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Abstract: Mutation testing is an effective, yet costly, testing approach, as it requires generating and
running large numbers of faulty programs, called mutants. Mutation testing also suffers from a
fundamental problem, which is having a large percentage of equivalent mutants. These are mutants
that produce the same output as the original program, and therefore, cannot be detected. Higher-
order mutation is a promising approach that can produce hard-to-detect faulty programs called subtle
mutants, with a low percentage of equivalent mutants. Subtle higher-order mutants contribute a
small set of the large space of mutants which grows even larger as the order of mutation becomes
higher. In this paper, we developed a genetic algorithm for finding subtle higher-order mutants. The
proposed approach uses a new mechanism in the crossover phase and uses five selection techniques
to select mutants that go to the next generation in the genetic algorithm. We implemented a tool,
called GaSubtle that automates the process of creating subtle mutants. We evaluated the proposed
approach by using 10 subject programs. Our evaluation shows that the proposed crossover generates
more subtle mutants than the technique used in a previous genetic algorithm with less execution
time. Results vary on the selection strategies, suggesting a dependency relation with the tested code.

Keywords: search-based software testing; genetic algorithm; evolutionary algorithm; mutation
testing; higher-order mutation; subtle mutants

1. Introduction

Mutation testing is a fault-based testing approach which effectively helps in producing
quality test cases. The approach is systematic and highly automated. It works by creating
copies of the program under test, called mutants, with seeded faults. The quality of test
suites is evaluated by their ability to detect these faults, which is described in literature as
killing the mutants.

Since their introduction by DeMillo et al. [1] and Hamlet [2], mutation testing has
been thoroughly studied in academia. Empirical studies show that mutation testing is
more effective in finding faults compared with other white-box testing approaches [3].
Andrews et al. [4] reported that faults generated with mutation operators for procedural
programs are similar to real faults in evaluating test effectiveness. Therefore, mutation
testing is also used for estimating the number of faults present in a given program, and
comparing testing techniques for verification. Despite being originally a white-box ap-
proach, mutants can be generated from various artifacts (e.g., finite state machines, state
charts, Petri net) [4].

Despite all these potentials, mutation testing has limited success in the industry. This
is due to two main problems, the high cost of applying the approach and the problem of
equivalent mutants. The cost of mutation is associated with the process of mutation analysis.
The process requires generating and compiling a large set of mutants by performing a
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simple syntactic change to the original program. The change is performed by using
a transformation rule called a mutation Operator. A high number of mutants can be
generated even for a simple program. The number of mutants grows with the square of
program size (N2 mutants for a program of N lines) [5]. These mutants are then run against
the test cases. The quality of the test cases is determined by computing the mutation score,
also called mutation adequacy [1].

Mutants that are not killed by any test case in the test suite are said to be alive, which
suggests improving the test suite by adding more test cases to kill these mutants. However,
some of the alive mutants cannot be killed by any test case because they produce the same
output as the original program. Such mutants are called equivalent mutants and need
to be identified and eliminated if possible. Budd and Angluin [6] proved that detecting
equivalent mutants is an undecidable problem. As a result, the detection of equivalent
mutants need to be performed manually. Schuler and Zeller [7] found that about 45% of
the alive mutants are equivalent. Moreover, they found that manual detection of alive
equivalent mutants takes about 15 min per mutation, which shows that the problem is
serious and widespread.

Many approaches have been proposed to reduce the cost of mutation testing and
minimize the effect of equivalent mutants. Cost-reduction techniques include the use of
selective mutation [8], weak mutation [9], mutant sampling approach [10], using clustering
algorithms to choose a subset of mutants [11], and strong mutation [12]. Minimizing
equivalent mutants techniques include compiler optimization techniques [13], approaches
using mathematical constraints to automatically detect equivalent mutants [14], using
program slicing to assist in the detection of equivalent mutants [15], selective mutation [8],
examining the impact of equivalent mutants on coverage [16], examining changes in
coverage to distinguish equivalent mutants [7], and co-evolutionary search techniques [17].

Studies have found that the majority of mutants that contain one fault, which are
called first-order mutants (FOMs), represent trivial faults that can be easily killed [5], and
the majority of real life faults are complex and cannot be simulated by using FOMs [18].
Gopinath et al. [19] studied faults in 6000 programs written in various programming
languages and found that real faults consists of three to four tokens that can not be simulated
by using FOMs.

To simulate real complex faults, higher-order mutants (HOMs) were presented. A
HOM is a mutant that has more than one injected fault. The order of mutants represent
the number of injected faults. For most mutants, injecting more faults into a FOM tends to
make it easier to kill. However, exceptions to this rule are very interesting [5]. A number of
studies [5,20–26] show that higher-order mutation presents a solution to the problems of
mutation testing as the approach can produce a small set of hard-to-kill mutants with low
percentage of equivalent ones.

Some of the HOMs can be harder to kill than FOMs, because the combination of faults
may present more complex new faults, as one fault may mask another. However, some are
easy to kill, as the injection of multiple faults into the mutant may make it weaker. Thus,
HOMs that are harder to kill should be sought; such mutants are called subtle HOMs.

The space of candidate HOMs is huge, and the percentage of easy-to-kill mutants is
high; thus, the act of searching for all the subtle HOMs among the huge space of candidate
HOMs is costly [23]. Therefore, a search algorithm can be used in order to find a near
optimal solution.

In this work, we introduce a new genetic algorithm for generating subtle HOMs. The
algorithm uses five selection strategies, and a new technique for crossover. We developed a
tool to automate generating, compiling, and executing both first and higher-order mutants.
The tool, which we called GaSubtle (genetic algorithm for generating subtle higher-order
mutants), is easy to extend as it allows us to plug other algorithms without modifying
existing code. We evaluated our algorithm by using 10 subject programs in terms of
effectiveness, and cost.
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Genetic algorithms are widely used for solving optimization problems. In this study,
we aim at answering the following questions.

• Which of the five selection strategies is more effective in producing subtle HOMs?
Effectiveness of each selection strategy is computed by using the number of subtle
HOMs, the number of HOMs generated, and the distribution of the degree of the
subtle HOMs.

• Which of the five selection strategies is more costly?
Cost is computed by using the running time. We measured the running time of the
proposed algorithm with each of the five selection strategies.

• What is the effectiveness of the proposed crossover technique, compared with single
point crossover?
The number of generated subtle HOMs by the single point crossover and proposed
crossover (which we call GaSubtle crossover) are compared. The goal is to determine
if GaSubtle crossover is more effective in finding subtle HOMs.

The rest of this paper is organized as follows. Section 2 summarizes work related to
higher-order mutation testing. Section 3 describes the proposed approach for generating
subtle mutants. Section 4 describes the implementation of GaSubtle tool. Section 5 describes
how the empirical study was set up for evaluating the proposed approach. Section 6
presents the results of the empirical study. Section 7 describes the threats to validity. Finally,
conclusions and future work are discussed in Section 8.

2. Related Work

HOM gained the attention of many researchers in the last decade. This is mainly due to
the potential of HOM to solve the problems of mutation testing, thereby making mutation
testing applicable and adoptable by the industry. Here, we briefly discuss important
work on HOM testing. A recent mapping study on HOM was performed by Lima and
Vergilio [27], and a systematic literature review was performed by Ghiduk et al. [28]. A
systemic literature review on cost-reduction techniques for mutation testing, including
HOM, can be found in [29]. Moreover, Lima and Vergilio [30] presented a mapping study
on search-based HOM testing.

Jia et al. [5] introduced subsuming HOMs, which are more subtle and harder-to-kill
mutants than the FOMs from which they are constructed. Subsuming HOMs can replace
their constituent FOMs without loss of test effectiveness. They used search-based opti-
mization techniques to manage the large number of possible fault combinations involved
in searching for subtle HOMs. To search for HOMs, they used the Greedy Search, Hill
Climbing and Genetic algorithms. As the set of test cases that can kill the HOM would also
kill all the FOMs from which it is constructed, we can replace all the FOMs by the HOM
created. HOM testing can reduce test effort by avoiding dumb mutants in favour of subtle
ones. Fewer (but better) mutants means fewer (but better) test cases.

Polo et al. [31] presented a technique to reduce the cost of mutation testing and mini-
mizing the percentage of equivalent mutants by using second-order mutants (SOM). Their
approach combines generated first-order mutants, By doing this, the number of mutants
is reduced by half. Moreover, when equivalent FOM is combined with non-equivalent
FOM, the result is a non-equivalent HOM. This way, the number of equivalent mutants
can also be reduced. In order to generate SOMs they used the LastToFirst, DifferentOpera-
tors and RandomMix algorithms. The LastToFirst algorithm builds SOMs by combining
the first mutant with the last one, and then the second one with the previous to the last,
etc. DifferentOperators combines mutants proceeding from different mutation operators.
RandomMix randomly combines any two FOMs by using each mutant once. The number
of mutants can be reduced by half the original suite, which reduces the effort and cost of
mutation testing. Moreover, the number of equivalent mutants was reduced from 18.66%
to about 5%.

Langdon et al. [20] proposed an approach by using genetic algorithms to search for
higher-order mutants which are both hard to kill and syntactically similar to the original
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program under test. They used the Pareto optimal algorithm [32] and explored the relation-
ship between source code changes introduced by mutations and corresponding changes
to the program’s behaviour. The Pareto optimal approach in this case means preferring
mutants that pass more of the test cases and are closer to the original program. To generate
HOMs, they used Deb’s Sorting Genetic Algorithm II [33]. In each generation, crossover
is used to create a new population. The next generation is given by a Pareto optimal
selection. and so on. The results showed that the genetic programming is able to find
complex non-equivalent HOMs of real programs which are harder to kill than any FOM.

Omar et al. [21] proposed four approaches to construct HOMs for Java and AspectJ
programs. The approaches are based on an aspect-oriented fault model given in [24], which
classifies faults into faults that can occur in base classes, in aspects (pointcut, inter-type dec-
larations, aspect declaration, and advice), or in the interaction between the base classes and
aspects. They also developed a prototype tool that automates the process of constructing,
compiling, and executing FOMs and HOMs against test sets. The first approach is Single
Base Class or Aspect Approach. In this approach, each HOM is constructed by inserting
two or more mutation faults into a single base class or a single aspect. The second approach
is Dispersed Base Class Approach, wherein each HOM is constructed by inserting two
or more mutation faults in two or more different base classes. The third approach is the
Dispersed Aspect Approach, in which each HOM is constructed by inserting two or more
mutation faults in two or more different aspects. The fourth approach is Dispersed Base
Class and Aspect Approach, in which each HOM is constructed by inserting at least one
fault in a base class and at least one fault in an aspect. The results showed that all ap-
proaches can produce HOMs that can be used to increase test effectiveness and reduce test
effort. However, the Single Base Class or Aspect Approach produced a higher percentage
of harder-to-kill HOMs and more effectively reduced the total number of the mutants.

Omar et al. [23] also proposed three algorithms: Genetic Algorithm, Local Search,
and Random Search, for finding subtle HOMs for a given Java or AspectJ program. They
define harder-to-kill subtle HOMs as those that are not killed by an existing test set that
kills all the first-order mutants of a given program. This can be used to improve the fault
detection effectiveness of test sets. To generate higher-order mutants, they first generate a
population of FOMs by using their tool that uses the same approach and implementation
described in their previous work [21], which utilizes MuJava [34] to create base class FOMs
and AjMutator [35] to create point-cut FOMs. The generated FOMs are formulated into
an XML file, which is called FOM metadata. Then two or more of the generated FOMs are
combined to generate HOM in each generation by using one of the algorithms specified. All
three algorithms found subtle HOMs. But Random Search found HOMs of lower (second
or third) degrees, and Genetic Algorithm found subtle HOMs of higher degrees. However,
Local Search was the most successful overall in finding them.

Mateo et al. [22] presented an approach to reduce the cost of mutation testing by
reducing the number of FOMs when creating SOMs. They applied mutation testing on the
system level instead of the unit level, because on the unit level, the tester’s attention would
be focused on units, and testing the behavior of other system characteristics would be
beyond the scope of the process. To generate mutants, they used four algorithms to combine
faults in order to obtain SOMs. The algorithms used are FirstToLast, Between-Operatos,
Random and Each Choice. As the generation is done at system level, they introduced a
combination restriction to all the algorithms in order to disperse the faults throughout the
system. This restriction means that the combined errors must be inserted into different
classes off the system. They also implemented three greedy algorithms in order to reduce a
test suite based on the mutants killed by the set. Results showed that the mutation score of
the FOM was around 80%, while the SOM was around 95%.

Mateo et al. [22] did an empirical study on different strategies to compose second-
order mutants at system level as well as a cost–risk analysis of higher-order mutation
at system level. The focus was on cost-reduction approach by reducing the mutants set
through the combination of the first-order mutants into higher-order mutants. The aim of



Information 2022, 13, 327 5 of 24

the study was to measure the effect of second-order and first-order mutations on mutation
scores. They conducted an experiment by using three reduction algorithms (MAX, MIN,
and RDM), and the results have shown that, taking into account the high cost savings of
second-order mutation as well as the novel test design strategy supported by mutation at
system level, a second-order mutation is sufficiently effective and requires fewer resources.

Omar et al. [36] proposed new search techniques for finding subtle HOMs with new
heuristics and search strategies. To generate HOMs they added Guided Local Search,
which uses the same steps as Local Search, but utilizes program structural information
to help it focus on the FOM combinations that are more likely to produce subtle HOMs.
Restricted Random Search uses the same steps as Random Search, but as in their previous
study Random Search found mutants that were of the lower degree; thus, Restricted
Random Search uses a configurable parameter to allow it to control the maximum degree of
generated HOMs. Restricted Enumeration Search examines candidate HOMs in the search
space in a predefined sequence until a defined stopping condition is met. Guided Local
Search was the most successful in terms of finding the highest number of subtle HOMs for
most programs that were used. Restricted Enumeration Search was the most successful for
programs that have a high number of subtle second-order mutants.

Omar et al. [37] extended their prior work and improved the search techniques they
used for finding subtle HOMs. They developed six search-based techniques: Genetic
Algorithm, Local Search, Data-Interaction Guided Local Search, Test-Case Guided Local
Search, Restricted Random Search and Restricted Enumeration. They defined a different
fitness function that equaled the summation of Difficulty of killing HOM and Fault detection
difference between HOM and its constituent FOMs; the reason for including FOMs in the
fitness function was the fitness measure defined by Jia and Harman [5], as it favored HOMs
that are killed by fewer test cases than their constituent FOMs. The results showed that
Local Search and both the Guided Local Search techniques were more effective than the
other techniques at finding subtle HOMs.

Nguyen et al. [38] presented an approach to reduce the cost of mutation testing by
reducing the number of HOMs, to find harder-to-kill mutants, and to reduce the cost of
mutation testing by not wasting resources for creating easy-to-kill mutants. They also
performed an experimental evaluation of the effect of applying optimization algorithms in
the mutation testing, based on their proposed HOMs classification, objectives and fitness
functions by using a tool called Judy that they originally presented. The results showed
that their approach can generate harder-to-kill and more realistic HOMs and reduce the
total number of generated HOMs. As a result, the approach can be used to improve the
mutation testing effectiveness in general.

Abuljadayel and Wedyan [39] proposed an approach and a tool for finding subtle
HOMs by using a genetic algorithm. Their approach used an enhanced mode of crossover
called crossover by replacement, wherein faults from two parent mutants are replaced to
produce two new mutants that have some properties of their parents. Their approach was
able to generate subtle HOMs and a low percentage of equivalent mutants. The proposed
approach in this paper uses a different technique for crossover and uses five selection
strategies as well.

Nguyen [40] proposed a method to use higher-order mutants for creating mutants,
for example, by using two second-order mutants to construct a fourth-order mutant. The
results show a reduction in the number of generated mutants.

Jang et al. [41] proposed a higher-order mutation-based fault localization technique
called HOTFUZ. The approach uses HOMs to reduce the cost while minimizing the accuracy
degradation. The authors performed an experimental study by using 65 real-world faults.
The results show that HOTFUZ outperforms alternative strategies by localizing faults more
accurately by using the same number of mutants executed. Wang et al. [42] used another
approach for fault localization by using HOMs. The authors performed experiments on two
real-world benchmarks and found that second- and third-order mutants can help improve
the fault localization performance.
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3. Proposed Approach

Genetic algorithms (GAs), since their introduction by John Holland [43], have been
widely used for solving optimization problems. Genetic algorithms are inspired by the pro-
cess of natural evolution by using selection, crossover, and mutation to generate solutions
for optimization problems.

The GA starts with a randomly generated population of candidate solutions called in-
dividuals. Each individual holds properties called chromosomes that go through crossover
and mutation. The population then evolved toward better solutions. The initial population
size depends on the problem, but it usually contains hundreds of possible solutions.

During each generation, a subset of the population is selected to produce a new
generation. The selection process is based on the fitness of the individuals, where fitter
solutions are more likely to be selected. To measure the fitness of individuals, a fitness
function is defined.

In the following, we describe the details of the proposed genetic algorithm for solving
the problem of constructing subtle mutants (GaSubtle). We start by defining the fitness
function used by GaSublte, and then we proceed by describing each step of the algorithm.

3.1. Fitness Function

The fitness or objective function is used to evaluate a given set of candidate solutions
to determine their quality. For each generation, the fitness of all individuals should be
calculated to decide which ones will be dropped off or survive to the next generation.

In GaSubtle, we used the fitness function originally proposed by Omar et al. [23].
It uses information about the sets of test cases that kill the HOM and those that kill its
constituent FOMs. The notations used by the function are as follows:

• F = { f1, . . . , fn} is the set of all non-equivalent FOMs for the program under test.
• H is the space of all candidate HOMs. H = P(F), where P is a power set.
• U is the universe of all possible test cases.
• T = {tc1 , . . . , tcm} is the set of all test cases under consideration (the given test suite),

T ⊂ U and T kills all the FOMs in F.
• hn

i ∈ H is an HOM constructed from n different FOMs, such that hi = { fi1 , . . . , fin}.
The notation can be simplified to hi = hn

i without confusion.
• Let Thi

⊆ T denote the set of those test cases in T that kill hi. Thi
= φ if none of the test

cases in T kill hi.
• There are n test sets Ti1 , . . . , Tin , ∀j ∈ [1, . . . , n], Tij ⊆ T and Tij contains all test cases

that kill fij in hi.
• TUi is a test set such that TUi =

⋃n
j=1 Tij .

The fitness function combines two measures: (1) fault detection difference between the
HOM and its constituent FOMs as shown in Equation (1), and (2) the difficulty of killing
HOM as shown in Equation (2). The two measures are combined as shown in Equation (3).
The value of α, which lies between 0 and 1, determines the weight of the two terms.

FDD(hi) =
| (TUi ∪ Thi

) | − | (TUi ∩ Thi
) |

| TUi ∪ Thi
| (1)

DOK(hi) =
| (TUi ∪ Thi

) | − | Thi
|

| TUi ∪ Thi
| (2)

f itness(hi) = α× DOK(hi) + (1− α)× FDD(hi) (3)

The goal of the FDD term is to capture the level of interaction between the constituent
FOMs of a HOM in terms of the difference between the set of test cases that kill the HOM
and the union of all sets of test cases that kill each individual constituent FOM. Accordingly,
a HOM is subtle when the constituent FOMs interact to mask each other and produce new
faulty behavior that cannot be detected by the given test set. Therefore, when the difference
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is higher, the HOM is given a higher ftiness value. The value of the FDD measure lies
between 0 and 1, where 1 indicates the fittest HOM that is killed by a totally different set of
test cases than its constituent FOMs.

The DOK term measures difficulty in terms of the size of the test set needed to kill the
mutant. The value of DOK lies between 0 and 1, where 1 means the mutant is not killed by
any test case, and therefore, has the highest fitness value.

3.2. Initialization

The genetic algorithm requires a set of candidate solutions, which constitute the first or
initial generation.The candidate solutions in our case are HOMs (each solution represents
one HOM). In GaSubtle, we randomly generated candidate mutants distributed as follows:

• First-order mutants: 10% of the generation size.
• Second-order mutants: 80% of the generation size.
• Third-order mutants: 5% of the generation size.
• Fourth-order mutants: 5% of the generation size.

The decision of having a majority of second-order mutants in the first generation is
based on results of previous studies which showed that most subtle mutants are in the
lower orders [25,37]. Therefore, starting with a large percentage of second-order mutants
can speed up the genetic algorithm. FOMs are generated by using all mutation operators
implemented in muJava [34].

Instead of setting the generation size randomly, we computed the size of the generation
by using the formula given in Equation (4). Our motivation here is that the number of
mutants that can be generated for any program depends on program size (along with other
factors); therefore, using a generation size that depends on the program size can speed up
the GA in finding subtle mutants:

generationsize = β× LOC (4)

where β = any double value from 0.5 to 3.0 and LOC = lines of source code, ignoring
comments and empty lines.

3.3. Selection

At each generation, a set of individuals are selected out of the population in order
to perform mutation and crossover. The selection process is based on the fitness of the
individuals, where fitter solutions are more likely to be selected. Many selection strategies
are available; some of these strategies measure the fitness of each individual and select the
fittest solutions. Other strategies measure only a sample of the population as computing
the fitness function, but these can be time-consuming.

In GaSubtle, we used five selection strategies. These are:

1. Roulette Wheel Selection [44]: Selects n random candidates, where the probability
of each candidate getting selected is proportional to its fitness score. Candidates
may get selected more than once. In some cases, particularly with small population
sizes, the randomness of selection may result in excessively high occurrences of
particular candidates.

2. Stochastic Universal Sampling [45]: An alternative to Roulette Wheel Selection as a
fitness-proportionate selection strategy. It ensures that the frequency of selection for
each candidate is consistent with its expected frequency of selection.

3. Tournament Selection [46]: Selects a random pair of candidates and then selects the
fitter of the two candidates with probability p, where p is the configured selection
probability therefore the probability of the least fit candidate being selected is 1—p.

4. Truncation Selection [47]: Selects n candidates from a population by simply selecting
n candidates with the highest fitness value (the rest are discarded). A candidate is
never selected more than once.

5. Random Selection [48]: Selects candidates from a population at absolute randomness.
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3.4. Mutation

The purpose of the mutation process in genetic algorithms is to prevent premature
convergence. That is, most of the genes in the solutions share the same value before the
genetic algorithm converges to a satisfactory solution [49].

GaSubtle applies mutation to a HOM by adding or removing a FOM. The decision
of adding or removing an FOM is made randomly. For example, a third-order mutant
might become a fourth-order or a second-order mutant after mutation. The exceptions are
second-order mutants, for which we only add a FOM so that the mutation process will not
produce a FOM [44].

3.5. Crossover

GaSubtle performs crossover between two HOMs by executing the following steps:

• Find the fitness of each FOM in the participating HOMs
• Decide the order of the generated children. The order of the generated children will be

the average order of the parents. Both children will have the same order if the sum of
the parents’ order is even. If the sum is odd, one child will have a higher order (higher
by one). For example, if the parent HOMs are of orders two and four, then the two
children will have an order of three. If the parent HOMs are of orders two and five,
then one child will be of order three and the other will be of order four.

• Select the fittest FOMs from both parents and place them in the first child, and the
least fit FOMs in the second child. If the two parents differ in order (e.g., second-order
mutant crossover with third-order mutant) then the fittest child will be in the lower
order whereas the least fit child will have an order higher by one.

We illustrate the selection process abstractly in the example given in Figure 1. In the
figure, we represent each parent solution with a box and the number and fitness of each
FOM it has. Parent A is a third-order mutant built from FOMs with fitness values of 0.5,
0.9, and 0.6. When parent A is selected for crossover with parent B, which is a second-order
mutant, the two produced children will be of orders two and three. Child A is produced by
using the least fit three FOMs from both parents, whereas child B is produced by using the
fittest two FOMs from each parent.

Figure 1. Proposed crossover example.

The following example illustrates how the proposed crossover works by using java
source code. The original program, called PatternIndex (https://cs.gmu.edu/~offutt/
softwaretest/java/PatternIndex.java accessed on 1 May 2022). and shown in Figure 2,
searches for a given pattern in a given string and returns the beginning index of that
pattern. In Figure 3, we show the first parent selected for crossover. The first parent is
a third-order mutant, built from FOM 1.1 with fitness 0.3, FOM 1.2 with fitness 0.5, and
FOM 1.3, with fitness 0.1. The FOMs are shown in a box in the code with a comment that
displays the mutant name and fitness. Similarly, Figure 4 shows the other parent selected
for crossover, which is a second-order mutant built from FOM 2.1 with fitness value of 0.4,
and FOM 2.2 with fitness value of 0.2.

https://cs.gmu.edu/~offutt/softwaretest/java/PatternIndex.java
https://cs.gmu.edu/~offutt/softwaretest/java/PatternIndex.java
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public class PatternIndex {
public static int patternIndex(String subject, String pattern) {
final int NOTFOUND = -1;
int iSub = 0;
int rtnIndex = NOTFOUND;
boolean isPat = false;
int subjectLen = subject.length();
int patternLen = pattern.length();
while (isPat == false && iSub + patternLen - 1 < subjectLen) {
if (subject.charAt(iSub) == pattern.charAt(0)) {

rtnIndex = iSub;
isPat = true;
for (int iPat = 1; iPat < patternLen; iPat++) {
if (subject.charAt(iSub + iPat) != pattern.charAt(iPat)) {

rtnIndex = NOTFOUND;
isPat = false;
break;

}
}

}
iSub++;

}
return rtnIndex;
}

}

Figure 2. Original program.

public class PatternIndex {
public static int patternIndex(String subject, String pattern) {
final int NOTFOUND = -1;
int iSub = 0;
int rtnIndex = NOTFOUND;
boolean isPat = false;
int subjectLen = subject.length() - 1; //FOM 1.1, fitness = 0.3
int patternLen = pattern.length();
while (isPat == false && iSub + patternLen - 1 < subjectLen) {
// FOM 1.2, fitness = 0.5
if (subject.charAt(iSub) == pattern.charAt(1)) {

rtnIndex = iSub;
isPat = false; // FOM 1.3 - fitness = 0.1
for (int iPat = 1; iPat < patternLen; iPat++) {
if (subject.charAt(iSub + iPat) != pattern.charAt(iPat)) {

rtnIndex = NOTFOUND;
isPat = false; // FOM 1.3 - fitness = 0.1
break;

}
}

}
iSub++;

}
return rtnIndex;
}

}

Figure 3. Parent 1: Third-order mutant selected for crossover.
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}
}

Figure 4. Parent 2: Second-order mutant selected for crossover.

When crossover is performed, the least fit three FOMs from both parents are used
to create the first child, and the most fit two FOMs from both parents are used to create
the second child. Therefore, child one is built by using FOM 1.1. FOM 1.3, and FOM 2.2.
Child 1 is shown in Figure 5. Child 2 is built by using FOM 1.2, and FOM 2.1, as shown in
Figure 6.

3.6. Termination

The genetic algorithm keeps iterating selection, crossover, and mutation until a ter-
mination condition is met. There are various alternative stopping conditions for a genetic
algorithm. GaSubtle can be terminated when one of the following conditions is satisfied:

• Reaching a given number of overall generated HOMs.
• Reaching a given number of subtle HOMs are found.
• Reaching a given number of generations.
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When crossover is performed, the least fit three FOMs from both parents are used
to create the first child, and the most fit two FOMs from both parents are used to create
the second child. Therefore, child one is built by using FOM 1.1. FOM 1.3, and FOM 2.2.
Child 1 is shown in Figure 5. Child 2 is built by using FOM 1.2, and FOM 2.1, as shown in
Figure 6.
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int rtnIndex = NOTFOUND;
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int subjectLen = subject.length();
int patternLen = pattern.length();
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if (subject.charAt(iSub) == pattern.charAt(1)) {
rtnIndex = iSub;
isPat = true;
for (int iPat = 1; iPat < patternLen; iPat++) {
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rtnIndex = NOTFOUND;
isPat = false;
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The genetic algorithm keeps iterating selection, crossover, and mutation until a ter-
mination condition is met. There are various alternative stopping conditions for a genetic
algorithm. GaSubtle can be terminated when one of the following conditions is satisfied:

• Reaching a given number of overall generated HOMs.
• Reaching a given number of subtle HOMs are found.
• Reaching a given number of generations.
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The termination condition is passed as an option to the algorithm. The pseudocode
for GaSubtle is given in Algorithm 1.
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3.6. Termination

The genetic algorithm keeps iterating selection, crossover, and mutation until a ter-
mination condition is met. There are various alternative stopping conditions for a genetic
algorithm. GaSubtle can be terminated when one of the following conditions is satisfied:

• Reaching a given number of overall generated HOMs.
• Reaching a given number of subtle HOMs are found.
• Reaching a given number of generations.
• Timeout.

The termination condition is passed as an option to the algorithm. The pseudocode
for GaSubtle is given in Algorithm 1.

Algorithm 1 Genetic Algorithm
Require: FOMsList, mutationRate, maxDegree
Ensure: maxDegree > 1

1: liveMutants← φ
2: subtleMutants← φ
3: population← generateRandomPopulation()
4: execute(population)
5: evaluate(population)
6: while !stopConditionMet() do
7: newMutants← select(population)
8: crossover(newMutants)
9: mutate(newMutants)

10: execute(newMutants)
11: evaluate(population)
12: population.removeLeastFitMutants()
13: population.addMutants(newMutants)
14: liveMutants← population.getLiveMutants()
15: subtleMutants← population.getSubtleMutants()
16: end while
17: return subtleMutants
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4. Gasubtle Tool

In this section, we overview the design and implementation of the tool we imple-
mented for finding subtle mutants. The tool, which we named GaSubtle (https://github.
com/AbdullahAsendar/GaSubtle, accessed on 1 May 2022), after the approach, automates
the generation, compilation, and execution of FOMs and HOMs for Java programs.

GaSubtle is built by using a layered architecture pattern in order to support portability.
The layers of GaSubtle are shown in figure in Figure 7. In the following sections, we
describe each of the tool layers.

Figure 7. GaSubtle architecture.

4.1. User Interface

The user interface layer contains both graphical user interface (GUI) and a command
line interface. Both interfaces are separated from the underlying layers, which allow for the
modifying or adding of other user interfaces in the future without affecting existing code.

The command line interface is based on Apache Commons CLI (https://commons.
apache.org/proper/commons-io, accessed on 1 May 2022), which provides an API for
parsing command line options passed to the tool. GaSubtle can be run by executing java -jar
GaSubtle-x.x.x.jar where GaSubtle-x.x.x.jar is the tool jar file. The command line interface
takes options from Virtual Machine Arguments and properties file.

The GUI of the tool is built by using the model view controller (MVC) design pattern
based on JavaFX (https://www.oracle.com/technetwork/java/javafx/overview/index.
html, accessed on 1 May 2022) and Spring Framework (https://spring.io, accessed on 1
May 2022). The GUI provides an interface for passing options and displaying results.

4.2. Api: Application Programming Interface.

The API layer contains the genetic algorithm implementation and configurations used
for tuning the algorithm. In implementing the GA, we used a Message Listener that keeps
the upper layers updated with what the algorithm is doing. Therefore, the user interface
layer can log these messages or show them in a graphical component.

4.3. Core

The core layer contains all the components needed to generate, compile, store, and
execute mutants.

https://github.com/AbdullahAsendar/GaSubtle
https://github.com/AbdullahAsendar/GaSubtle
https://commons.apache.org/proper/commons-io
https://commons.apache.org/proper/commons-io
https://www.oracle.com/technetwork/java/javafx/overview/index.html
https://www.oracle.com/technetwork/java/javafx/overview/index.html
https://spring.io
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4.3.1. Mutants Generator

This component generates FOMs by using MuJava [34], which is a well-known re-
search tool for generating FOM and performing mutation analysis. GaSubtle uses MuJava
correspondent modules for generating FOM by using method-level mutation operators,
and class-level mutation operators.

4.3.2. Mutation Model

This component stores and manages the FOMs generated by the Mutants Generator
and generates HOMs. The HOMs are generated randomly by combining FOMs together.
FOMs must have the seeded faults in different statements, meaning that a FOM with a
seeded fault at statement 5 can not be combined with a FOM with a fault seeded at the same
statement. That is because these faults may override each other and will most likely lead to
an uncompilable mutant. Table 1 shows examples of compilable and uncompilable HOMs.

4.3.3. Utilities

This component provides the tool with a set of utilities that help in generating, compil-
ing, and executing the HOMs. These include

• Command Line Utilities: Contains operations that utilizes executing command
line commands.

• Compiler: There were many compiler implementations available. However, most of
these compilers were too heavy and need a lot of time to compile mutants. This was a
critical issue because the generated HOMs cannot all be compiled at once because they
all represent the same process. Thus, the compiler of GaSubtle uses Spoon API [50],
which is an open-source library that gives the ability of transforming and analyzing
Java source code.

• Test Executor: Test execution is performed using the Command Line Utilities.

Table 1. Compilable and uncompilable HOMs example.

Program Source Code

Original

int sum(int n1, int n2) {
int sum = n1 + n2;
return sum;
}

Mutant 1

int sum(int n1, int n2) {
int sum = ++n1 + n2;
return sum;
}

Mutant 2

int sum(int n1, int n2) {
int sum = n1++ + n2;
return sum;
}

Mutant 3

int sum(int n1, int n2) {
int sum = n1 + n2;
return ++sum;
}

Uncompilable HOM
(by combining mutants 1 & 2)

int sum(int n1, int n2) {
int sum = ++n1++ + n2;
return sum;
}

Compilable HOM
(by combining mutants 1 & 3)

int sum(int n1, int n2) {
int sum = ++n1 + n2;
return ++sum;
}
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5. Empirical Evaluation

Here, we present the details of the empirical study we performed in order to answer
our research questions. Section 5.1 describes the subject programs used in the study.
Section 5.2 states the research questions. Section 5.3 describes the tools used to conduct the
study and Section 5.4 describes the experiment setup and execution.

5.1. Subject Programs

We used 10 Java programs in the experiment. The selected programs contain various
constructs and solve different problems. Table 2 gives the details of the subject programs
including lines of code (LoC) in column 2, number of FOM generated for the program in
column 3, and the number of test cases to kill these mutants in column 4.

Table 2. Subject programs.

Subject Program LOC No. FOMs No. Test Cases

BinarySearch 33 175 62
Charge 29 132 75
Complex 55 239 87
Counter 38 62 67
Euclid 26 106 95
Gaussian 58 457 90
Harmonic 15 57 72
LongestCommonSubsequence 41 371 78
ArrayList 130 380 105
PatternIndex 49 175 90

In the following, we briefly describe these programs:

1. Binary search: The program implements the binary search algorithm that finds the
position of a target value within a sorted array. It takes as an input a string key to
search for and a sorted string array to search in. It then recursively calls a methods
that performs binary search and returns the index of the provided key.

2. Charge https://introcs.cs.princeton.edu/java/32class/Charge.java.html (accessed on
1 May 2022): This is a data type to define charged particles. It is based on Coulomb’s
law which says that the electric potential at a point (x, y) due to a given charged
particle is V = kq/r, where q is the charge value, r is the distance from the point (x, y)
to the charge, and k = 8.99× 109 is the electrostatic constant.

3. Complex https://introcs.cs.princeton.edu/java/32class/Complex.java.html (accessed
on 1 May 2022): This is a data type used to represent a complex number. A complex
number is a number of the form x + iy, where x and y are real numbers and i is
the square root of −1. The basic operations on complex numbers are to add and
multiply them.

4. Counter https://introcs.cs.princeton.edu/java/33design/Counter.java.html (accessed
on 1 May 2022): The program is used for counting. It encapsulates a single integer
and ensures that the only operation that can be performed on the integer is increment
by one.

5. Euclid https://introcs.cs.princeton.edu/java/23recursion/Euclid.java.html (accessed
on 1 May 2022): This is an implementation of the Euclidean algorithm, which is an
algorithm for finding the greatest common divisor of two numbers.

6. Gaussian https://introcs.cs.princeton.edu/java/21function/Gaussian.java.html (ac-
cessed on 1 May 2022): This implements some of the normal distribution functions,
which is characterized by the familiar bell-shaped curve.

https://introcs.cs.princeton.edu/java/32class/Charge.java.html
https://introcs.cs.princeton.edu/java/32class/Complex.java.html
https://introcs.cs.princeton.edu/java/33design/Counter.java.html
https://introcs.cs.princeton.edu/java/23recursion/Euclid.java.html
https://introcs.cs.princeton.edu/java/21function/Gaussian.java.html
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7. Harmonic https://introcs.cs.princeton.edu/java/21function/Harmonic.java.html (ac-
cessed on 1 May 2022): This calculates the harmonic of a given number, which is the
sum of the reciprocals of the first n natural numbers as shown in Equation (5).

Hn = 1 +
1
2
+

1
3
+ · · ·+ 1

n
=

n

∑
k=1

1
k

(5)

8. LongestCommonSubsequence https://introcs.cs.princeton.edu/java/23recursion/
LongestCommonSubsequence.java.html (accessed on 1 May 2022): This implements
the longest common sub-sequence problem, which is the problem of finding the
longest sub-sequence common to all sequences in a given set of sequences.

9. ArrayList https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html (ac-
cessed on 1 May 2022): The program is a simplified implementation of Java Collections
ArrayList.

10. PatternIndex https://cs.gmu.edu/~offutt/softwaretest/java/PatternIndex.java (ac-
cessed on 1 May 2022): The program searches for a given pattern in a given string and
returns the beginning index of that pattern.

5.2. Research Questions

The experiment aims at answering the following research questions:

RQ1 : Which selection strategy generates the highest number of subtle mutants?
RQ2 : Does the proposed crossover generate more subtle mutants, compared with single-

point crossover?
RQ3 : Which selection strategy generates the least percentage of equivalent mutants?
RQ4 : Does the proposed crossover generate a lesser percentage of equivalent mutants,

compared with single-point crossover?
RQ5 : What is the percentage of the generated HOMs from each mutation order?
RQ6 : Which selection strategy has the least execution cost?
RQ7 : Which crossover technique has the least execution cost?

5.3. Used Tools

The tools used to conduct this experiment are categorized into the following.

5.3.1. Mutation Testing Tools

A mutation testing tool automates the process of generating, compiling, and executing
mutants. There are many research mutation tools available. However, in this experiment
the following tools were used:

• MuJava [34]: This is a Java-based mutation testing tool developed through the collabo-
ration between the Korean Advanced Institute of Science and Technology in South
Korea and George Mason University in the USA. MuJava is widely used research for
performing mutation analysis. In this experiment, we used MuJava to generate FOMs.

• GaSubtle: A tool we developed to implement the proposed approach for constructing
subtle mutants.

5.3.2. Test Cases Generation Tools

A test cases generation tool automates the process of generating and organizing test
cases. There are many open-source and commercial test-generation tools available. In this
experiment the following tools are used:

• Randoop [51]: This is an open source unit test generator for Java. It automatically
creates unit tests for the provided classes, in JUnit format.
Randoop generates unit tests by using feedback-directed random test generation. It is
done by executing the sequences it creates, using the results of the execution to create
assertions that capture the behavior of the provided classes [51].

https://introcs.cs.princeton.edu/java/21function/Harmonic.java.html
https://introcs.cs.princeton.edu/java/23recursion/LongestCommonSubsequence.java.html
https://introcs.cs.princeton.edu/java/23recursion/LongestCommonSubsequence.java.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://cs.gmu.edu/~offutt/softwaretest/java/PatternIndex.java
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• EvoSuite [52]: This is an open-source unit test generator for Java. It uses search-based
approach integrating techniques such as hybrid search, dynamic symbolic execution,
and testability transformation in order to generate JUnit test cases for a provided
Java class.

• Parasoft Jtest https://www.parasoft.com/products/jtest (accessed on 1 May 2022): A
commercial tool by Parasoft which provides a set of tools such as static analysis and
security, unit testing for active development, unit testing for legacy code, coverage
analysis and traceability, and reporting.

5.3.3. Test Coverage Tools

Test coverage tools automates the evaluation of test suites according to their ability to
satisfy test coverage criteria. In this experiment, we used EclEmma https://www.eclemma.
org (accessed on 1 May 2022), which is an open-source Eclipse IDE plug-in that computes
coverage for Java programs.

5.4. Experiment Setup

This section presents the setup of the experiment conducted in this paper. First, the
mutants generation approach is presented. Then the test case generation approach is also
presented. Finally, the configurations and the execution approach is described.

5.4.1. Mutants Generation

The first step was to generate FOMs for the subject programs. Table 2 shows the
number of generated FOMs for the subject programs. The FOMs are used to evaluate
generated test cases and are also the inputs for GaSubtle. The FOMs were generated by
using MuJava [34].

5.4.2. Finding Test Suites

We used the test generation tools (Randoop [51], EvoSuite [52] and Jtest) to generate
a large pool of test cases for each subject program. The pool satisfies the following two
criteria: (1) it achieves full branch coverage for the subject program, and (2) it kills all FOMs
for the subject program (excluding equivalent mutants). If all the generated test cases did
not satisfy the two criteria, then test cases are added manually.

A test suite for a subject program is generated from the pool by repeatedly adding
test cases to a suite until the desired full coverage is obtained and all FOM are killed. In
each iteration, a new test case is picked up from the pool and added to the test suite. If
the test case increases the suite branch coverage, or kills a live mutant, the test case is kept.
Otherwise, the test case is discarded.

Table 2 shows the size of the test suite that achieve full coverage and kills all mutants
for each of the subject programs.

5.4.3. Configuration

The experiment was conducted on a PC running Ubuntu 18.04 with a fourth-generation
Intel Core i7 processor and 16 GB of RAM. The genetic algorithm was set up as follows:

• The value of α of the fitness function was set at 0.75.
• Termination condition was set to reach 300 generations.
• Maximum mutation order not to be exceeded was set to 5.
• Mutation percentage was set to 5%.

For each subject program, the experiment was executed 10 times with each
selection strategy.

6. Results and Analysis

In this section, we provide answers for the research questions and present our findings.
In the following sections, the results given are computed by taking the average of 10
experiments performed on each of the subject programs.

https://www.parasoft.com/products/jtest
https://www.eclemma.org
https://www.eclemma.org
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6.1. Rq1: Which Selection Strategy Generates the Highest Number of Subtle Mutants?

To answer this question, we generated HOMs by using single-point crossover, and the
proposed crossover with each selection strategy.

6.1.1. Single-Point Crossover

The results of the experiment for single-point crossover are shown in Table 3. Columns
2 through 6 show the average number of generated subtle mutants using each selection
strategy for each subject program. In each row, the selection strategy with the highest
subtle mutants is given in bold font. Truncation and stochastic universal sampling selection
strategies each generated the highest number of subtle mutants in three subject programs.
However, in total, truncation selection strategy generated more subtle mutants. Roulette
Wheel Selection generated the minimum number of subtle mutants in total and generated
the highest number of subtle mutants in only one program.

Table 3. Number of subtle mutants generated using single point crossover.

Subject Program Selection Strategy
Random Roulette Wheel SUS Tournament Truncation

BinarySearch 1676 1141 1935 1264 877
Charge 1008 160 383 1534 245
Complex 27 79 4 41 14
Counter 847 685 1175 1137 732
Euclid 205 152 256 238 268
Gaussian 70 39 61 19 27
Harmonic 201 236 380 300 2029
LongestCommonSubsequence 65 67 90 25 15
ArrayList 2268 1632 2587 1561 3412
PatternIndex 829 728 564 1018 521
Total 7196 4919 7435 7137 8140

6.1.2. Proposed Crossover

The results of the experiment for the proposed crossover are shown in Table 4. The
table is organized in the same way as Table 3. Truncation selection generated the highest
number of subtle mutants in four subject programs and in total. However, truncation
selection did not generate any subtle mutants for two programs. This result suggests a
dependency relation between the source code and the used selection strategy.

Table 4. Number of subtle mutants generated using proposed crossover.

Subject Program Selection Strategy
Random Roulette Wheel SUS Tournament Truncation

BinarySearch 4416 2498 3184 2451 7626
Charge 891 1427 293 436 464
Complex 276 235 59 56 0
Counter 2644 2421 2200 5764 3534
Euclid 529 386 359 326 559
Gaussian 110 120 60 115 316
Harmonic 677 525 400 960 252
LongestCommonSubsequence 29 107 126 40 0
ArrayList 5019 2862 2649 3511 6744
PatternIndex 441 1291 1068 777 994
Total 15,032 11,872 10,398 14,436 20,489

6.2. Rq2: Does the Proposed Crossover Generate More Subtle Mutants Compared with Single-Point
Crossover?

Tables 3 and 4 show the total number of generated subtle mutants for both single-point
crossover and proposed crossover.
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For each single one of the selection strategies, the proposed crossover generated
significantly more subtle mutants. Comparing the subject programs, the proposed crossover
also generated more subtle mutants except for the Harmonic program. The proposed
crossover generally generates more subtle mutants compared with single-point crossover.

6.3. Rq3: Which Selection Strategy Generates the Smallest Percentage of Equivalent Mutants?

To calculate the average equivalent mutants generated by each selection strategy for
both proposed crossover and single-point crossover, a subset of generated subtle HOMs
was examined. The examination was done by inspection of a random 100 mutants of
the generated subtle HOMs for each selection strategy. However, some of the selection
strategies generated less than 100 subtle HOMs; in such cases, all of the generated subtle
HOMs were examined.

With no alive FOMs entered into the genetic algorithm, and with a test set that scored a
100% coverage, the number of equivalent mutants can be minimized. However, combining
two non-equivalent FOMs can still result in an equivalent HOM.

6.3.1. Single-Point Crossover

Table 5 shows the percentage of generated equivalent mutants in each selection strategy
for each subject program by using single-point crossover. Although all five selection
strategies generated equivalent mutants, there are significant differences in the percentage
of equivalent mutants generated. For the single-point crossover, truncation selection
recorded the minimum percentage of 1.3%. Secondly, the tournament selection has a
slightly higher percentage of 1.4%. The selection strategy to generate the maximum number
of equivalent mutants was a random selection with a percentage of 6.2%.

For the subject programs, PatternIndex recorded the minimum percentage of equiva-
lent mutants with the percentage of 3.8%, and Euclid recorded the maximum percentage of
equivalent mutants across all selection strategies with the percentage of 16.2%.

Table 5. Percentage of equivalent HOMs generated by using single-point crossover.

Subject Program Selection Strategy
Random Roulette Wheel SUS Tournament Truncation

BinarySearch 8% 5% 9% 3% 6%
Charge 4% 2.7% 8% 3% 5.6%
Complex 9.7% 7.4% 0% 7.3% 3%
Counter 10% 9% 7% 8% 8%
Euclid 14% 13.2% 20.5% 15.7% 16.1%
Gaussian 13.6% 5.1% 3.2% 5.2% 3.7%
Harmonic 5% 6% 5% 7% 4%
LongestCommonSubsequence 10.7% 5.4% 3.3% 9% 6.7%
ArrayList 5% 4% 3% 6% 5%
PatternIndex 2% 4% 5% 5% 3%
Total 6.2% 2.2% 2.4 % 1.4% 1.3%

6.3.2. Proposed Crossover

Table 6 shows the percentage of generated equivalent mutants in each selection strategy
for each subject program using the proposed crossover. Unlike the single-point crossover,
there were slight differences in the the percentage of equivalent mutants generated for each
selection strategy. The minimum percentage was 1.4% and the maximum was 4.8%. For
the proposed crossover, tournament selection recorded the minimum percentage of 1.4%.
Secondly, the truncation selection had a slightly higher percentage of 1.7%. The selection
strategy to generate the maximum number of equivalent mutants was, again, a random
selection with a percentage of 4.8%.
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For the subject programs, Gaussian recorded the minimum percentage of equivalent
mutants with the percentage of 1.7%, and Euclid again recorded the maximum percentage
of equivalent mutants across all selection strategies with the percentage of 7.3%.

For both single-point crossover and the proposed crossover, truncation and tourna-
ment selection generated the minimum percentage of equivalents mutants, and random
selection generated the maximum percentage. The Gaussian subject program recorded the
minimum percentage of equivalents mutants and Euclid recorded the maximum.

Table 6. Percentage of equivalent HOMs generated by using proposed crossover.

Subject Program Selection Strategy
Random Roulette Wheel SUS Tournament Truncation

BinarySearch 4% 3% 10% 4% 8%
Charge 4% 5% 3% 3% 4%
Complex 6% 5% 8.5% 5.1% 0%
Counter 9% 7% 8% 6% 7%
Euclid 12% 7% 5% 8% 4%
Gaussian 2% 1% 3% 1% 2%
Harmonic 3% 5% 6% 4% 2%
LongestCommonSubsequence 3.4% 3% 5% 2.5% 0%
ArrayList 3% 4% 6% 5% 4%
PatternIndex 3% 2% 5% 3% 4%
Total 4.8% 1.9% 2.1% 1.4% 1.7%

6.4. Rq4: Does the Proposed Crossover Generate a Lesser Percentage of Equivalent Mutants
Compared with Single-Point Crossover?

Tables 5 and 6 shows the percentage of both single-point crossover and proposed
crossover-generated equivalent mutants.

By using random, Roulette Wheel, stochastic universal sampling, and tournament
selections, the proposed crossover generated less equivalent mutants compared with
single-point crossover. However, by using truncation selection, the single-point crossover
generated slightly less equivalent mutants. Comparing the subject programs, the proposed
crossover generated less equivalent mutants the the single-point crossover except for
Harmonic and Charge programs.

The proposed crossover generally generates less equivalent mutants compared with
single-point crossover. However, under certain circumstances the single-point crossover
can generate less equivalent mutants.

6.5. Rq5: What Is the Percentage of the Generated HOMs from Each Mutation Order?

GaSubtle records the state of each generation containing the generation size and the
order of the mutants in each generation.

6.5.1. Single-Point Crossover

Table 7 shows the percentage of each mutation order for the generated mutants by
using single-point crossover. We show the percentage over all subject programs for space
limitations. Most of the mutants were of the second order for all selection strategies with
the percentage of 79.5%. Then comes the third order with the percentage of 15.5%, the
fourth order with 4.1%, and the fifth order with 0.8%. The gap between the percentage of
second- and third-order mutants was 64%.
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Table 7. Percentage of the generated HOMs from each mutation order by using single-point crossover.

Mutation Selection Strategy
Order Random Roulette Wheel SUS Tournament Truncation

Second 60.2 88.2 90.1 88.2 74.2
Third 28.5 7.7 7.7 8.5 22
Fourth 8.9 3.4 1.9 1.8 2.1
Fifth 2.5 0.7 0.4 0.2 0.4

6.5.2. Proposed Crossover

Table 8 shows the percentage of each mutation order for the generated mutants by
using the proposed crossover. The second order had the highest percentage of 54.8%,
then the third order 26.8%, fourth order 14.5% and the fifth order 3.9%. The gap between
the percentage of second- and third-order mutants was 28%, which is much less than the
single-point crossover.

For both single-point crossover and the proposed crossover, most of the generated
mutants were in the second order. However, the proposed approach was able to find subtle
mutants at higher mutation orders. Searching for subtle mutants at higher order is hard
due to the size of the search space. The proposed crossover was able to find about 25%
more subtle mutants at higher orders, compared with single crossover.

Table 8. Percentage of the generated HOMs from each mutation order by using proposed crossover.

Mutation Selection Strategy
Order Random Roulette Wheel SUS Tournament Truncation

Second 21.5 59.1 57.1 58.7 72.9
Third 37.1 25.2 28 25.9 20.2
Fourth 30.6 12.9 12.8 12.7 5.8
Fifth 10.8 2.8 2.1 2.6 1.2

6.6. Rq6: Which Selection Strategy Has the Least Execution Cost?

GaSubtle has a timer that starts when the algorithm starts execution and stops when
the algorithm terminates. Then the execution time is exported to the generated report. In
order to calculate the execution cost, we recorded the total run-time for each one of the
selection strategies.

6.6.1. Single-Point Crossover

Table 9 shows the average run-time in minutes for each one of the subject programs
using single-point crossover. Truncation selection recorded the minimum run-time average
of 16 min. Both Roulette Wheel Selection and stochastic universal sampling recorded the
maximum run-time average of 22.2 min.

6.6.2. Proposed Crossover

Tables 10 shows the average run-time in minutes for each one of the subject programs
using the proposed crossover. Truncation selection again recorded the minimum run-
time average of 13.3 min. Again, both Roulette Wheel Selection and stochastic universal
sampling recorded the maximum run-time average of 17.3 and 17.2 min, respectively.

For both single-point crossover and the proposed crossover, truncation selection had
the least execution cost.
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Table 9. Average run time of single-point crossover in minutes.

Subject Program Selection Strategy
Random Roulette Wheel SUS Tournament Truncation

BinarySearch 17.2 16.1 17.3 17.2 11.8
Charge 14.9 14.8 15.2 15.1 14.1
Complex 25.2 26.7 28.1 13.1 11.6
Counter 16.6 17.3 17.2 16.8 12.2
Euclid 15.1 13.4 14.1 14.6 13.4
Gaussian 29.6 31.5 33.2 24.8 25.1
Harmonic 16.5 16.2 16.4 16.8 15.4
LongestCommonSubsequence 27.1 29.4 28.9 23.2 18.6
ArrayList 23.5 31.2 27.6 24.1 19.4
PatternIndex 21.3 25.8 25.2 20.9 18.5
Total 20.7 22.24 22.32 18.66 16.01

Table 10. Average run-time of proposed crossover in minutes.

Subject Program Selection Strategy
Random Roulette Wheel SUS Tournament Truncation

BinarySearch 14.3 9.1 13.9 14.2 13.6
Charge 12.8 13.4 12.7 13.1 11.3
Complex 17.9 28.6 29.3 17.2 15.3
Counter 8.3 8.2 7.9 8.1 7.8
Euclid 13.1 13.2 13.4 11.9 11.3
Gaussian 24.6 29.2 28.3 21.1 17.9
Harmonic 12.5 13.2 12.9 12.1 15.4
LongestCommonSubsequence 21.1 23.3 20.7 17.1 14.1
ArrayList 19.6 20.1 18.2 18.4 13.1
PatternIndex 15.4 16.3 15.3 16.2 13.7
Total 15.96 17.46 17.26 14.94 13.35

6.7. Rq7: Which Crossover Technique Has The Least Execution Cost?

Tables 9 and 10 show that for all selection strategies the proposed crossover had less
execution cost.

7. Threats to Validity

In this paper, we identified three types of threats to the validity of our experimental
study: internal validity, external validity, and construct validity. Internal validity refers
to the cause-and-effect relationships, the extent to which we can state that the changes in
dependent variables are caused by changes in independent variables [53]. Two internal
threats to validity are as follows:

1. The setup and configuration of the parameters of the genetic algorithm. Identifying
the optimal configuration that may lead to the best results can be hard. Moreover, the
performance of the tool may vary from one machine to another as the idleness of the
machine cannot be guaranteed. However, in this paper we performed an experimental
evaluation to identify the best configuration for the algorithm. We also ran the tool on
an isolated environment to insure that the machine is not running anything besides
the tool. Moreover, to minimize this effect, we performed each run 10 times.

2. The number and quality of the test cases. We used three different tools to generate the
test cases. Using other tools may lead to different results. However, the test cases used
had a 100% branch coverage and were able to kill all the generated FOMs. Moreover,
we used handcrafted test cases to ensure the quality of the test cases when the test
cases generated by the tools failed to cover all branches or kill all FOMs.

External validity is concerned with generalizing the results outside the scope of the
experiment [53]. Two external threats to validity are as follows:
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1. The subject programs. We performed the empirical evaluation on 10 subject programs,
and there is no evidence that the results can be extended or generalized to other Java
programs or programs implemented in other programming languages. However,
as mentioned earlier, the selected subject programs differ in their size, complexity,
operations, and object-oriented programming concepts used.

2. The subject programs are small (less than 200 lines of code) and constituent from only
one class. Using larger programs or more than class may produce different results. In
the future, additional programs with larger sizes will be studied.

Construct validity refers to the meaningfulness of measurements [53]. One threat to
construct validity comes from the tools used in the experiment, especially muJava and
GaSubtle, which generate the mutants. To minimize this threat, we inspected randomly se-
lected outputs and manually verified their correctness. Moreover, the manual identification
of equivalent mutants is considered as another threat to construct validity.

8. Conclusions

In this paper, a new approach for generating subtle higher-order mutants is developed.
The approach uses a genetic algorithm along with five selection strategies: Roulette Wheel,
Stochastic Universal Sampling, Tournament, Truncation and Random Selection. We also sug-
gested a new mechanism for crossover. The proposed crossover is performed by selecting
the most fit FOMs from both parents and placing them in the first child, and the least fit
FOMs in the second child. If the two parents differ in order, then the most fit children are
placed in the lower-order mutant. We also developed a tool called GaSubtle based on Java
and JavaFX that implements the proposed approach.

In order to evaluate the effectiveness of the proposed approach, an experimental study
is performed by using 10 subject programs. A test suite is generated by using various
tools for each program. The test suite satisfies branch coverage and kills all of the FOMs of
the subject program (excluding equivalent mutants). The results of the experiment can be
summarized as follows:

Equivalent mutants: Both single-point and proposed crossover generated a reason-
able number of equivalent mutants (less than 7%). However, the proposed crossover
generally generates less equivalent mutants compared with single-point crossover. For se-
lection strategies, truncation and tournament selection generated the minimum percentage
of equivalents mutants, and random selection generated the maximum percentage.

Subtle mutants: The proposed crossover generated significantly more subtle mu-
tants compared with single-point crossover. For selection strategies, truncation selection
generated the maximum number of subtle mutants.

Mutation order: For both single-point crossover and the proposed crossover, the
majority of the generated mutants were in the second order. It may be due to creating
an initial population with an 80% of SOMs, or because adding more mutants to an HOM
makes it easier to be killed. This result however, confirms with the findings of earlier
studies, which show that most of the subtle mutants are in the lower order (e.g., [37]).

For future work, we plan to perform more experimental studies in order to understand
the relation between the program under test and the selection strategy. We also plan
to enhance the GaSubtle tool by allowing the tool to work with programs developed in
programming languages other than Java.
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