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Abstract: Facial emotion recognition (FER) is an emerging and significant research area in the pattern
recognition domain. In daily life, the role of non-verbal communication is significant, and in overall
communication, its involvement is around 55% to 93%. Facial emotion analysis is efficiently used
in surveillance videos, expression analysis, gesture recognition, smart homes, computer games,
depression treatment, patient monitoring, anxiety, detecting lies, psychoanalysis, paralinguistic
communication, detecting operator fatigue and robotics. In this paper, we present a detailed review
on FER. The literature is collected from different reputable research published during the current
decade. This review is based on conventional machine learning (ML) and various deep learning
(DL) approaches. Further, different FER datasets for evaluation metrics that are publicly available
are discussed and compared with benchmark results. This paper provides a holistic review of FER
using traditional ML and DL methods to highlight the future gap in this domain for new researchers.
Finally, this review work is a guidebook and very helpful for young researchers in the FER area,
providing a general understating and basic knowledge of the current state-of-the-art methods, and to
experienced researchers looking for productive directions for future work.

Keywords: facial expressions; facial emotion recognition (FER); technological development; healthcare;
security; deep learning and traditional classification methods

1. Introduction

Facial emotions and their analysis play a vital role in non-verbal communication. It
makes oral communication more efficient and conducive to understanding the concepts [1,2].

It is also conducive to detecting human attention, such as behavior, mental state,
personality, crime tendency, lies, etc. Regardless of gender, nationality, culture and race,
most people can recognize facial emotions easily. However, a challenging task is the
automation of facial emotion detection and classification. The research community uses a
few basic feelings, such as fear, aggression, upset and pleasure. However, differentiating
between many feelings is very challenging for machines [3,4]. In addition, machines have
to be trained well enough to understand the surrounding environment—specifically, an
individual’s intentions. When machines are mentioned, this term includes robots and
computers. A difference is that robots involve communication abilities to a more innovative
extent since their design consists of some degree of autonomy [5,6]. The main problem
is classifying people’s emotions is variations in gender, age, race, ethnicity and image
quality or videos. It is necessary to provide a system capable of recognizing facial emotions
with similar knowledge as possessed by humans. Recently, FER has become an emerging
field of research, particularly for the last few decades. Computer vision techniques, AI,
image processing and ML are widely used to expand effective automated facial recognition
systems for security and healthcare applications [7–10].

Face detection is the first step of locating or detecting face(s) in a video or single
image in the FER process. The images do not consist of faces only, but instead present
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with complex backgrounds. Indeed, human beings can easily predict facial emotions and
other facial features of an image, but these are difficult tasks for machines without excellent
training [11,12]. The primary purpose of face detection is to separate face images from
the background (non-faces). Some face detection domains are gesture recognition, video
surveillance systems, automated cameras, gender recognition, facial feature recognition,
face recognition, tagging and teleconferencing [13,14]. These systems need first to detect
faces as inputs. There is a color sensor for image acquisition that captures color images
everywhere. Hence, current face recognition techniques depend heavily on grayscale, and
there are only a few techniques that are able operate with color images. To achieve better
performance, these systems either implement window-based or pixel-based techniques,
which are the key categories of strategies for facial recognition. The pixel-based method
lags in separating the face from the hands of another skin region of the person [15,16].

In contrast, the window-based method loses the capacity to view faces from various
perspectives. Model matching approaches are the most frequently used techniques for FER,
including face detection. In contrast, the window-based approach cannot view faces from
different angles. Currently, several state-of-the-art classifiers, such as ANN, CNN, SVM,
KNN, and random forest (RF), are employed for different features’ extraction and in the
recognition of tumors in healthcare, in biometrics, in handwriting studies and in detecting
faces for security measures [17–19].

Main Contributions

Over the past three decades, there has been a lot of research reported in the literature
on facial emotion recognition (FER). Nevertheless, despite the long history of FER-related
works, there are no systematic comparisons between traditional ML and DL approaches.
Kołakowska [20] presented a review whose main focus was on conventional ML approaches.
Ghayoumi [21] proposed a short review of DL in FER, and Ko et al. [22] presented a state-
of-the-art review of facial emotion recognition techniques using visual data. However, they
only provided the differences between conventional ML techniques and DL techniques.
This paper presents a detailed investigation and comparisons of traditional ML and deep
learning (DL) techniques with the following major contributions:

• The main focus is to provide a general understanding of the recent research and help
newcomers to understand the essential modules and trends in the FER field.

• We present the use of several standard datasets consisting of video sequences and
images with different characteristics and purposes.

• We compare DL and conventional ML approaches for FER in terms of resource uti-
lization and accuracy. The DL-based approaches provide a high degree of accuracy
but consume more time in training and require substantial processing capabilities,
i.e., CPU and GPU. Thus, recently, several FER approaches have been used in an
embedded system, e.g., Raspberry Pi, Jetson Nano, smartphones, etc.

This paper provides a holistic review of facial emotion recognition using the traditional
ML and DL methods to highlight the future gap in this domain for new researchers. Further,
Section 1 presents the related background on facial emotion recognition; Sections 2 and 3
contain a brief review of traditional ML and DL. In Section 4, a detailed overview is
presented of the FER datasets. Section 5 considers the performance of the current research
work, and, finally, the research is concluded in Section 6.

2. Facial Emotion Recognition Using Traditional Machine Learning Approaches

Facial emotions are beneficial for investigating human behavior [23,24] as exhibited in
Figure 1. Psychologically, it is proven that the facial emotion recognition process measures
the eyes, nose, mouth and their locations.

The earliest approach used for facial emotion intensity estimation was based on
distance urged. This approach uses high-dimensional rate transformation and regional
volumetric distinction maps to categorize and quantify facial expressions. In videos,
most systems use Principal Component Analysis (PCA) to represent facial expression
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features [25]. PCA has been used to recognize the action unit to express and establish
different facial expressions. Other facial expressions are structured and recognized by
mistreatment PCA for providing a facial action unit [26].
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Figure 1. Facial emotion recognition (FER) process.

Siddiqi et al. [27] detected and extracted the face portion via the active contour model.
The researchers used Chan–Vese and Bhattacharyya’s energy functions to optimize the
distance between face and context, and reduce the differences within the face. In addition,
noise is reduced using wavelet decomposition, and the geometric appearance features of
facial emotions and facial movement features using optical flow are extracted.

There is no need for high computational power and memory for conventional ML
methods such as DL methods. Therefore, these methods need further consideration to im-
plement embedded devices that perform classification in real time with low computational
power and provide satisfactory results. Accordingly, Table 1 presents a brief summary

Table 1. Summary of the representative conventional FER approaches.

References Datasets Decision Methods Features Emotions Analyzed

Varma et al. [28] FECR support vector machine (SVM)
classifier and HMM PCA and LDA Six emotions

Reddy et al. [29] CK+ support vector machine (SVM)
classifier

Haar Wavelet Transform
(HWT), Gabor wavelets and

nonlinear principal
component analysis (NLPCA)

Six emotions

Sajjad et al. [30]
MMI

JAFFE
CK+

support vector machine (SVM)
classifier

ORB
SIFT

SURF
Seven emotions

Nazir et al. [31] CK+
MMI

KNN, SMO and MLP for
classification HOG, DCT Seven emotions

Zeng et al. [32] CK+ DSAE LBP, SIFT, Gabor Function and
HOG Seven emotions

Uddin et al. [33] Real-time dataset from
visual depth camera Deep Belief Network (DBN) MLDP-GDA features Six emotions

Al-Agha et al. [34] BOSPHORUS Euclidean distance Geometric descriptor Four emotions

Ghimire et al. [35]
CK+
MMI
MUG

EBGM, KLT and AdaBoost-ELM Salient geometric features Seven emotions

Wang and Yang [36] BVTKFER
BCurtinFaces random forest classifier LBP Six emotions
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Table 1. Cont.

References Datasets Decision Methods Features Emotions Analyzed

Wu et al. [37]

BBC,
SPOS
MMI

UvANEMO

support vector machine (SVM)
RSTD, four conventional

features—raw pixels, Gabor,
HOG and LBP

Two emotions
Smile (genuine and

fake)

Acevedo et al. [38] CK+ Conditional Random Field (CRF)
and KNN Geometric descriptor Seven emotions

Kim [39] CK
JAFFE

embedded hidden Markov
model (EHMM) ASM and 2D DCT Seven emotions

Cornejo et al. [25]
CK+

JAFFE
MUG

PCA, LDA, K-NN and SVM Gabor wavelets and geometric
features Seven emotions

Siddiqi et al. [27]

CK
JAFFE

USTCNVIE
Yale
FEI

hidden Markov model (HMM)

Chan–Vese energy function,
Bhattacharyya distance

function wavelet
decomposition and SWLDA

Six emotions

Chang et al. [40] CK+ Support Vector Regression (SVR)
feature descriptors,

AAMs,
Gabor wavelets

Seven emotions

3. Facial Emotion Recognition Using Deep-Learning-Based Approaches

Deep learning (DL) algorithms have revolutionized the computer vision field in the
current decade with RNN and CNN [41–43]. These DL-based methods are used for feature
extraction, recognition and classification tasks. The key advantage of a DL approach (CNN)
is to overcome the dependency on physics-based models and reduce the effort required
in preprocessing and feature extraction phases [44,45]. In addition, DL methods enable
end-to-end learning from input images directly. For these purposes, in several regions,
including FER, scene awareness, face recognition and entity recognition, DL-based methods
have obtained encouraging results from the state-of-the-art [46,47]. There are generally
three layers in a DL-CNN, (1) convolution layer, (2) subsampling layer and (3) FC layer, as
exhibited in Figure 2. The CNN takes the image or feature maps as the input, and slides
these inputs together with a series of filter banks to produce feature maps that reflect the
facial image’s spatial structure. Inside a feature map, the weights of convolutional filters are
connected, and the feature map layer inputs are locally connected [48–50]. By implementing
one of the most popular pooling approaches, i.e., max pooling, min pooling or average
pooling, the second type of layer, called subsampling, is responsible for reducing the given
feature maps [51,52]. A CNN architecture’s last FC layer calculates the class probability
of an entire input image. Most DL-based techniques can be freely adapted with a CNN to
detect emotions.

Li et al. [53] proposed a 3D CNN architecture to recognize several emotions from
videos. They extracted deep features and used three benchmark datasets for the experimen-
tal evaluation, namely CASME II, CASME and SMIC. Li et al. [54] performed additional
face cropping and rotation techniques for feature extraction using a convolutional neu-
ral network (CNN). Tests were carried out on the CK+ and JAFFE databases to test the
proposed procedure.

A convolution neural network (CNN) with a focus function (ACNN) was suggested
by Li et al. [55] that could interpret the occlusion regions of the face and concentrate on
more discriminatory, non-occluded regions. A CNN is an end-to-end learning system.
First, the different depictions of facial regions of interest (ROIs) are merged. Then, each
representation is weighted by a proposed gate unit that calculates an adaptive weight
according to the area’s significance. Two versions of ACNN have been developed in
separate ROIs: patch-based CNN (pACNN) and global-local-based ACNN (gACNN).
Lopes et al. [56] classified human faces into several emotion groups. They used three
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different architectures for classification: (1) a CNN with 5 C layers, (2) a baseline with
one C layer and (3) a deeper CNN with several C layers. Breuer and Kimmel [57] trained
a model using various datasets of FER to classify seven basic emotions. Chu et al. [58]
presented multi-level mechanisms for detecting facial emotions by combining temporal and
spatial features. They used a CNN architecture for spatial feature extraction and LSTMs
to model the temporal dependencies. Finally, they fused the output of both LSTMs and
CNNs to provide a per-frame prediction of twelve facial emotions. Hasani and Mahoor [59]
presented the 3D Inception-ResNet model and LSTM unit, which were fused to extract
temporal and spatial features from the input frames of video sequences. (Zhang et al., [60]
and Jain et al. [61] suggested a multi-angle optimal pattern-dependent DL (MAOP-DL)
system to address the problem of abrupt shifts in lighting and achieved proper alignment of
the feature set by utilizing optimal arrangements centered on multi-angles. Their approach
first subtracts the backdrop, isolates the subject from the face images and later removes
the facial points’ texture patterns and the related main features. The related features are
extracted and fed into an LSTM-CNN for facial expression prediction.
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Al-Shabi et al. [62] qualified and collected a minimal sample of data for a model combi-
nation of CNN and SIFT features for facial expression research. A hybrid methodology was
used to construct an efficient classification model, integrating CNN and SIFT functionality.
Jung et al. [63] proposed a system in which two CNN models with different characteristics
were used. Firstly, presence features were extracted from images, and secondly, temporal
geometry features were extracted from the temporal facial landmark points. These models
were fused into a novel integration scheme to increase FER efficiency. Yu and Zhang [64]
used a hybrid CNN to execute FER and, in 2015, obtained state-of-the-art outcomes in FER.
They used an assembly of CNNs with five convolution layers for each facet word. Their
method imposed transformation on the input image in the training process, while their
model produced predictions for each subject’s multiple emotions in the testing phase. They
used stochastic pooling to deliver optimal efficiency, rather than utilizing peak pooling
(Table 2).

The hybrid CNN-RNN and CNN-LSTM techniques have comparable architectures, as
discussed in the previous section and exhibited in Figure 3. In short, CNN-RNN’s simple
architecture combines an LSTM with a DL software visual feature extractor, such as the
CNN model. The hybrid techniques are, thus, equipped to distinguish emotions from
image sequences. Figure 3 indicates that each graphic attribute has been translated to the
LSTM blocks and describes a variable or fixed-length vector. Finally, performance is given
for the prediction in a recurrent sequence learning module and the SoftMax classifier is
used in [58].
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Table 2. Deep learning-based approaches for FER.

References Datasets Methods Emotions Analyzed

Li et al. [65] CK+
JAFFE convolutional neural network (CNN) Seven emotions

Jain et al. [61] CK+
MMI

For the facial label prediction, they
used LSTM-CNN Six emotions

Li et al. [53]
SMIC

CASME
CASME II

3D flow-based CNN model for
video-based micro-expression

recognition
Five emotions

Xie et al. [66] CK+
JAFFE

Attention-based SERD and the
MPVS-Net Six emotions

Li et al. [55]

RAF-DB AffectNet SFEW
CK+
MMI

Oulu-CASIA

CNN with ACNN Seven emotions

Lopes et al. [56]
CK+

JAFFE
BU-3DFE

CNN and specific image
preprocessing steps Seven emotions

Breuer and Kimmel [57] CK+
FER2013 CNN with transfer learning Seven emotions

Chu et al. [58] BP4D

CNN is used to extract spatial
representations and

LSTMs used for temporal
dependencies

Twelve emotions

Hasani and Mahoor [59] CK+
DISFA

LSTM units extracted both temporal
and spatial relations from facial

images;
as inputs of the network, they used

facial landmark points

Twenty-three primary and
compound emotions

Zhang et al. [60]
CK+

Oulu-CASIA
MMI

PHRNN and MSCNN Seven emotions

Al-Shabi et al. [62] CK+
FER-2013

Dense SIFT and regular SIFT are
merged with CNN features Seven emotions

Jung et al. [63] CK+
Oulu-CASIA DTAN and DTGN Seven emotions

Yu and Zhang [64] FER-2013
SFEW

Used an assembly of DCNNs with
seven convolution layers Seven emotions

Generally, DL-based methods determine classifiers and features by DNN experts,
unlike traditional ML methods. DL-based methods extract useful features directly from
training data using DCNNs [67,68]. However, the massive training data are a challenge
for facial expressions under different conditions to train DNNs. Furthermore, DL-based
methods need high computational power and a large amount of memory to train and
test the model compared to traditional ML methods. Thus, it is necessary to decrease the
computational time during the inferencing of DL methods.
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4. Facial Emotion Datasets

Experts from different institutions have generated several datasets to evaluate reported
methods for facial expression classification [69,70]. Accordingly, a detailed overview of
some benchmark datasets is presented.

• The CK+ Cohen Kanade Dataset:

The Cohen Kanade database [71] is inclusive in that it consists of subject images
of all sexes and races and is open to the public. This dataset consists of seven essential
emotions that often include neutral emotions. The images’ resolution is 640 × 490 or
640 × 480 dimensions, with grayscale (8-bit) existing in the dataset. Approximately 81%
of subjects are Euro-American, 13% are Afro American, and approximately 6% are from
other races. In the CK+ dataset, the ratio of females is nearly 65%. The dataset consists of
593 images captured from 120 different people, and the age of these people varies from 18
to 30 years.

• Bosphorus dataset

This dataset consists of 2D and 3D faces for emotion recognition, facial action detection,
3D face reconstruction, etc. There are 105 humans with 4666 faces in different poses in the
dataset. This dataset is different from other datasets in the following aspects.

1. A rich collection of facial emotions is included:

i. Per person, at least 35 facial emotions are recoded;
ii. FACS scoring;
iii. Each third person is a professional actresses/actors.

2. Systematic head poses are included.
3. A variety of facial occlusions are included (eyeglasses, hands, hair, moustaches and

beards).

• SMIC dataset

SMIC [54] contains macro- and micro-emotions, but the focus is on macro-emotions;
this category includes 164 videos taken from 16 subjects. The videos were captured using a
powerful 100 frame per second camera.

• BBC dataset

The BBC database is from the ‘Spot the fake smile’ test on the BBC website (http:
//www.bbc.co.uk/science/humanbody/mind/surveys/smiles/ accessed on 17 December

http://www.bbc.co.uk/science/humanbody/mind/surveys/smiles/
http://www.bbc.co.uk/science/humanbody/mind/surveys/smiles/
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2021), which consists of 10 genuine and 10 posed smile videos collected with a resolution
of 314 × 286 pixels at 25 frames/s from seven females and thirteen males.

The image representation of these datasets is shown in Figure 4 such that each row
represents an individual dataset.
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5. Performance Evaluation of FER

Performance evaluation based on quantitative comparison is an important technique
to compare experimental results [72,73]. Benchmark comparisons on publicly available
datasets are also presented. Two different mechanisms are used to evaluate the reported sys-
tem’s accuracy: (1) cross-dataset and (2) subject-independent. Firstly, a subject-independent
task separates each dataset into two parts: validation and training datasets. This process
is also known as K-fold cross-validation [74,75]. K-fold cross-validation is used to over-
come overfitting and provide insight into how the model will generalize to an unknown,
independent dataset.

6. Evaluation Metrics/Performance Parameters

The evaluation metrics include overall accuracy, F-measure, recall and precision [76]
Each evaluation metric is discussed separately below.

• Precision: This indicates how accurate or precise a model is, and it yields the actual
positive values from a set of predictions by any algorithm. Precision is an excellent
measure to indicate when the costs of false positives are relatively very high [77–79].

Precision = (True positive)/(True positive + False positive) (1)

• Recall: A recall value computes how many actual positive values a mode captures
while labeling it positive. This metric is used to select the best model when there is a
high cost of false negatives [80,81].
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Precision = (True positive)/(True positive + False negative) (2)

• F1 Score: The F1 score is acquired when a balance is needed between precision and
recall. F1 is a function of precision and recall [82,83].

F1 = 2 * (Precision * Recall)/(Precision + Recall) (3)

• True Negatives (TN): Samples in the results are graded as not adequately belonging to
the required class [84–86].

• False Negatives (FN): Samples are mistakenly used in data identified as not belonging
to the required class [87–90].

• True Positives (TP): Samples in the data are appropriately categorized as belonging to
the desired class [91–93].

• False Positives (FP): Samples in the data are categorized incorrectly as belonging to
the target class [77,94].

Comparisons on Benchmark Datasets

It is challenging to compare different ML and deep-learning-based facial recognition
strategies due to the different setups, datasets and machines used [95,96]. However, the
latest comparison of different approaches is presented in Table 3.

Table 3. Conventional ML-based approaches for FER.

References Datasets Accuracy (%) Techniques

Varma et al. [28] FECR 98.40 (SVM) 87.50 (HMM) PCA and LDA for feature selection
and SVM and HMM classifier

Reddy et al. [29] CK+ 98.00

Haar Wavelet Transform (HWT),
Gabor wavelets and nonlinear
principal component analysis
(NLPCA) feature extractor and SVM
classifier

Sajjad et al. [30]
MMI
JAFFE
CK+

99.1 on MMI accuracy (92) on
JAFFE accuracy (90) on CK+

ORB
SIFT
SURF using SVM

Nazir et al. [31] CK+
MMI

99.6 by using only 32 features
with KNN

HOG, DCT features and KNN, SMO
and MLP for classification

Zeng et al. [32] CK+ 95.79
LBP, SIFT, Gabor Function and HOG
features and Deep Sparse
Auto-Encoder (DSAE) classifier

Uddin et al. [33] Real-time dataset from
visual depth camera 96.25 MLDP-GDA features fed to Deep

Belief Network (DBN) for prediction

Ghimire et al. [35]
CK+
MMI
MUG

97.80
77.22
95.50

Salient geometric features and EBGM,
KLT and AdaBoost-ELM class

Yang et al. [96] BVT-KFER
BCurtinFaces

93.33
92.50

LBP features and a random forest
classifier

Wu et al. [37]

BBC
SPOS
MMI
UvA-NEMO

90.00
81.25
92.21
93.95

RSTD, four conventional
features—raw pixel, Gabor, HOG and
LBP features
Support vector machine (SVM)
classifiers
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Table 3. Cont.

References Datasets Accuracy (%) Techniques

Acevedo et al. [38] CK+ 89.3
86.9

Geometric descriptor and
Conditional Random Field (CRF) and
KNN classifier

Al-Agha et al. [34] BOSPHORUS 85.00 Geometric descriptor and Euclidean
distance is used for the prediction

Kim [39] CK
JAFFE

77.00
64.7

ASM and 2D DCT features and
embedded hidden Markov model
(EHMM)

Siddiqi et al. [27]

CK
JAFFE
USTC-NVIE
Yale
FEI

99.33
96.50
99.17
99.33
99.50

Features are extracted by using
Chan–Vese energy function,
Bhattacharyya distance function
wavelet decomposition and SWLDA
and hidden Markov model (HMM) is
used for prediction

Cornejo et al. [25]
CK+
JAFFE
MUG

99.78
99.17
99.94

Geometric + PCA + LDA + KNN
Geometric + PCA + LDA + K − NN
Geometric + PCA + LDA + K − NN

Chang et al. [40] CK+

Mean Error (AAMs 0.316)
Mean Error (Gabor 0.349)
MAEs (AAMs 0.324)
MAEs (Gabor0.651)

feature descriptors, AAMs, Gabor
wavelets and support vector
regression (SVR) are used for
classification

As shown in Tables 3 and 4, deep-learning-based approaches outperform conventional
approaches.

Table 4. Comparisons of deep-learning-based approaches for FER.

References Datasets Accuracy (%) Methods

Li et al. [65] CK+
JAFFE

97.38
0.14 SD
97.18
0.30 SD

Convolutional neural network (CNN)

Li et al. [55]
SMIC
CASME
CASME II

55.49
54.44
59.11

3D flow-based CNN model for
video-based micro-expression
recognition

Xie et al. [66] CK+
JAFFE

With 10-fold cross-validation
accuracy
95.88
99.32

Expressional Region Descriptor
(SERD) and Multi-Path
Variation-Suppressing Network
(MPVS-Net)

Li et al. [55]

RAF-DB AffectNet SFEW
CK+
MMI
Oulu-CASIA

91.64
Convolutional neutral network
(CNN) with attention mechanism
(ACNN)

Lopes et al. [56]
CK+
JAFFE
BU-3DFE

Average of C6class (96.76)
Average of Cbin (98.92)
Average of C6class (72.89)
Average of Cbin (90.96)
Average of C6class (53.44)
Average of Cbin (84.48)

Convolutional neural network and
specific image preprocessing steps

Breuer and Kimmel [57] CK+
FER2013

98.62 ± 0.11
72 ± 10.5

Convolutional neural network (CNN)
with transfer learning
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Table 4. Cont.

References Datasets Accuracy (%) Methods

Chu et al. [58] BP4D Accuracy on 3-fold (53.2)
Accuracy on 10-fold (82.5)

Extracted spatial representations
by CNN
and for temporal dependencies,
LSTMs were used

Hasani and Mahoor [58] CK+
DISFA

89.5
56.0 Facial landmark points fed to CNN

Jain et al. [61] CK+
MMI

96.17
98.72

LSTM CNN using texture patterns for
facial expression prediction

(Zhang et al. 2017)
CK+
Oulu-CASIA
MMI

97.78
86.25
79.29

Part-Based Hierarchical Bidirectional
Recurrent Neural Network (PHRNN)
and Multi-Signal Convolutional
Neural Network (MSCNN)

Al-Shabi et al. [62] CK+
FER-2013

99.1
73.4

Dense SIFT and regular SIFT are
merged with CNN features

Jung et al. [63] CK+
Oulu-CASIA

97.25
81.46

Fusion of deep temporal appearance
network (DTAN) and deep temporal
geometry network (DTGN) is
employed to predict facial
expressions

Yu and Zhang [64] SFEW Validation accuracy 55.96
Test accuracy 61.29

Assembly of DCNNs with seven
convolution layers

In experimental tests, DL-based FER methods have achieved high precision; however,
a range of issues remain that require further investigation:

• As the framework becomes increasingly deeper for preparation, a large-scale dataset
and significant computational resources are needed.

• Significant quantities of datasets that are manually compiled and labeled are required.
• A significant amount of memory is required for experiments and testing, which is

time-consuming.

The approaches mentioned above, especially those based on deep learning, require
massive computation power. Moreover, these approaches are developed for specific emo-
tions, and thus are not suitable to classify other emotional states. Therefore, developing a
new framework to be applied to the whole spectrum of emotions would be of significant
relevance, and could be expanded to classify complex facial expressions.

7. Conclusions and Future Work

In this paper, a detailed analysis and comparison are presented on FER approaches.
We categorized these approaches into two major groups: (1) conventional ML-based ap-
proaches and (2) DL-based approaches. The convention ML approach consists of face
detection, feature extraction from detected faces and emotion classification based on ex-
tracted features. Several classification schemes are used in conventional ML for FER,
consisting of random forest, AdaBoost, KNN and SVM. In contrast with DL-based FER
methods, the dependency on face physics-based models is highly reduced. In addition,
they reduce the preprocessing time to enable “end-to-end” learning in the input images.
However, these methods consume more time in both the training and testing phases. Al-
though a hybrid architecture demonstrates better performance, micro-expressions remain
difficult tasks to solve due to other possible movements of the face that occur unwillingly.

Additionally, different datasets related to FER are elaborated for the new researchers
in this area. For example, human facial emotions have been examined in a traditional
database with 2D video sequences or 2D images. However, facial emotion recognition
based on 2D data is unable to handle large variations in pose and subtle facial behaviors.
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Therefore, recently, 3D facial emotion datasets have been considered to provide better
results. Moreover, different FER approaches and standard evaluation metrics have been
used for comparison purposes, e.g., accuracy, precision, recall, etc.

FER performance has increased due to the combination of DL approaches. In this
modern age, the production of sensible machines is very significant, recognizing the facial
emotions of different individuals and performing actions accordingly. It has been suggested
that emotion-oriented DL approaches can be designed and fused with IoT sensors. In this
case, it is predicted that this will increase FER’s performance to the same level as human
beings, which will be very helpful in healthcare, investigation, security and surveillance.
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