
Citation: Alkhudaydi, O.A.; Krichen,

M.; Alghamdi, A.D. A Deep Learning

Methodology for Predicting

Cybersecurity Attacks on the Internet

of Things. Information 2023, 14, 550.

https://doi.org/10.3390/

info14100550

Academic Editor: Sherali Zeadally

Received: 9 September 2023

Revised: 25 September 2023

Accepted: 2 October 2023

Published: 7 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

A Deep Learning Methodology for Predicting Cybersecurity
Attacks on the Internet of Things
Omar Azib Alkhudaydi 1, Moez Krichen 1,2,* and Ans D. Alghamdi 1

1 Faculty of Computer Science and Information Technology, Al-Baha University, Al-Baha 65779, Saudi Arabia;
443040465@stu.bu.edu.sa (O.A.A.); ans@bu.edu.sa (A.D.A.)

2 ReDCAD Laboratory, National School of Engineers of Sfax, University of Sfax, Sfax 3099, Tunisia
* Correspondence: dr.moez.krichen@redcad.org

Abstract: With the increasing severity and frequency of cyberattacks, the rapid expansion of smart
objects intensifies cybersecurity threats. The vast communication traffic data between Internet of
Things (IoT) devices presents a considerable challenge in defending these devices from potential
security breaches, further exacerbated by the presence of unbalanced network traffic data. AI
technologies, especially machine and deep learning, have shown promise in detecting and addressing
these security threats targeting IoT networks. In this study, we initially leverage machine and deep
learning algorithms for the precise extraction of essential features from a realistic-network-traffic
BoT-IoT dataset. Subsequently, we assess the efficacy of ten distinct machine learning models in
detecting malware. Our analysis includes two single classifiers (KNN and SVM), eight ensemble
classifiers (e.g., Random Forest, Extra Trees, AdaBoost, LGBM), and four deep learning architectures
(LSTM, GRU, RNN). We also evaluate the performance enhancement of these models when integrated
with the SMOTE (Synthetic Minority Over-sampling Technique) algorithm to counteract imbalanced
data. Notably, the CatBoost and XGBoost classifiers achieved remarkable accuracy rates of 98.19% and
98.50%, respectively. Our findings offer insights into the potential of the ML and DL techniques, in
conjunction with balancing algorithms such as SMOTE, to effectively identify IoT network intrusions.

Keywords: cybersecurity; DoS; DDoS; IoT; machine learning; deep learning; Bot-IoT dataset

1. Introduction

The Internet of Things (IoT) is the linking of materially moving items implanted with
intelligent machine, sensing, and other equipment and connected to the internet [1]. The
IoT interconnects systems, apps, data storage, and services, which may serve as new entry
points for cyberattacks as the IoT continually provides services inside an enterprise [2].
Furthermore, to maintain the security of IoT systems, continual surveillance and evaluation
are required. Predicting kinds of attacks is essential for the defence analysis and tracking of
IoT devices [3,4]. This allows for the adaptation of unanticipated circumstances, the taking
of safety measures, the protection of data, the provision of stability, and the minimization
of various risks. Current attack prediction technologies are unable to keep up with the
massive number and variety of attacks; therefore, this remains a challenge for continuous
study. Due to their good performance in a range of prediction-based fields, researchers
have recently focused on machine learning (ML) methodologies, especially deep learning
(DL) techniques [5,6].

In the context of the IoT [7,8], the use of artificial intelligence (AI) algorithms such as
ML and DL algorithms may offer an efficient method for making use of data to forecast
and identify potential cybersecurity threats [9]. The deep learning approach, as a strategy
for identifying cyberattacks, is growing in popularity more rapidly than previous methods,
which enables more efficient mitigation [10]. Deep learning is a subcategory of AI that
concentrates on the processing of computing machine applications that can recognize

Information 2023, 14, 550. https://doi.org/10.3390/info14100550 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14100550
https://doi.org/10.3390/info14100550
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-7583-6086
https://doi.org/10.3390/info14100550
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14100550?type=check_update&version=1

Information 2023, 14, 550 2 of 19

complex, nonlinear patterns and then utilize those patterns to create predictions [11,12]. In
the world of cybersecurity, deep learning models are becoming an increasingly popular
tool, and they are quickly becoming an essential component of effective defense strategies
against harmful assaults [13,14]. This technology can detect, react to, and prevent a broad
variety of assaults that are launched against linked items, such as the IoT [15]. Since
IoT devices have become more networked, the likelihood of hacks has increased. Deep
learning may be applied to aid in the detection of harmful assaults on connected devices,
the mitigation of these risks, and the proactive prevention of future attacks [16].

The main contributions of this work are as follows:

• We propose an AI model-based DL and different machine and ensemble learning
classifiers to detect cyber-attacks on the IoT with SMOTE (Synthetic Minority Over-
sampling Technique) implementation to yield significant results [17];

• We improve the accuracy and confidence of cybersecurity attack detection in IoT
environments compared to current works;

• We produce more accurate and reliable predictions, leading to improved IoT security
by preventing unauthorized access, data breaches, and service interruptions;

• We enhance the generalization capabilities of the developed models by addressing the
class imbalance issues commonly observed in IoT cybersecurity datasets through the
application of SMOTE [18];

• We bring an understanding of the optimal application of DL and ensemble learning
models as cybersecurity attack prediction classifiers.

This work will contribute to knowledge in the fields of cybersecurity and IoT security
by investigating the performance and efficacy of various ensemble learning techniques
in conjunction with deep learning models. These insights can assist practitioners and
researchers in developing more robust and efficient security solutions for Internet of Things
(IoT) systems, thereby increasing their resilience against emergent cyberthreats. This study
has the potential to advance current efforts in cybersecurity attack prediction with respect to
the Internet of Things. In addition, this research has the potential to considerably enhance
the safeguarding posture of the IoT, protect critical data and services from malicious attacks,
and facilitate the development of more resilient and secure IoT infrastructures.

2. Literature Review

The authors of [19] proposed an ML method for malware detection in IoT networks
that does not need feature engineering. Their suggested methodology significantly speeds
up the IoT edge with minimal power consumption. FEL-ML provided resource-sensitive
internet traffic protection with the extra advantage of avoiding unnecessary the substantial
efforts of subject material experts in feature engineering.

Because of the unreliability inherent in IoT systems, such as in the dynamic com-
munication that might occur between different IoT devices, these systems have several
security flaws. Following from this, the authors of [20] suggested merging three DL al-
gorithms, namely, the RNN (Recurrent Neural Network), LSTM-RNN (Long Short-Term
Memory-RNN), and CNN (Convolutional Neural Network), to construct a bidirectional
CNN-BiLSTM (Bidirectional Long Short-Term Memory) DDoS (Distributed Denial of Ser-
vice) detection model [21]. The RNN, CNN, LSTM, and CNN-BiLSTM models are put
through their paces to establish which one is the most effective model in defending against
DDoS assaults and being able to effectively identify and differentiate DDoS traffic from
normal traffic. The CICIDS2017 is used to give detection that is more realistic. A rate of
accuracy of 99.00% was acquired from the performance of the models, except for the CNN
model, which obtained a rate of 98.82% accuracy. The accuracy of the CNN-BiLSTM was
measured at 99.76%, while its precision was measured at 98.90%.

Ref. [22] proposes a heuristic distributed scheme (HIDE) to address the challenges of
validating the mobility pattern of autonomous vehicles in the Internet of Vehicles (IoV).
HIDE penalizes or rewards vehicles based on the conformity of their claimed mobility
patterns, using a time-homogeneous semi-Markov process (THSMP) to predict pattern

Information 2023, 14, 550 3 of 19

accuracy. Results demonstrate that HIDE effectively identifies malicious vehicles and
assigns a lower weight of impact to them compared to normal vehicles, improving the
performance of traffic management systems.

In [23], a DL model was implemented to forecast the most prevalent cybersecurity
assaults. The assessment metrics of the suggested SET-based model were evaluated, and
the suggested model attained an efficacy of 0.99% with a test duration of time 2.29 ms. In
this study [24], the authors presented an exploratory study of federated DL using several
DL techniques. They examined the efficacy of three IoT traffic databases in ensuring the
privacy of IoT systems data and enhancing the accuracy of DL-based attack detection.

In [25], the authors suggested FDL for the detection of zero-day attacks to prevent
data privacy leaks in IoT edge devices. Utilizing an ideal DNN architecture, this approach
classifies network traffic. A parametric server remotely coordinates the separate training of
DNN models in many IoT edge devices, while the Federated Averaging (FedAvg) method
aggregates local model updates. After a series of communication cycles between the
parametric server and the IoT edge devices, a global DNN model was generated.

In [26], the authors suggested employing the encoding phase of the LSTM Autoen-
coder to decrease the feature dimensionality of large-scale IoT network traffic data (LAE).
According to the findings, 91.89% less memory was required to store large-scale network
traffic data due to LAE. To reduce the potential threats posed by IoT devices, it is now very
necessary to ensure that DDoS is quickly identified.

A Local–Global best Bat Algorithm for Neural Networks (LGBA-NN) was presented
in [27] to choose both selected features and hyperparameters for the purpose of the effective
detection of botnet assaults, which were inferred from nine commercial IoT systems. The
updated bat velocity in the swarm was calculated using the local–global best-based inertia
weight, which was accepted by the Bat Algorithm (BA) that was developed. To address
the issue of BA swarm diversity, they suggested employing a Gaussian distribution for
population initialization. In addition, the local searching strategy was executed by the
Gaussian density function and the local–global best function to improve exploration in
each iteration. This action was taken to achieve the greatest outcomes. The neural network
hyperparameters and weights were then optimized using an enhanced Bayesian analysis to
classify 10 distinct botnet attacks and one benign target class. An N-BaIoT dataset consisting
of substantial actual traffic data was used to evaluate the proposed LGBA-NN method. This
dataset included both benign and malicious target classes. The effectiveness of LGBA-NN
was evaluated in comparison to that of several recently developed advanced methods,
including weight optimization by means of particle swarm optimization (PSO-NN) and
BA-NN. The findings of the experiments showed that LGBA-NN is better than BA-NN and
PSO-NN in the identification of multi-class botnet attacks. LGBA-NN achieved an accuracy
of 90%.

Ref. [28] presents a unique hybrid deep random NN (HDRaNN) for the detection of
cyberattacks in the Industrial Internet of Things (IIoT). The Deep Dropout Regularized
Random Neural Network (HDRaNN) is a hybrid model that combines a Deep Random
Neural Network with a multilayer perceptron. The suggested approach was assessed using
two datasets that are linked to IIoT security. Different performance measures were used
to conduct the performance analysis for the suggested plan. The HDRaNN was able to
classify a total of sixteen distinct categories of cyberattacks with an accuracy of 0.98 to 0.99.

In [29], the authors proposed the RPL loophole attack, which targets the commonly
used IPv6 routing protocol in IoT-based systems. A security technique based on ML was
described. The evaluation of the gathered data revealed that the machine learning-based
algorithms identified the loophole attack correctly.

To overcome the difficulties associated with protecting IoT networks, which are am-
plified by the volume and variety of deployments and the rapidly changing environment
of cyber threats, the authors of [30] developed a technique that makes use of powerful
deep learning to identify cyber assaults that are directed against IoT equipment. Their
method involves incorporating LSTM algorithm into an existing solution; then, a decision

Information 2023, 14, 550 4 of 19

tree is used to bring together these individual modules, so that an aggregated result can be
produced. They achieved an accuracy rate of over 99% when it comes to the identification
of cyber threats against IoT devices by evaluating the efficacy of their technique using a
Modbus dataset.

The authors of [31] provided a model based on a variety of ML techniques. On the
BoT-IoT dataset, the KNN, Naive Bayes, and MLP ANN models were used to build a model.
Using an initial number according to efficiency and the ROC AUC result, the optimal algo-
rithm was determined. Incorporating machine learning methods with feature engineering
and oversampling methodology (SMOTE), the performances of three algorithms were
evaluated on class-imbalanced and class-balanced datasets.

Using machine learning approaches, many cybersecurity threats were anticipated
in [32]. A novel predictive system based on Random Neural Networks (RaNN) was
developed. Several assessment parameters were developed to be tested with the ANN,
SVM, and decision tree to determine the accuracy of the RaNN-based predictive model.
According to the evaluation results, the proposed RaNN model achieved an efficiency of
99.20%, with a learning rate of 0.01 and a time length of 34.51 milliseconds.

3. Materials and Methods

This work presents an automated network detection model for the Internet of Things.
Our proposed model gathers sensor-collected flow data, which are subsequently trans-
mitted to feature engineering algorithm techniques. It will utilize feature engineering
techniques such as feature selection and feature imbalance. Feature selection techniques,
such as Recursive Feature Elimination and Principal Component Analysis, can overcome
numerous data problems, such as lowering overfitting, training time, and enhancing the
overall model accuracy. In [31], the authors used the SMOTE approach for balancing the
provided data to address a class imbalance to their model. Several deep learning models
will be executed to determine the performance and time complexity of each unique model.

3.1. Bot-IoT Dataset

A new development dataset Bot-IoT is used for the purpose of simulated assault
identification in the experiment using the IoT network [33]. The collection includes data
from the Internet of Things collected from Cyber Range Lab of UNSW Canberra, as well
as ordinary traffic flows and traffic flows caused by botnets because of various types of
attacks [34].

A realistic testbed was used to create a valuable dataset with comprehensive traffic
information. Additional features were added and labeled to improve the machine learning
models’ performance. Three subcomponents contributed to the extraction of characteristics:
simulated IoT services, networking structure, and investigative analyses. The IoT system
can gather real-time meteorological data and utilize them to adjust settings. A smart cooling
fridge communicates cooling and temperature details, while a smart device manages
lighting. These lights function as motion detectors and turn on automatically when motion
is detected. The list also includes an IoT smart door with probabilistic input and an
intelligent thermostat that can adjust the temperature autonomously. Table 1 describes the
attack characteristics for the data.

Targets in an IoT system help differentiate network traffic into benign or malicious
activities, making it easier to distinguish between harmless and dangerous actions. The
following are the target categories in the BoT-IoT dataset:

• Benign category: normal, legitimate IoT network activity without malicious intent;
DDoS TCP attacks flood a network with TCP requests, rendering it inaccessible to
authorized users;

• UDP-focused DDoS attacks: these flood networks with packets, causing disruptions
and service outages;

• DDoS HTTP attacks: these flood web servers with HTTP requests, causing degraded
performance or service disruption;

Information 2023, 14, 550 5 of 19

• TCP DoS attacks: these exploit TCP stack vulnerabilities to exhaust device/network
resources and render them unresponsive/unavailable;

• UDP DoS attacks: these flood the target with many packets, leading to resource
exhaustion and service disruptions;

• HTTP-based DoS attacks: these overload web servers with excessive requests, causing
degraded performance or unavailability;

• Keylogging: the covert monitoring and recording of keystrokes on a compromised
device, used for malicious purposes to steal sensitive information;

• Capture of data: the unauthorized capture and exfiltration of information from com-
promised IoT networks/devices.

Table 1. Bot-IoT dataset.

Type Target Count

BENIGN Benign 9543

DDoS TCP Attack 19,547,603

DDoS UDP Attack 18,965,106

DDoS HTTP Attack 19,771

DoS TCP Attack 12,315,997

DoS UDP Attack 20,659,491

DoS HTTP Attack 29,706

Keylogging Keylogging 1469

Data theft Data theft 118

Total - 73,370,443

3.2. The Proposed Model
3.2.1. Data Pre-Processing

The pre-processing of data is an essential component of model development. We
applied the following pre-processing techniques to enhance the proposed model during
this procedure. In the pre-processing phase, data cleansing comprises data filtration, the
conversion of data, and checking for missing data. In the data filtration phase, null and
duplicate values are obtained and eliminated. In the data transformation procedure, the
data are converted into the appropriate format, such as from categorial to a numerical.
Various Python utilities help prepare data for analysis by cleaning it [35–37].

3.2.2. Feature Engineering Techniques

1. Correlation Coefficient

The correlation coefficient measures the relationship between two factors in a given
dataset. In the BoT-IoT dataset, analyzing the correlation coefficient can provide valuable
insights into the interdependencies and associations between different variables. Thereby
enhancing comprehension of the dataset and its potential patterns, as seen in Figure 1.

The BoT-IoT dataset contains information about IoT devices that have been infiltrated
by botnets, which are networks of infected devices controlled by malicious actors. This
dataset contains a variety of attributes and characteristics describing the behavior and
characteristics of compromised IoT devices, ensuring that the dataset is formatted properly
and that any missing values or outliers are handled appropriately. The data must be
pre-processed to ensure accurate and reliable results.

In specifying the BoT-IoT dataset variables for which the correlation coefficient is to be
computed, these variables may include device type, communication protocols, network
traffic patterns, and any other pertinent factors that may be present in the dataset. We obtain
the correlation coefficient using an appropriate statistical method once the variables have

Information 2023, 14, 550 6 of 19

been selected. We identify both the magnitude and the direction of the connection between
the variables by analyzing the computed correlation coefficient. A high level of correlation
shows that as one factor rises, the other is usually increasing as well, while a single factor
rising and the other factor tending to go down is indicative of a negative correlation. A
correlation coefficient near 0 indicates a non-existent relationship between the variables.
The correlation coefficient quantifies the relationship between two variables within a dataset.
In the BoT-IoT dataset, analyzing the correlation coefficient can provide valuable insights
into the interdependencies between different variables, thereby enhancing performance
of the dataset and its potential patterns. The BoT-IoT dataset contains information about
IoT devices that have been compromised by botnets, which are networks of infected
devices controlled by malicious actors. This dataset contains a variety of attributes and
characteristics that describe the behavior and characteristics of compromised IoT devices.

Information 2023, 14, x FOR PEER REVIEW 6 of 20

Figure 1. A correlation coefficient between features of the BoT-IoT dataset.

The BoT-IoT dataset contains information about IoT devices that have been infiltrated
by botnets, which are networks of infected devices controlled by malicious actors. This
dataset contains a variety of attributes and characteristics describing the behavior and
characteristics of compromised IoT devices, ensuring that the dataset is formatted
properly and that any missing values or outliers are handled appropriately. The data must
be pre-processed to ensure accurate and reliable results.

In specifying the BoT-IoT dataset variables for which the correlation coefficient is to
be computed, these variables may include device type, communication protocols, network
traffic patterns, and any other pertinent factors that may be present in the dataset. We
obtain the correlation coefficient using an appropriate statistical method once the varia-
bles have been selected. We identify both the magnitude and the direction of the connec-
tion between the variables by analyzing the computed correlation coefficient. A high level
of correlation shows that as one factor rises, the other is usually increasing as well, while
a single factor rising and the other factor tending to go down is indicative of a negative
correlation. A correlation coefficient near 0 indicates a non-existent relationship between
the variables. The correlation coefficient quantifies the relationship between two variables
within a dataset. In the BoT-IoT dataset, analyzing the correlation coefficient can provide
valuable insights into the interdependencies between different variables, thereby enhanc-
ing performance of the dataset and its potential patterns. The BoT-IoT dataset contains
information about IoT devices that have been compromised by botnets, which are net-
works of infected devices controlled by malicious actors. This dataset contains a variety
of attributes and characteristics that describe the behavior and characteristics of compro-
mised IoT devices.
2. Feature Importance using Random Forest

Feature importance analysis utilizing Random Forest is an effective method for de-
termining the significance of various features of the BoT-IoT dataset. This analysis reveals
which characteristics have the greatest impact on the dependent variable. Thereby facili-
tating the identification of critical factors that contribute to the behavior of the attack that
compromised the IoT devices, as shown in Figure 2.

Figure 1. A correlation coefficient between features of the BoT-IoT dataset.

2. Feature Importance using Random Forest

Feature importance analysis utilizing Random Forest is an effective method for deter-
mining the significance of various features of the BoT-IoT dataset. This analysis reveals
which characteristics have the greatest impact on the dependent variable. Thereby facili-
tating the identification of critical factors that contribute to the behavior of the attack that
compromised the IoT devices, as shown in Figure 2.

When applying feature importance to the BoT-IoT dataset using Random Forest, the
BoT-IoT dataset is divided into subsets for training and testing. The training subset will
be used to construct the Random Forest model, while the testing subset will assess the
models’ performance and generalizability. The Random Forest is capable of handling high-
dimensional datasets and provides an intrinsic measure of feature significance. Using the
Random Forest model, we calculate the feature importance. This can be accomplished by
investigating the mean decrease impurity or Gini importance, which measures the degree
to which each feature reduces the impurity or variability in the target variable across the
Random Forest’s decision trees. Alternately, feature importance can be evaluated using
permutation importance or mean decrease accuracy. The calculated feature importance
scores can be visualized using techniques such as bar charts and heat maps. This facilitates
interpretation of the results and provides a clear comprehension of which Botnet IoT

Information 2023, 14, 550 7 of 19

dataset features are most influential. It is essential to note that interpretation must be
based on domain-specific knowledge and the characteristics of the dataset. Using feature
importance analysis with Random Forest on the BoT-IoT dataset permits the identification
of important characteristics that influence the behavior of harmed IoT devices. Based on
feature importance analysis using Random Forest, the attributes ‘pkSeqID’, ‘proto’, ‘saddr’,
‘sport’, ‘daddr’, ‘dport’, and ‘category’, which have low significant features in the BoT-IoT
dataset, were dropped. In considering the feature importance analysis using Random
Forest, including these attributes in machine learning models decreases the accuracy
and effectiveness of the predictive models, feature selection techniques, and exploratory
analyses applied to the Botnet IoT dataset.

Information 2023, 14, x FOR PEER REVIEW 7 of 20

Figure 2. A feature importance analysis using Random Forest.

When applying feature importance to the BoT-IoT dataset using Random Forest, the
BoT-IoT dataset is divided into subsets for training and testing. The training subset will
be used to construct the Random Forest model, while the testing subset will assess the
models’ performance and generalizability. The Random Forest is capable of handling
high-dimensional datasets and provides an intrinsic measure of feature significance. Us-
ing the Random Forest model, we calculate the feature importance. This can be accom-
plished by investigating the mean decrease impurity or Gini importance, which measures
the degree to which each feature reduces the impurity or variability in the target variable
across the Random Forest’s decision trees. Alternately, feature importance can be evalu-
ated using permutation importance or mean decrease accuracy. The calculated feature
importance scores can be visualized using techniques such as bar charts and heat maps.
This facilitates interpretation of the results and provides a clear comprehension of which
Botnet IoT dataset features are most influential. It is essential to note that interpretation
must be based on domain-specific knowledge and the characteristics of the dataset. Using
feature importance analysis with Random Forest on the BoT-IoT dataset permits the iden-
tification of important characteristics that influence the behavior of harmed IoT devices.
Based on feature importance analysis using Random Forest, the attributes ‘pkSeqID’,
‘proto’, ‘saddr’, ‘sport’, ‘daddr’, ‘dport’, and ‘category’, which have low significant fea-
tures in the BoT-IoT dataset, were dropped. In considering the feature importance analysis
using Random Forest, including these attributes in machine learning models decreases the
accuracy and effectiveness of the predictive models, feature selection techniques, and ex-
ploratory analyses applied to the Botnet IoT dataset.
3. SMOTE Approach

An enhanced approach for handling unbalanced data is shown in Figure 3. The
SMOTE algorithm was first presented in [38]. The SMOTE algorithm generates new sam-
ples by performing random linear interpolation between a select number of samples and
the samples that are located nearby [39].

Figure 3. The attack class distributions.

Figure 2. A feature importance analysis using Random Forest.

3. SMOTE Approach

An enhanced approach for handling unbalanced data is shown in Figure 3. The
SMOTE algorithm was first presented in [38]. The SMOTE algorithm generates new
samples by performing random linear interpolation between a select number of samples
and the samples that are located nearby [39].

To enhance the classification impact of the unbalanced dataset and thus raise the data
imbalance ratio, a given number of false minority samples are generated, as shown in
Figure 4. This causes the data imbalance ratio to transform into balanced data.

Information 2023, 14, x FOR PEER REVIEW 7 of 20

Figure 2. A feature importance analysis using Random Forest.

When applying feature importance to the BoT-IoT dataset using Random Forest, the
BoT-IoT dataset is divided into subsets for training and testing. The training subset will
be used to construct the Random Forest model, while the testing subset will assess the
models’ performance and generalizability. The Random Forest is capable of handling
high-dimensional datasets and provides an intrinsic measure of feature significance. Us-
ing the Random Forest model, we calculate the feature importance. This can be accom-
plished by investigating the mean decrease impurity or Gini importance, which measures
the degree to which each feature reduces the impurity or variability in the target variable
across the Random Forest’s decision trees. Alternately, feature importance can be evalu-
ated using permutation importance or mean decrease accuracy. The calculated feature
importance scores can be visualized using techniques such as bar charts and heat maps.
This facilitates interpretation of the results and provides a clear comprehension of which
Botnet IoT dataset features are most influential. It is essential to note that interpretation
must be based on domain-specific knowledge and the characteristics of the dataset. Using
feature importance analysis with Random Forest on the BoT-IoT dataset permits the iden-
tification of important characteristics that influence the behavior of harmed IoT devices.
Based on feature importance analysis using Random Forest, the attributes ‘pkSeqID’,
‘proto’, ‘saddr’, ‘sport’, ‘daddr’, ‘dport’, and ‘category’, which have low significant fea-
tures in the BoT-IoT dataset, were dropped. In considering the feature importance analysis
using Random Forest, including these attributes in machine learning models decreases the
accuracy and effectiveness of the predictive models, feature selection techniques, and ex-
ploratory analyses applied to the Botnet IoT dataset.
3. SMOTE Approach

An enhanced approach for handling unbalanced data is shown in Figure 3. The
SMOTE algorithm was first presented in [38]. The SMOTE algorithm generates new sam-
ples by performing random linear interpolation between a select number of samples and
the samples that are located nearby [39].

Figure 3. The attack class distributions.

Figure 3. The attack class distributions.

3.3. Ensemble Learning

• Extra Trees classifier

The Extra Trees algorithm is a variant of the Random Forest algorithm. The algorithm
exhibits resemblances to Random Forests, but includes extra randomness in the construction
of decision trees [40]. The Extra Trees classifier employs an ensemble learning technique
by aggregating multiple base classifiers to generate predictions, thereby harnessing the
collective intelligence of the group [41]. It is an ensemble method that aggregates the
outputs of numerous trees that have been trained independently. This technique can be
used for classification tasks, where the final prediction is determined via majority voting.

Information 2023, 14, 550 8 of 19

In our specific context, the Extra Trees classifier ensemble is utilized for detecting various
types of attacks. The Extra Trees classifier can mitigate overfitting and improve the accuracy
of generalization by aggregating its results [42].

Information 2023, 14, x FOR PEER REVIEW 8 of 20

To enhance the classification impact of the unbalanced dataset and thus raise the data
imbalance ratio, a given number of false minority samples are generated, as shown in
Figure 4. This causes the data imbalance ratio to transform into balanced data.

Figure 4. Attack class distributions after oversampling the BoT-IoT dataset using the SMOTE algo-
rithm.

3.3. Ensemble Learning
• Extra Trees classifier

The Extra Trees algorithm is a variant of the Random Forest algorithm. The algorithm
exhibits resemblances to Random Forests, but includes extra randomness in the construc-
tion of decision trees [40]. The Extra Trees classifier employs an ensemble learning tech-
nique by aggregating multiple base classifiers to generate predictions, thereby harnessing
the collective intelligence of the group [41]. It is an ensemble method that aggregates the
outputs of numerous trees that have been trained independently. This technique can be
used for classification tasks, where the final prediction is determined via majority voting.
In our specific context, the Extra Trees classifier ensemble is utilized for detecting various
types of attacks. The Extra Trees classifier can mitigate overfitting and improve the accu-
racy of generalization by aggregating its results [42].
• Histogram-based Gradient Boosting classifier

This involves the utilization of gradient boosting, which includes the continually
evolving training of an ensemble of weak learners [43]. Weak learners commonly use de-
cision trees to rectify the inaccuracies of preceding models [44]. This classifier uses a meth-
odology that employs histograms to enhance both computational efficiency and predic-
tive accuracy.

Histograms are generated to provide statistical information regarding the distribu-
tion of data within each bin [45]. This includes metrics such as the count of samples and
the aggregate of gradients or gradients squared. The utilization of these statistics facili-
tates proficient calculations throughout the training procedure, resulting in enhanced
scalability and performance. The approach involves the sequential application of weak
learners to the negative gradients of the loss function, leading to a gradual reduction in
residual errors. The learning rate parameter regulates the weight assigned to each indi-
vidual weak learner, thereby achieving a delicate balance between the complexities of the
model and the ratio of convergence [46].
• Adaptive Boosting classifier

Adaptive Boosting (AdaBoost) combines weak learners iteratively to produce a ro-
bust classifier [47]. The weak learners are usually decision trees, and their predictions have
weights according to their training outcomes. This classifier provides several noteworthy
advantages that contribute to its popularity and efficacy in the field of machine learning.
AdaBoost has an exceptional ability to enhance classification accuracy compared to a sin-
gle weak learner. AdaBoost focuses on challenging samples by iteratively training weak

Figure 4. Attack class distributions after oversampling the BoT-IoT dataset using the
SMOTE algorithm.

• Histogram-based Gradient Boosting classifier

This involves the utilization of gradient boosting, which includes the continually
evolving training of an ensemble of weak learners [43]. Weak learners commonly use
decision trees to rectify the inaccuracies of preceding models [44]. This classifier uses
a methodology that employs histograms to enhance both computational efficiency and
predictive accuracy.

Histograms are generated to provide statistical information regarding the distribution
of data within each bin [45]. This includes metrics such as the count of samples and the
aggregate of gradients or gradients squared. The utilization of these statistics facilitates
proficient calculations throughout the training procedure, resulting in enhanced scalability
and performance. The approach involves the sequential application of weak learners to the
negative gradients of the loss function, leading to a gradual reduction in residual errors.
The learning rate parameter regulates the weight assigned to each individual weak learner,
thereby achieving a delicate balance between the complexities of the model and the ratio of
convergence [46].

• Adaptive Boosting classifier

Adaptive Boosting (AdaBoost) combines weak learners iteratively to produce a robust
classifier [47]. The weak learners are usually decision trees, and their predictions have
weights according to their training outcomes. This classifier provides several noteworthy
advantages that contribute to its popularity and efficacy in the field of machine learning.
AdaBoost has an exceptional ability to enhance classification accuracy compared to a sin-
gle weak learner. AdaBoost focuses on challenging samples by iteratively training weak
learners on various subgroups of the data and allocating higher weights to misclassified
instances, thereby reducing bias and increasing overall accuracy [48]. AdaBoost is a flexible
algorithm applicable to a variety of classification problems, including binary classification
and multi-class classification. It can manage both discrete and continuous characteris-
tics, making it applicable to a wide variety of datasets [49]. AdaBoost assigns feature
weights according to their classification usefulness. During training, AdaBoost modifies
its weights to give misclassified instances and outliers less weight. This robustness allows
AdaBoost to effectively handle noisy data and outliers that would otherwise adversely
affect other classifiers.

• LGBM classifier

The Light Gradient Boosting Machine (LightGBM) classifier is a powerful ML algo-
rithm that falls under the category of gradient boosting frameworks [50]. It is specifically
designed to deliver high performance, efficiency, and accuracy in solving classification
tasks. The LGBM classifier is based on the gradient boosting framework, which involves

Information 2023, 14, 550 9 of 19

iteratively training an ensemble of weak learners, typically decision trees, to sequentially
correct the errors made by the previous models. LightGBM has several unique optimiza-
tions to enhance the overall efficiency and effectiveness of the boosting process. It utilizes a
histogram-based approach for binning the continuous features, which significantly reduces
the memory footprint and speeds up the training process [51]. It constructs histograms
for each feature and uses these histograms to find the best splits for building decision
trees efficiently.

• CatBoosting classifier

CatBoost is a robust machine learning technique specifically intended for classification
tasks [52]. It falls within the category of gradient boosting structures and provides several
unique characteristics that make a difference to its efficiency and efficacy. It employs a
unique technique that combines gradient-based pre-sorting, ordered boosting, and sym-
metric decision trees. CatBoost can manage categorical characteristics with a variety of
cardinalities, such as variables with high cardinality. CatBoost guarantees stability by
combining, at random, the order of each category throughout training, preventing the
model from depending exclusively on the order of the categories [53]. In addition, CatBoost
includes a symmetric building of trees technique that takes the statistical characteristics of
the dataset into consideration.

3.4. Evaluation Metrics

Once a model has been trained, its performance must be evaluated. In this study, we
evaluate the effectiveness of suggested DL models using five widely accepted evaluation
metrics: precision, recall, computation time, accuracy, and F1-score [54,55]. The evaluation
metrics will be computed using Equations (1)–(4), which demonstrate related formulations
for each of these measures based on TPR, TNR, FPR, and FPR results.

• True positive rate (TPR): ratio of observed positives to expected positives;
• False positive rate (FPR): ratio of values that are truly negative but are expected to

be positive;
• False negative rate (FNR): ratio values that are in fact positive but are projected to

be negative;
• True negative rate (TNR): ratio values that are negative and anticipated to become neg-

ative;
• Precision: the capacity of a system to accurately detect the existence of an attack or

security breach; it illustrates the relationship between precisely predicted attacks and
actual consequences:

Precision = TPR/(TPR + FPR); (1)

• Recall: the system’s ability to correctly recognize a botnet attack when it occurs on
a network:

Recall = TPR/(TPR + FPR); (2)

• Accuracy: the system’s ability to effectively classify attack and non-attack pack-
ets; it represents the percentage of accurate predictions relative to the total number
of samples:

Accuracy = (TNR + TPR)/(TPR + FNR + FPR + TNR); (3)

• F1-score: average of recall and precision; it provides the percentage of normal and
attacking flow samples accurately anticipated in the testing sample:

F1-Score = 2 × (Recall × Precision)/(Recall + Precision); (4)

• Time complexity: how quickly or slowly an algorithm performs in the same relation
to the amount of data.

Information 2023, 14, 550 10 of 19

4. Results
4.1. Experimental Settings

To perform our experiments, we used the Python programming language, as well as
several AI and deep learning frameworks and packages that serve as benchmarks. These
included the TensorFlow and Keras libraries, which were run on the Google CoLab GPU
environment. Following up on what was covered previously, the first thing we did was
apply data pre-processing and feature engineering methods to the BOT-IoT dataset. After
that, we trained deep learning models using the training and test set, and finally evaluated
all the learned models.

To execute the experiment, the database was initially partitioned into three parts: 70%
for the training, 20% for the validation development, and 10% for the testing.

The performance measurements, such as precision, recall, accuracy, and F1-score,
are reported via weighted average outcomes and other metrics such as model size and
computation time.

4.2. Experimental Results

In this section, we overview the experimental outcomes of our study, which evaluated
the performance of ten separate ML models for detecting malware. These models consist
of two single classifiers, ensemble classifiers, and four architectures for deep learning. As
shown in Tables 2 and 3, we also compare the efficacy of these models with and without
the SMOTE algorithm for managing imbalanced data.

Table 2. Performance results for detecting IoT network attacks without using the SMOTE algorithm.

Metric Accuracy Precision Recall F1-Score CPU Time Model Size (MB)

Random Forest 0.9518 0.9538 0.9284 0.9403 21.6 s 23.6
Extra Trees 0.9674 0.9652 0.9517 0.9582 47.6 s 598.7

KNN 0.9083 0.9036 0.8869 0.8947 3.29 s 13.6
SVM 0.6121 0.6280 0.3598 0.3695 21 min 50 s 12.2

HistGBoost 0.9560 0.7488 0.7332 0.7321 13.4 s 1.2
AdaBoost 0.1211 0.4552 0.3482 0.0826 1 min 19 s 0.31

LGBM 0.9323 0.4665 0.4739 0.4690 36.1 s 1.8
CatBoost 0.9819 0.9686 0.9608 0.9646 2 min 55 s 3.5
XGBoost 0.9852 0.9806 0.9654 0.9727 2 min 43 s 1.1

MLP 0.7539 0.3031 0.2942 0.2850 31.5 s 0.005
ANN 0.8308 0.3308 0.4789 0.3701 13 min 48 s 0.027
LSTM 0.7701 0.4887 0.3476 0.3682 10 min 10 s 7.7
GRU 0.8536 0.6058 0.4517 0.4902 11 min 1 s 7.7
RNN 0.8682 0.9189 0.7631 0.8013 10 min 50 s 1.6

Bagging 0.9398 0.9324 0.9160 0.9238 2 min 54 s 240.5

Table 3. Performance results for detecting IoT network attacks using the SMOTE algorithm from the
BoT-IoT dataset.

Metric Accuracy Precision Recall F1-Score CPU Time Model (MB)

CatBoost 0.97661 0.91249 0.9815 0.94369 7 min 43 s 3.48
XGBoost 0.97986 0.94868 0.98084 0.96383 7 min 53 s 1.22

MLP 0.53336 0.31119 0.63571 0.32423 4 min 47 s 0.02
ANN 0.76594 0.61794 0.89682 0.63602 31 min 41 s 0.03
LSTM 0.83418 0.75511 0.92699 0.76773 30 min 6 s 7.69
GRU 0.87806 0.78463 0.93476 0.83175 29 min 50 s 7.69
RNN 0.87147 0.77572 0.94066 0.8257 27 min 3 s 1.62

Bagging 0.94099 0.91357 0.93127 0.92205 9 min 31 s 350.73
Random Forest 0.9425 0.90961 0.9635 0.9304 1 min 7 s 29.60

Extra Trees 0.90922 0.88756 0.8952 0.8906 3.43 s 35.19

Information 2023, 14, 550 11 of 19

Table 3. Cont.

Metric Accuracy Precision Recall F1-Score CPU Time Model (MB)

KNN 0.90922 0.88756 0.8952 0.8906 3.43 s 35.19
SVM 0.59398 0.4853 0.63258 0.48259 1 h 18 min 19 s 25.34

HistGboost 0.97437 0.97758 0.97437 0.97511 47.6 s 1.90
AdaBoost 0.43068 0.32098 0.34041 0.25093 3 min 55 s 0.31

LGBM 0.98242 0.96029 0.98055 0.96986 4 min 5 s 11.05

4.2.1. Experiments without Using the SMOTE Algorithm

The performance results for the deep learning models on the BoT-IoT dataset, pre-
sented in Table 2, reveal varying levels of performance in terms of accuracy, precision, recall,
and F1-score. It is important to note that these results were obtained without utilizing the
SMOTE algorithm.

From the results, it is observed that Random Forest, Extra Trees, and KNN achieved
competitive performance in terms of accuracy, precision, recall, and F1-score. These models
were able to effectively classify instances in the dataset without the need for oversampling
techniques. Notably, Random Forest achieved the highest accuracy of 95.183%, closely
followed by Extra Trees, with an accuracy of 96.741%. These models also exhibited high
precision and F1-score, indicating their ability to correctly classify positive instances and
achieve a balance between precision and recall.

Table 2 presents the performance results of various machine learning models with-
out using the SMOTE oversampling technique on the BoT-IoT dataset for detecting IoT
network attacks.

On the other hand, models such as SVM and AdaBoost showed lower performance
compared to the ensemble models. SVM exhibited relatively lower accuracy and F1-
score, indicating challenges in effectively handling the imbalanced nature of the dataset.
AdaBoost, while having a low accuracy of 12.11%, achieved higher precision compared to
other metrics, suggesting a bias towards correctly classifying positive instances.

The models’ size varied across the different models, with Extra Trees having the
largest model size of 598.7 MB, followed by SVM with 12.2 MB. Meanwhile, models such
as AdaBoost and HistGBoost had considerably smaller model sizes. Overall, the results
indicate that certain models, particularly Random Forest and Extra Trees, performed well
without the need for SMOTE oversampling. These models were able to effectively capture
the underlying patterns in the dataset and achieve satisfactory classification performance.
However, further investigation and experimentation may be required in order to under-
stand the impact of the dataset characteristics and the specific requirements of the problem
domain on the model performance.

All models were evaluated based on their accuracy, precision, recall, and F1-score, as
shown in Figure 5.

The performance results for the DL models on the BoT-IoT dataset, presented in
Figure 6, show varying levels of performance in terms of accuracy, precision, recall, and
F1-score. It is important to note that the models obtained these results without utilizing the
SMOTE algorithm.

Among the deep learning models, MLP demonstrated the lowest performance across
all metrics; it achieved an accuracy of 0.75, indicating that it correctly classified approxi-
mately 75% of the instances. The precision, recall, and F1-score were also relatively low
at 0.3, 0.29, and 0.29, respectively. These metrics indicate that the MLP model struggled
to accurately detect IoT network attacks, showing a significant number of false positives
and false negatives. Furthermore, the relatively small model size of 0.005 MB suggests that
MLP is a lightweight model.

The ANN model performed relatively better than MLP, with an accuracy of 0.831. It
exhibited improved precision of 0.33 and recall of 0.48, suggesting a better balance between
true positives and false negatives. However, the F1-score of 0.37 indicates that the model’s

Information 2023, 14, 550 12 of 19

ability to achieve a balance between precision and recall is still limited. Despite the longer
CPU time of 13 min and 48 s, the ANN model maintained a small model size of 0.027 MB.

Information 2023, 14, x FOR PEER REVIEW 12 of 20

However, further investigation and experimentation may be required in order to under-
stand the impact of the dataset characteristics and the specific requirements of the prob-
lem domain on the model performance.

All models were evaluated based on their accuracy, precision, recall, and F1-score, as
shown in Figure 5.

Figure 5. The proposed ML models’ evaluation results on the BoT-IoT dataset without using the
SMOTE algorithm.

The performance results for the DL models on the BoT-IoT dataset, presented in Fig-
ure 6, show varying levels of performance in terms of accuracy, precision, recall, and F1-
score. It is important to note that the models obtained these results without utilizing the
SMOTE algorithm.

Figure 6. The proposed deep learning models’ evaluation results without using the SMOTE algo-
rithm.

Among the deep learning models, MLP demonstrated the lowest performance across
all metrics; it achieved an accuracy of 0.75, indicating that it correctly classified

Figure 5. The proposed ML models’ evaluation results on the BoT-IoT dataset without using the
SMOTE algorithm.

Information 2023, 14, x FOR PEER REVIEW 12 of 20

However, further investigation and experimentation may be required in order to under-
stand the impact of the dataset characteristics and the specific requirements of the prob-
lem domain on the model performance.

All models were evaluated based on their accuracy, precision, recall, and F1-score, as
shown in Figure 5.

Figure 5. The proposed ML models’ evaluation results on the BoT-IoT dataset without using the
SMOTE algorithm.

The performance results for the DL models on the BoT-IoT dataset, presented in Fig-
ure 6, show varying levels of performance in terms of accuracy, precision, recall, and F1-
score. It is important to note that the models obtained these results without utilizing the
SMOTE algorithm.

Figure 6. The proposed deep learning models’ evaluation results without using the SMOTE algo-
rithm.

Among the deep learning models, MLP demonstrated the lowest performance across
all metrics; it achieved an accuracy of 0.75, indicating that it correctly classified

Figure 6. The proposed deep learning models’ evaluation results without using the SMOTE algorithm.

Moving on to the LSTM and GRU models, they achieved comparable performance
levels; the LSTM model achieved an accuracy of 0.77, while the GRU model achieved a
higher accuracy of 0.85. Both models showed improvements in precision compared to
MLP and ANN, with values of 0.49 and 0.61, respectively. However, the recall values for
both models, at 0.35 for LSTM and 0.45 for GRU, were lower. The F1 scores for LSTM
and GRU were 0.37 and 0.49, respectively, showing a moderate balance between precision
and recall. Both the LSTM and GRU models had longer CPU times compared to the MLP
and ANN models, with durations of 10 min and 10 s for LSTM and 11 min and 1 s for
GRU. Both models had a larger model size of 7.7 MB. Finally, the RNN model exhibited the
highest accuracy among all the deep learning models, with a value of 0.86819. It achieved a

Information 2023, 14, 550 13 of 19

significantly higher precision of 0.92, showing a strong ability to correctly classify positive
instances. The recall value of 0.76 and the F1-score of 0.80 further support the model’s
effectiveness in getting true positives and achieving a good balance between precision and
recall. However, the RNN model had a longer CPU time of 10 min and 50 s, and a larger
model size of 1.6 MB compared to MLP and ANN.

4.2.2. Experiments Using the SMOTE Algorithm

The performance results for detecting IoT network intrusions using the SMOTE algo-
rithm on the BoT-IoT dataset are presented in Table 3. The table provides a thorough review
of several machine learning models based on their precision, recall, F1-score, CPU time,
and model size. These metrics are essential for evaluating the effectiveness and efficacy of
models in detecting attacks on IoT networks, as shown in Figure 7.

Information 2023, 14, x FOR PEER REVIEW 13 of 20

approximately 75% of the instances. The precision, recall, and F1-score were also relatively
low at 0.3, 0.29, and 0.29, respectively. These metrics indicate that the MLP model strug-
gled to accurately detect IoT network attacks, showing a significant number of false posi-
tives and false negatives. Furthermore, the relatively small model size of 0.005 MB sug-
gests that MLP is a lightweight model.

The ANN model performed relatively better than MLP, with an accuracy of 0.831. It
exhibited improved precision of 0.33 and recall of 0.48, suggesting a better balance be-
tween true positives and false negatives. However, the F1-score of 0.37 indicates that the
model’s ability to achieve a balance between precision and recall is still limited. Despite
the longer CPU time of 13 min and 48 s, the ANN model maintained a small model size
of 0.027 MB.

Moving on to the LSTM and GRU models, they achieved comparable performance
levels; the LSTM model achieved an accuracy of 0.77, while the GRU model achieved a
higher accuracy of 0.85. Both models showed improvements in precision compared to
MLP and ANN, with values of 0.49 and 0.61, respectively. However, the recall values for
both models, at 0.35 for LSTM and 0.45 for GRU, were lower. The F1 scores for LSTM and
GRU were 0.37 and 0.49, respectively, showing a moderate balance between precision and
recall. Both the LSTM and GRU models had longer CPU times compared to the MLP and
ANN models, with durations of 10 min and 10 s for LSTM and 11 min and 1 s for GRU.
Both models had a larger model size of 7.7 MB. Finally, the RNN model exhibited the
highest accuracy among all the deep learning models, with a value of 0.86819. It achieved
a significantly higher precision of 0.92, showing a strong ability to correctly classify posi-
tive instances. The recall value of 0.76 and the F1-score of 0.80 further support the model’s
effectiveness in getting true positives and achieving a good balance between precision and
recall. However, the RNN model had a longer CPU time of 10 min and 50 s, and a larger
model size of 1.6 MB compared to MLP and ANN.

4.2.2. Experiments Using the SMOTE Algorithm
The performance results for detecting IoT network intrusions using the SMOTE al-

gorithm on the BoT-IoT dataset are presented in Table 3. The table provides a thorough
review of several machine learning models based on their precision, recall, F1-score, CPU
time, and model size. These metrics are essential for evaluating the effectiveness and effi-
cacy of models in detecting attacks on IoT networks, as shown in Figure 7.

Figure 7. The proposed machine learning models’ evaluation results using the SMOTE algorithm. Figure 7. The proposed machine learning models’ evaluation results using the SMOTE algorithm.

CatBoost, the first model listed in the table, obtained an accuracy of 97.661%. It
exhibited high precision (0.91243), indicating a low rate of false positives, and high recall
(0.9815, indicating a low rate of false negatives. The F1-score of 0.94369 demonstrates the
balance between accuracy and recall. The model required 7 min and 43 s of CPU time to
train and was 3.48 MB in size.

The accuracy of the second model, XGBoost, was slightly greater at 97.986%. It
demonstrated a greater precision of 0.94866 and a comparable recall of 0.98084. The F1-
score of 0.96383 indicates a marginally better overall performance than CatBoost. The
XGBoost training duration was 7 min and 53 s, and the size of the model was 1.22 MB.

In contrast, the performance of the MLP model was substantially inferior across all
metrics. It attained a precision of 0.5336, indicating a substantial number of misclassifica-
tions. The precision of 0.31 and recall of 0.64 reflect the model’s inability to identify positive
instances accurately. The F1-score of 0.32, therefore, indicates a poor overall performance.
However, the MLP model’s training duration was only 4 min and 47 s, and its model size
was only 0.02 MB.

The ANN model performed better than the MLP model, but it still lagged behind
CatBoost and XGBoost. Its accuracy was 0.76594, its precision was 0.62, and its recall was
0.897. The F1-score of 0.64 indicates a satisfactory equilibrium between precision and recall.
However, the training period for the ANN model was significantly longer at 31 min and
41 s, and the model size was slightly larger at 0.03 MB.

Information 2023, 14, 550 14 of 19

The performances of the LSTM, GRU, and RNN models, as shown in Figure 8, were
superior to those of the MLP and ANN models. The LSTM model obtained an accuracy of
0.83418, along with precision, recall, and F1-scores of 0.755, 0.927, and 0.77, respectively.
The GRU and RNN models exhibited comparable performance, with accuracies of 0.878
and 0.87, respectively. However, all three models required highly training periods of
approximately 30 min, and their model sizes are larger at 7.69 MB.

Information 2023, 14, x FOR PEER REVIEW 14 of 20

CatBoost, the first model listed in the table, obtained an accuracy of 97.661%. It ex-
hibited high precision (0.91243), indicating a low rate of false positives, and high recall
(0.9815,_ indicating a low rate of false negatives. The F1-score of 0.94369 demonstrates the
balance between accuracy and recall. The model required 7 min and 43 s of CPU time to
train and was 3.48 MB in size.

The accuracy of the second model, XGBoost, was slightly greater at 97.986%. It
demonstrated a greater precision of 0.94866 and a comparable recall of 0.98084. The F1-
score of 0.96383 indicates a marginally better overall performance than CatBoost. The
XGBoost training duration was 7 min and 53 s, and the size of the model was 1.22 MB.

In contrast, the performance of the MLP model was substantially inferior across all
metrics. It attained a precision of 0.5336, indicating a substantial number of misclassifica-
tions. The precision of 0.31 and recall of 0.64 reflect the model’s inability to identify posi-
tive instances accurately. The F1-score of 0.32, therefore, indicates a poor overall perfor-
mance. However, the MLP model’s training duration was only 4 min and 47 s, and its
model size was only 0.02 MB.

The ANN model performed better than the MLP model, but it still lagged behind
CatBoost and XGBoost. Its accuracy was 0.76594, its precision was 0.62, and its recall was
0.897. The F1-score of 0.64 indicates a satisfactory equilibrium between precision and re-
call. However, the training period for the ANN model was significantly longer at 31 min
and 41 s, and the model size was slightly larger at 0.03 MB.

The performances of the LSTM, GRU, and RNN models, as shown in Figure 8, were
superior to those of the MLP and ANN models. The LSTM model obtained an accuracy of
0.83418, along with precision, recall, and F1-scores of 0.755, 0.927, and 0.77, respectively.
The GRU and RNN models exhibited comparable performance, with accuracies of 0.878
and 0.87, respectively. However, all three models required highly training periods of ap-
proximately 30 min, and their model sizes are larger at 7.69 MB.

Figure 8. The proposed deep learning models’ evaluation results using the SMOTE algorithm.

Moving on to ensemble methods, the Bagging model obtained an accuracy of 0.94000,
with a high level of precision (0.91357) and recall (0.93127). The F1-score of 0.92205 indi-
cates a balanced combination of precision and recall. The model required 9 min and 31 s
of training time and had a larger model dimension of 350.73 MB. Similarly, the Random
Forest model had an accuracy of 0.94, precision of 0.91, recall of 0.9635, and F1-score of
0.93. It had a training duration of one minute and seven seconds and a model size of 29.60
MB, which was shorter and smaller, respectively.

Both the Extra Trees and KNN models achieved an accuracy of 0.90922, with preci-
sion, recall, and F1-scores of 0.89, 0.895, and 0.8906, respectively. These models had much
reduced training times of 3.43 s and larger model sizes of 35.19 MB.

Figure 8. The proposed deep learning models’ evaluation results using the SMOTE algorithm.

Moving on to ensemble methods, the Bagging model obtained an accuracy of 0.94000,
with a high level of precision (0.91357) and recall (0.93127). The F1-score of 0.92205 indicates
a balanced combination of precision and recall. The model required 9 min and 31 s of
training time and had a larger model dimension of 350.73 MB. Similarly, the Random Forest
model had an accuracy of 0.94, precision of 0.91, recall of 0.9635, and F1-score of 0.93. It
had a training duration of one minute and seven seconds and a model size of 29.60 MB,
which was shorter and smaller, respectively.

Both the Extra Trees and KNN models achieved an accuracy of 0.90922, with precision,
recall, and F1-scores of 0.89, 0.895, and 0.8906, respectively. These models had much
reduced training times of 3.43 s and larger model sizes of 35.19 MB.

In contrast, the SVM model performed significantly worse across all metrics. It ob-
tained a precision of 0.59, indicating a substantial number of misclassifications. Precision of
0.49 and recall of 0.63 indicate the model’s inability to accurately identify positive instances.
Overall, the F1-score of 0.48259 indicates poor performance. The training duration for the
SVM model was 1 h, 18 min, and 19 s, and the size of the model was 25.34 MB.

Finally, the HISTGBOOST, AdaBoost, and LGBM models demonstrated enhanced
performance. The accuracy of the HISTGBOOST model was 0.97437, and its precision,
recall, and F1-scores were 0.97758, 0.97437, and 0.97511, respectively. It had a training time
of 47.6 s and a model size of 1.90 MB, which are both relatively brief. With an accuracy
of 0.43068, lower precision and recall ranging from 0.32098 to 0.34041, and an F1-score
of 0.25093, the AdaBoost model demonstrated lower performance. It required 3 min and
55 s of training time and was 0.31 MB in size. The LGBM model demonstrated the highest
accuracy, with a value of 0.98242, as well as excellent precision, recall, and F1-scores of
0.96029, 0.98055, and 0.96986, respectively. The LGBM training duration was 4 min and 5 s,
and the size of the model was 11.05 MB.

Using the SMOTE algorithm on the BoT-IoT dataset, the CatBoost and XGBoost
models demonstrated superior performance in detecting IoT network attacks based on the
performance metrics presented in Table 3. These models attained high levels of accuracy,
precision, recall, and F1-scores, demonstrating their ability to identify both positive and
negative instances. In addition, they had shorter training durations and smaller model
sizes than other models, making them possible choices for detecting IoT network attacks.

Information 2023, 14, 550 15 of 19

5. Discussion

The performance results presented in Tables 2 and 3 provide information on the
efficacy of various classifiers in detecting IoT network intrusions on the BoT-IoT dataset.
A comparison of these tables reveals the effect that the SMOTE algorithm has on the
performance metrics.

Figure 9 displays the comparison between the ensemble learning models’ performance
with and without using the SMOTE algorithm. It demonstrates that best results from
several classifiers, including, Extra Trees, CatBoost, and XGBoost, attained high accuracies.
Additionally, these classifiers exhibited favorable precision, recall, and F1-scores, indicating
their ability to accurately identify IoT network attacks. Notably, CatBoost and XGBoost
consistently demonstrated superior performance across a variety of metrics, i.e., even better
than using these classifiers with the SMOTE algorithm.

Information 2023, 14, x FOR PEER REVIEW 15 of 20

In contrast, the SVM model performed significantly worse across all metrics. It ob-
tained a precision of 0.59, indicating a substantial number of misclassifications. Precision
of 0.49 and recall of 0.63 indicate the model’s inability to accurately identify positive in-
stances. Overall, the F1-score of 0.48259 indicates poor performance. The training duration
for the SVM model was 1 h, 18 min, and 19 s, and the size of the model was 25.34 MB.

Finally, the HISTGBOOST, AdaBoost, and LGBM models demonstrated enhanced
performance. The accuracy of the HISTGBOOST model was 0.97437, and its precision, re-
call, and F1-scores were 0.97758, 0.97437, and 0.97511, respectively. It had a training time
of 47.6 s and a model size of 1.90 MB, which are both relatively brief. With an accuracy of
0.43068, lower precision and recall ranging from 0.32098 to 0.34041, and an F1-score of
0.25093, the AdaBoost model demonstrated lower performance. It required 3 min and 55
s of training time and was 0.31 MB in size. The LGBM model demonstrated the highest
accuracy, with a value of 0.98242, as well as excellent precision, recall, and F1-scores of
0.96029, 0.98055, and 0.96986, respectively. The LGBM training duration was 4 min and 5
s, and the size of the model was 11.05 MB.

Using the SMOTE algorithm on the BoT-IoT dataset, the CatBoost and XGBoost mod-
els demonstrated superior performance in detecting IoT network attacks based on the per-
formance metrics presented in Table 3. These models attained high levels of accuracy, pre-
cision, recall, and F1-scores, demonstrating their ability to identify both positive and neg-
ative instances. In addition, they had shorter training durations and smaller model sizes
than other models, making them possible choices for detecting IoT network attacks.

5. Discussion
The performance results presented in Tables 2 and 3 provide information on the effi-

cacy of various classifiers in detecting IoT network intrusions on the BoT-IoT dataset. A
comparison of these tables reveals the effect that the SMOTE algorithm has on the perfor-
mance metrics.

Figure 9 displays the comparison between the ensemble learning models’ perfor-
mance with and without using the SMOTE algorithm. It demonstrates that best results
from several classifiers, including, Extra Trees, CatBoost, and XGBoost, attained high ac-
curacies. Additionally, these classifiers exhibited favorable precision, recall, and F1-scores,
indicating their ability to accurately identify IoT network attacks. Notably, CatBoost and
XGBoost consistently demonstrated superior performance across a variety of metrics, i.e.,
even better than using these classifiers with the SMOTE algorithm.

Figure 9. Comparison of the best ensemble learning models’ results with and without using the
SMOTE algorithm.

Figure 9. Comparison of the best ensemble learning models’ results with and without using the
SMOTE algorithm.

In contrast, the comparison between deep learning models’ performance with and
without using the SMOTE algorithm is shown in Figure 9. Comparing the two tables
reveals that the SMOTE algorithm has affected the performance many different classifiers.
From Figure 9, CatBoost and XGBoost, which performed exceptionally better (as shown in
Table 2), maintained their high accuracy and obtained competitive precision, recall, and
F1-scores, as shown in Table 3. This indicates that these classifiers are robust and that the
use of SMOTE has minimal effect on their efficacy.

On the other hand, the application of SMOTE altered the performance of some classi-
fiers significantly. In Table 3 and Figure 10, MLP, ANN, LSTM, and GRU models exhibited
lower accuracies, precision, recall, and F1-scores than they did in Table 2. This suggests that
even with SMOTE, these classifiers cannot be as effective when dealing with imbalanced
datasets. However, it is important to note that these models still obtained a respectable
level of accuracy and other metrics. In addition, classifiers such as Bagging, Random
Forest, Extra Trees, KNN, and LGBM showed consistent performance across both tables,
demonstrating their robustness in dealing with imbalanced datasets. While the accuracies
and F1-scores remained relatively stable, the application of SMOTE marginally improved
the precision and recall values for these classifiers.

Information 2023, 14, 550 16 of 19

Information 2023, 14, x FOR PEER REVIEW 16 of 20

In contrast, the comparison between deep learning models’ performance with and
without using the SMOTE algorithm is shown in Figure 9. Comparing the two tables re-
veals that the SMOTE algorithm has affected the performance many different classifiers.
From Figure 9, CatBoost and XGBoost, which performed exceptionally better (as shown
in Table 2), maintained their high accuracy and obtained competitive precision, recall, and
F1-scores, as shown in Table 3. This indicates that these classifiers are robust and that the
use of SMOTE has minimal effect on their efficacy.

On the other hand, the application of SMOTE altered the performance of some clas-
sifiers significantly. In Table 3 and Figure 10, MLP, ANN, LSTM, and GRU models exhib-
ited lower accuracies, precision, recall, and F1-scores than they did in Table 2. This sug-
gests that even with SMOTE, these classifiers cannot be as effective when dealing with
imbalanced datasets. However, it is important to note that these models still obtained a
respectable level of accuracy and other metrics. In addition, classifiers such as Bagging,
Random Forest, Extra Trees, KNN, and LGBM showed consistent performance across
both tables, demonstrating their robustness in dealing with imbalanced datasets. While
the accuracies and F1-scores remained relatively stable, the application of SMOTE mar-
ginally improved the precision and recall values for these classifiers.

Figure 10. Comparison of deep learning models’ performance with and without using the SMOTE
algorithm.

With lower accuracies, precision, recall, and F1-scores, these classifiers struggled to
detect IoT network attacks with accuracy. Moreover, SVM had significantly greater CPU
times than other classifiers in both scenarios, indicating its computational complexity, as
seen in Figure 11.

Figure 10. Comparison of deep learning models’ performance with and without using the
SMOTE algorithm.

With lower accuracies, precision, recall, and F1-scores, these classifiers struggled to
detect IoT network attacks with accuracy. Moreover, SVM had significantly greater CPU
times than other classifiers in both scenarios, indicating its computational complexity, as
seen in Figure 11.

Information 2023, 14, x FOR PEER REVIEW 17 of 20

Figure 11. Comparison of single-classifier models’ performance with and without using the SMOTE
algorithm.

Recently, several studies have employed deep learning algorithms for boosting the
efficiency of training models, as shown in Table 3. However, these studies do not study
networks in the IoT domain completely, i.e., to identify irregularities quickly and accu-
rately in order to detect and react to IoT attacks and to overcome machine and deep learn-
ing issues such as acquiring the optimal number of neurons, overfitting, and parameters
that accomplish an ideal model objective.

The Table 4 presents a comparative analysis of the latest IoT cybersecurity solutions,
showcasing the performance results achieved by different studies in the field. Each row
represents a specific research reference, including the year of the study, the dataset used,
the methodology employed, the algorithms utilized, and the accuracy results as percent-
ages.

Table 4. Comparative analysis of the latest IoT cybersecurity solutions.

Ref. Data Used Methodology Used Accuracy (%)
Mendonça et al. [23] DS2OS, CICIDS2017 Deep learning 98

Popoola et al. [26] BoT-IoT
LAE for dimensionality re-

duction and BLSTM classifier 91.89

Alharbi et al. [27] N-BaIoT A Local–Global best Bat Al-
gorithm for Neural Networks

90

Saharkhizan et al. [30] Modbus/TCP net-
work traffic

LSTM and Ensemble learning 98.99

Pokhrel et al. [31] BoT-IoT Deep learning 87.4

Proposed BoT-IoT CatBoosting XGBoosting
98.19
98.52

6. Conclusions
The objective of this dissertation is to implement an intelligent system for IoT protec-

tion devices using a novel deep learning-based model to manage extremely complex da-
tasets. Additional research has led to the development of intrusion detection systems with
centralized architecture, deep learning, and machine learning.

To overcome numerous obstacles, such as overfitting, extended training times, and
low model accuracy, the proposed models will combine deep learning approaches with
feature engineering. On class-imbalanced data, the oversampling technique (SMOTE) was

Figure 11. Comparison of single-classifier models’ performance with and without using the
SMOTE algorithm.

Recently, several studies have employed deep learning algorithms for boosting the
efficiency of training models, as shown in Table 3. However, these studies do not study
networks in the IoT domain completely, i.e., to identify irregularities quickly and accurately
in order to detect and react to IoT attacks and to overcome machine and deep learning
issues such as acquiring the optimal number of neurons, overfitting, and parameters that
accomplish an ideal model objective.

The Table 4 presents a comparative analysis of the latest IoT cybersecurity solutions,
showcasing the performance results achieved by different studies in the field. Each row
represents a specific research reference, including the year of the study, the dataset used, the
methodology employed, the algorithms utilized, and the accuracy results as percentages.

Information 2023, 14, 550 17 of 19

Table 4. Comparative analysis of the latest IoT cybersecurity solutions.

Ref. Data Used Methodology Used Accuracy (%)

Mendonça et al. [23] DS2OS, CICIDS2017 Deep learning 98

Popoola et al. [26] BoT-IoT LAE for dimensionality reduction
and BLSTM classifier 91.89

Alharbi et al. [27] N-BaIoT A Local–Global best Bat Algorithm
for Neural Networks 90

Saharkhizan et al. [30] Modbus/TCP network traffic LSTM and Ensemble learning 98.99
Pokhrel et al. [31] BoT-IoT Deep learning 87.4

Proposed BoT-IoT CatBoosting XGBoosting 98.19
98.52

6. Conclusions

The objective of this dissertation is to implement an intelligent system for IoT pro-
tection devices using a novel deep learning-based model to manage extremely complex
datasets. Additional research has led to the development of intrusion detection systems
with centralized architecture, deep learning, and machine learning.

To overcome numerous obstacles, such as overfitting, extended training times, and low
model accuracy, the proposed models will combine deep learning approaches with feature
engineering. On class-imbalanced data, the oversampling technique (SMOTE) was applied,
whereas the efficacy of fifteen algorithms was evaluated on class-balanced data. CatBoost
and XGBoost outperform deep learning models that learn from experience, especially
when identifying future cyberattacks against IoT networks. A real-time dataset BoT-IoT
represents enormous volumes of traffic that are affected by multiple types of attacks.
CatBoost and XGBoost classifiers attained respective accuracy rates of 98.19% and 98.50%.
The best classifiers are consistent and dependable across the BoT-IoT dataset, making them
viable options for detecting IoT network attacks regardless of the implementation of the
SMOTE algorithm.

The future of this research project will include comparing distributed deep learning
with other data using different ensemble learning algorithms and neural network archi-
tectures. Additionally, we plan to study the detection of mobile network intrusions with
ensemble learning algorithms, feature engineering, and optimization techniques.

Author Contributions: Conceptualization, M.K. and A.D.A.; methodology, O.A.A., M.K. and A.D.A.;
software, O.A.A.; validation, O.A.A.; formal analysis, M.K.; investigation, O.A.A.; resources, O.A.A.;
data curation, O.A.A.; writing—original draft preparation, O.A.A.; writing—review and editing, M.K.
and A.D.A.; visualization, O.A.A.; supervision, M.K. and A.D.A.; project administration, M.K. and
A.D.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The publicly available dataset BoT-IoT dataset was analyzed in this
study. This data can be found here: https://ieee-dataport.org/documents/bot-iot-dataset, accessed
on 24 September 2023.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vermesan, O.; Friess, P.; Guillemin, P.; Giaffreda, R.; Grindvoll, H.; Eisenhauer, M.; Serrano, M.; Moessner, K.; Spirito, M.; Blystad,

L.-C. Internet of Things beyond the Hype: Research, Innovation and Deployment. In Building the Hyperconnected Society-Internet of
Things Research and Innovation Value Chains, Ecosystems and Markets; River Publishers: Gistrup, Denmark, 2022; pp. 15–118; ISBN
1-00-333745-7.

2. Madina, S.F.; Islam, M.S.; Alamgir, F.M.; Ferdous, M.F. Internet of Things (IoT)-Based Industrial Monitoring System. In Industrial
Internet of Things; CRC Press: Boca Raton, FL, USA, 2022; pp. 55–86; ISBN 1-00-310226-3.

3. Huang, L. Design of an IoT DDoS Attack Prediction System Based on Data Mining Technology. J. Supercomput. 2022, 78, 4601–4623.
[CrossRef]

4. Krichen, M. A Survey on Formal Verification and Validation Techniques for Internet of Things. Appl. Sci. 2023, 13, 8122. [CrossRef]

https://ieee-dataport.org/documents/bot-iot-dataset
https://doi.org/10.1007/s11227-021-04055-1
https://doi.org/10.3390/app13148122

Information 2023, 14, 550 18 of 19

5. Idrissi, I.; Azizi, M.; Moussaoui, O. IoT Security with Deep Learning-Based Intrusion Detection Systems: A Systematic Literature
Review. In Proceedings of the 2020 Fourth International Conference on Intelligent Computing in Data Sciences (ICDS), Fez,
Morocco, 21–23 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–10.

6. Krichen, M. Strengthening the Security of Smart Contracts through the Power of Artificial Intelligence. Computers 2023, 12, 107.
[CrossRef]

7. Abdalzaher, M.S.; Krichen, M.; Yiltas-Kaplan, D.; Ben Dhaou, I.; Adoni, W.Y.H. Early Detection of Earthquakes Using IoT and
Cloud Infrastructure: A Survey. Sustainability 2023, 15, 11713. [CrossRef]

8. Majid, M.; Habib, S.; Javed, A.R.; Rizwan, M.; Srivastava, G.; Gadekallu, T.R.; Lin, J.C.-W. Applications of Wireless Sensor
Networks and Internet of Things Frameworks in the Industry Revolution 4.0: A Systematic Literature Review. Sensors 2022,
22, 2087. [CrossRef]

9. Oseni, A.; Moustafa, N.; Creech, G.; Sohrabi, N.; Strelzoff, A.; Tari, Z.; Linkov, I. An Explainable Deep Learning Framework
for Resilient Intrusion Detection in IoT-Enabled Transportation Networks. IEEE Trans. Intell. Transp. Syst. 2022, 24, 1000–1014.
[CrossRef]

10. Nasir, M.; Javed, A.R.; Tariq, M.A.; Asim, M.; Baker, T. Feature Engineering and Deep Learning-Based Intrusion Detection
Framework for Securing Edge IoT. J. Supercomput. 2022, 78, 8852–8866. [CrossRef]

11. Baduge, S.K.; Thilakarathna, S.; Perera, J.S.; Arashpour, M.; Sharafi, P.; Teodosio, B.; Shringi, A.; Mendis, P. Artificial Intelligence
and Smart Vision for Building and Construction 4.0: Machine and Deep Learning Methods and Applications. Autom. Constr.
2022, 141, 104440. [CrossRef]

12. Boulila, W.; Driss, M.; Alshanqiti, E.; Al-Sarem, M.; Saeed, F.; Krichen, M. Weight Initialization Techniques for Deep Learning
Algorithms in Remote Sensing: Recent Trends and Future Perspectives. In Advances on Smart and Soft Computing; Saeed, F.,
Al-Hadhrami, T., Mohammed, E., Al-Sarem, M., Eds.; Springer: Singapore, 2022; pp. 477–484.

13. Islam, U.; Muhammad, A.; Mansoor, R.; Hossain, M.S.; Ahmad, I.; Eldin, E.T.; Khan, J.A.; Rehman, A.U.; Shafiq, M. Detection
of Distributed Denial of Service (DDoS) Attacks in IOT Based Monitoring System of Banking Sector Using Machine Learning
Models. Sustainability 2022, 14, 8374. [CrossRef]

14. Vadivelan, N.; Bhargavi, K.; Kodati, S.; Nalini, M. Detection of Cyber Attacks Using Machine Learning. In AIP Conference
Proceedings; AIP Publishing LLC: Melville, NY, USA, 2022; Volume 2405, p. 030003.

15. Ahmad, R.; Alsmadi, I.; Alhamdani, W.; Tawalbeh, L. A Comprehensive Deep Learning Benchmark for IoT IDS. Comput. Secur.
2022, 114, 102588. [CrossRef]

16. Iwendi, C.; Rehman, S.U.; Javed, A.R.; Khan, S.; Srivastava, G. Sustainable Security for the Internet of Things Using Artificial
Intelligence Architectures. ACM Trans. Internet Technol. 2021, 21, 1–22. [CrossRef]

17. Fernández, A.; Garcia, S.; Herrera, F.; Chawla, N.V. SMOTE for Learning from Imbalanced Data: Progress and Challenges,
Marking the 15-Year Anniversary. J. Artif. Intell. Res. 2018, 61, 63–905. Available online: https://www.jair.org/index.php/jair/
article/view/11192 (accessed on 24 September 2023). [CrossRef]

18. Torgo, L.; Ribeiro, R.P.; Pfahringer, B.; Branco, P. SMOTE for Regression. In Progress in Artificial Intelligence; Correia, L., Reis, L.P.,
Cascalho, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 378–389.

19. Khan, A.; Cotton, C. Efficient Attack Detection in IoT Devices Using Feature Engineering-Less Machine Learning. arXiv 2023,
arXiv:2301.03532. [CrossRef]

20. Krichen, M. Convolutional Neural Networks: A Survey. Computers 2023, 12, 151. [CrossRef]
21. Aswad, F.M.; Ahmed, A.M.S.; Alhammadi, N.A.M.; Khalaf, B.A.; Mostafa, S.A. Deep Learning in Distributed Denial-of-Service

Attacks Detection Method for Internet of Things Networks. J. Intell. Syst. 2023, 32, 20220155. [CrossRef]
22. A Heuristic Distributed Scheme to Detect Falsification of Mobility Patterns in Internet of Vehicles. Available online: https:

//ieeexplore.ieee.org/abstract/document/9445064 (accessed on 24 September 2023).
23. Mendonça, R.V.; Silva, J.C.; Rosa, R.L.; Saadi, M.; Rodriguez, D.Z.; Farouk, A. A Lightweight Intelligent Intrusion Detection

System for Industrial Internet of Things Using Deep Learning Algorithms. Expert Syst. 2022, 39, e12917. [CrossRef]
24. Ferrag, M.A.; Friha, O.; Maglaras, L.; Janicke, H.; Shu, L. Federated Deep Learning for Cyber Security in the Internet of Things:

Concepts, Applications, and Experimental Analysis. IEEE Access 2021, 9, 138509–138542. [CrossRef]
25. Popoola, S.I.; Ande, R.; Adebisi, B.; Gui, G.; Hammoudeh, M.; Jogunola, O. Federated Deep Learning for Zero-Day Botnet Attack

Detection in IoT-Edge Devices. IEEE Internet Things J. 2021, 9, 3930–3944. [CrossRef]
26. Popoola, S.I.; Adebisi, B.; Hammoudeh, M.; Gui, G.; Gacanin, H. Hybrid Deep Learning for Botnet Attack Detection in the

Internet-of-Things Networks. IEEE Internet Things J. 2020, 8, 4944–4956. [CrossRef]
27. Alharbi, A.; Alosaimi, W.; Alyami, H.; Rauf, H.T.; Damaševičius, R. Botnet Attack Detection Using Local Global Best Bat Algorithm

for Industrial Internet of Things. Electronics 2021, 10, 1341. [CrossRef]
28. Huma, Z.E.; Latif, S.; Ahmad, J.; Idrees, Z.; Ibrar, A.; Zou, Z.; Alqahtani, F.; Baothman, F. A Hybrid Deep Random Neural Network

for Cyberattack Detection in the Industrial Internet of Things. IEEE Access 2021, 9, 55595–55605. [CrossRef]
29. Chowdhury, M.; Ray, B.; Chowdhury, S.; Rajasegarar, S. A Novel Insider Attack and Machine Learning Based Detection for the

Internet of Things. ACM Trans. Internet Things 2021, 2, 1–23. [CrossRef]
30. Saharkhizan, M.; Azmoodeh, A.; Dehghantanha, A.; Choo, K.-K.R.; Parizi, R.M. An Ensemble of Deep Recurrent Neural Networks

for Detecting IoT Cyber Attacks Using Network Traffic. IEEE Internet Things J. 2020, 7, 8852–8859. [CrossRef]
31. Pokhrel, S.; Abbas, R.; Aryal, B. IoT Security: Botnet Detection in IoT Using Machine Learning. arXiv 2021, arXiv:2104.02231.

https://doi.org/10.3390/computers12050107
https://doi.org/10.3390/su151511713
https://doi.org/10.3390/s22062087
https://doi.org/10.1109/TITS.2022.3188671
https://doi.org/10.1007/s11227-021-04250-0
https://doi.org/10.1016/j.autcon.2022.104440
https://doi.org/10.3390/su14148374
https://doi.org/10.1016/j.cose.2021.102588
https://doi.org/10.1145/3448614
https://www.jair.org/index.php/jair/article/view/11192
https://www.jair.org/index.php/jair/article/view/11192
https://doi.org/10.1613/jair.1.11192
https://doi.org/10.5121/ijcsit.2022.14605
https://doi.org/10.3390/computers12080151
https://doi.org/10.1515/jisys-2022-0155
https://ieeexplore.ieee.org/abstract/document/9445064
https://ieeexplore.ieee.org/abstract/document/9445064
https://doi.org/10.1111/exsy.12917
https://doi.org/10.1109/ACCESS.2021.3118642
https://doi.org/10.1109/JIOT.2021.3100755
https://doi.org/10.1109/JIOT.2020.3034156
https://doi.org/10.3390/electronics10111341
https://doi.org/10.1109/ACCESS.2021.3071766
https://doi.org/10.1145/3466721
https://doi.org/10.1109/JIOT.2020.2996425

Information 2023, 14, 550 19 of 19

32. Latif, S.; Zou, Z.; Idrees, Z.; Ahmad, J. A Novel Attack Detection Scheme for the Industrial Internet of Things Using a Lightweight
Random Neural Network. IEEE Access 2020, 8, 89337–89350. [CrossRef]

33. The Bot-Iot Dataset; IEEE: Piscataway, NJ, USA, 2019; Volume 5.
34. Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Umar, A.M.; Linus, O.U.; Arshad, H.; Kazaure, A.A.; Gana, U.; Kiru, M.U.

Comprehensive Review of Artificial Neural Network Applications to Pattern Recognition. IEEE Access 2019, 7, 158820–158846.
[CrossRef]

35. Garavand, A.; Behmanesh, A.; Aslani, N.; Sadeghsalehi, H.; Ghaderzadeh, M. Towards Diagnostic Aided Systems in Coronary
Artery Disease Detection: A Comprehensive Multiview Survey of the State of the Art. Int. J. Intell. Syst. 2023, 2023, 6442756.
Available online: https://www.hindawi.com/journals/ijis/2023/6442756/ (accessed on 24 September 2023). [CrossRef]

36. Fan, C.; Chen, M.; Wang, X.; Wang, J.; Huang, B. A Review on Data Preprocessing Techniques toward Efficient and Reliable
Knowledge Discovery From Building Operational Data. Front. Energy Res. 2021, 9, 652801. [CrossRef]

37. Ghaderzadeh, M.; Aria, M.; Asadi, F. X-Ray Equipped with Artificial Intelligence: Changing the COVID-19 Diagnostic Paradigm
during the Pandemic. BioMed Res. Int. 2021, 2021, e9942873. [CrossRef]

38. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority over-Sampling Technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

39. Nagisetty, A.; Gupta, G.P. Framework for Detection of Malicious Activities in IoT Networks Using Keras Deep Learning Library.
In Proceedings of the 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), Erode,
India, 27–29 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 633–637.

40. González, S.; García, S.; Del Ser, J.; Rokach, L.; Herrera, F. A Practical Tutorial on Bagging and Boosting Based Ensembles for
Machine Learning: Algorithms, Software Tools, Performance Study, Practical Perspectives and Opportunities. Inf. Fusion 2020, 64,
205–237. [CrossRef]

41. Acosta, M.R.C.; Ahmed, S.; Garcia, C.E.; Koo, I. Extremely Randomized Trees-Based Scheme for Stealthy Cyber-Attack Detection
in Smart Grid Networks. IEEE Access 2020, 8, 19921–19933. [CrossRef]

42. Seyghaly, R.; Garcia, J.; Masip-Bruin, X.; Varnamkhasti, M.M. Interference Recognition for Fog Enabled IoT Architecture Using a
Novel Tree-Based Method. In Proceedings of the 2022 IEEE International Conference on Omni-Layer Intelligent Systems (COINS),
Barcelona, Spain, 1–3 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6.

43. Alghamdi, R.; Bellaiche, M. Evaluation and Selection Models for Ensemble Intrusion Detection Systems in IoT. IoT 2022, 3,
285–314. [CrossRef]

44. Almomani, O.; Almaiah, M.A.; Alsaaidah, A.; Smadi, S.; Mohammad, A.H.; Althunibat, A. Machine Learning Classifiers for
Network Intrusion Detection System: Comparative Study. In Proceedings of the 2021 International Conference on Information
Technology (ICIT), Amman, Jordan, 14–15 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 440–445.

45. Heinrich, C. On the Number of Bins in a Rank Histogram. Q. J. R. Meteorol. Soc. 2021, 147, 544–556. [CrossRef]
46. Wang, K.; Lu, J.; Liu, A.; Zhang, G.; Xiong, L. Evolving Gradient Boost: A Pruning Scheme Based on Loss Improvement Ratio for

Learning under Concept Drift. IEEE Trans. Cybern. 2021, 53, 2110–2123. [CrossRef] [PubMed]
47. Ding, Y.; Zhu, H.; Chen, R.; Li, R. An Efficient AdaBoost Algorithm with the Multiple Thresholds Classification. Appl. Sci. 2022,

12, 5872. [CrossRef]
48. Mienye, I.D.; Sun, Y. A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects. IEEE Access 2022, 10,

99129–99149. [CrossRef]
49. Wang, Q.; Wei, X. The Detection of Network Intrusion Based on Improved Adaboost Algorithm. In Proceedings of the 2020 4th

International Conference on Cryptography, Security and Privacy, Nanjing, China, 10–12 January 2020; pp. 84–88.
50. Mishra, D.; Naik, B.; Nayak, J.; Souri, A.; Dash, P.B.; Vimal, S. Light Gradient Boosting Machine with Optimized Hyperparameters

for Identification of Malicious Access in IoT Network. Digit. Commun. Netw. 2023, 9, 125–137. [CrossRef]
51. Seth, S.; Singh, G.; Kaur Chahal, K. A Novel Time Efficient Learning-Based Approach for Smart Intrusion Detection System. J. Big

Data 2021, 8, 111. [CrossRef]
52. Sanjeetha, R.; Raj, A.; Saivenu, K.; Ahmed, M.I.; Sathvik, B.; Kanavalli, A. Detection and Mitigation of Botnet Based DDoS Attacks

Using Catboost Machine Learning Algorithm in SDN Environment. Int. J. Adv. Technol. Eng. Explor. 2021, 8, 445.
53. Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased Boosting with Categorical Features. In

Advances in Neural Information Processing Systems; Neural Information Processing Systems Foundation, Inc. (NeurIPS): La Jolla,
CA, USA, 2018; Volume 31.

54. Ghaderzadeh, M.; Aria, M.; Hosseini, A.; Asadi, F.; Bashash, D.; Abolghasemi, H. A Fast and Efficient CNN Model for B-ALL
Diagnosis and Its Subtypes Classification Using Peripheral Blood Smear Images. Int. J. Intell. Syst. 2022, 37, 5113–5133. Available
online: https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22753 (accessed on 24 September 2023). [CrossRef]

55. Hosseini, A.; Eshraghi, M.A.; Taami, T.; Sadeghsalehi, H.; Hoseinzadeh, Z.; Ghaderzadeh, M.; Rafiee, M. A Mobile Application
Based on Efficient Lightweight CNN Model for Classification of B-ALL Cancer from Non-Cancerous Cells: A Design and
Implementation Study. Inform. Med. Unlocked 2023, 39, 101244. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2020.2994079
https://doi.org/10.1109/ACCESS.2019.2945545
https://www.hindawi.com/journals/ijis/2023/6442756/
https://doi.org/10.1155/2023/6442756
https://doi.org/10.3389/fenrg.2021.652801
https://doi.org/10.1155/2021/9942873
https://doi.org/10.1613/jair.953
https://doi.org/10.1016/j.inffus.2020.07.007
https://doi.org/10.1109/ACCESS.2020.2968934
https://doi.org/10.3390/iot3020017
https://doi.org/10.1002/qj.3932
https://doi.org/10.1109/TCYB.2021.3109796
https://www.ncbi.nlm.nih.gov/pubmed/34613927
https://doi.org/10.3390/app12125872
https://doi.org/10.1109/ACCESS.2022.3207287
https://doi.org/10.1016/j.dcan.2022.10.004
https://doi.org/10.1186/s40537-021-00498-8
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22753
https://doi.org/10.1002/int.22753
https://doi.org/10.1016/j.imu.2023.101244

	Introduction
	Literature Review
	Materials and Methods
	Bot-IoT Dataset
	The Proposed Model
	Data Pre-Processing
	Feature Engineering Techniques

	Ensemble Learning
	Evaluation Metrics

	Results
	Experimental Settings
	Experimental Results
	Experiments without Using the SMOTE Algorithm
	Experiments Using the SMOTE Algorithm

	Discussion
	Conclusions
	References

