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Abstract: Predicting new links in complex networks can have a large societal impact. In fact, many
complex systems can be modeled through networks, and the meaning of the links depend on the
system itself. For instance, in social networks, where the nodes are users, links represent relationships
(such as acquaintance, friendship, etc.), whereas in information spreading networks, nodes are users
and content and links represent interactions, diffusion, etc. However, while many approaches involve
machine learning-based algorithms, just the most recent ones account for the topology of the network,
e.g., geometric deep learning techniques to learn on graphs, and most of them do not account for
the temporal dynamics in the network but train on snapshots of the system at a given time. In this
paper, we aim to explore Temporal Graph Networks (TGN), a Graph Representation Learning-based
approach that natively supports dynamic graphs and assigns to each event (link) a timestamp. In
particular, we investigate how the TGN behaves when trained under different temporal granularity
or with various event aggregation techniques when learning the inductive and transductive link
prediction problem on real social networks such as Twitter, Wikipedia, Yelp, and Reddit. We find that
initial setup affects the temporal granularity of the data, but the impact depends on the specific social
network. For instance, we note that the train batch size has a strong impact on Twitter, Wikipedia,
and Yelp, while it does not matter on Reddit.

Keywords: deep learning; geometric deep learning; information spreading; link prediction; social
networks

1. Introduction

In the last decades, the quantity of information about the environment that surrounds
us is growing exponentially and has assumed more and more importance in our life, mainly
due to the social networks that are the main actors in their production and dissemination.
This extremely large availability of data has created new and exciting challenges in data and
information analysis, for example, to analyze the dissemination process and the reliability
of information as well as their impact on society.

The link prediction problem consists of studying the possible future connections
among nodes in a complex network, aiming at explaining the evolutionary dynamics of
network [1]. A common approach is to evaluate the similarity between the nodes belonging
to a network at time t in order to know the topology of the future network at time t + 1.
The key concept is the similarity measure, which can depend on both the semantic [2]
and the topology of the network [3]. Link prediction has been applied to a variety of
domains including highly dynamic systems, such as social networks [4], for instance, to
predict people we may know but we are not still connected to [5] or products we could
be interested in, in an electronic commerce system [6]. The simultaneous development
of machine learning techniques, such as deep learning, allows researchers to analyze
more and more features of social networks adopting several, different approaches, for
instance, McAuley and Leskovec proposed to discover users’ social circles (e.g., lists on
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Facebook and Twitter) using machine learning [7]. However, since in many cases the
existing topological correlation plays an important role in defining the social relations,
Bronstein et al., in [8], report that, while deep learning has been successfully applied on a
wide variety of tasks [9], from speech recognition [10,11] and machine translation [12] to
image analysis and computer vision [13–15], there is now a growing interest in trying to
learn on non-Euclidean data. They list several open issues, such as generalization, support of
directed graph, data synthesis, computation, and time-varying domains, the latter being the focus
of this paper. Dynamic complex non-Euclidean graphs have been utilized to infer social
relations from trajectory data [16], to perform semi-supervised community detection [17], to
detect social spammers [18], or to protein–protein interaction networks [19] and knowledge
graphs [20]; however, few approaches have been developed so far for learning on time
varying graphs, as most only support static graphs [3,8,21]. Moreover, the authors of [22]
highlighted that, in some cases, the lack of temporal analysis does not lead to an optimal
solution since many behaviors are closely related to the temporal evolution of the system.
In general, it should be noted that dynamic graph learning is a hard task due to the time-
varying nature of the graph structure itself, as nodes and links are constantly evolving
(i.e., new nodes or links may appear, and others may disappear). Consequently, the
computation of node embeddings requires to preserve the structural information of the
graph but efficiently capture temporal causality. To model the flow of time, we can use
a discrete-time representation using a sequence of (static) snapshots, i.e., we represent
the graph at time t, t + 1, ..., t + n and study their correlations; however, a continuous
representation is more general. Usually, a continuous-time representation is just a list of
events with a timestamp. Let us note that latter representation is able to capture the event
when it happens and avoid the problem of defining the correct dimension of unit. Recently,
new geometric deep learning techniques to capture the time evolution of networks have
been developed. Two of the most promising approaches are Temporal Graph Networks
(TGN) [23] by Rossi et al. and the Temporal Graph Attention (TGAT) [22] layer by Xu et al.

The main issue in using non-Euclidean data in machine learning, such as graphs, is
to describe and encode their structure so that it can be easily exploited by the models.
Geometric deep learning is an emerging umbrella term for techniques that generalize
deep learning to non-Euclidean domains, such as certain graphs and manifolds [24,25],
and has been successfully used in several applications such as graph-wise classification,
signal processing [8], and vertex-wise classification and regression [26]. The most common
approach to learn on such data is Graph Neural Networks (GNN) that typically work
with a message passing mechanism, aggregating information from the neighborhood of a
node and creating representations (called embeddings) that are later used for node/graph
classification or link prediction.

Temporal Graph Attention (TGAT) layers [22] are an extension of Graph Attention
Networks [27] meant to handle continuous time-dynamics graphs. Just as other Graph
Neural Network (GNN) layers, the TGAT aggregate the local neighborhood representations
(or features) to produce the node’s embedding, with the main difference being that they also
account for temporal information (i.e., the timestamps) by also learning a time embedding.
Like GAT, TGAT are inductive, i.e., they can generalize to new nodes and graphs, and
use the self-attention mechanism, proposed by Vaswani et al. [28], to capture the temporal
interactions with both node and topological features. Moreover, they also support the
multi-head setting and, unlike the original GAT, edge features.

While geometric deep learning and its application on social networks are rather
new topics, extensive literature already exists. For instance, in [29], the authors present
a survey of the uses of geometric deep learning in Facebook post analysis in order to
study the way to preserve the social network integrity, while in [30], the authors present
a geometric deep learning-based approach to automatic detection of fake news based on
analysis of existing content instead of using Natural Languages Processing techniques
that often are not able to manage the context. Another example is to study geometric
properties of the propagation scheme, whereby the authors of [31–34] show that fake and
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real news spread differently on social media, and Suno et al., in [35], focus on realistic
propagation mechanism and highlight the different propagation evolution of fake news
and real news tracking large real databases. In fact, online users tend to acquire information
adhering to their worldviews [36], ignoring dissenting information [37] that increases
the probability of the spreading of misinformation [38], which may cause fake news and
inaccurate information to spread faster and wider than fact-based news [39]. In [40], the
authors study a Twitter’s retweet network using geometric deep learning. Leng at al. [41]
present an example of using geometric deep learning for recommendation tasks that
uses a Multi-Graph Graph Attention Network (MG-GAT) on two large-scale datasets
collected from some standard datasets in Recommender systems such as Yelp. MG-GAT
learn the latent representations of users and businesses by aggregating different sets of
information from each user’s neighbors (business) on a chart of close importance. However,
the previous analysis does not take into account the flow of time that is one of the most
important characteristics to be studied in a social network.

In this paper, we analyze the performance of the Temporal Graph Network (TGN)
model [42] applied to some datasets extracted from widely used social networks.

We compared the impact of initial batch size on the selected datasets, arguing about
its correlation with the peculiarities of each social network, if any. The model has been
trained and tested on Twitter, Wikipedia, Yelp, and Reddit, and our experiments highlight
that temporality must be considered to obtain a significant increase in knowledge. The con-
tribution of this work is threefold. Specifically, we argue about the creation of appropriate
social network datasets for temporal analysis, then we employ the TGN-based model, and
finally we present the results of the evaluation procedure that uses these datasets to assess
the geometric deep learning algorithm mentioned.

Section 2 sketches the Temporal Graph Networks (TGN). Section 3 presents the datasets
used and their extraction, while Section 4 presents the simulation setup and the results.
Section 5 outlines some conclusions.

2. Temporal Graph Networks

The Temporal Graph Networks [23] (TGN) is a generic framework for deep learning
on dynamic graphs represented as sequences of timed events, which, according to the
experimental results reported by the authors, outperforms the state-of-the-art approaches
while being more efficient.

The TGN framework is modular, and each module can be modified depending on
the application scenario. More in detail, the main module is the node memory that stores
a representation of the current state of each node, for instance, the node’s history and
long-term dependencies. Each event is first transformed into a message for each node
involved using a “message function”, and then each message is used to update the memory
entry of that node. It should be noted that, for computational efficiency reasons, during
the training, events are divided in batches, and multiple messages involving a node are
aggregated using some function.

More specifically, TGNs aggregate all the messages mi(t) that involve the same node i
in a given batch using an aggregation mechanism, defined as in the following equation:

m̄i(t) = agg(mi(t1), ..., mi(tb)) (1)

where t1, ..., tb are time events, with tb ≤ t.
Moreover, while authors use an identity message function and non-learnable message

aggregation ones, replacing these functions with learnable ones is left as future work.
We will explore such an option in Section 4.1, where we will present a set of different
aggregation functions evaluating their performance.

Regarding the node embeddings, a GNN model employing slightly modified TGAT
layers is used to compute them at each timestamp. Specifically, the main difference is that
the input node features also include the node’s state.
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It is also worth mentioning that TGN supports either node-wise events (i.e., they
involve a single node) or interactions between two nodes and that the creation and deletion
of nodes and links are also supported.

3. Dataset

We use four datasets in our experiments, specifically, we use the same Reddit and
Wikipedia [43] networks used in the TGN paper [23], and we also build two additional
datasets from Yelp and from Twitter. In the following, we provide further details about the
four networks and about their edge features.

The Reddit and Wikipedia networks are bipartite: the nodes of the first mode corre-
spond to users, while the second mode to sub-reddits and to pages, respectively. In the
Reddit network, each link represents a new post, whereas in the Wikipedia network links
represent page edits. In both networks, links have a timestamp and 172 features extracted
with Linguistic Inquiry and Word Count (LIWC) [44].

The Yelp network is a bipartite network where the modes represent users and busi-
nesses, and links represent reviews. The network was built from the raw data published
by Yelp in December 2020. In particular, we only keep the reviews written since 2020 of
the businesses in the most active country, in order to build a dense network. Note that
we filter out nodes with degree equal or lower than one. The filtered and the full degree
distributions of the network resemble a power-law and are shown in Figure 1a. Each
link has a timestamp, and we extract 20 features using SEANCE [45] and also include the
number of words in the review.

The Twitter network was built by collecting tweets of users that interacted with the
first 100 tweets that Elon Musk made since 15 May 2020; he was chosen because of the large
number of interactions with his tweets. Specifically, for each tweet, we selected 100 retweets
by verified users only, and for each retweet, we collect a random number (between 100
and 1000) of their tweets in order to obtain a limited number of events per user. We stop
the collection process after reaching one million tweets. Regarding the network, it was
built from the collected tweets that were made between 1 and 15 May 2015. In the resulting
monoplex network, nodes are users and links are tweets, each with its own timestamp. We
extract 768 features for each link using BERT (Base, Multilingual Cased) [46], which was
chosen to keep the edge features comparable with the ones used in the original TGN paper.
Again, we filter out nodes with degree equal or lower than one. The degree distribution of
the network resembles a power-law and is shown in Figure 1b.

The statistics of the networks are reported in Table 1.

Table 1. Dataset.

Edge Features
Network Type |N| |E| # Type Timespan

Reddit Bipartite (users and posts) 11.000 672.447 172 LIWC 30 days
Twitter Monoplex (users) 38.458 715.030 768 BERT 15 days
Wikipedia Bipartite (users and pages) 9.227 157.474 172 LIWC 30 days
Yelp Bipartite (users and reviews) 29.608 61.522 21 SEANCE 1 year
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Figure 1. Degree distribution of the networks built for this study, before and after filtering. (a) Yelp.
(b) Twitter.

4. Simulations and Results

In this section, we present the results of various experiments aiming to predict links
among nodes (new interactions) on the base of the previous (i.e., occurred temporally
before) events. More specifically, we explore the role of the aggregation function and
training batch size in shaping the TGN’s performance.

The final goal of these experiments is to stress the role of the hyperparameters in the
TGN with the aim of helping other researchers to correctly choose TGN’s parameter during
the training phase.

We run the experiments on top of the official implementation of TGNs [23].

4.1. Experiments Settings

As mentioned in Section 2, TGNs can support different aggregation functions. Here,
we define two new aggregation mechanisms and compare them against the two proposed
in the TGN paper on the four networks discussed in Section 3. In particular, we compare the
last message aggregator (that only keeps the most recent message) and the mean aggregator
(that performs the average of the messages)—both proposed in the TGN paper [23] and
defined as in Equations (2) and (3)—plus two weighted mean aggregators proposed by us
as in Equation (4), which respectively assign an importance score to messages that depend
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on their relative timestamp (with respect to the first message in the batch) and learn the
message importance.

agglast(m(t1), ..., m(tb)) = m(tb) (2)

where tb = max{tj} is the greatest timestamp in the batch.

aggmean(m(t1), ..., m(tb)) =
1
B

B

∑
j

m(tj) (3)

where B is the number of messages in the batch.
More in detail, we define a non-trainable importance function that assigns a weight

to each message in the batch as the difference between its own timestamp and the one
of the oldest message in the batch (Equation (5)), and a trainable importance function, a
multi-layer perceptron (MLP) that produces a scalar weight for each message in the batch
independently (Equation (6)). Both the proposed aggregators then scale the weight of
each message in the batch using the softmax function, so that each weight is in [0, 1], and
perform a weighted sum.

aggweighted mean(m(t1), ..., m(tb)) =
B

∑
j

wj ·m(tj) (4)

where B is the number of messages in the batch, and

wj = [softmax( f (m(t1), ..., m(tb)))]j

frelative timestamp(mi(t1), ..., mi(tb)) = (t1 − tmin, ..., tb − tmin) (5)

and tmin = minb{tj}

fMLP(m(t1), ..., m(tb)) = (MLP(m(t1)), ..., MLP(m(tb))) (6)

where MLP is a Multi-Layer Perceptron with a scalar output for each message.

4.2. Results

In this subsection, we report the link prediction results by using different aggregation
functions, as introduced in Section 4.1, and different batch sizes.

4.2.1. Experiments on Aggregation Functions

Here, we present experimental results of TGN’s in performing link prediction by
using different aggregation functions, as introduced in Section 4.1. Our results suggest
that the choice of the aggregator does not always affect the performance significantly, as
reported in Tables 2 and 3 for the inductive and transductive link prediction task. In fact,
the four aggregators achieve similar performance in all but in the Reddit network, where
the trainable aggregator outperforms the others and where the last message aggregator
scores 10% lower average precision than the other aggregators. In particular, such behavior
can be observed in both the inductive and in the transductive settings. This also suggests
that, in the Reddit dataset, all the events play a significant role and poor performance with
the last message aggregator is mainly due to the loss of some important messages. On
the other hand, while the mean aggregator provides the best results in the Twitter, Yelp,
and Wikipedia datasets in the inductive settings, it never outperforms the others in the
transductive one, as the last message, the weighted mean, and the trainable aggregators
outscore the other aggregators, respectively, in the Twitter, Yelp, and Wikipedia networks.
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Table 2. Inductive average precision results using different aggregators.

Network Last m. Mean Weighted Mean MLP

Reddit 86.76 96.62 95.56 97.45
Twitter 87.16 87.32 85.69 86.14
Yelp 63.43 63.87 63.51 62.83
Wikipedia 96.05 96.21 95.88 96.02

Table 3. Transductive average precision results using different aggregators.

Network Last m. Mean Weighted Mean MLP

Reddit 85.34 96.78 95.14 97.58
Twitter 95.62 95.19 94.70 94.52
Yelp 75.34 75.47 75.82 74.35
Wikipedia 96.80 96.78 96.89 96.98

4.2.2. Experiments on Batch Size

The batch size, as mentioned by TGN authors [23], affects efficiency significantly. In
fact, in many datasets—where many consecutive events involve the same nodes—not only
a larger batch size translates into a smaller number of model’s weights updates but also
into a larger number of aggregated events. In other words, the batch size may affect the
temporal granularity of the data. During the choice of the training hyperparameters, one
may wonder how much the final performance is hit by the different batch sizes and running
an extensive grid search that covers all the parameters (or a wide range of values) is not
always feasible due to computational constraints. Here, we try to answer this question
by showing the ROC AUC values in the inductive (Figure 2a) and in the transductive
(Figure 2b) link prediction tasks as a function of the batch size. The number of aggregated
messages, using the mean aggregator used in the TGN paper, is also reported in Figure 2c.
In particular, the performance on the Twitter, Wikipedia, and Yelp networks is heavily
affected by the increased batch size, as the ROC AUC drops by 0.1 when the batch size is
104 with regard to the peak value, while this is not the case with the Reddit one, even if
the number of aggregated messages increases similarly. This suggests that, in the Reddit
dataset, the temporal order of the events does not play an important role as in the other
datasets. Note that, due to computational constraints, it was not possible to test with batch
sizes lower than 30.
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Figure 2. Cont.



Information 2022, 13, 123 8 of 11

102 103 104

Batch size

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Av
g.

 p
re

cis
io

n

(b)

102 103 104

Batch size

0

100

200

300

400

500

600

Av
g.

 n
um

be
r o

f m
es

sa
ge

s

(c)

Yelp
Twitter
Reddit
Wikipedia

Figure 2. Batch size experiments. Average precision results in two different settings and average
number of aggregations as a function of the batch size. (a) Inductive setting. (b) Transductive
setting. (c) Average number of aggregations.

5. Conclusions and Future Work

The paper discusses the application of a recent deep learning approach to the problem
of link prediction in complex networks and the role of some of its hyperparameters. In
more detail, we use geometric deep learning, specifically Temporal Graph Networks [23],
since the time evolution is one of the most important features of social networks that are
intrinsically time variant, often very quickly.

We performed several experiments aiming at predicting the evolving topology, i.e.,
creating and/or deleting links, based on previous events, on some dataset related to
very popular social networks, such as Reddit, Wikipedia, Yelp, and Twitter. We selected
four different aggregators to group messages involving the same node into batches and
compared the results.

The main goals of this study were to assess that geometric deep learning algorithms are
able to manage time dependencies and to analyze the dependencies of the performance on
the hyperparameters used. Results show that batch size may affect the temporal granularity
of the data even if running an extensive grid search that covers all the parameters is not
always feasible due to computational constraints. We noted that batch size strongly impacts
on Twitter, Wikipedia, and Yelp, while it does not matter on Reddit.
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Future studies should both extend the analysis to more social networks and improve
the geometric deep learning technique itself. Moreover, an explanation of the reason why
TGN works will help to a better selection of the way to spatially and temporally represents
the social networks.
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