes a single CNN layer with 128 filters with a kernel size of 5,
which are activated with ReLU as an activation function. The generated feature map is
then refined and reduced using the max-pooling layer, resulting in the most relevant
information. After that, the output is flattened and passed to a dense output layer,
with a single unit activated with a sigmoid as an activation function.

• LSTM: The LSTM model [111] improves on the RNN’s flaws by adding an additive
and multiplicative interaction to the recurrence formula and a distinct memory state. A
model’s complexity can also be increased by stacking LSTM layers. With three gates—
an input gate, a forget gate and an output gate—LSTM models eliminate the gradient
vanishing and explosion concerns brought by RNNs. An important characteristic of
LSTM models is their ability to capture long-term dependency. The LSTM method has
been proven to be effective when used for long sentences [112]. Mathematically, the
LSTM components can be formulated as follows [113]:

ft = σ(Wx f · xt + Wh f · ht−1 + b f ), (4)

it = σ(Wxi · xt + Whi · ht−1 + bi), (5)

C̃t = tanh(Wxc · xt + Whc · ht−1 + bi), (6)

Ct = ft � Ct−1 + i� C̃t, (7)

ot = σ(Wxo · xt + Who · hh−1 + bo), (8)

ht = ot � tanh(Ct). (9)

In the formulas above, σ represents the logistic sigmoid activation function. W, b
and Ct represent the weight matrix, the bias and the state of the memory unit at time
t, respectively. Here, a single BiLSTM layer with 128 units is used to encode the
input text.

• GRU: In a GRU variant, there are only two gates: an update gate and a reset gate.
The update gate combines the forget and input gates and decides what information
will be passed to the current state. The reset gates determine when to ignore the
previously hidden state [114]. As with LSTM, the update and reset gates are computed
as follows [114]:

rt = δ(Wrht−1 + Urxt + br), (10)

zt = δ(Wzht−1 + Uzxt + bz), (11)

ht = (1− zt)� ht−1 + zt � h̃t, (12)

h̃t = tanh(Wh̃t
(ht−1 � rt) + Uh̃t

xt). (13)

In the formulas above, δ(.) denotes the logistic sigmoid function and W and U show
the weight matrices of gates ht and b, respectively, referring to the hidden state and
bias vectors. A basic RNN considers the context of the past but cannot consider the
context of the future. Hence, to account for future and previous contexts, bidirectional
LSTM (BiLSTM) and bidirectional GRU (BiGRU) are excellent choices thanks to their
breakthrough designs. To accomplish this, the forward and backward hidden layers
are combined, thereby controlling the temporal information flow in both directions
and leading to better learning.
Here, we used a single BiGRU layer with 128 neurons. Even though BiLSTM and
BiGRU have shown their superiority in a suite of NLP problems, they are not free
from two shortcomings: (1) as the high-dimensional input space increases, so does
the complexity of these models, leading to further complexity in optimizing such
models, and (2) as these models can capture succeeding and proceeding contextual
information (bidirectionality concept), they are not able to focus on the most salient
parts of the contextual information of the text. Therefore, to overcome the former issue,
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a CNN can be used to reduce the dimensionality of the feature space while retaining
the informative features from the text. In addition, a CNN can capture and extract
local patterns.

• CNN-BiLSTM: Hybridising recurrence-based models with a CNN helps extract
salient features, capturing local contextualised patterns and improving the model’s
accuracy. First, a single CNN layer of 128 filters with a kernel size of 5 is used to
process the input vectors and extract the local features. The resultant feature maps
of the CNN layer are then fed to a single BiLSTM layer with 128 units to learn the
long-term dependencies of the local features of news articles. This is followed by an
output layer with a single unit activated with a sigmoid function. The temporal and
contextual features and long-term dependencies of the input text can be learned and
captured from the text by using an RNN, and important local features can be detected
by harnessing the power of the CNN in handling the spatial relations [115,116].

• CNN-BiGRU: Similar to the CNN-BiLSTM model, the architecture with a BiLSTM
layer was replaced with a BiGRU layer.

• Hybrid: This is a hybrid model that combines three models: a single CNN layer with
128 neurons of a kernel size of 5, followed by a max-pooling and then a BiLSTM layer
with 128 units and then a BiGRU layer with 128 units.

Table 5. The hyperparameters of the advanced ML models.

Model
Hyperparameters

Hidden
Layer(s)

Activation
Function

Neurons or
Filters

Kernel
Size

Dropout

CNN 1 ReLU 128 5 0.3
BiLSTM 1 N/A 128 N/A 0.3
BiGRU 1 N/A 128 N/A 0.3

4.2.3. Transformer-Based Models

By analysing existing related works, only a few studies have used transformer-based
models to detect fake news, and little research has explored how to best harness such models
to detect fake news. It becomes prohibitively challenging to process massive amounts of
user-generated content manually. Therefore, automated systems capable of detecting fake
content are essential. However, fake news on social media is a non-trivial task, since fake
news is written deliberately to mislead readers, and user-generated content is typically
of poor quality. To address these challenges, researchers proposed various methods for
interpreting the meaning of a word through embedding vectors. Neural network-based
methods such as Word2Vec and GloVe are commonly used to learn word embeddings from
large word corpora. However, these embedding models have the disadvantage of being
context-free since context is neglected, and static embeddings for words are generated
regardless of their contexts. Therefore, to achieve finer-grained performance, a model must
be able to capture semantic and contextual patterns. Moreover, the advanced ML models
can automatically extract semantic information from a given input to detect fake content,
but they cannot accurately recognise fake content without a deep understanding of the text.
As such, there has been growing interest in the attention paradigm in recent years.

There is an overall paradigm shift taking place in the NLP community, which aims
to develop a set of models that not only improve accuracy but also address the problem
of lacking labelled data, which has been a long-standing issue in the scientific community.
In addition, there is an urgent need to detect fake news automatically. However, this is a
challenging task, since existing ML models (prior to the advent of transformer models)
fail to provide a deeper semantic understanding of text inputs. This has caused NLP
research to make great strides by introducing pretrained transformer-based language
models. Using PLMs trained on massive unlabeled data for text classification tasks is
becoming increasingly popular. To adapt for the downstream task, new neural network
layers are layered on top of the pretrained layers in the PLM [117]. Here, a fully contented
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(FC) layer is added on top of the PLMs for classification purposes. A sophisticated approach
is needed to detect fake news, since it has become increasingly difficult to distinguish
between fake and real content.

This section evaluates two models—BERT [74] and RoBERTa [78]—which have been
considered the key breakthroughs of the impressive performance in a suite of NLP tasks,
largely due to their powerful language representations being learned from massive amounts
of a text corpus. Moreover, such models can be easily fine-tuned to a specific downstream
task through so-called transfer learning:

• BERT: Originally introduced by Devlin et al. [74], BERT stands for Bidirectional
Encoder Representation from Transformers. As the first deeply bidirectional and
unsupervised language representation, this model uses a multi-layer bidirectional
transformer encoder that simultaneously conditions the left and right contexts. As a re-
sult, BERT generates embeddings that are context-aware. BERT further eliminates the
unidirectional constraint by performing pretraining using an unsupervised prediction
task that includes a masked language model (MLM) which understands context and
predicts words. A vector representation can therefore be generated by the model that
captures the general information of the input text. The semantic representation of each
word in the input text can be improved using an attention mechanism by boosting
semantic representation based on the context of the word. The attention mechanism
plays an important role in transformer architecture in that it assigns varying weights
to different parts of text according to their contributions to the output. An Attention
function maps queries and follows key-value and output-vector pairs, which can be
seen in Equation (14):

Attention(Q, K, V) = So f tmax(
QKT
√

dk
)V (14)

where Q, K and V denote the query, key and value itself, respectively.
√

dk denotes the
dimension of the key vector k and query vector q. Attention uses a Softmax activation
function that normalises the inputs to a value between 0 and 1. BERT uses a multi-head
attention mechanism which can be seen in Equation (15), where each specific head
and the associated weight matrices are denoted with the subscript i:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (15)

where WO denotes a weight matrix that was trained jointly with the model and each
headi is calculated as follows:

headi = Attention(QWQ
i , KWK

i , VWV
i ) (16)

Even though BERT contains millions of parameters (i.e., BERTbase contains 110 million
parameters, while BERTlarge has 340 million parameters) [74], in contrast to pretraining,
BERT is relatively inexpensive to apply to downstream tasks using jointly fine-tuned
parameters based on a pretrained model. In this work, we use BERTbase.

• RoBERTa [78]: An optimised version of the BERT approach was introduced by Face-
book. In this method, BERT is retrained with an improved training methodology by
(1) removing the Next Sentence Prediction task from pretraining; (2) using 10 times
as much data as BERT to train RoBERTa and (3) introducing dynamic masking with
larger batch sizes so that the masked tokens change during training, as opposed to the
static masking pattern used in BERT. In this way, RoBERTa differs from BERT in the
way it approaches pretraining. We experiment with RoBERTabase in this paper.

4.3. Preprocessing

Preprocessing of the input text included stop word and punctuation removal. The text
was then passed through a process of tokenising it into tokens and building a dictionary
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as a result of learning the vocabulary included in the given text corpus. Such a dictionary
was then used to map every token into a unique integer, resulting in sequences of integers.
Then, we padded or truncated such sequences to a fixed number of entries, as we needed to
feed the models with vectors of the same length. The downside here was that any vectors
that were too long would be truncated, resulting in the loss of some (useful) information.
These sequences would then be transformed into fixed-length vectors of word embeddings
(i.e., the dimension of such word vector embeddings being used). We then initialised the
neural networks with (1) context-independent pretrained word-embedding models such as
Word2Vec and GloVe and (2) the context-informed pretrained language model BERTbase. For
classical ML algorithms, in order to convert tokenised texts into features, CountVectorizer
(CV) and TF-IDF were used as statistical feature extractors for the ML models. Additionally,
we used pretrained Word2Vec and GloVe to produce word representations as features for
classical ML algorithms.

4.4. Experimental Set-Up

All the work for the experiments was carried out using an Intel Core i5 2.3 GHz, 8 GB
RAM system running macOS. Classical ML classifiers were implemented using the scikit-
learn package and Keras library to implement the advanced ML models. The HuggingFace
library was used to implement the PLMs. For the advanced ML models, we carried out the
experiments with two scenarios: (1) with context-independent embedding models such as
Word2Vec and GloVe and (2) with context-informed embedding models such as BERTbase.
In our final configuration, we used an Adam optimiser with a default learning rate value
for the advanced ML models, namely 2 × 10−5 for BERTbase models and 1 × 10−5 for
training RoBERTabase models. Again, based on a trial-and-error examination, these values
performed the best. For the advanced ML models and PLMs, the sigmoid function was
used in the output layer to reduce the error during training, while binary cross-entropy was
used to calculate the loss during backpropagation. All models were trained for 10 epochs
with a batch size of 32.

4.5. Evaluation Metrics

We employed four evaluation criteria extensively used in text classification tasks,
namely accuracy, precision, recall and F1 score (calculated as in the equations below), to
assess the performance of the models:

• Accuracy (A): Accuracy is a measure of the classifier’s ability to correctly classify
a piece of information as either fake or real. The accuracy can be estimated using
Equation (17):

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

• Precsion (P): Precision is a measure for the classifier’s exactness such that a low value
indicates a large number of false positives. The precsion represents the number of
positive predictions divided by the total number of positive class values predicted
and is calculated using Equation (18):

Precision =
TP

TP + FP
(18)

• Recall (R): Recall is considered a measure of a classifier’s completeness (e.g., a low
value of recall indicates many false negatives), where the number of true positives is
divided by the number of true positives and the number of false negatives, as can be
clearly seen in Equation (19):

Recall =
TP

TP + FN
(19)
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• F1 score (F1): The F1 score is calculated as the weighted harmonic mean of the precision
and recall measures of the classifier using Equation (20):

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(20)

where TP, TN, FP and FN are true positive, true negative, false positive and false
negative, respectively.

4.6. Datasets

Our study made use of the following datasets described below. These datasets best
reflect the real world, where the percentage of fake news that is fabricated and shared
is smaller than the volume of news produced on a daily basis. The baseline models on
the LIAR, FakeNewsNet-PolitiFact, FakeNewsNet-GossipCop and COVID-19 datasets are
summarised in Tables 1–4, respectively.

4.6.1. LIAR

This is a large-scale, publicly available fake news dataset proposed in [69]. The dataset
has about 12,800 entries and contains two main components: user profiles and short political
statements. The user profile features include the speaker’s name, job, party affiliation, state,
credit history and context. The statements (reported during the time interval from 2007
to 2016) have been labelled by the editors of Politifact.com (accessed on 18 March 2022)
using six fine-grained categories, namely true, mostly true, half true, barely true, false
and pants on fire. These six labels are relatively balanced in size. Overall, each statement
has its associated label and information about the speaker of that statement. The authors
considered a multi-class classification task on the Liar dataset. Several textual and metadata
elements, such as the speaker’s affiliation and the source newspaper, were included, and
labels were assigned based on the six degrees of truth that PolitiFact provides. In our study,
we cast the problem as a binary classification problem where we set true, mostly true, and
half true to “true” and the rest to “false”. The statistics of the dataset are shown in Table 6.

Table 6. The statistics of the LIAR dataset.

# Candidate News 12,791

# True news 7134
# Fake news 5657

4.6.2. FakeNewsNet

This comprehensive dataset (https://github.com/KaiDMML/FakeNewsNet) (ac-
cessed on 20 March 2022) consists of full-text news articles collected from the politifact.com
and gossipcop.com (accessed on 18 March 2022) websites. Each of these includes tagged
news content (e.g., news articles) and social context information (e.g., relevant social user
interactions for news articles). Nevertheless, this contextual information may not always
be available in the real world. Thus, we solely relied on content-based features (i.e., news
article text). The statistics of the dataset are tabulated in Table 7.

Table 7. The statistics of the FakeNewsNet dataset.

Dataset PolitiFact GossipCop

# Candidate news 694 18,676
# True news 356 14,129
# Fake news 338 4547

Politifact.com
https://github.com/KaiDMML/FakeNewsNet
politifact.com
gossipcop.com
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4.6.3. COVID-19

The goal of the Constraint@AAAI2021 COVID19 fake news detection challenge [118]
was to build a model that has the potential to identify whether a message about COVID-19
is fake or real news. This dataset is a collection of COVID-19-related social media posts,
comments and news, classified as real or fake based on their truthfulness. The dataset [98]
was collected from various social media platforms, such as Twitter and YouTube. In
addition, the challenge organisers collected 10,700 social media posts and news articles
about COVID-19 in the form of an annotated dataset in English. As the dataset was
separated in advance by the task organisers into training, validation and testing sets, we
opted to evaluate our models using the original split. The statistics of the dataset are shown
in Table 8.

Table 8. The statistics of the COVID-19 dataset.

# Candidate News 6420

# True news 3360
# Fake news 3060

5. Analysis of Experimental Results

Unlike traditional ML algorithms, which require human experts to (manually) en-
code domain knowledge through feature engineering, which is inefficient and impractical,
advanced ML and DL models can learn relevant and important feature representations
automatically, making them particularly well-suited for NLP tasks. This section presents
the experimental results related to a set of datasets commonly used in fake news detection.
First, a comparison of the results of classical ML classifiers using different word repre-
sentation methods across the used performance metrics is shown in Tables 9, 11 and 13.
Second, a comparison of the performance of an assortment of advanced ML models using
two scenarios, context-independent embedding models and context-informed embedding
models, is presented in Tables 10, 12 and 14.

5.1. Analysis of Results on the LIAR Dataset

This subsection presents the results of an assortment of ML and DL models using the
LIAR dataset. It is apparent from Table 9 that the highest accuracy result achieved on the
LIAR dataset was 63.9% for the ensemble with TF-IDF features, where this classifier also
resulted in significantly high precision and recall values, while the state-of-the-art result
achieved on LIAR (binary classification) was 62% (refer to Table 1).

In contrast, the lowest result was 51.78% for DT with GloVe embeddings. The classifier
could not detect some patterns in the given input text. As presented in Table 10, the
performance of different models was compared. What stands out from this table is that
the majority of the models achieved an accuracy of no more than 62% with BERTbase and
the CNN-BiLSTM using BERTbase embeddings reporting an accuracy of 63.06%. It is clear
from the table that the lowest result was reported for the recurrence-based models with
Word2Vec embeddings. As the LIAR dataset contains short political statements, it is difficult
to obtain useful clues that could help discriminate fake news from real news, specifically
when using complex models such as LSTM, since this may increase the risk of overfitting.
Based on that, we agree with [85] that a news article’s information and the length of the
dataset are critical factors that affect the performance of recurrence-based models. Such
models are more likely to overcome overfitting when sufficient information is provided in
a news article. The obtained results indicate that the classical ML methods outperformed
sophisticated DL methods on the LIAR dataset, including the most recent advanced PLMs
such as BERTbase and RoBERTabase.
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Table 9. Fake news detection using classical ML classification models on LIAR dataset.

Dataset

LIAR

Model Feature A (%) P (%) R (%) F1 (%)

LR CV 0.6196 0.6530 0.6933 0.6726
SVM CV 0.6346 0.6441 0.7857 0.7079
MNB CV 0.6243 0.6530 0.7115 0.6810

DT CV 0.5730. 0.6137 0.6541 0.6332
RF CV 0.6275 0.6360 0.7927 0.7057

XGB CV 0.6093 0.6085 0.8599 0.7127
Ensemble CV 0.6306 0.6504 0.7451 0.6945

LR TFIDF 0.6354 0.6493 0.7675 0.8655
SVM TFIDF 0.6101 0.6421 0.6961 0.6680
MNB TFIDF 0.6093 0.6311 0.7381 0.6804

DT TFIDF 0.5414 0.5917 0.6008 0.5962
RF TFIDF 0.5659 0.5658 0.9874 0.7194

XGB TFIDF 0.6093 0.6121 0.8375 0.7073
Ensemble TFIDF 0.6393 0.6503 0.7787 0.7087

LR Word2Vec 0.6361 0.6462 0.7829 0.7080
SVM Word2Vec 0.6314 0.6438 0.7745 0.7031
MNB Word2Vec 0.5762 0.5778 0.9202 0.7099

DT Word2Vec 0.5493 0.6032 0.5854 0.5942
RF Word2Vec 0.5675 0.5707 0.9384 0.7097

XGB Word2Vec 0.6156 0.6300 0.7703 0.6931
Ensemble Word2Vec 0.6267 0.6355 0.7913 0.7049

LR GloVe 0.6172 0.6265 0.7941 0.7004
SVM GloVe 0.6212 0.6306 0.7913 0.7019
MN GloVe 0.5635 0.5635 0.5635 0.7208
DT GloVe 0.5178 0.5724 0.5700 0.5712
RF GloVe 0.6006 0.6042 0.8445 0.7044

XGB GloVe 0.5943 0.6109 0.7717 0.6819
Ensemble GloVe 0.5983 0.6099 0.7969 0.6910

5.2. Analysis of Results on FakeNewsNet Dataset

Previous studies used the accuracy, precision, recall and F1 scores to evaluate the
performance of the proposed classifiers on the FakeNewsNet dataset. Tables 2 and 3
display the summary of the results obtained from previous work on the PolitiFact and
GossipCop datasets, respectively. What is striking about the resulting accuracies in these
tables is that relying on modelling the unigram features (weighted by TF-IDF) showed
a constantly high accuracy, outperforming the SAF and CNN baselines even with the
combinations of social clues and news content on both datasets. As demonstrated in
Table 11, the highest accuracy value (89.93%) on the PolitiFact dataset was achieved using
the ensemble with CV as a feature extractor method. This model (Ensemble+CV) was
found to be the second-best model for the GossipCop dataset, with SVM+TF-IDF (F1
score of 91.55%) being found to be the best-performing model among the other models
on the GossipCop dataset. DL approaches, particularly the most recent advanced PLMs,
achieved state-of-the-art performance in many NLP tasks. As can be observed from
Table 12, RoBERTabase performed the best on the PolitiFact dataset with an F1 score of
93.17, while the accuracy results (92%) were on par with the ensemble advanced ML model
using BERTbase representations. For the GossipCop dataset, CNN-BERTbase was found
to be the best-performing model (F1 score of 91.45%). This indicates that context-aware
transformer-based models help uncover useful patterns to distinguish fake news from
real news. Since the GossipCop dataset is highly imbalanced, different upsampling and
downsampling techniques can help balance the dataset and further increase detection
performance. By relying only on news text and having minimal text preprocessing, we
achieved better results than the state-of-the-art results on the FakeNewsNet dataset.
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Table 10. Fake news detection using advanced ML and DL classification models on LIAR dataset.

Dataset

LIAR

Model Feature A (%) P (%) R (%) F1 (%)

CNN Word2Vec 0.5825 0.6219 0.6611 0.6409
BiLSTM Word2Vec 0.5533 0.6028 0.6078 0.6053
BiGRU Word2Vec 0.5572 0.6073 0.6064 0.6069

CNN-LSTM Word2Vec 0.5635 0.5635 1.0000 0.7208
CNN-GRU Word2Vec 0.5627 0.5632 0.9986 0.7202

CNN-BiLSTM Word2Vec 0.5762 0.6281 0.6078 0.6178
CNN-BiGRU Word2Vec 0.5714 0.6067 0.6807 0.6416

Hybrid Word2Vec 0.5785 0.6175 0.6625 0.6392
CNN GloVe 0.6172 0.6388 0.7381 0.6849

BiLSTM GloVe 0.5888 0.6442 0.6036 0.6233
BiGRU GloVe 0.5927 0.6371 0.6443 0.6407

CNN-LSTM GloVe 0.5635 0.5635 1.0000 0.7208
CNN-GRU GloVe 0.5635 0.5635 1.0000 0.7208

CNN-BiLSTM GloVe 0.5912 0.6365 0.6401 0.6383
CNN-BiGRU GloVe 0.6014 0.6240 0.7367 0.6757

Hybrid GloVe 0.5809 0.6332 0.6092 0.6210
CNN BERTbase 0.5975 0.6555 0.6022 0.6277

BiLSTM BERTbase 0.6204 0.6392 0.7493 0.6899
BiGRU BERTbase 0.6180 0.6386 0.7423 0.6865

CNN-LSTM BERTbase 0.6306 0.6602 0.7101 0.6842
CNN-GRU BERTbase 0.6077 0.6543 0.6443 0.6493

CNN-BiLSTM BERTbase 0.5793 0.6100 0.7031 0.6532
CNN-BiGRU BERTbase 0.6140 0.6313 0.7577 0.6887

Hybrid BERTbase 0.5912 0.6195 0.7115 0.6623
BERTbase BERTbase 0.6306 0.6662 0.6905 0.6781

RoBERTabase RoBERTabase 0.6117 0.6468 0.6849 0.6653

5.3. Analysis of Results on COVID-19 Dataset

BERT can effectively detect fake content as it has the power to encode deep semantic
contextual information. Based on the results in Tables 13 and 14, we have shown that the
BERTbase model, with a linear layer being added on top of it for classification, achieved the
best results compared with its counterparts and other classical ML and DL approaches,
followed by CNN-BERTbase, which was ranked as the second-best-performing model on the
COVID-19 dataset. Due to the incapability of vector space methods such as CV and TF-IDF
to take context into account, using these representations with ML classifiers relies on the
appearance of tokens in making final decisions, regardless of their context. The results of
our study indicate that vector space models are ineffective at capturing the deeper semantics
and contextual patterns contained in user-generated content on Twitter. A major advantage
of BERT (and its variations) in the case of Twitter (where user-generated content often
contains misspellings, noise and abbreviations) is the use of sub-tokens rather than fixed
tokens. It is thus ideal for use with such data [119] instead of standard context-independent
word embeddings that operate at the word level.
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Table 11. Fake news detection using classical ML classification models on FakeNewsNet dataset.

Datasets

PolitiFact GossipCop

Model Feature A (%) P (%) R (%) F1 (%) A (%) P (%) R (%) F1 (%)

LR CV 0.8311 0.7374 0.9771 0.8405 0.8375 0.8644 0.9333 0.8976
SVM CV 0.8330 0.7248 0.9978 0.8397 0.8183 0.8136 0.9881 0.8924
MNB CV 0.7220 0.5393 1.0000 0.7007 0.8335 0.8417 0.9628 0.8982

DT CV 0.7419 0.8050 0.7758 0.7901 0.7875 0.8607 0.8607 0.8607
RF CV 0.8131 0.6918 0.9977 0.8171 0.8536 0.8505 0.9803 0.9108

XGB CV 0.8548 0.7720 0.9840 0.8652 0.8429 0.8442 0.9737 0.9043
Ensemble CV 0.8993 1.0000 0.8250 0.9041 0.8528 0.8521 0.9765 0.9100

LR TFIDF 0.8567 0.9979 0.7642 0.8655 0.8587 0.8605 0.9723 0.9130
SVM TFIDF 0.8416 0.9855 0.7484 0.8508 0.8635 0.8667 0.9702 0.9155
MNB TFIDF 0.7524 0.9973 0.5912 0.7423 0.8212 0.8574 0.9182 0.8868

DT TFIDF 0.6841 0.8272 0.6022 0.6970 0.7861 0.8612 0.8578 0.8595
RF TFIDF 0.7960 1.000 0.6619 0.7966 0.8496 0.8435 0.9856 0.9090

XGB TFIDF 0.8748 0.9846 0.8050 0.8858 0.8410 0.8445 0.9702 0.9030
Ensemble TFIDF 0.8777 0.9565 0.8250 0.8859 0.8611 0.8650 0.9691 0.9141

LR Word2Vec 0.7884 0.6525 0.9952 0.7882 0.8383 0.8421 0.9698 0.9015
SVM Word2Vec 0.7922 0.6651 0.9860 0.7944 0.8367 0.8325 0.9839 0.9019
MNB Word2Vec 0.6575 0.9791 0.4418 0.6089 0.7626 0.7626 1.0000 0.8653

DT Word2Vec 0.6907 0.5393 0.9122 0.6779 0.7578 0.8529 0.8245 0.8385
RF Word2Vec 0.6907 0.4984 0.9784 0.6604 0.8394 0.8388 0.9772 0.9027

XGB Word2Vec 0.6983 0.5047 0.9907 0.6688 0.8332 0.8406 0.9642 0.8982
Ensemble Word2Vec 0.8849 0.9324 0.8625 0.8961 0.8410 0.8395 0.9786 0.9037

LR GloVe 0.6992 0.9819 0.5110 0.6722 0.7628 0.7632 0.9989 0.8653
SVM GloVe 0.7239 0.9859 0.5503 0.7064 0.7626 0.7626 1.0000 0.8653
MN GloVe 0.6575 0.9758 0.4434 0.6097 0.7626 0.7626 1.0000 0.8653
DT GloVe 0.6262 0.8151 0.4921 0.6137 0.7230 0.8265 0.8059 0.8161
RF GloVe 0.6546 0.9789 0.4371 0.6043 0.8236 0.8228 0.9796 0.8944

XGB GloVe 0.7106 0.9853 0.5283 0.6878 0.8062 0.8137 0.9674 0.8839
Ensemble GloVe 0.7986 0.9194 0.7125 0.8028 0.7944 0.7912 0.9923 0.8804

Table 12. Fake news detection using advanced ML and DL classification models on FakeNewsNet dataset.

Datasets

PolitiFact GossipCop

Model Feature A (%) P (%) R (%) F1 (%) A (%) P (%) R (%) F1 (%)

CNN Word2Vec 0.6475 0.9189 0.4250 0.5812 0.8415 0.8566 0.9516 0.9016
BiLSTM Word2Vec 0.7770 0.9153 0.6750 0.7770 0.8239 0.8702 0.9038 0.8867
BiGRU Word2Vec 0.7554 0.8194 0.7375 0.7763 0.8263 0.8616 0.9200 0.8898

CNN-LSTM Word2Vec 0.7266 0.7059 0.9000 0.7912 0.8303 0.8700 0.9140 0.8915
CNN-GRU Word2Vec 0.6691 0.6848 0.7875 0.7326 0.8266 0.8694 0.9091 0.8888

CNN-BiLSTM Word2Vec 0.7050 0.7532 0.7250 0.7389 0.8260 0.8683 0.9098 0.8886
CNN-BiGRU Word2Vec 0.7338 0.7417 0.8250 0.7811 0.8097 0.8791 0.8701 0.8746

Hybrid Word2Vec 0.7050 0.8197 0.6250 0.7092 0.8298 0.8639 0.9221 0.8920
CNN GloVe 0.8561 0.8750 0.8750 0.8750 0.8097 0.8968 0.8480 0.8717

BiLSTM GloVe 0.8129 0.8971 0.7625 0.8243 0.8284 0.8548 0.9337 0.8925
BiGRU GloVe 0.8201 0.8571 0.8250 0.8408 0.8271 0.8580 0.9266 0.8910

CNN-LSTM GloVe 0.7554 0.8382 0.7125 0.7703 0.8185 0.8709 0.8947 0.8826
CNN-GRU GloVe 0.7194 0.7356 0.8000 0.7665 0.8137 0.8688 0.8901 0.8793

CNN-BiLSTM GloVe 0.7986 0.8611 0.7750 0.8158 0.8290 0.8590 0.9280 0.8922
CNN-BiGRU GloVe 0.8129 0.8375 0.8375 0.8375 0.8180 0.8675 0.8986 0.8828

Hybrid GloVe 0.8085 0.8354 0.8250 0.8302 0.8349 0.8598 0.9361 0.8963
CNN BERTbase 0.8993 0.9342 0.8875 0.9103 0.8616 0.8684 0.9702 0.9145

BiLSTM BERTbase 0.9065 0.9589 0.8750 0.9150 0.8391 0.8769 0.9179 0.8969
BiGRU BERTbase 0.9065 0.9136 0.9250 0.9193 0.8533 0.8754 0.9417 0.9073

CNN-LSTM BERTbase 0.8561 0.8750 0.8750 0.8750 0.8418 0.8729 0.9277 0.8994
CNN-GRU BERTbase 0.8417 0.8537 0.8750 0.8642 0.8514 0.8784 0.9396 0.9061

CNN-BiLSTM BERTbase 0.8993 0.9125 0.9125 0.9125 0.8370 0.8756 0.9165 0.8956
CNN-BiGRU BERTbase 0.8777 0.9437 0.8375 0.8874 0.8322 0.8915 0.8880 0.8897

Hybrid BERTbase 0.9209 0.9600 0.9000 0.9290 0.8437 0.8719 0.9319 0.9009
BERTbase BERTbase 0.9137 0.9359 0.9125 0.9241 0.8544 0.8724 0.9477 0.9085

RoBERTabase RoBERTabase 0.9209 0.9259 0.9375 0.9317 0.8383 0.8794 0.9133 0.8960
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Table 13. Fake news detection using classical ML classification models on COVID-19 dataset.

Dataset

COVID-19

Model Feature A (%) P (%) R (%) F1 (%)

LR CV 0.9313 0.9363 0.9321 0.9342
SVM CV 0.9318 0.9333 0.9366 0.9349
MNB CV 0.9051 0.9127 0.9054 0.9090

DT CV 0.8874 0.8921 0.8929 0.8925
RF CV 0.9271 0.9221 0.9402 0.9310

XGB CV 0.8944 0.8942 0.9054 0.8997
Ensemble CV 0.9327 0.9444 0.9259 0.9351

LR TFIDF 0.9294 0.9209 0.9464 0.9335
SVM TFIDF 0.9430 0.9354 0.9571 0.9462
MNB TFIDF 0.9187 0.9085 0.9393 0.9236

DT TFIDF 0.8696 0.8778 0.8723 0.8751
RF TFIDF 0.8654 0.8467 0.9071 0.8759

XGB TFIDF 0.8883 0.8930 0.8938 0.8934
Ensemble TFIDF 0.9360 0.9408 0.9366 0.9387

LR Word2Vec 0.9028 0.9050 0.9098 0.9074
SVM Word2Vec 0.9051 0.9018 0.9187 0.9102
MNB Word2Vec 0.8388 0.8083 0.9071 0.8549

DT Word2Vec 0.7916 0.7993 0.8036 0.8014
RF Word2Vec 0.8734 0.8794 0.8786 0.8790

XGB Word2Vec 0.8916 0.8943 0.8991 0.8967
Ensemble Word2Vec 0.9023 0.9175 0.8938 0.9055

LR GloVe 0.8182 0.8170 0.8411 0.8289
SVM GloVe 0.8173 0.8145 0.8429 0.8284
MN GloVe 0.6486 0.6024 0.6961 0.7421
DT GloVe 0.7379 0.7450 0.7589 0.7519
RF GloVe 0.8280 0.8144 0.8696 0.8411

XGB GloVe 0.8416 0.8381 0.8643 0.8510
Ensemble GloVe 0.8449 0.8493 0.8554 0.8523

Table 14. Fake news detection using advanced ML and DL classification models on COVID-19 dataset.

Dataset

COVID-19

Model Feature A (%) P (%) R (%) F1 (%)

CNN Word2Vec 0.9187 0.9022 0.9473 0.9242
BiLSTM Word2Vec 0.9257 0.9309 0.9268 0.9289
BiGRU Word2Vec 0.9294 0.9246 0.9420 0.9332

CNN-LSTM Word2Vec 0.9290 0.9291 0.9357 0.9324
CNN-GRU Word2Vec 0.9332 0.9342 0.9384 0.9363

CNN-BiLSTM Word2Vec 0.9304 0.9362 0.9304 0.9333
CNN-BiGRU Word2Vec 0.9070 0.9656 0.8527 0.9056

Hybrid Word2Vec 0.9294 0.9145 0.9545 0.9340
CNN GloVe 0.9542 0.9554 0.9571 0.9563

BiLSTM GloVe 0.9355 0.9161 0.9652 0.9400
BiGRU GloVe 0.9421 0.9220 0.9714 0.9461

CNN-LSTM GloVe 0.8593 0.7991 0.9768 0.8791
CNN-GRU GloVe 0.5234 0.5234 0.9991 0.6869

CNN-BiLSTM GloVe 0.9477 0.9308 0.9723 0.9511
CNN-BiGRU GloVe 0.9472 0.9382 0.9625 0.9502

Hybrid GloVe 0.9374 0.9143 0.9714 0.9420
CNN BERTbase 0.9752 0.9725 0.9804 0.9764

BiLSTM BERTbase 0.9650 0.9485 0.9866 0.9672
BiGRU BERTbase 0.9706 0.9616 0.9830 0.9722

CNN-LSTM BERTbase 0.9598 0.9434 0.9821 0.9624
CNN-GRU BERTbase 0.9626 0.9710 0.9571 0.9640

CNN-BiLSTM BERTbase 0.9621 0.9529 0.9759 0.9643
CNN-BiGRU BERTbase 0.9565 0.9485 0.9696 0.9589

Hybrid BERTbase 0.9617 0.9642 0.9625 0.9634
BERTbase BERTbase 0.9771 0.9735 0.9830 0.9782

RoBERTabase RoBERTabase 0.9668 0.9541 0.9839 0.9688
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6. Discussion

In this section, we will have an overall discussion of the experimental results in the
previous subsections. The experiments were carried out using a set of datasets commonly
used in fake news detection by applying an assortment of classical and advanced ML clas-
sifiers using different word representation methods as well as different transformer-based
architectures. The results of the models on the LIAR dataset are tabulated in Tables 9 and 10.
The TF-IDF-based method for extracting text features performed better, with the ensemble
approach exhibiting the highest accuracy while the CNN-LSTM/CNN-GRU hybrid model
with GloVe embeddings had the highest F1 score. Despite their ability to capture automatic
features, advanced ML models may produce unsatisfactory results when used individually
at this level of analysis, where hybrid algorithms generally perform better. For instance,
when a CNN and LSTM were combined with BERTbase, the classification accuracy was
comparable to that of the best-performing model. As such, we agree with [80] that combin-
ing different models based on CNNs and recurrence-based models helps uncover useful
patterns to discriminate fake from real content, where a model based on this combination
would not only be able to extract the most relevant and salient local features but also
capture long-term dependencies. Additionally, BERTbase alone achieved an accuracy result
that was on par with the best-performing models, demonstrating the power of such a
model in capturing useful clues from a short text sample. Moreover, we observed that
the CNN network with context-free embedding models beat the recurrence-based models,
whereas the opposite was true for the embedding models that took context into account.

Using the FakeNewsNet dataset, as shown in Tables 11 and 12, we found that the
transformer-based DL architectures outperformed the state-of-the-art approaches on the
PolitiFact dataset. In contrast, classical ML models, such as SVM with TF-IDF features,
beat the DL models on the GossipCop dataset, including the official baselines. On the
COVID-19 dataset (see Tables 13 and 14), BERTbase was ranked as the top-performing model,
and CNN-BERTbase was the second-best model. The results show that transformer-based
models are powerful in capturing the intricacies of such (noisy and sparse) datasets.

7. Conclusions

This paper presents an overview of fake news detection approaches found in the
literature and compares seven classical ML algorithms, namely LR, SVM, NB, DT, RF, XGB
and an ensemble that combines all such algorithms, with two scenarios of word represen-
tation methods: statistical (sparse) word vector representation methods and context-free
(dense) pretrained word representation models. In addition, this paper compares eight
advanced ML models, namely the CNN, BiLSTM, BiGRU, CNN-BiLSTM, CNN-BiGRU
and different hybrid models with two types of text-representation models—context-free
and context-aware embedding models—and two advanced pretrained transformer-based
models: BERTbase and RoBERTabase. We found that the ensemble of the classical ML meth-
ods with TF-IDF features outperformed the other methods on the LIAR dataset, including
advanced ML models. As the LIAR dataset contains short political statements, it is difficult
to obtain useful clues that could help discriminate fake news from real news. However,
BERTbase alone was able to achieve an accuracy result that was on par with the best-
performing models, demonstrating the power of such a model in capturing useful clues
from a short piece of text. RoBERTabase performed the best on the PolitiFact dataset with
an F1 score of 93.17. In contrast, classical ML methods, such as SVM with TF-IDF features,
beat the DL models on the GossipCop dataset, including the official baselines. For the
COVID-19 dataset, the best-performing model was BERTbase. By relying only on news text
with minimal text preprocessing, we achieved better results than the state-of-the-art results
across the used datasets. It may be possible to improve the performance if context-based
information, in addition to news text, is considered and if other factors, such as style
and sentiment, are included. Generally, the experimental results indicate that no single
technique can deliver the best performance scores across all used datasets.
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To this end, we hope our comparative study will contribute to future research in this
area and identify the best model for detecting fake news.
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