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Abstract: The growth of structured, semi-structured, and unstructured data produced by the new
applications is a result of the development and expansion of social networks, the Internet of Things,
web technology, mobile devices, and other technologies. However, as traditional databases became
less suitable to manage the rapidly growing quantity of data and variety of data structures, a new
class of database management systems named NoSQL was required to satisfy the new requirements.
Although NoSQL databases are generally schema-less, significant research has been conducted on
their design. A literature review presented in this paper lets us claim the need to create modeling
techniques to describe how to structure data in NoSQL databases. Key-value is one of the NoSQL
families that has received too little attention, especially in terms of its design methodology. Most
studies have focused on the other families, like column-oriented and document-oriented. This
paper aims to present a design approach named KVMod (key-value modeling) specific to key-value
databases. The purpose is to provide to the scientific community and engineers with a methodology
for the design of key-value stores using the maximum automation and therefore the minimum human
intervention, which equals the minimum number of errors. A software tool called KVDesign has been
implemented to automate the proposed methodology and, thus, the most time-consuming database
modeling tasks. The complexity is also discussed to assess the efficiency of our proposed algorithms.

Keywords: data modeling; database design; NoSQL; key-value; MDA

1. Introduction

The volume and variety of data that are produced, modified, analyzed, and archived
have rapidly increased as a result of the rise in user-driven content. Moreover, a large
quantity of data is being produced by new sources, such as sensors, GPS, automatic trackers,
and monitoring systems. These huge volumes of data, often named Big Data, are posing
new challenges and opportunities for storage, analysis, and archiving [1,2].

Despite being useful for structured data, the classic relational approach to database
design faced considerable difficulties as data requirements changed. Flexibility posed a
significant issue. Because relational databases frequently used rigid schemas, it was difficult
to deal with evolving data structures or new data types without making major modifications.
This rigidity limited the capacity of companies to be agile and innovative as they dealt
with a variety of dynamic data sources.The growing need for high availability presented
another challenge. Relational databases have generally been single-server applications,
rendering them exposed to hardware issues and service interruptions. Ensuring continuous
access to data required expensive hardware investments and intricate failover mechanisms.
In response to the need to solve these issues associated with the massive volumes and
variety of data, a class of new types of systems identified as NoSQL have emerged [3].

However, NoSQL systems have some characteristics in common [4,5]:

1. They adopt flexible models of data, mostly schema-less;
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2. Eventual consistency transactions are reached by relaxing the ACID (Atomicity, Con-
sistency, Isolation, and Durability) properties to scale out while achieving high avail-
ability and low latency;

3. Query performance is achieved not only through data co-location but also through
horizontal and elastic scalability;

4. Data can be easily replicated and horizontally partitioned over remote and local servers.

From another perspective, these systems are heterogeneous in terms of their char-
acteristics, especially their data models. Because it is widely accepted by the scientific
community, the family-based classification is adopted in this study [6].

• Key-value databases store data as a dictionary. Every item in the database is stored as
a pair <k,v>, where k stands for key and represents an attribute name and v its value.
Key-value databases ensure high performance in reading and writing operations.
Redis and Riak KV are popular systems in this category;

• Document-oriented databases extend the key-value concepts by representing the
value as a document encoded in conventional semi structured formats (like JSON).
The advantage of this model is that it can retrieve a set of hierarchically structured in-
formation from a single key. MongoDB and CouchDB are document-oriented systems;

• Column-oriented databases: in a database of this family, data are grouped into column
families whose schemas are flexible. A column family contains a set of columns.
A column has a name, a timestamp, and a value with a complex or simple structure.
Each column is stored in a separate location. Cassandra and HBase are examples of
column-oriented systems;

• Graph databases represent a database as a graph structure. A graph is composed of a
set of nodes (i.e., objects) and a set of edges describing the relationships between the
nodes. These databases are efficient when data are strongly connected in which each
of its nodes is reachable from the others. Neo4j is one of these systems.

These NoSQL systems initially appeared at the physical level, and, therefore, at the
beginning, they lacked defined design approaches. Database design for relational databases,
which is usually based on conceptual schemas such as Entity-Relationship or class diagrams,
is not sufficient to design NoSQL databases. Database designers in the NoSQL context must
capture not only the data to be stored but also how these data will be handled. Traditional
data design approaches do not offer a suitable solution for these problems because they
were created essentially to satisfy the ACID properties. In NoSQL, a database is considered
“schemaless” because it does not require a predefined schema like relational databases;
however, Atzeni [7] claims that the effects of data modeling can be beneficial and present
two research lines. First, the diversity of systems and models could create difficulties for
the database stakeholders. Therefore, modeling-based approaches get their legitimacy from
the need to standardize access. Second, data models can serve as a basis for describing
approaches at the logical and physical levels. Similarly, Rani and Kaur [8] argue that
modeling NoSQL databases is still necessary in order to properly understand data storage.
Chebotko et al. [9] also demonstrate a methodology for modeling a Cassandra database
from a conceptual data model and a set of access queries. The authors used an example
to demonstrate how structuring data in NoSQL stores can influence data size and query
performance. Roy-Hubara et al. [10] proposed a method to create a graph database schema
from an ERD (Entity Relationship Diagram) via a set of mapping rules.

The previously mentioned approaches require designers to manually apply a series
of guidelines or heuristics to design a NoSQL database; this is why the MDA [11] can
provide some automation and thus minimize human intervention. The MDA (Model-
Driven Approach) relies on three layers to specify systems: the Computation-Independent
Model (CIM), the Platform-Independent Model (PIM), and the Platform-Specific Model
(PSM) [6]. The MDA is based on metamodels that are defined at each level; any model
created is a metamodel instance. Then, this approach uses a series of model transformations
to switch from one model to another [6]. De la Vega et al. present Mortadelo, a new
methodology to design NoSQL stores using MDA [12]. Although the Mortadelo authors
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provide consistent work, their proposal supported only column and document stores. Ait
Brahim et al. [13] use an automatic MDA-based approach to transform UML conceptual
schemas into NoSQL ones. The study has targeted column-, document-, and graph-oriented
systems. Furthermore, Abdelhedi et al. [14] enrich the work of Ait Brahim et al. by dealing
with OCL constraints.

NoSQL modeling works focused on column, document, and graph databases. The key-
value databases also require works dealing with their particularities and treating them
deeply. The existing works in NoSQL data modeling can be exploited to introduce a key-
value data-modeling process since column, document, and graph databases can be seen as
extended key-value ones [15,16]. To address this gap, this paper aims to present KVMod,
a model-driven process for key-value database design. Regarding the literature search,
hardly any studies, if any, have addressed this crucial topic. KVMod, to the best of our
knowledge, is the first key-value data-modeling methodology based on MDA principles.
This process claims to create a conceptual data model and an access query model to capture
the data and functional requirements. Then, via a set of mapping rules, the process aims to
automatically generate logical models and physical implementations for NoSQL key-value
systems. In this paper, the physical level is meant to be the detailed data model provided
by the specific DBMS. To visualize data models, a tool called KVDesign was developed to
automate key-value data design according to the proposed methodology.

The rest of the article is organized as follows: Section 2 describes the running example
used throughout the article and presents the key-value databases. Section 3 reviews the
related works. Then, Section 4 details the different phases of the proposed data-modeling
methodology. Section 5 assesses the modeling methodology and presents a software tool
that implements it. Finally, Section 6 is dedicated to conclusions and future work.

2. Background

In order to make the paper self-contained, this section gives some background infor-
mation on the technology key-value data stores. It presents the example used to illustrate
the study concepts.

2.1. Running Example

This study relies on the “airflights” database, which represents an airline flight manage-
ment platform around the world. A conceptual data model for the airline flight management
platform is shown in Figure 1 using UML language. As it appears in the model, this plat-
form manages Aircraft, Flights, Airports, and Passengers as principal entities. A flight is
ensured by one and only one aircraft, while an aircraft can ensure several flights. A flight can
be subject to several localization operations. Passengers can benefit from web service access
during the flight using a free hotspot that logs visited sites.

The air flight management application, used to manage air flights, employs data from
the class diagram of Figure 1. The following patterns are used to retrieve this data:
Q1 Registration number and capacity of aircraft whose capacity is within a given interval.

Q2 Airports of a country (name, I.C.A.O code, and city) sorted by ascending order of cities.
Q3 Full name and passport number of passengers on a specific flight.
Q4 List of passengers departing from a country on a specific date, sorted by ascending order
of departure cities, then by ascending order of departure time, the destination city must be
also displayed.
Q5 Passengers departing on a specific date, sorted by ascending order of the departed country
and then ascending order of departed cities. The flight code and the departure time must
be displayed
Q6 List of websites accessed by passengers on a given flight. The list is sorted in ascending
order of passenger ID, then in descending chronological order of the access time.
Q7 Aircraft departed from an airport during a given period. The departure time and date must
be displayed.
Q8 Localization data (geographical coordinates, crossing date, and time) of an aircraft used
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in a flight in descending chronological order.
Q9 List of the Flights on a specific date, sorted in ascending order of flight level. Departure
and arrival cities must be displayed.

Figure 1. “Airflights database” running example schema.

2.2. Key-Value Family Stores

A key-value database is represented as a matrix of two columns: the first column
contains the keys, and the second one contains the values related to the keys. In the context
of programming languages, such a matrix is known as a dictionary or an associative array.
The data can be easily accessed by looking up the key, which is a unique value in the set.
These structures provide very efficient access; the data are accessible in an O(1) average
time [17].

Relying on data persistence, key-value databases can be classified into three types [4]:

1. In-memory key-value systems, allowing particularly fast access to data using memory
to store it, such as Memcached;

2. Persistence key-value systems, using disk to store data, such as Riak KV system;
3. Hybrid key-value systems, that put data in memory and save them if necessary, such

as Redis.

The key-value systems offer several data types [18]: strings, lists, sets, hashes, and zsets
(zset is a map of string members and numerical scores, ordered by scores). Furthermore,
the new versions include additional types suitable for new use cases [19]. Redis and Riak
KV are some popular members of this family. Because of this, Redis will be detailed later
and used to illustrate how to model a key-value database.

To ignore the technical details at the physical level, a logical data model has been
defined between the conceptual and physical models. The advantage would be the usability
of this study to design databases for other key-value systems. At the physical level,
a hash-like data structure is used. Hashes are used to store a map of attributes and their
values against a key [20]. Application developers often use Redis hashes, named HSets,
to represent their domain objects. In a logical model, the word “associative array” is used to
designate these data types.

Key-value databases are frequently referred to as “schemaless”, which seems to imply
that creating a model before work begins is not required. These systems offer structures
that are not always linked together in a relational sense. However, for example, an air flight
database will include various business objects like Airport, Flight, Aircraft, and Passenger
that need to be linked. One of the first things to decide is how to structure the data. This
work represents a key-value database as a set of business objects and models it as a set
of n collections, {C1, C2,. . . .,Cn}. Each collection Ci is itself a series of associative arrays that
are accessible from the identifier Ci:k j, where k j is the key associated with the jth array in
the ith collection Ci. The value associated can be seen as a mathematical matrix with two
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columns: the first is the column of fields, and the second is the column of values associated
with the fields. An example is illustrated in Figure 2 which represents an airport object
with the fields: name, city, country, and ICAO code.

Figure 2. Example of an associative array in a key-value DBMS.

In this study, the set {k1, k2, . . . , k j, . . . , km} is considered a sequence of integers in arith-
metic progression with an increment step of 1 (m represents the number of associative arrays
within a collection). Representing a key of an associative array, the Ci : k j is automatically
incremented by the DBMS to ensure the uniqueness of the identifier values of the keys.
Figure 3 presents an example of a collection in the key-value context.

Figure 3. Associative arrays of a collection in key-value DBMS.
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3. Related Works

With the arrival of NoSQL systems, various studies became interested in data model-
ing, proposing different approaches that have been developed to address this topic. Table 1
summarizes a list of these approaches.

Table 1. Approaches for designing NoSQL databases.

Study Family 1 Conceptual Logical Physical Access Query
Support MDA Use

Chebotko et al. [9] Col ER Chebotko
diagram Cassandra Yes No

De la
Vega et al. [12]

-Doc
-Col ER

-Column
metamodel-
Document
metamodel

Cassandra
Mongo Yes Yes

Shoval et al. [10] G ER ER Neo4j No No

Gwendal et al. [21] G
-ERD (for data)

-OCL (for
constraints)

-Graph
metamodel

(data) -Gremlin
(constraints)

Neo4j
OrientDB No Yes

Ait
Brahim et al. [13]

-Doc
-Col
-G

ER Generic Logical
Metamodel

Mongo
Cassandra

Neo4j
No Yes

Martinez-
Mosquera et al. [22] KV ER ER Generic No Yes

Rossel et al. [23] KV ER Rossel Generic No No

1 KV: key-Value; Doc: Document; Col: Column; G: Graph.

One of the earliest works on NoSQL database design was provided by Li [23]. His
work introduced a set of techniques to transform traditional relational databases into HBase.
To build an HBase database schema, first a relational schema would need to be created,
which could take more time than the creation of a NoSQL schema directly from a conceptual
data one.

Imam et al. proposed a series of document-oriented guidelines to design logical and
physical models [24]. This work may serve as a learning tool for beginners to learn how
industry experts use the guidelines and analyze the relationships between datasets.

In reference [25], Dos Santos Mello and De Lima present a design approach for con-
verting an ERD (i.e., entity relationship diagram [26]) into a document-oriented schema and
then into a MongoDB physical one. The authors highlight how access patterns are important
when designing a NoSQL store because, based on this, some mapping strategies might
be more appropriate than others. Due to this, authors have enriched Entity-Relationship
diagrams with details about the estimated application workload, which is expressed using
an XML-like technique [27].

Chebotko et al. [9] provided the basis for a query-driven methodology to model a
column-oriented database. Data and access queries are captured, then, using a set of
mapping rules, the methodology explains how to produce the logical column family model
and the physical one under the Apache Cassandra system.

The authors of reference [13] propose an MDA-based approach that generates several
physical data models from a conceptual schema. Unfortunately, the access queries were
not considered despite their importance, mainly for accelerating data access.

Abdelhedi et al. enrich the previous work by also considering the constraints dimen-
sion with an MDA approach, despite the fact that access queries were not supported [14].
The result is a physical data model and an OCL code that describes the integrity constraints
of the database.
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The work presented in [12] is one of the few works that have covered the various
aspects of NOSQL data modeling. It presents a query-driven methodology to model a
document- or column-oriented database. Initially, the methodology captures the data
and organizes it in a structural model, then captures the access queries as a query model.
Afterwards, MDA concepts are used to generate the logical and physical models in a
specified NOSQL family through a series of transformation rules. Finally, optimization
techniques are used to eventually merge collections or column families and reduce data
duplication and, therefore, the database size.

Shoval et al. proposed a data-modeling process for graph-oriented databases [10].
Firstly, an ERD would be created to represent the different data in a domain. In a second
step, an adjusted version of the ERD should be developed to convert n-ary, inheritance,
and aggregation relationships to ordinary binary relationships. In the last step, a graph
database schema would be created with related DDL (i.e., data definition language) code
on the targeted system.

Gwendal et al. [21], on the other hand, worked on graph data modeling using the
MDA approach. Moreover, the paper supports database constraints. So, a physical data
graph model is produced to organize domain data, and a gremlin code is also generated to
represent data constraints.

Garcia-Molina et al. present a unified metamodel for relational and NoSQL paradigms,
describing how each data model is integrated and mapped [28]. At the conceptual level,
the study supports the different relationships between entities like aggregation, gener-
alization, references, and edges. Their work presents the transformation rules to apply
in order to obtain physical models. The authors argue that the work is useful for data
modeling, whether forward or reverse engineering, but that the heterogeneity of systems
and continuous innovation in NOSQL technology are barriers to applicability.

It should be noted that key-value modeling did not get enough attention in comparison
with other NOSQL families. Behind this, key-value databases are often used without a
predefined schema. For reference, some papers on key-value modeling are cited:

Martinez-Mosquera et al. [29] propose an approach for key-value data modeling using
MDA concepts. The proposal is suitable for unstructured or semi-structured data, but it
can be extended to structured data with some changes. Modeling activity has been divided
into three phases expressed in UML: deployment diagram, class diagram, and key-value
model. Initially, a UML deployment diagram is created to specify the physical resources at
the conceptual level. Secondly, it should create a UML class diagram as an intermediate
step before applying a set of transformation rules using the QVT standard, and finally,
the key-value model has been produced.

Rossel et al. illustrate useful concepts for key-value big data design [22]. At first,
a class diagram is created to capture and structure data, and then a series of rules should
be applied to obtain the final schema of the datasets.

To the best of our knowledge, no work related to key-value database design has been
able to propose a query-driven methodology using the MDA approach. To fill this gap,
we have built KVMod, a key-value data-modeling process that automatically generates
database implementations for key-value from a conceptual model.

4. Proposed Methodology

The general elements of the transformation process, as specified by KVMod, are described
in the first subsection. More detail on these elements is provided in the next subsections.

4.1. General Overview

Figure 4 depicts the design process of a key-value database to follow when using
KVMod. As introduced, KVMod uses the MDA approach. This means that KVMod relies
on models that conform to a metamodel. KVMod begins by building a conceptual data
model, which is transformed into a logical one data model before producing a physical
implementation of the code generation for a selected key-value system.
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As other authors [9,30] have previously indicated, it is not sufficient to create a con-
ceptual data schema that specifies which entities compose the system and the relationships
between them in order to design a NoSQL database. In NoSQL systems, it is important to
know how these entities will be handled at runtime. This is why traditional data-modeling
languages need to be improved with new tools for specifying how the data will be accessed.
This implies handling two separate and related models; each one respects a metamodel. To
ensure that the approach is integrative

• We proposed that the two metamodels be placed together in the Platform-Independent
Data Metamodel (PIDM), a conceptual-level metamodel in which both data and access
queries are incorporated;

• The advantage is to avoid the complexity that can result from working on one model
separately from the other. which can produce a work on a model that is far from
the other;

• Due to its platform independence, many NoSQL paradigms (including the key-value
one) can use this metamodel as input.

Afterward, at the logical level, we created KVLM, which stands for Key-Value Logical
Metamodel, and it is an intermediate representation that contains information specific to the
paradigm key value. KVMod begins with the definition of two metamodels: a PIDM and a
KVLM (Key-Value Logical Metamodel). KVLM that is an intermediate representation that
contains information specific to the paradigm key-value.

The process works according to the following steps:

1. An instance of the PIDM metamodel is provided as input to the transformation
process.

2. The instance will be checked to see if it is error-free using the metamodel specifications.
3. Then, a M2M (i.e., model-to-model) transformation translates this instance into an-

other one of KVLM by applying a set of transformation rules.
4. Finally, the third step of the process is a M2T (model-to-text) transformation that is

performed to generate a physical implementation under the targeted technology (i.e.,
how data are structured on the machine key-value DBMS).

Figure 4. Transformation process of KVMod approach.

4.2. Platform-Independent Data Metamodel (PIDM)

As mentioned previously, instances of the Platform-Independent Data Metamodel
PIDM are used as input for KVMod. Figure 5 depicts this metamodel, which contains
the following:
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• The structural model (Figure 5, left). It is defined in a UML-like syntax that is a
widely used notation by developers and researchers in data-modeling. This notation
is adequate to capture and structure the date requirements of domain data using the
following rules:

– The data are grouped into entities;
– An entity contains attributes, which represent the data of its occurrences;
– An entity may have references to other entities;
– A reference can have constant cardinality, e.g., 0, 1, 2, 4, or unlimited cardinality,

denoted as *.

• The query model (Figure 5, right) that represents the queries that will be sent to the
database. Using an SQL-like syntax, these queries are defined in the PIDM metamodel
over entities of the structural model. Navigation through these entities is performed
by traversing their references. A query consists of the following clauses:

– FROM. This clause specifies the main entity in which the query is executed;
– INCLUDE. If the query needs other entities, references to the main entity can be

added as inclusion elements. Inclusions can be recursively added while there are
available references. This means that entities referenced in the inclusion clause
can also be incorporated;

– SELECT. It is used for the projection operation (i.e., the set of attributes to be
retrieved by the query). The attributes to retrieve can come from the main entity
or the inclusion entities;

– WHERE. Using this key-word, a query can contain a boolean expression to filter
occurrences that satisfy a given condition;

– ORDERBY. As in SQL, it specifies the sorting attributes of a query result. The or-
dering can be in ascending or in descending direction. On another side, in multi-
criteria ordering, the priority degrees are expressed using weights that are assigned
to the sorting attributes. The weight is an integer number that provides infor-
mation on the priority degree of the attribute. As an example, 1 for the most
important sorting attribute, 2 for the second-most important attribute, etc.;

– AS. It is used to give an easily identifiable name for an attribute in a query. It is
useful to rename the references as well. An alias of an attribute can change from
one query to another. Thus, a class association entitled alias is placed between the
query and the attribute classes in the metamodel.

The set of attributes to be retrieved by the query is specified via the projection operation
using the Select clause. An alias of an attribute can change from one query to another. Thus,
a class association entitled alias is placed between the query and the attribute classes in the
metamodel. The set of attributes to retrieve can come from the main entity or the inclusion
entities. A query can contain a boolean expression to filter occurrences that satisfy a given
condition. Finally, to order the result, an ORDERBY clause can be added. The model
supports multi-criteria ordering in both directions (ascending and descending). In multi-
criteria ordering, the priority degrees are expressed using weights that are assigned to the
criteria (i.e., the sorting attributes). When the system sorts the query result, the weight,
which is an integer number, of an arithmetic progression with a common difference of
one provides information on the priority degree of the attribute, especially in the case of
multi-criteria sorting. As an example, 1 for the most important sorting attribute, 2 for the
second-most important attribute, etc.

The weight is the number of an arithmetic progression with a common difference of
one, that provides information on the priority degree of an attribute when the system sorts
the query result. The weights are integer numbers that start from one.
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Figure 5. Components of the Platform-Independent Data Metamodel (PIDM): structural model and
query model.

4.3. Running Example in the PIDM

This subsection shows how to represent the running example in the PIDM language.
First, a textual syntax is created to instantiate models respecting the PIDM. Figure 6 shows
how to express the entities Passenger, Airport, and Flight and the queries Q1, Q2, Q3, Q4,
and Q5 using this syntax. The definitions of the other entities and queries are consultable
in an external repository [31].

In the example, the entity keyword is used to specify entities. Their attributes and
references are written between braces. The Flight entity defines code, departure Time and
date, arrival Time and date, level as attributes. A reference is specified with the ref keyword,
followed by the referenced entity, the cardinality, and the reference name. For example,
the statement "ref Airport (1) origin" in the Flight entity defines a reference named origin
with a constant (1) cardinality, i.e., a flight has exactly one departure airport.

Queries in the PIDM are expressed in the textual notation using the list of clauses
presented in Section 4.2, an SQL-like syntax. A query is specified by the query keyword
followed by a name, which specifies the purpose of it. Then, a SELECT keyword is used
to declare attributes to appear in the projection operation. After that, the FROM key-
word indicates the main entity, and any other referenced entities are specified by the
INCLUDE keyword.

Using the query PassengersDepartingGivenCountry as an example,

• The informations to display are: origin and destination city, departure time of flights,
the data about their passengers (passport ID, first and last names, birthdate, sex,
and nationality);

• The main entity is Passenger;
• The Flight and Airport entities are included;
• The query filters the results via a boolean expression based on flight departure date and

country attributes. The expression contains two equality conditions combined by the
and operator;

• Finally, using the ORDERBY clause, the query result will be sorted in ascending
order of the attribute departure city, then in ascending order of the attribute departure
time flight.
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With this example, an instantiation of the Platform-Independent Data Metamodel is
presented using a textual specification. The next subsections show the logical model for
key-value databases and how KVMod can be used to build a physical model of a Redis
database from a PIDM instance.

Figure 6. PIDM textual notation that defines the Passenger, Airport, and Category entities and the
queries Q1–Q5 of the running example of Section 2.1.

4.4. Key-Value Stores Metamodel

A logical metamodel has been defined to represent key-value family databases. It will
be used to check the conformity of the generated logical model to the key-value paradigm.
A logical model defines how the data should be implemented in a family, regardless of the
DBMS. The proposed logical metamodel is shown in Figure 7 and is inspired by the model
described in Section 2.2. As it appears,

• The key-value data model metaclass is the entry point to this metamodel;
• A key-value data model is considered a database schema that contains collection specifi-

cations;
• Each collection is a set of associative arrays;
• Identified by a unique key, an associative array is used to store a two-column matrix.

– This matrix can be seen as a set of item pairs;
– Each pair contains a field and a value.

By analogy to the relational world, a collection is a table, an associative array is a row
table, a field is an attribute, and the value of a field is similar to the value of an attribute
in RDBMS.
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Figure 7. Metamodel for the logical modeling of key-value databases.

4.5. Transformations of a PIDM Instance to a Key-Value Logical Data Model

This section presents a series of mapping rules, based on the work of De La Vega et al. [12]
and Ait Brahim et al. [13], for transforming a conceptual metamodel represented by a
PIDM instance into a NoSQL key-value logical model via model-to-model transformations.
The main idea behind these rules is the creation of a collection to support each access query.
This idea respects the best practices and standards provided by key-value DBMS family
systems. The strategy used to implement this idea is described in the following subsection.

4.5.1. Query to Collection Transformation

This transition is specified in Algorithm 1, working as follows: given an access query
AQ, a new collection C would be created with the same name as AQ to support such a
query. Initially, the fields of C are the projection attributes of AQ (i.e., the attributes that
appear in the SELECT clause of AQ). Then, all the attributes involved in the query selection
(i.e., the attributes that appear in the WHERE clause of AQ) should be extracted and added
to the collection C. Moreover, if there are attributes included in the sorting criteria of the
query (i.e., the attributes that appear in the ORDER BY clause of such a query), they will
also appear in the fields of C. It will be necessary to ensure that each newly created field
would have the same type as its related attribute in the structural model.

As an example, let us suppose we want to support the query PassengersDeparting-
GivenCountry of the running example, presented in Figure 6. This query returns passengers
departing from a country on a specific date, sorted by ascending order of departure cities and
then by ascending order of departure time. PassengersDepartingGivenCountry is employed
in the rest of the article to designate this query. For this query, a new collection named
PassengersDepartingGivenCountry would be created.

• At the beginning, this collection would contain nine fields: the projection attributes
Origin.city, Destination.city, departureTime, idPassport, firstName, lastName, birthdate, sex,
and nationality;

• The selection attributes FL.departureDate and Origin.country must be added to the
collection;

• The sorting criteria of the query (i.e., Origin.city and FL.departureTime) are also included
at the beginning, and they must not appear twice (it is useless to put the same attribute
more than once in a collection).

Finally, the key is a special field that provides functional dependency on the other
fields of the collection. In key-value stores (or most of them) a key is not composite but it
must be a single attribute. In this paper, the proposed solution is to always generate a key
for each collection in order to identify the associative arrays of the collections in all possible
cases. The collection PassengersDepartingGivenCountry would have a structure similar to
Figure 8.
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Algorithm 1: Query to collection transformation rule

/* Afterwards, D is a global variable that is accessible in all the
algorithms. D represents a data dictionary for a domain */

GLOBAL VARIABLES D
Input: An access query AQ
Output: A collection C
C ← newCollection()
C.name← AQ.name
C.id← C.name + “_id′′

/* The collection id is the concatenation of the collection name and the
string “_id” */

C.degree← 1
/* AQ.projections is a dictionary that contains the names of displaying

attributes (keys) and their aliases (values) */
foreach attr ∈ AQ.projections do

f ← new Field()
f .name← attr.name
f .type← attr.type
f .indexed← False
C.add( f )
C.degree← C.degree + 1

end
/* extractAttributes(AQ.conditions) is a function that browses the string

parameter AQ.conditions, representing a selection clause of an access
query. The function returns a string array of the attributes used in
the conditions */

/* C.fields is a string array of field objects in C. Each field is
characterized by its name, type, and indexing */

foreach attr ∈ extractAttributes(AQ.conditions) do
if attr /∈ C. f ields then

f ← new Field()
f .name← attr.name
f .type← attr.type
f .indexed← False
C.add( f )
C.degree← C.degree + 1

end
end
/* AQ.orderingAtrributes is a dictionary that contains the pairs (name of

an attribute, sorting direction asc|desc) */
foreach attr ∈ AQ.orderingAttributes do

if attr /∈ C. f ields then
f ← new Field()
f .name← attr.name
f .type← attr.type
f .indexed← True
C.add( f )
C.degree← C.degree + 1

else
/* extractFieldsNames(C) is a function that constructs and returns a

string array of fields from a collection C */
F ← extractFieldsNames(C. f ields)
i← F.index(attr)
/* F.index(attr) returns the index of an attribute attr in the array

F */
((C. f ields)[i]).indexed← True

end
end
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Figure 8. The collection produced using Algorithm 1 to support the query PassengersDepartingGiven-
Country.

The application of the previous algorithm is enough to generate collections that support
the different queries. Nevertheless, using just this algorithm might result in non-optimized
data designs due to redundant queries or excessive denormalization. The next subsection
describes an optimization that helps solve this problem.

4.5.2. Query Merging

Let us say that we have two collections of a key-value logical data model that differ in a few
fields but share many others. In this scenario, two separate collections might be constructed
by using the first algorithm. It would be wise to merge them into a single collection whose
fields are all the fields of both collections. Now suppose we have two collections that share
the same fields but have different sorting criteria (i.e., indexed attributes). In this scenario,
using the previous algorithm, two separate collections might be constructed with the same
fields but with different indexed attributes. However, because the generated collections
share the same fields and their indexed ones are different, they might be merged into one
collection with the same fields; moreover, indexes would be created on all sorting criteria of
either collection or both. The merging of two collections is performed using Algorithm 2,
named the collection merging algorithm.

Figure 9 presents an example of the collection merging. As can be observed, the collec-
tion related to the query PassengersDepartingGivenCountry shows information on passengers
departing from a given country on a given date. The Collection related to the query passen-
gersDepartingGivenPeriod shows information on passengers departing from any airport in a
given period. These collections share an important number of fields (90%+). Therefore, they
can be merged into one collection named PassengersDepartingGivenCountryPeriod, which
stores passengers leaving an airport with departure city and country, destination city, flight
code, and the flight date and time indexed by the largest set of fields, i.e., origin city and
country, destination city.

Algorithm 3, named as collection schema optimization, parses all the collections produced
in the logical model, studies them, and, if necessary, reduces the number of collections based
on Algorithm 2. The purpose is to avoid unnecessary data duplication in some fields, which
will reduce the size of the database and slightly improve insertions, updates, and deletions.
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Algorithm 2: Collection merging technique
Input: Two collections C1,C2
Output: A compacted collection C
C ← new Collection()
C.name← C1.name + “_′′ + C2.name
C.id← C.name + “_id′′

foreach f ∈ C1. f ields do
C.add( f )

end
foreach f ∈ C2. f ields do

Fnames← extractFieldsNames(C)
if f .name /∈ Fnames then

C.add( f )
C.degree← C.degree + 1

else
i=Fnames.index(f.name)
if f .indexed = True ∧ ((C. f ields)[i]).indexed = False then

((C. f ields)[i]).indexed← True
end

end
end

Figure 9. An example of collection merging using Algorithm 2.
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Algorithm 3: Schema optimization method
Input: A set of collections CS
Output: A set of compacted collections CCS
CCS← CS
foreach Ci ∈ CS do

if Ci /∈ CCS then
// Collection previously compacted
continue

end
foreach Cj ∈ CCS− Ci do

C ← intersect(ci, cj)

/* The function intersect computes and returns a collection C
which contains the common fields of two collections Ci and
Cj. The function ensures that The identifiers of Ci and Cj
don’t do not appear in C. The name assigned to C is the
name of Ci concatenated with the name of Cj. The id of C
is its name concatenated with the string “_id′′ */

n1, n2 ← ci.degree, cj.degree
n← C.degree
if n = 0 then

// ci and cj don’t do not have common fields
continue

end
if n

n1
≥ 0.8∧ n

n2
≥ 0.8 then

// if the collections ci and cj share enough fields (≥80%)
CCS← CCS− Cj
Ck ← merge(Ci, Cj)

/* From two given collections Ci and Cj, the function merge
computes and returns a collection Ck which contains the
common fields of Ci and Cj. The function ensures that
The identifiers of Ci and Cj don’t do not appear in C.
The name assigned to C is the name of Ci concatenated
with the name of Cj. The id of C is its name
concatenated with the string “_id′′ */

CCS← CCS ∪ Ck
end

end
end

4.6. Logical Model to Text Model Transformation

A model-to-text transformation can be used to convert the logical data model for
key-value family databases into a physical database implementation. Key-value systems
provide query languages for data definition and manipulation to define and manipulate
data. In order to convert and obtain the code for the logical model into query languages,
this model-to-text transformation must first translate each collection definition into its
appropriate query counterpart corresponding language code. The definition of the passen-
gersDepartingGivenCountry collection in Redis is shown in Figure 10.
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Figure 10. Logical to text transformation example in Redis.

A key-value system contains a key space able to store data as a set of pairs (key, value);
it is not required to group such pairs into containers, but, in this study, we used HSet-based
key-value databases, as shown in Figure 11.

Figure 11. Redis concepts in HSet-based databases.

The proposal is to use some hierarchy of concepts:

• The key space of a key-value system can contain several databases;
• A database is composed of collections;
• A collection contains HSets representing the physical implementation of associative

arrays;
• An HSet is a set of pairs <field,value> including a special field called named the HSet

key identifying HSets within the system.

To create collections on a physical level, a collection C of a database DB can be named
DB_C. This way would avoid the duplicates of collection names, for example, two client
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collections, the first one belongs to airflights database and the second one belongs to xbank
database. On the physical level of the targeted DBMS, the first collection is named “air-
flights_client”, the second one is named “xbank_client”. This situation rarely happens: for
simplicity, it is considered in this paper that the name of a C collection at the logical level
remains the same at the collection creation code on the physical level.

From another side, key uniqueness is essential. This rule is violated when a key has
the same value across different collections. For example, if a key is used for airflight and
aircraft, the value 2345 could be either the airflight 2345 or the aircraft 2345. One way to avoid
the clash of keys is to use a prefix that identifies the collection to which the key belongs. It
is usual to use the collection name as a prefix. This way, the key “airflight:2345” would not
conflict with the key “aircraft:2345”. Thus, an object that belongs to a collection C is named
C:k if k represents the identifier key of the object.

In Redis, the schema predefinition of a collection makes the system able to perform
complicated queries like multi-field queries and aggregation. A schema is created on Redis
using the command FT. CREATE, which creates an index with the given specification [32].
FT. CREATE requires mostly the name of the index to create, the prefix used, which informs
the engine about the keys it should index, the fields and their types, and likely their
indexing as well.

Secondly, a FT. SEARCH command would be run [32] to retrieve the result of a query.
It requires an index, which is invoked, and a predicate representing the search criteria in
the query. Otherwise, a predicate is a boolean expression used to filter HSets, satisfying a
condition within a collection.

Moreover, the command HSET is then used to insert data into Redis as an associa-
tive array [18]. In the running example, the Moroccan airport n° 2 having with the code
“GMMX”, the name “Menara”, and the city “Marrakech” are inserted using the command
HSET airflights_Airport:2 codeICAO “GMMX” nameAirport “Menara” city “Marrakech” coun-
try “Morocco”.

In order to auto-generate keys when inserting new HSets, an idea is to first create an
auto-increment integer key Ki for each Ci collection. The role of Ki is to store the key of
the next new HSet to create. The transactions can provide a solution to ensure unique and
auto-increment keys. Thus, whenever a new HSet of a collection Ci will be created, the
following transaction should be invoked:

1. Obtain the value of the variable Ki;
2. Create a new HSet with the identifier key Ci : Ki;
3. Increment the variable Ki.

An example of a Redis transaction code to create a new HSet of a Ci collection is
detailed below:

MULTI
x = GET Ki
HSET Ci : Ki f ield1 val1 f ield2 val2 ...
x = x + 1
Set Ki = $x
EXEC

5. KVMod’s Implementation and Assessment

In this section, we show a software tool useful for key-value database design as
presented in Section 4. We then evaluate the efficiency of the solution according to the
proposed algorithms, and, afterward, we discuss their applicability to other systems in
order to show how developers can deal with new key-value DBMS.
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5.1. Implementation

A prototype of KVMod has been built to evaluate the described data-modeling method-
ology. This prototype is accessible for free in an external repository [33]. The next para-
graphs depict the components of this repository.

The associated projects of the repository contain the metamodels described in Section 4
under the Ecore [34] format. The PIDM and key-value metamodels are included. Moreover,
the projects include specifications for M2M and M2T transformations. Conventionally,
languages such as ATL (Atlas Transformation Language) or ETL (Epsilon Transformation
Language) are used to specify M2M transformations. These languages are suitable when
each input element is transformed into one or more output elements. However, as explained
in the transformation process, data structures and queries must be handled jointly when
producing key-value models. For this, an imperative language was employed for the M2M
transformation process. Xtend is selected, which is a Java-based language that provides
advanced capabilities in model handling. In the case of M2T transformations, they are
specified in EGL (Epsilon Generation Language) [35].

In order to manipulate PIDM instances, a textual Domain-Specific Language (DSL) [36]
is also provided. This DSL language has been created with Xtext [37], which offers a config-
urable editor. Figure 12 shows a screenshot where the airflights case study is manipulated
through the DSL editor. The left window shows the DSL syntax employed to define entities
and queries over these entities. On the top right window, the related PIDM instance model
of the processed PIDM file is shown. This instance will serve as an input for KVMod’s
transformation process. In the Properties view below, concrete element details from the
model can be viewed, such as the AttributeSelection object selected in the figure. Finally,
a project of examples is included, which contains PIDM specifications and NoSQL models
associated, e.g., for the running example of this work.

Figure 12. Editor of the PIDM textual DSL.

5.2. Assessment

To evaluate the efficiency, we took mainly the time complexity necessary to compute
the design of a key-value database by varying each time the number of collections denoted
m and the number of attributes denoted n.
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5.2.1. Computational Resources

To design a key-value database, the modeler expresses entities of domain data and
queries over entities in conformity with the PIDM metamodel. It is mainly a human task
in which the machine is only used to input conceptual-level models. Then, the computer
produces a key-value logical model from the conceptual one using the presented algorithms.
Computation time is the most commonly used parameter to measure an algorithm’s
efficiency. This subsection examines the complexity of our algorithms to determine whether
they can be run with a reasonable quantity of computation resources. For simplicity, big-O
notation (i.e., asymptotic complexity) is used. O(1) for constant complexity, O(n) for linear
complexity, etc.

Query to Collection Transformation Algorithm

Let T(n) be the time complexity to produce a collection C from a query Q, where n is the
number of attributes in Q (SELECT, WHERE and ORDERBY attributes in Q). Operations
outside loops are considered to have a constant cost. Loop bodies are also considered to
be at a constant cost. The number of iterations of the algorithm must be estimated. This
number varies between 3n (the worst case where any attribute in the query appears in all
clauses, i.e., SELECT, WHERE, and ORDERBY) and n (best case where an attribute can not
appear in more than one clause). Therefore, the query to collection transformation algorithm
is O(n).

Collections Merging Algorithm

This algorithm is a function that receives two collections, C1 and C2, and merges them
into a compact collection, C. Let n1 be the number of fields in C1, and n2 be the number of
fields in C2. The first two instructions of the algorithm are considered to have a constant
cost. The same holds true for the alternative structure (i.e., the if-else block), which forms
the body of the inner loop. The number of loops iterations is in O(n1 × n2). If n1 ≈ n2 the
number of iterations is O(n2), where n = n1+n2

2 . In this case, the complexity of the algorithm
is in O(n2).

Schema Optimization Algorithm

Let m be the number of collections, and N be the total number of fields within the collec-
tions. Each collection contains, on average, n fields, where n = N

m . The algorithm iteration
number is in O(m2), all the operations are in O(1) except the operations c < −intersect(ci, cj)
and ck < −merge(ci, cj) which have an average complexity in O(n2). Consequently, the com-
plexity of this algorithm is O(n2 ×m2).

Conceptual Model to Key-Value Logical Model Transforming Process

For a conceptual schema of N attributes participating in m queries, the process starts by
producing m collections in order to support access queries. This algorithm has a complexity
of O(m× n), where n is the average number of fields in a collection (n = N

m ). After that,
Algorithm 3 is called to compact the generated collections. The complexity of this step is in
O(m2 × n2). Finally, we can say that the global complexity of the process is in O(m2 × n2).
Table 2 shows the process costs for different examples of n and m.

Table 2. Time complexity of conceptual to logical transformation process.

n
m 10 100 1000

10 104 106 108

100 106 108 1010

1000 108 1010 1012
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To quantify the computational complexity described above, we estimate, for different
database sizes, the generation times for the mapping rules from the conceptual to the logical
model. A computer with a processor speed of 1 GHZ was used to illustrate the computation
time. The Table 3 depicts the estimated results. The generation time is acceptable and may
reach 17 min to complete for a big database that contains 1000 collections with 1000 fields
on average in each collection.

Table 3. Computation time of conceptual to logical transformation process.

n
m 10 100 1000

10 10 µs 1 ms 0.1 s

100 1 ms 0.1 s 10 s

1000 0.1 s 10 s 17 min

On the other side, a system with an Intel Core i7 processor and 8 GB of RAM running
Windows 10 is used to experimentally verify the results. During experimentation, only
system programs and the KVDesign tool are run on the system. For the data and the access
queries, a program was developed to randomly generate a PIDM instance. Table 4 shows
the observed values.

Table 4. Experimental results of a conceptual to logical transformation process.

n
m 10 100 1000

10 180 µs 22 ms 3.7 s

100 35 ms 5.1 s 38 s

1000 19 s 95 s 26 min

5.2.2. Applicability to Other Systems

As the methodology is detailed for the Redis system, its structure facilitates its applica-
bility to other key-value systems. By updating the code generator, new key-value products
can be incorporated into KVMod. From a logical model, this generator would produce code
for the new targeted system. For example, if we want to support the Riak KV system [38] as
a target platform for KVMod, we will need to create a model-to-text transformation from
the key-value metamodel of Figure 7 into code to define a database in conformity with the
Riak KV features (e.g., data types and indexing methods). Moreover, if the targeted system
had a set of specific characteristics, like the support or not of multi-field indexes, we might
have to upgrade KVMod to support it.

6. Conclusions

In this article, KVMod, which is a rigorous key-value data modeling methodology, was
presented. We established the fundamental key-value data modeling principles for Redis
and defined mapping rules to switch from platform-independent conceptual models to
Redis-specific model.

The current paper has powerful implications for practitioners and researchers, as pre-
sented below:

• The literature review shows that the design of the NoSQL databases can be useful to
standardize access and understand its data storage;

• The combined MDA-based and query-driven methodology used in the current study
holds several advantages for both researchers and practitioners. The use of MDA aids
in automating the modeling process. The support of the access queries is in line with
the best practices in database design in the NoSQL world;
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• The proposal introduces a series of models at different levels in order to make the
process enrichable, especially at the logical and physical levels;

• We described a robust data-modeling tool, named KVDesign, that automates some
of the most time-consuming data-modeling tasks, including conceptual-to-logical
transformations and code generation.

Despite the above-discussed contributions and advantages, the present work is not
without its limitations:

• Firstly, the study supports only read queries, which are very important in a NoSQL
context, but other operations like updates and insertions were not treated. For future
research, we plan to extend our work to support all CRUD queries, including the
aggregation operations.

• Secondly, key-value DBMS offers several data structures, including hashes, which are
the only ones used in this work. We intend to study how to support other types, like
sorted sets, to cover the maximum number of useful elements in the data design.

• On the other hand, a software KVMod-based tool was developed to design key-value
databases. In the future, we plan to allow practitioners and designers to test it in
different use cases and then collect user reviews in order to improve the design of
key-value databases.

• Finally, due to the similarity of the DBMS of the same family, we plan to study database
modeling in other key-value stores while benefiting especially from the conceptual
and logical metamodels also introduced in our proposal.

Author Contributions: Conceptualization, M.H. and H.O.; Data curation, A.D.; Format analysis,
H.O.; Investigation, M.H., A.D.; Methodology, M.H.; Project administration, H.O.; Resources, M.H.
and A.D.; Software, M.H. and A.D.; Supervision, H.O.; Visualization, H.O.; Writing—original draft,
A.D.; Writing—review and editing, H.O. and M.H. All authors have reviewed and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ACID Atomicity, Consistency, Isolation, and Durability
ATL Atlas Transformation Language
CRUD Create, Read, Update, and Delete
DBMS Database Management System
DDL Data Definition Language
DSL Domain-Specific Language
EGL Epsilon Generation Language
ERD Entity Relationship Diagram
ETL Epsilon Transformation Language
GPS Global Positioning System
HSet Hash Set
I.C.A.O International Civil Aviation Organization
KVDesign Design Tool for Key-Value Design
KVLM Key-Value Logical Metamodel
KVMod Key-Value Modeling
M2M Model-to-model
M2T Model-to-text
MDA Model-Driven Architecture
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NoSQL Not Only SQL
OCL Object Constraint Language
PIDM Platform-Independent Data Metamodel
QVT Query View Transform
RDBMS Relational DBMS
SQL Structured Query Language
UML Unified Modeling Language
XML Extensible Markup Language
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