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Abstract: The early intervention of law enforcement authorities to prevent an impending terrorist
attack is of utmost importance to ensuring economic, financial, and social stability. From our
previously published research, the key individuals who play a vital role in terrorist organizations can
be timely revealed. The problem now is to identify which attack strategy (node removal) is the most
damaging to terrorist networks, making them fragmented and therefore, unable to operate under
real-world conditions. We examine several attack strategies on 4 real terrorist networks. Each node
removal strategy is based on: (i) randomness (random node removal), (ii) high strength centrality, (iii)
high betweenness centrality, (iv) high clustering coefficient centrality, (v) high recalculated strength
centrality, (vi) high recalculated betweenness centrality, (vii) high recalculated clustering coefficient
centrality. The damage of each attack strategy is evaluated in terms of Interoperability, which is
defined based on the size of the giant component. We also examine a greedy algorithm, which
removes the node corresponding to the maximal decrease of Interoperability at each step. Our
analysis revealed that removing nodes based on high recalculated betweenness centrality is the
most harmful. In this way, the Interoperability of the communication network drops dramatically,
even if only two nodes are removed. This valuable insight can help law enforcement authorities in
developing more effective intervention strategies for the early prevention of impending terrorist
attacks. Results were obtained based on real data on social ties between terrorists (physical face-to-
face social interactions).

Keywords: terrorist networks; network analysis; centrality; attacks; giant component; interoperability;
fragmentation; intelligence

1. Introduction

Terrorism continues to be a persistent and intricate threat to global stability, compelling
modern states to allocate substantial resources toward devising effective counter-terrorism
measures. Law enforcement agencies face critical questions that demand immediate and
accurate answers—chief among them is the research question this paper aims to address:
which intervention strategy would be the most effective to prevent a possible terrorist activity?
While scholars from various disciplines have offered varying solutions to this complex
issue, our study takes an innovative approach by employing intelligent tools from network
science. These tools, such as real-time recalculated network centrality measures, provide
a nuanced understanding of the fluid and dynamic nature of terrorist organizations. By
leveraging these intelligent tools, this paper seeks to offer law enforcement authorities
targeted, adaptive, and empirically validated counterterrorism strategies that are effective
in real-world scenarios.

Terrorism is a complex phenomenon that has attracted global attention, especially after
the 9/11 attack [1,2]. Despite the recent research activity in the field, there is still a signifi-
cant knowledge gap, about the relationship between terrorism and psychiatric disorders,
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radicalization processes, and the effectiveness of preventative measures [3–5]. Today’s
terrorism research is mainly focused on transnational and homegrown terrorism [1,2,6].
The term “radicalization” is frequent in the counter-terrorism terminology. However, it
presents interpretive ambiguities and questions the balance between addressing violent
extremism and promoting societal cohesion [3]. The groupthink phenomenon adds further
complexity, challenging rational choice theory in the sense that certain social groups may
adopt terrorism due to irrational decision-making [4]. In response to these complexities,
counter-terrorism strategies should be comprehensive and evidence-based [3,5,6]. In this
context, the role of social media platforms in promoting societal cohesion and preventing
the spread of extremist ideologies cannot be ignored [2]. Concerning Islamic terrorism,
although invoking Islam, does not imply a direct connection with the religion itself. This
kind of terrorism needs an exploration of the criminological, psychological, and social
dimensions of radicalization [7–13]. The application of various criminological theories, in-
cluding strain theory, social control, and differential association, provides valuable insights
into radicalization [11,14]. However, the lack of empirical data is challenging [9]. Several na-
tions, such as Australia, have already adopted policy measures to counter radicalization [8].
Lessons from crime prevention policy and practice inform these measures [15]. However,
these efforts can create ‘suspect communities’ and civil rights abuses [8]. Addressing
radicalization within the context of Islamic terrorism requires an integrated, multifaceted
approach that considers psychological, criminological, and social perspectives [9]. Future
research should focus on gathering more empirical data, aiming to develop evidence-based
interventions that respect human rights and societal diversity [8,9,16].

Network Theory has already been applied successfully in studying terrorism [17–25].
In this context, terrorist organizations are mathematically modeled as networks of nodes
(actors or groups of actors) and edges (relationships) [26,27]. Several applications of
network theory to terrorism have advanced significantly the existing knowledge in this
field [28–30]. The predictive power of social network analysis and novel classification
methods are highlighted [31–33].

The fusion of network science, machine learning, data mining, and link analysis
has led to innovative methodologies for evaluating, predicting, and countering terrorist
networks [31,32]. New methods have been proposed to identify crucial players within
terrorist networks and predict potential activities [34,35]. The increasing use of social
media requires new approaches for analyzing and identifying influential nodes in terrorist
networks [35]. Understanding the role of social ties is vital for preventing possible future
terrorist activities [36,37]. Our previously published research on four real-world terrorist
networks revealed the distinct social roles of individuals in terrorist organizations [38] and
uncovered successfully some early signs of impending terrorist attacks [39]. The fusion of
social network analysis and machine learning methods provides valuable insights into the
structure, operation, and dynamics of terrorist networks [37,40–47].

In counterterrorism and law enforcement, our team contributed two groundbreaking
papers. “Entropy and Network Centralities as Intelligent Tools for the Investigation of
Terrorist Organizations” [48] and “Investigation of Terrorist Organizations Using Intelligent
Tools: A Dynamic Network Analysis with Weighted Links” [49] both leverage mathematical
tools to unlock the obscured behaviors and structure of terrorist organizations. The first
paper utilizes entropy and network theory to discern the diverse roles within a terrorist
organization and detect early signs of impending attacks. By mapping physical contacts
within four real-world terrorist networks, the research uncovers distinctive roles linked
to specific centrality values, and intriguingly, the imminent threat of an attack correlates
with the evolutionary pattern of these centralities’ entropies. This illuminates an invaluable
tool for law enforcement, empowering them to not only identify pivotal figures within
terrorist cells but also predict an imminent attack through monitoring the evolution of the
centralities’ entropies [48]. In a parallel vein, the second paper champions an innovative,
quantitative, and unbiased methodology based on network theory to explore the distinct
roles within terrorist organizations. Challenging the conventionally biased or subjective
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witness statements, it employs select global indices, such as density, small worldness,
centralization, average centrality, and standard deviation of centrality, offering insights
into the organizational structure and potential activity of terrorist groups. These indices,
tested on four real-world terrorist networks, reveal the organization’s distinct roles and
indicate possible impending activities [49].

Concerning network attacks related to terrorist organizations, three key papers were
found in the relevant literature, namely: (a) [41] where a model for assessing network
robustness with non-real data was studied, (b) [46] where attacks on the air transportation
network of a terrorist organization were studied, and (c) [47] where attacks on the online
social network of ISIS foreign fighters was studied.

Even though significant work has been conducted in this field, there is still no “action
plan” for the early prevention of imminent terrorist attacks, tested with real data of social
ties, which can be applied by law enforcement authorities in real-world conditions. As a re-
sult, the research purpose of this paper is to address the following research question: Which
attack strategy (node removal) is the most damaging to terrorist networks, making them
fragmented, and therefore unable to operate under real-world conditions?

The rest of the paper is organized as follows. In Section 2, we present the methodology,
the datasets, and the proposed network attack strategies. In Section 3, we present the results
of our analysis, and we discuss them in Section 4. Finally, in Section 5 we summarize the
key conclusions of our work.

2. Methodology, Attack Strategies and Datasets

Law Enforcement Authorities presuppose that any terrorist organization is a connected
network (there is always a path between every pair of nodes). If the terrorist organization
has isolated nodes (“lone wolves”) or isolated groups of nodes, then these distinct terrorist
threats are treated as different terrorist organizations [50–55].

Interoperability, a fundamental concept in systems design, is the capacity of distinct
systems, devices, or components to exchange and effectively utilize information in a
cooperative manner [56]. According to the Institute of Electrical and Electronics Engineers
(IEEE), interoperability is explicitly defined as “the ability of two or more systems or
components to exchange information and to use the information exchanged” [57,58]. This
definition implies that for systems to be interoperable, they must not only be capable of
exchanging data but also interpreting and using that data in a meaningful way. Clear
and unambiguous descriptions of characteristics and abilities are essential to ensure that
the data is computationally interpretable [56]. The concept of interoperability extends
beyond pure system functionality and includes aspects of cooperative behavior and shared
understanding. For instance, NATO defines “interoperability” as the ability of Allies to act
together coherently, effectively, and efficiently to achieve tactical, operational, and strategic
objectives [59]. In this context, interoperability entails the ability for forces, units, and/or
systems to operate together, share common doctrine and procedures, and leverage each
other’s infrastructure and bases. Therefore, it transcends the scope of mere data exchange
and becomes a facilitator of shared understanding and collaborative action. Ultimately,
interoperability enables large scale systems to function smoothly, reducing duplication,
enabling resource pooling, and creating synergies, leading to improved efficiency and
effectiveness [59]. It is therefore a critical characteristic in large-scale systems design and
management, impacting both system performance and cooperative ability.

In Network Theory, the Giant Component of a network is the largest connected
component, containing a significant fraction of nodes of the entire network [60]. We denote
the size of the giant component with C. For a connected network of N nodes, the size
of the giant component is equal to N, i.e., C = N. The size of the giant component can
reflect quantitatively the above Law Enforcement Assumption in the following sense. If
C is decreasing significantly after removing—“neutralizing” a few intelligently selected
nodes, then the terrorist network is considered fragmented, and therefore unable to operate
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under real-world conditions. We define the Interoperability Ir of a terrorist network, after
sequentially removing r nodes, as:

Ir =
Cr

C0

where:
C0 is the initial size of the giant component, without any attack (node removal)
Cr is the size of the giant component after r sequential attacks (removals of nodes)
The above definition of Interoperability is actually the normalized index (taking values

from 0 to 1) of the giant component size Cr, with respect to the initial-maximal size C0. In
this way, we can effectively compare several attack strategies (node removals) on terrorist
networks with different giant component sizes.

We examine several attack strategies for sequentially removing nodes, based on
different centrality criteria, reflecting distinct social roles in terrorist networks [48]:

(i) randomness (random node removal, averaging the results of 1000 interactions),
(ii) high strength centrality (participators),
(iii) high betweenness centrality (mediators),
(iv) high clustering coefficient centrality (team leaders),
(v) high recalculated strength centrality,
(vi) high recalculated betweenness centrality,
(vii) high recalculated clustering coefficient centrality

We also examine a greedy algorithm [61–64], which removes the node corresponding
to the maximal decrease of Interoperability at each step.

The delineation of specific roles among the members within an organization is an
integral part of the definition of a terrorist organization, according to common legal stan-
dards adopted by European Union member states [65,66]. These standards include four
criteria for characterizing a group of individuals as a criminal organization: (a) An asso-
ciation of three or more individuals. (b) The presence of a structured organization with
a hierarchy is characterized by clear differentiation in roles, including leadership, team
leadership, and functional team members. (c) Engagement in criminal acts is subject to
imprisonment. (d) Sustained duration of criminal activity. While law enforcement au-
thorities typically find it straightforward to detect the execution of particular criminal
deeds (condition c), recognize associations among persons (condition a), and observe the
temporal evolution of criminal behavior (condition d), the verification of distinct roles
within a criminal organization (condition b) often proves to be a complex and challenging
task [50–55,67].

Centralities represent metrics that reflect the significance of each node, arising from the
topology of links [17,18,23,48,68–72]. The prominence of nodes is determined by ranking
them based on their centrality values. There are over a hundred such indicators that locally
pertain to each individual node [17,18]. In this paper, the proposed strategies (ii)–(iv)
pertain to the sequential removal of nodes with the highest values in strength centrality,
betweenness centrality, and clustering coefficient. The mathematical definitions of these
indicators are provided subsequently:

The degree of node i in a network of order N, is the number of connections of the node
i and takes values from 0 to N − 1. The value 0 indicates the absence of links and there are
no self-loops. The normalized degree is the degree of centrality [48,60,73]:

DEGκ =
∑N

λ=1 aκλ

N − 1
,

where:
aκλ is the κλ—element of the adjacency matrix [17,18,60] of the network.
In the case of weighted networks, the weighted degree is known as strength [17,18,60]:

DEG[w]
κ = ∑N

λ=1 wκλ
N−1 .
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Betweenness centrality is a well-known index from Network Theory, which captures
the role of “mediator”, allowing information to pass from one part of the network to the
other. In other words, Betweenness centrality measures the ability of a node to act as a
“bridge” between different network modules [18,48,74]. The betweenness centrality Bκ of
node κ is defined as the sum of proportions of all shortest weighted paths (geodesics)
between pairs of other nodes (except node κ) that pass through node κ:

Bκ =
1

(N − 1)(N − 2)
·

N

∑
λ=1
λ 6=κ

N

∑
µ=1
µ 6=κ

σλ(κ)µ

σλµ

where σλ(κ)µ is the number of shortest weighted paths (geodesics) between nodes λ and µ
(with κ 6= λ and κ 6= µ) that pass through node κ, while σλµ is the total of shortest weighted
paths (geodesics) between nodes λ and µ. The shortest weighted paths (geodesics) are
identified on the transformed weight matrix: −ln(wκλ) [75]. Term 1

(N−1)(N−2) normalizes
the betweenness index in order to take values in the interval [0, 1].

The neighborhood density of a node indicates the extent to which its first neighbors
are linked to each other. The neighborhood density of node i, also known as the clustering
coefficient of node κ is calculated from the formula [18,48]:

cluκ =
2Eκ

vκ(vκ − 1)
,

where Eκ is the number of links between the first neighbors of node κ and vκ is the number
of first neighbors of node κ.

The distinct social roles of nodes of the network according to the selected relevant
criteria are assessed by the values of the corresponding centralities. For example, in the
cooperation network of the employees of a company, the nodes with high degrees are the
popular employees or the employees with many responsibilities. Betweenness centrality
identifies the employees who act as mediators between different employees. The team
players or teamworking nodes are the employees with a high clustering coefficient [48].

Greedy algorithms operate on the principle of finding a locally optimal solution at each
step, with the aspiration that these local optima will collectively yield a global optimum.
At each iteration, the choice that seems most advantageous at that specific moment is
selected, without accounting for its long-term implications [61–64]. In the context of our
study, the greedy algorithm functions by removing the node that results in the maximum
possible decrease in Interoperability Ir at each step, irrespective of the future consequences
of this choice.

For example, for the first node to be removed (r = 1), the greedy algorithm will
remove node κ, if the removal of this node minimizes Interoperability I1. To be more
specific, we provide below a brief description of how the greedy algorithm works (Table 1).

Taking into account Table 1, the output of the greedy algorithm is the set Vr of the
r sequentially removed nodes, which is actually an ordered list, where the order matters.
In addition, we acquired the corresponding ordered list {Ir}r=0,1,2,... of the Interoperability
values of the network. The above procedure starts on a fully connected network, and it is
iteratively applied, until the network becomes completely fragmented, i.e., no connections
exist (all nodes are isolated, Ir = 0). It is crucial to highlight that greedy algorithms do not
always produce a globally optimal solution [61,63,76].

For strategies (ii)–(iv), the calculation of nodes’ centralities is realized only once at
the beginning. On the contrary, for strategies (v)–(vii) with recalculation, the calculation
of nodes’ centralities is realized again after each attack-removal, due to the change of the
network structure. We investigate several attack strategies on four real terrorist networks,
which are briefly presented in Table 2.
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Table 1. Brief description of the greedy algorithm.

Initial Values
r = 0
Ir = I0 = 1
Vs = V
Vr = ∅

r is the number of removed nodes
Ir is the Interoperability of the network after sequentially
removing r nodes. Initially, for r = 0, we have Ir = I0 = 1
V is the set of nodes-vertices of the network
Vs is the set of surviving nodes-vertices
Vr is the set of removed nodes-vertices

Iterative Loop
While Ir 6= 0:

• r ←− r + 1
• Remove node κ, if

Ir(κ) = min
µ∈Vs
{Ir(µ)}

• Vs ←− Vs − {κ}
• Vr ←− Vr + {κ}
• Ir ←− Ir(κ)

Ir(µ) is the Interoperability after sequentially removing r
nodes, where the r-th node, is node µ:

Ir(µ) =
Cr(µ)

C0
where:
C0 is the initial size of the giant component, without any
node removal.
Cr(µ) is the size of the giant component after sequentially
removing r nodes, where the r-th node, is node µ.

Acquiring data on physical, face-to-face, social interactions among terrorists is a
formidable challenge. This is because this kind of data are almost always classified or
inappropriate for academic research [50–55]. Unlike most studies in this area, which
rely on data from social media interactions [77–91], our work is grounded on real-world
social ties among terrorists, namely physical face-to-face interactions. This kind of data
is more reliable because social media interactions can be used for deliberately sharing
false realities, aiming to mislead law enforcement agencies [92–96]. Also, physical, face-
to-face, social interactions among terrorists are valuable for law enforcement agencies,
aiming to “neutralize” key influential terrorists. On the contrary, data on social media
interactions cannot be utilized for such operations [51–55]. Of course, there is always
some possibility of unobserved or hidden nodes and connections, unknown even to law
enforcement agencies. This case is out of the scope of this first exploratory work. Despite
these limitations, it is crucial to derive insights based on the available data, as would
be the practice in law enforcement operations. This study utilizes data drawn from two
open-access databases: the John Jay and ARTIS Transnational Terrorism Database (JJATT)
from John Jay College of Criminal Justice [97] and the Center for Computational Analysis
of Social and Organizational Systems (CASOS) at Carnegie Mellon University [98]. The
datasets comprise information on four distinct terrorist organizations originating from
different countries. These organizations exhibit the following shared attributes: (a) radical
Islamic ideologies primarily drive their members, (b) their period of activity spans from
the mid-1980s to the mid-2000s, (c) the datasets represent networks of physical contacts,
and (d) the data includes a temporal element. The data are presented via coded identifiers
representing individual organization members; the real names corresponding to these codes
are unknown to the researchers. The first organization under consideration is the “Jamaah
Islamiah Section of Indonesia” [99], which was under surveillance by the Indonesian police
from 1985 to 2007 [100]. Its most notable act of terrorism occurred in 2004, with a major
bombing of the Australian embassy in Jakarta, causing significant casualties [101]. The data
illustrate the interactions of 27 organization members across 11 distinct periods [99]. The
second organization is the “Hamburg Cell,” monitored by U.S. and German intelligence
services from 1985 to 2006 [102]. Members of this organization are believed to have played
a significant role in orchestrating the 9/11 terrorist attacks [103]. The dataset documents the
activities of 34 organization members over 15 time periods [102]. The third organization,
“Al-Qaeda Section of Madrid,” was under the watch of Spanish security services from 1985
to 2006 [104]. The organization’s most devastating attack was carried out in 2003 when
an explosive device was detonated on a train, resulting in numerous casualties [105]. The
data details the activities of 54 organization members across 14 time periods [104]. The
fourth organization, “Jamaah Islamiah Section of the Philippines,” was under surveillance
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by the Philippine security services from 1985 to 2006 [106]. This organization demonstrated
high activity levels, with many bombings, the largest of which occurred in 2000 [53].
Notably, an attempt to carry out a substantial terrorist attack in 2005 was thwarted by a
timely intervention from the security services [107]. The dataset reveals the activities of
16 organization members over 14 consecutive periods [106].

The early intervention of law enforcement authorities to prevent an impending terrorist
attack is of utmost importance to ensuring economic, financial, and social stability. From
our previously published research, the time of an impending terrorist attack can be timely
revealed. More specifically, the violent fluctuations of betweenness centralization are a
clear early sign of an impending terrorist attack [49]. Betweenness centralization is defined
as [49,74]:

B =

N
∑

κ=1

(
max

ν=1,2,...,N
{Bν} − Bκ

)
N − 1

,

where:
Bκ is the betweenness centrality of node κ.
Based on this finding, we select the best time-year for a network attack, i.e., for

removing nodes (Table 2).

Table 2. Brief description of the 4 real terrorist networks.

Network Terrorist Organization Number of
Nodes

Year of
Significant

Terrorist Attack

Selected Year for
Removing Nodes

1 “Jamaah Islamiah
Section of Indonesia” [99,100] 27 2004 2003

2 “Hamburg Cell” [102,103] 34 2001 2000

3 “Al-Qaeda
Section of Madrid” [104,105] 54 2003 2002

4
“Jamaah Islamiah

Section of the
Philippines” [106,107]

16 2004 2003

3. Results

The sequence of nodes removed per strategy for each terrorist organization is presented in
Tables 2–5. The damage of each strategy is evaluated in terms of Interoperability Ir. The results
are presented for the 4 terrorist networks (Figures 1–4), illustrating the Interoperability Ir,
after removing r = 0, 1, 2, . . . nodes, sequentially. The comprehensive numerical results,
along with the calculations for the centrality measures, greedy algorithms, and betweenness
centralization, are provided in the Supplementary Material (Tables S1–S4). We also present
a set of illustrative figures to visualize the changes in network structures based on recal-
culated betweenness, as per attack strategy (vi). (Figures 5–8). The animated GIFs for all
examined strategies are provided in the Supplementary Material (S5–S8). Data analysis was
manually programmed using the R programming language to ensure full customization in
addressing the specific problem under investigation. Subsequent relevant computations
and result interpretation were automated through a prototype software developed in R (v.
4.3.1).

In Table 3, we present the sequential removal of nodes in the network of the terrorist
organization “Jamaah Islamiah Section of Indonesia”. The several strategies for node
removal are based on selected centrality metrics, namely strength, betweenness, clustering
coefficient, and the corresponding recalculated versions of them. We also test a greedy
algorithm which removes the node corresponding to the maximal decrease of Interop-
erability Ir at each step. The coded node identifiers (e.g., X1579) correspond to unique
members of the organization and are consistent with the encoding practices of the JJATT
and CASOS databases.
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Table 3. This table shows the sequential removal of nodes in the network of the terrorist organization
‘Jamaah Islamiah Section of Indonesia’. The several strategies for node removal are based on selected
centrality metrics, including a greedy algorithm. The coded node identifiers (e.g., X1579) correspond
to unique members of the organization and are consistent with the encoding practices of the JJATT
and CASOS databases.

Sequential Node Removal in “Jamaah Islamiah Section of Indonesia”

Strength
Centrality

Betweenness
Centrality

Clustering
Coefficient
Centrality

Strength
Centrality

Recalculated

Betweenness
Centrality

Recalculated

Clustering
Coefficient Centrality

Recalculated

Greedy
Algorithm

Attack Node Node Node Node Node Node Node
0 0 0 0 0 0 0 0
1 X1579 X1556 X1504 X1579 X1556 X1506 X1561
2 X177 X1561 X1563 X1595 X1580 X801 X1580
3 X1595 X1590 X1570 X1590 X1590 X1574 X1579
4 X1590 X1553 X1574 X1582 X1579 X1570 X1553
5 X1553 X1580 X801 X177 X1582 X1563 X577
6 X1556 X1579 X1506 X1580 X177 X1504 X1509
7 X1562 X1595 X177 X1562 X1595 X177 X177
8 X1580 X1562 X1553 X1556 X1562 X1561 X800
9 X1582 X1509 X1561 X1558 X1506 X1556 X1504

10 X1504 X1582 X1579 X1563 X801 X1558 X1507
11 X1561 X577 X1556 X1570 X1558 X1534 X1556
12 X1563 X177 X1562 X1553 X1534 X802 X1562
13 X1574 X1504 X1582 X1506 X802 X598 X1563
14 X577 X1563 X1595 X801 X598 X1595 X1570
15 X1570 X800 X1580 X1534 X1574 X1590 X1574
16 X598 X1507 X577 X802 X1570 X1582 X1582
17 X801 X1570 X800 X598 X1563 X1580 X1590
18 X1506 X1574 X1507 X1574 X1561 X1579 X1595
19 X800 X598 X1509 X1561 X1553 X1562
20 X1509 X802 X1590 X1509 X1509 X1553
21 X1534 X1534 X598 X1507 X1507 X1509
22 X1558 X1558 X802 X1504 X1504 X1507
23 X1507 X801 X1534 X800 X800 X800
24 X802 X1506 X1558 X577 X577 X577

Table 4. This table shows the sequential removal of nodes in the network of the terrorist organization
‘Hamburg Cell’. The several strategies for node removal are based on selected centrality metrics,
including a greedy algorithm. The coded node identifiers (e.g., X1017) correspond to unique members
of the organization and are consistent with the encoding practices of the JJATT and CASOS databases.

Sequential Node Removal in “Hamburg Cell”

Strength
Centrality

Betweenness
Centrality

Clustering
Coefficient
Centrality

Strength
Centrality

Recalculated

Betweenness
Centrality

Recalculated

Clustering
Coefficient Centrality

Recalculated

Greedy
Algorithm

Attack Node Node Node Node Node Node Node
0 0 0 0 0 0 0 0
1 X64 X65 X1030 X64 X65 X1035 X65
2 X62 X60 X1032 X62 X64 X1032 X60
3 X1005 X61 X1035 X1005 X61 X1030 X61
4 X60 X62 X1017 X65 X62 X63 X1005
5 X61 X64 X1016 X61 X1005 X66 X63
6 X65 X1005 X66 X60 X60 X1017 X64
7 X66 X58 X63 X57 X66 X1016 X62
8 X57 X1017 X58 X63 X57 X60 X57
9 X63 X650 X60 X1017 X1039 X58 X58
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Table 4. Cont.

Sequential Node Removal in “Hamburg Cell”

Strength
Centrality

Betweenness
Centrality

Clustering
Coefficient
Centrality

Strength
Centrality

Recalculated

Betweenness
Centrality

Recalculated

Clustering
Coefficient Centrality

Recalculated

Greedy
Algorithm

10 X1016 X1016 X62 X1032 X1035 X62 X66
11 X1017 X57 X1005 X1012 X1034 X1005 X650
12 X1012 X66 X64 X1016 X1033 X650 X1011
13 X58 X1012 X61 X1039 X1032 X64 X1012
14 X1032 X1035 X1012 X1035 X1031 X1039 X1016
15 X650 X63 X65 X1034 X1030 X1034
16 X1030 X1011 X57 X1033 X1017 X1033
17 X1011 X1015 X650 X1031 X1016 X1031
18 X1015 X1030 X1011 X1030 X1015 X1015
19 X1034 X1031 X1015 X1015 X1012 X1012
20 X1035 X1032 X1031 X1011 X1011 X1011
21 X1039 X1033 X1033 X650 X650 X65
22 X1031 X1034 X1034 X66 X63 X61
23 X1033 X1039 X1039 X58 X58 X57

Table 5. This table shows the sequential removal of nodes in the network of the terrorist organization
‘Al-Qaeda Section of Madrid’. The several strategies for node removal are based on selected centrality
metrics, including a greedy algorithm. The coded node identifiers (e.g., X3136) correspond to unique
members of the organization and are consistent with the encoding practices of the JJATT and CASOS
databases.

Sequential Node Removal in “Al-Qaeda Section of Madrid”

Strength
Centrality

Betweenness
Centrality

Clustering
Coefficient
Centrality

Strength
Centrality

Recalculated

Betweenness
Centrality

Recalculated

Clustering
Coefficient Centrality

Recalculated

Greedy
Algorithm

Attack Node Node Node Node Node Node Node
0 0 0 0 0 0 0 0
1 X3136 X3132 X3135 X3136 X3132 X3165 X3141
2 X3132 X3141 X3142 X3132 X3136 X3156 X3134
3 X3157 X3137 X3156 X3141 X3161 X3142 X3179
4 X3138 X3162 X3165 X3157 X3141 X3135 X3135
5 X3142 X3159 X3143 X3160 X3159 X3143 X3138
6 X3134 X3136 X3157 X3138 X3157 X3157 X3132
7 X3143 X3161 X3140 X3161 X3138 X3140 X3136
8 X3156 X3134 X3138 X3180 X3160 X3138 X3137
9 X3179 X3160 X3161 X3165 X3165 X3161 X3140

10 X3140 X3179 X3137 X3143 X3153 X3136 X3162
11 X3141 X3143 X3132 X3159 X3180 X3159 X3142
12 X3161 X3157 X3179 X3153 X3179 X3160 X3153
13 X3135 X3138 X3136 X3179 X3162 X3153 X3143
14 X3137 X3135 X3134 X3162 X3156 X3180 X3156
15 X3160 X3140 X3141 X3156 X3143 X3179 X3160
16 X3153 X3142 X3162 X3142 X3142 X3162
17 X3162 X3156 X3180 X3140 X3140 X3141
18 X3180 X3180 X3153 X3137 X3137 X3137
19 X3165 X3153 X3160 X3134 X3134 X3134
20 X3159 X3165 X3159 X3135 X3135 X3132
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Figure 1. Interoperability 𝐼  of terrorist network “Jamaah Islamiah Section of Indonesia” [99], after 
sequentially removing 𝑟 = 0,1,2, . . . ,23  nodes. The selected year for testing the eight attack 
strategies is 2003, as indicated in Table 1. Removing nodes based on recalculated betweenness is 
the most harmful, resulting in rapid network fragmentation. The interoperability drops 
significantly, even if only two nodes are removed (𝐼 < 0.5). 

Figure 1. Interoperability Ir of terrorist network “Jamaah Islamiah Section of Indonesia” [99], after
sequentially removing r = 0, 1, 2, ..., 23 nodes. The selected year for testing the eight attack strategies
is 2003, as indicated in Table 1. Removing nodes based on recalculated betweenness is the most
harmful, resulting in rapid network fragmentation. The interoperability drops significantly, even if
only two nodes are removed (I2 < 0.5).
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removing 𝑟 = 0,1,2, . . . ,23 nodes based on eight different attack strategies. 

Figure 2. Interoperability Ir of terrorist network “Hamburg Cell” [102], after sequentially removing
r = 0, 1, 2, ..., 22 nodes. The selected year for testing the eight attack strategies is 2000, as also indicated
in Table 2. Removing nodes based on recalculated betweenness is the most harmful, resulting in rapid
network fragmentation. The interoperability drops significantly if five nodes are removed (I5 = 0.2).
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Figure 3. Interoperability  𝐼  of terrorist network “Al-Qaeda Section of Madrid” [104], after 
sequentially removing 𝑟 = 0,1,2, . . . ,19 nodes. The selected year for testing the eight attack strategies 
is 2002, as also indicated in Table 2. Removing nodes based on recalculated betweenness or 
recalculated strength is equally the most harmful strategy (the two-color labels overlap in the 
diagram), resulting in rapid network fragmentation. The interoperability drops almost to zero, even 
if only two nodes are removed (𝐼 ≈ 0). 

The analysis of Figure 3 provides an in-depth understanding of the impact of 
different node removal strategies on the terrorist network “Al-Qaeda Section of Madrid” 
for the year 2002. This network’s interoperability (𝐼 ) was measured after sequentially 
removing 𝑟 = 0,1,2, . . . ,23 nodes based on eight different attack strategies. 

The most striking observation is the near-complete collapse of the network’s 
interoperability when nodes are removed based on either recalculated Betweenness 
Centrality or recalculated Strength Centrality. According to the data, both strategies are 
equally effective in causing rapid network fragmentation. After removing just two nodes, 

Figure 3. Interoperability Ir of terrorist network “Al-Qaeda Section of Madrid” [104], after sequen-
tially removing r = 0, 1, 2, ..., 19 nodes. The selected year for testing the eight attack strategies is 2002,
as also indicated in Table 2. Removing nodes based on recalculated betweenness or recalculated
strength is equally the most harmful strategy (the two-color labels overlap in the diagram), resulting
in rapid network fragmentation. The interoperability drops almost to zero, even if only two nodes are
removed (I2 ≈ 0).
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The analysis of Figure 4 sheds light on the resilience and vulnerabilities of the “Ja-
maah Islamiah Section of the Philippines” terrorist network for the year 2003. Given that 
this network is relatively small, consisting of only 16 nodes, the impact of node removal 
across different strategies tends to be similar. This is reflected in the relatively close values 
of interoperability (𝐼 ) across the eight attack strategies as nodes are sequentially removed. 

Notably, the removal of nodes based on recalculated Betweenness Centrality appears 
to be equally or more harmful compared to other strategies. This is indicative of the effec-
tiveness of using recalculated betweenness as a strategy for causing rapid network frag-
mentation. For instance, after removing 6 nodes based on recalculated Betweenness Cen-
trality, the interoperability plummets to a mere 0.1429, compared to 0.5714 when nodes 
are removed randomly. 

It is worth noting that the removal of nodes based on recalculated Clustering Coeffi-
cient Centrality results in a linear decrease in interoperability with the number of nodes 

Figure 4. Interoperability Ir of terrorist network “Jamaah Islamiah Section of the Philippines” [106],
after sequentially removing r = 0, 1, 2, ..., 13 nodes. The selected year for testing the eight attack
strategies is 2003, as also indicated in Table 1. Removing nodes based on recalculated betweenness
is equally or more harmful, compared to other strategies. The similar results of the eight different
strategies are understandable due to the small size of the network, which is only 16 nodes, as also
indicated in Table 1. It is worth mentioning that the removal of nodes based on recalculated clustering
coefficient decreases the Interoperability Ir linearly with the number of removed nodes r.
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In summary, Figure 4 suggests that despite the small size of the “Jamaah Islamiah 
Section of the Philippines” network, certain attack strategies, especially those based on 
recalculated betweenness, can be highly effective in fragmenting the network. The small 
network size makes most strategies somewhat effective, but recalculated betweenness 
stands out as particularly potent. The linear decrease in interoperability when using a re-
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Figure 5. Ιmage of the terrorist network “Jamaah Islamiah Section of Indonesia [99]“, showing the 
network structure after the removal of two specific nodes based on recalculated betweenness (attack 
strategy (vi)). Removed nodes are indicated with Black color. Nodes that are still connected to the 

Figure 5. Image of the terrorist network “Jamaah Islamiah Section of Indonesia [99]“, showing the
network structure after the removal of two specific nodes based on recalculated betweenness (attack
strategy (vi)). Removed nodes are indicated with Black color. Nodes that are still connected to the
network are indicated with Green color. Nodes that become isolated, due to network attacks, are
indicated with Pink color.
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the removal of five specific nodes based on recalculated betweenness (attack strategy (vi)). Removed 
nodes are indicated with Black color. Nodes that are still connected to the network are indicated 
with Orange color. Nodes that become isolated, due to network attacks, are indicated with Pink 
color. 

In Figure 6, the efficacy of the attack strategy based on recalculated betweenness cen-
trality is further confirmed when applied to the “Hamburg Cell” terrorist network. The 
sequential removal of nodes, commencing with X65 and extending to X58 [Table 4], show-
cases a well-calibrated disruption of the network architecture. The nodes designated in 
black, which have been excised, are instrumental in maintaining the network’s structural 
integrity. Shortly after the removal of the initial nodes, X65 and X64, there was a noticeable 
decline in the network’s Interoperability. The network’s primary component begins to 

Figure 6. Image of the terrorist network “Hamburg Cell” [102], showing the network structure after
the removal of five specific nodes based on recalculated betweenness (attack strategy (vi)). Removed
nodes are indicated with Black color. Nodes that are still connected to the network are indicated with
Orange color. Nodes that become isolated, due to network attacks, are indicated with Pink color.
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Figure 7. Image of the terrorist network “Al-Qaeda Section of Madrid” [104], showing the network
structure after the removal of two specific nodes based on recalculated betweenness (attack strategy
(vi)). Removed nodes are indicated with Black color. Nodes that are still connected to the network
are indicated with Yellow color. Nodes that become isolated, due to network attacks, are indicated
with Pink color.
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Figure 8.  Ιmage of the terrorist network “Jamaah Islamiah Section of Philippines” [106], showing 
the network structure after the removal of five specific nodes based on recalculated betweenness 
(attack strategy (vi)). Removed nodes are indicated with Black color. Nodes that are still connected 
to the network are indicated with a Light Blue color. Nodes that become isolated, due to network 
attacks, are indicated with Pink color. 

In Figure 8, the subject of analysis is the “Jamaah Islamiah Section of the Philippines” 
terrorist network. Here again, the application of the node-removal strategy based on re-
calculated betweenness centrality proves to be notably efficacious. The data series com-
mences with the removal of node X159 and continues through to node X155 [Table 6]. As 
nodes marked in black are systematically excised from the network, their essential roles 
in sustaining the network’s functional integrity become evident. Notably, after the re-
moval of just the first two nodes, X159 and X153, the network’s Interoperability already 

Figure 8. Image of the terrorist network “Jamaah Islamiah Section of Philippines” [106], showing the
network structure after the removal of five specific nodes based on recalculated betweenness (attack
strategy (vi)). Removed nodes are indicated with Black color. Nodes that are still connected to the
network are indicated with a Light Blue color. Nodes that become isolated, due to network attacks,
are indicated with Pink color.

While the sequence of removing nodes differs significantly between the different
strategies, some nodes appear frequently in the early stages of removal across multiple
strategies, suggesting their key role within the network (X1580, X1579).

In Table 4, we present the sequential removal of nodes in the network of the terrorist
organization “Hamburg Cell”. The several strategies for node removal are based on
selected centrality metrics, namely strength, betweenness, clustering coefficient, and the
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corresponding recalculated versions of them. We also test a greedy algorithm which
removes the node corresponding to the maximal decrease of Interoperability Ir at each step.
The coded node identifiers (e.g., X64) correspond to unique members of the organization
and are consistent with the encoding practices of the JJATT and CASOS databases.

While the sequence of removing nodes differs significantly between the different
strategies, some nodes appear frequently in the early stages of removal across multiple
strategies, suggesting their key role within the network (X65, X1005).

In Table 5, we present the sequential removal of nodes in the network of the terrorist
organization “Al-Qaeda Section of Madrid”. The several strategies for node removal are
based on selected centrality metrics, namely strength, betweenness, clustering coefficient,
and the corresponding recalculated versions of them. We also test a greedy algorithm which
removes the node corresponding to the maximal decrease of Interoperability Ir at each step.
The coded node identifiers (e.g., X3136) correspond to unique members of the organization
and are consistent with the encoding practices of the JJATT and CASOS databases.

While the sequence of removing nodes differs significantly between the different
strategies, some nodes appear frequently in the early stages of removal across multiple
strategies, suggesting their key role within the network (X3132, X3141).

In Table 6, we present the sequential removal of nodes in the network of the terrorist
organization “Jamaah Islamiah Section of the Philippines”. The several strategies for
node removal are based on selected centrality metrics, namely strength, betweenness,
clustering coefficient, and the corresponding recalculated versions of them. We also test
a greedy algorithm which removes the node corresponding to the maximal decrease of
Interoperability Ir at each step. The coded node identifiers (e.g., X153) correspond to unique
members of the organization and are consistent with the encoding practices of the JJATT
and CASOS databases.

Table 6. This table shows the sequential removal of nodes in the network of the terrorist organization
‘Jamaah Islamiah Section of the Philippines’. The several strategies for node removal are based on
selected centrality metrics, including a greedy algorithm. The coded node identifiers (e.g., X1567)
correspond to unique members of the organization and are consistent with the encoding practices of
the JJATT and CASOS databases.

Sequential Node Removal in “Jamaah Islamiah Section of the Philippines”

Strength
Centrality

Betweenness
Centrality

Clustering
Coefficient
Centrality

Strength
Centrality

Recalculated

Betweenness
Centrality

Recalculated

Clustering
Coefficient
Centrality

Recalculated

Greedy
Algorithm

Attack Node Node Node Node Node Node Node
0 0 0 0 0 0 0 0
1 X153 X159 X189 X153 X159 X1564 X162
2 X162 X151 X650 X162 X153 X1549 X151
3 X163 X162 X1502 X1567 X1567 X1502 X153
4 X1567 X1567 X1549 X163 X162 X650 X155
5 X183 X153 X1564 X183 X151 X189 X159
6 X151 X155 X183 X151 X183 X159 X1567
7 X155 X163 X163 X159 X163 X1567 X163
8 X1549 X183 X155 X1564 X587 X183 X183
9 X1564 X189 X159 X189 X1564 X163 X1549
10 X159 X650 X1567 X587 X1549 X155
11 X1502 X1502 X162 X1549 X1502 X153
12 X189 X1549 X151 X1502 X650 X587
13 X650 X1564 X153 X650 X189 X162
14 X587 X587 X587 X155 X155 X151
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While the sequence of removing nodes differs significantly between the different
strategies, some nodes appear frequently in the early stages of removal across multiple
strategies, suggesting their key role within the network (X162, X153, X151).

A meticulous analysis of Figure 1 provides invaluable insights into the effects of node
removal strategies on the network integrity of the terrorist organization, “Jamaah Islamiah
Section of Indonesia,” for the year 2003. The figure measures the network’s Interoperability
(Ir) after sequentially removing r = 0, 1, 2, ..., 23 nodes based on eight different attack
strategies, which include Strength Centrality, Betweenness Centrality, Clustering Coefficient
Centrality, and their recalculated variants, as well as a Greedy Algorithm.

One striking observation is the precipitous drop in interoperability when nodes are re-
moved based on recalculated Betweenness Centrality. After the removal of only two nodes,
the interoperability drops to a value of less than 0.5 ( I2, < 0.5), indicating rapid fragmenta-
tion of the network. This is in stark contrast to other strategies, such as Strength Centrality
and Clustering Coefficient Centrality, which maintain higher levels of interoperability even
after multiple node removals.

The Greedy Algorithm also results in a significant decline in interoperability, but not
as rapidly as the recalculated Betweenness Centrality. It is evident that by the 9th attack,
the interoperability falls to 0.1667, corroborating the efficacy of this algorithmic approach
in dismantling the network.

Interestingly, the Betweenness Centrality strategy shows a steep decline in interoper-
ability after the second node removal, reaching a value of 0.6667. However, this strategy
is not as effective as its recalculated counterpart, further emphasizing the potency of
recalculated metrics in disrupting the network.

In summary, Figure 1 strongly confirms the findings of this study that recalculated
Betweenness Centrality is the most effective strategy for causing rapid network fragmenta-
tion, thereby incapacitating the terrorist organization. These insights could be pivotal for
law enforcement agencies aiming to employ scientific tools in the fight against terrorism,
allowing for more efficient and targeted interventions.

The analysis of Figure 2 offers a comprehensive understanding of the impact of various
node removal strategies on the terrorist network known as the “Hamburg Cell” for the
year 2000. This network’s interoperability (Ir) was measured after sequentially removing
r = 0, 1, 2, ..., 23 nodes based on eight different attack strategies.

One key observation is the catastrophic drop in interoperability when nodes are
removed based on recalculated Betweenness Centrality. If five nodes are removed using
this strategy, the interoperability of the network plummets to a mere 0.2 (I5 = 0.2), indicating
a swift fragmentation of the network. This sharp decline underlines the effectiveness of
recalculated Betweenness Centrality in disrupting network integrity.

The Greedy Algorithm Strategy also shows promise in dismantling the network. By
the 10th attack, interoperability drops to 0.0869, demonstrating its efficacy in network
disruption, albeit not as rapidly as the recalculated Betweenness Centrality.

Contrastingly, other strategies like Strength Centrality and Clustering Coefficient
Centrality show a slower rate of decline in network interoperability. For instance, after
five nodes are removed using Strength Centrality, the interoperability is still at a relatively
high level of 0.7391, suggesting that this strategy is less effective in immediate network
fragmentation.

Notably, strategies like Betweenness Centrality also cause a significant decline in
interoperability but not as dramatically as its recalculated counterpart. By the fifth attack,
interoperability reaches 0.5652, which is significantly higher than the 0.2174 observed when
using recalculated Betweenness Centrality.

In summary, Figure 2 provides compelling evidence that recalculated Betweenness
Centrality is the most potent strategy for rapid network fragmentation in the case of the
“Hamburg Cell.” This information could be invaluable for law enforcement agencies using
scientific approaches to disrupt the organizational structures of terrorist networks.
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The analysis of Figure 3 provides an in-depth understanding of the impact of different
node removal strategies on the terrorist network “Al-Qaeda Section of Madrid” for the
year 2002. This network’s interoperability (Ir) was measured after sequentially removing
r = 0, 1, 2, ..., 23 nodes based on eight different attack strategies.

The most striking observation is the near-complete collapse of the network’s interop-
erability when nodes are removed based on either recalculated Betweenness Centrality or
recalculated Strength Centrality. According to the data, both strategies are equally effective
in causing rapid network fragmentation. After removing just two nodes, the interoperabil-
ity drops almost to zero (I2 ≈ 0), indicating extreme vulnerability in the network’s structure
to these particular attack strategies.

The Greedy Strategy also shows promise but is not as effective as the recalculated cen-
trality metrics. By the tenth attack, interoperability drops to 0.15, which, while significant,
is not as devastating as the almost zero interoperability caused by recalculated Betweenness
and Strength Centrality.

Other strategies like Strength Centrality, Betweenness Centrality, and Clustering Coef-
ficient Centrality also cause a decline in network interoperability but not as dramatically.
For instance, after removing five nodes using Strength Centrality, the interoperability still
stands at a relatively high 0.7. This suggests that these strategies are not as effective in
causing immediate network fragmentation.

In summary, Figure 3 reveals that recalculated Betweenness Centrality and recalculated
Strength Centrality are the most potent strategies for inducing rapid fragmentation in the
case of the “Al-Qaeda Section of Madrid.” This is a critical insight for law enforcement
agencies and researchers who aim to disrupt such networks using scientific tools.

The analysis of Figure 4 sheds light on the resilience and vulnerabilities of the “Jamaah
Islamiah Section of the Philippines” terrorist network for the year 2003. Given that this
network is relatively small, consisting of only 16 nodes, the impact of node removal across
different strategies tends to be similar. This is reflected in the relatively close values of
interoperability (Ir) across the eight attack strategies as nodes are sequentially removed.

Notably, the removal of nodes based on recalculated Betweenness Centrality appears
to be equally or more harmful compared to other strategies. This is indicative of the
effectiveness of using recalculated betweenness as a strategy for causing rapid network
fragmentation. For instance, after removing 6 nodes based on recalculated Betweenness
Centrality, the interoperability plummets to a mere 0.1429, compared to 0.5714 when nodes
are removed randomly.

It is worth noting that the removal of nodes based on recalculated Clustering Coeffi-
cient Centrality results in a linear decrease in interoperability with the number of nodes
removed. This is a unique characteristic in this particular dataset and could be attributed
to the small network size.

In summary, Figure 4 suggests that despite the small size of the “Jamaah Islamiah
Section of the Philippines” network, certain attack strategies, especially those based on
recalculated betweenness, can be highly effective in fragmenting the network. The small
network size makes most strategies somewhat effective, but recalculated betweenness
stands out as particularly potent. The linear decrease in interoperability when using a
recalculated Clustering Coefficient is also an interesting behavior that may warrant further
investigation, especially in the context of small networks.

In scrutinizing the data presented in Figure 5, one observes a remarkable pattern
of network degradation when implementing the attack strategy based on recalculated
betweenness centrality. The series of nodes sequentially removed—starting from X1556
and proceeding through to X577 [Table 3]—indicates a tactical dismantling of the “Ja-
maah Islamiah Section of Indonesia” terrorist network. Upon the removal of the first
two nodes, X1556 and X1580, a significant drop in the Interoperability of the network is
already discernible. The network structure undergoes a palpable fragmentation, as evi-
denced by the increasing number of nodes turning pink, signifying their isolation from
the main component. As the removal progresses to the 15th step, the network has been
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rendered largely non-operational. The nodes indicated in black, which have been removed,
were clearly pivotal to the network’s operational integrity. This particular attack strat-
egy, focusing on recalculated betweenness centrality, appears to be highly effective in
disrupting the network’s capacity to function as a coherent unit. The insights gleaned
from this figure stand as a testament to the potential efficacy of this approach in real-world
counter-terrorism operations.

In Figure 6, the efficacy of the attack strategy based on recalculated betweenness
centrality is further confirmed when applied to the “Hamburg Cell” terrorist network.
The sequential removal of nodes, commencing with X65 and extending to X58 [Table 4],
showcases a well-calibrated disruption of the network architecture. The nodes designated
in black, which have been excised, are instrumental in maintaining the network’s structural
integrity. Shortly after the removal of the initial nodes, X65 and X64, there was a noticeable
decline in the network’s Interoperability. The network’s primary component begins to
disintegrate, as indicated by the escalating number of nodes turning pink, symbolizing
their subsequent isolation. Furthermore, the nodes that remain connected are highlighted
in orange, and their dwindling number signifies the degradation of the network’s co-
hesion. By the time the fifteenth node is removed, the network has been substantially
weakened, corroborating the effectiveness of this particular node-removal strategy based
on recalculated betweenness centrality.

In Figure 7, the analytical focus shifts to the “Al-Qaeda Section of Madrid” terrorist
network, where the application of the node-removal strategy based on recalculated be-
tweenness centrality yields equally compelling results. Starting with the removal of node
X3132 and progressing through to X3135 [Table 5], the network experiences a significant
structural disintegration. Nodes marked in black, which have been removed, demonstrate
their crucial roles in maintaining the network’s functional coherence. As early as the re-
moval of the first two nodes, X3132 and X3136, a discernible decrease in the network’s
Interoperability is evident. The network becomes increasingly fragmented, with a rise in
nodes turning pink, signifying their isolation from the main component. The remaining
connected nodes, denoted in yellow, also decline in number, attesting to the weakening
of the network’s overall structure. By the sixteenth step of node removal, the network
is largely ineffectual, corroborating the potency of the strategy focusing on recalculated
betweenness centrality.

In Figure 8, the subject of analysis is the “Jamaah Islamiah Section of the Philippines”
terrorist network. Here again, the application of the node-removal strategy based on
recalculated betweenness centrality proves to be notably efficacious. The data series
commences with the removal of node X159 and continues through to node X155 [Table 6].
As nodes marked in black are systematically excised from the network, their essential
roles in sustaining the network’s functional integrity become evident. Notably, after
the removal of just the first two nodes, X159 and X153, the network’s Interoperability
already shows a marked decrease. The process of fragmentation is visually captured by
the increasing number of nodes turning pink, indicating their isolation from the main
component. Conversely, the nodes that remain connected to the network, represented in
light blue, diminish in number as the attack progresses, further confirming the effectiveness
of this particular node-removal strategy. By the completion of the twelfth step, the network
is substantially incapacitated, largely affirming the merits of focusing on recalculated
betweenness centrality as an attack strategy.

These findings are in harmony with those from the “Jamaah Islamiah Section of In-
donesia”, “Hamburg Cell”, and “Al-Qaeda Section of Madrid” networks, further bolstering
the argument for the universal efficacy of this approach.

4. Discussion

The goal of this work is to examine the vulnerability of four terrorist networks under
random and targeted attacks (node removal), namely: the Jamaah Islamiah Section in
Indonesia, the Hamburg Cell, the Al-Qaeda Section of Madrid, and the Jamaah Islamiah
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Section in the Philippines. By comparing the Interoperability scores in response to various
node removal strategies, the following discussion provides actionable insights into the
comparative efficacy of these methods. We focus on how these strategies can destabilize
the network, ultimately offering valuable perspectives for counterterrorism initiatives.

From Figures 1 and 5, and Table 3 of the Jamaah Islamiah Section of Indonesia we
observe the following. Initially, the procedure begins with the maximal possible Interop-
erability score equal to 1, denoting a fully (100%) functional network. A rapid decline
of Interoperability is observed in all strategies. Attacking nodes randomly results in a
moderate, consistent drop of Interoperability with a final score of 0.0417 after 24 episodes.
Attacking nodes based on strength centrality results in a dramatic drop to 0.0833 by the 4th
attack. Attacks based on betweenness centrality damage the network by the 2nd attack,
achieving a score of 0.6667. Attacks based on clustering coefficient centrality are the least
effective, as the network shows resilience, having a stable score of 0.25 after many episodes.
Dynamic recalculations of centrality metrics highlight that betweenness centrality is the
most effective strategy, lowering the score to 0.0417 by the twelfth attack, while recalculated
strength centrality and clustering coefficient centrality are less harmful. The network is
highly vulnerable to targeted attacks based on betweenness centrality, especially when be-
tweenness centrality is recalculated dynamically, implying that counterterrorism strategies
should prioritize these nodes for disruption.

Several key differences emerge when comparing the network interoperability of the
Hamburg Cell organization (Figures 2 and 6 and Table 4) to that of the Jamaah Islamiah
Section of Indonesia (Figures 1 and 5 and Table 3). First and foremost, the Hamburg Cell
network is remarkably more resilient to random node attacks. The Interoperability score
in this scenario drops only to 0.043478261 after 19–20 attacks, indicating the robustness
against random attacks, which is not present in the Jamaah Islamiah network. However,
this resilience seems to diminish when we focus on targeted strategies. Specifically, while
attacks based on high strength centrality are initially harmful, their effectiveness lowered
significantly, requiring 20 attacks to reach the critical Interoperability score. However, the
highest vulnerability is observed when attacking nodes with high betweenness centrality.
In this case, six attacks can reduce the Interoperability to the same low point. Clustering
coefficient centrality does not perform well in both networks, namely the Hamburg Cell
network and the Jamaah Islamiah Section of Indonesia. A total of 23 attacks are required
to achieve the same low score of 0.043478261, rendering it the least effective of the tested
strategies. Interestingly, dynamic recalculations, which generally make strategies more
effective for the Jamaah Islamiah network, do not offer the same advantage against the
Hamburg Cell. For instance, the recalculated strength centrality is surprisingly less effective
than strength centrality, and the recalculated clustering coefficient centrality still needs
to be more effective. Only the recalculated betweenness centrality maintains its extreme
efficacy, reducing the score after two attacks. These results suggest that while the Hamburg
Cell network is generally more resilient against random attacks, it is vulnerable to targeted
attacks. In particular, even without dynamic recalculations, targeted strategies focusing on
nodes with high betweenness centrality could be remarkably effective.

Analyzing Figures 3 and 7 and Table 5 concerning the Al-Qaeda Section of Madrid
reveals a range of vulnerabilities and strengths regarding the network’s resilience to various
attack strategies. Several points of comparison with the Hamburg Cell (Figures 2 and 6,
and Table 4) and the Jamaah Islamiah Section of Indonesia (Figures 1 and 5, and Table 3)
can be identified. Random node attacks show that the network’s Interoperability score
drops to 0.05 after only 9–10 attacks. This indicates that the Al-Qaeda Section of Madrid is
considerably less resilient to random attacks than the Hamburg Cell and even the Jamaah
Islamiah Section of the Indonesia network. When targeting nodes based on strength
centrality, the network shows an initial decrease in Interoperability but seems to stabilize at
0.05 after nine attacks. The recalculated strength centrality metrics show similar behavior,
suggesting that while the network is quite robust against this strategy, it still has a significant
level of vulnerability. Regarding betweenness centrality, the Al-Qaeda Section of the Madrid



Information 2023, 14, 580 21 of 29

network appears to be highly vulnerable. The Interoperability score falls dramatically to
0.05 after nine attacks. Notably, the high network vulnerability is present even when the
metrics are recalculated, with the score remaining at 0.05 after 20 attacks. Here, recalculated
betweenness or recalculated strength are equally the most harmful strategies, as indicated
in the relevant diagram. This leads to rapid network fragmentation, while interoperability
drops almost to zero even when only two nodes are removed. Clustering coefficient
centrality is the least effective attack strategy, as it takes 20 attacks for the Interoperability
score to drop to 0.05, both in “static” and recalculated forms. This confirms that generally,
it is a strategy with low efficiency. In summary, the Al-Qaeda Section of Madrid presents
a mixture of results concerning network resilience. While it is relatively less resilient to
random node attacks, it demonstrates specific strengths and weaknesses against targeted
strategies. Specifically, the greatest weak point is its high vulnerability to targeted attacks
with high betweenness centrality. This result holds even when metrics are recalculated.
On the other hand, it shows a better resilience against clustering coefficient centrality
attacks, similar to the other networks examined. The Al-Qaeda Section of Madrid, in
particular, would be significantly fragmented if the nodes of high betweenness centrality
were removed, highlighting the importance of targeted strategies over random attacks.

The results concerning the Jamaah Islamiah Section of the Philippines reveals some
intriguing patterns (Figures 4 and 8, and Table 5). However, it is important to note that
the network size of this group is significantly smaller than other networks under consid-
eration. This may introduce specific challenges when comparing the efficacy of various
attack strategies. At the column of random node attack, where the experiment is running
1000 times, interoperability is relatively stable initially but decreases as more nodes are
removed. Given the smaller network size, it is reasonable that the “correct” nodes—those
significantly affecting network interoperability—are more likely to be targeted simply be-
cause fewer nodes exist. This could skew the results, making random attacks appear more
effective in this particular setting than in larger networks. For Strength and Betweenness
Centrality (recalculated or not) the interoperability also declines, though not always in
the same manner. For instance, the impact on interoperability varies in the recalculated
Strength and Betweenness Centrality attacks. This suggests that adaptive strategies may
affect smaller networks differently than larger ones. In this smaller network, strategies
involving Betweenness Centrality (recalculated or not) and Strength Centrality seem to
impact significantly, leading to a rapid decline in interoperability. This could suggest
that these strategies are particularly harmful in smaller networks, although it is tough to
generalize this without additional data. The Clustering Coefficient Centrality (recalculated
or not), also indicates a steady decrease in interoperability as nodes are removed. However,
it does not drop as sharply as Betweenness and Strength Centrality. This could mean that
this measure is less sensitive to the size of the network, but further research is needed to
confirm this first impression. In summary, the size of this network could pose challenges
for straightforward comparison with larger networks. Different attack strategies may yield
different results depending on the network size, and smaller networks might be more
vulnerable to certain types of attacks due to their limited structural complexity.

To sum up, from our findings concerning the four terrorist networks studied, it is
clear that the strategy of recalculating betweenness centrality is the most effective in terms
of interoperability. Although these networks manifest varying degrees of resistance to
different kinds of attacks (random or targeted), the Achilles’ heel seems to be the nodes
with high betweenness centrality, especially when recalculated dynamically. Our analysis
demonstrates the effectiveness of this strategy in 3 out of 4 networks (Figures 1–3) and is
equally or more harmful in the fourth network, despite its smaller size (Figure 4, 16 nodes,
Table 2). These findings concerning vulnerability on real face-to-face terrorist networks,
could serve as the cornerstone for counter-terrorism, aiming to network fragmentation. The
importance of context-dependent factors, such as the size of the network and its inherent
resilience characteristics, should be taken into account. Particularly revealing was the
remarkable effectiveness of the recalculated betweenness centrality strategy in the largest
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network of our analysis (Figure 3, 54 nodes, Table 2). To optimize the effectiveness of the
recalculated betweenness centrality, it is essential to update-recalculate the centrality score
of each node after each removal, due to the dynamic nature of network structure. This
highlights the necessity for law enforcement agencies to maintain real-time data concerning
the ever-changing social ties among terrorists. Without timely updates, even a theoretically
effective strategy could lose its effectiveness.

From Figures 1–4, we observe that the implementation of the greedy algorithm out-
performs most of the other attack methods investigated in this study. More specifically,
the greedy algorithm reduces the Interoperability quickly, resulting eventually in zero
Interoperability. On the other hand, the recalculated betweenness centrality does not re-
sult eventually into zero Interoperability but achieves a greater drop of Interoperability
cumulatively after a few attacks. This finding makes the recalculated betweenness cen-
trality the best attack strategy, because the goal of law enforcement authorities is to attack
only a few nodes, resulting in the greatest possible drop of Interoperability. Zeroing out
interoperability by attacking many nodes is not a realistic scenario for law enforcement
authorities. It is interesting to note that the greedy algorithm performs better compared to
all non-recalculated centrality strategies. The dynamic aspect of recalculation, concerning
the betweenness centrality strategy, is the key factor for outperforming the greedy algo-
rithm. This finding highlights the importance of real-time monitoring and updating the
relevant data concerning terrorist networks. Another drawback of the greedy algorithm
is that the nodes for removal are not characterized by some specific role in the terrorist
organization. On the contrary, the excellent results of recalculated betweenness centrality
in all networks examined, suggest strongly that “mediators” are the best targets. Therefore,
we can conclude that the role of “mediator” is the best for attack, and this is our insight
provided to the law enforcement authorities.

More specifically, when examining the reduction of Interoperability (Ir) to a level
below 50% (Ir ≤ 0.5), it is observed that node removal based on recalculated betweenness
centrality yields better results than the greedy algorithm (Figure 9). For instance, in the
terrorist organization Jamaah Islamiah Section of Indonesia, Interoperability (Ir) values
reach≤ 0.5 after the removal of just two nodes based on recalculated betweenness centrality,
while with the greedy algorithm, the value is higher at ≥ 0.6. In the case of the Hamburg
Cell terrorist organization, five node removals may be required, but the Interoperability (Ir)
drops to 0.21 using recalculated betweenness centrality, as opposed to 0.47 with the greedy
algorithm. The most striking results are observed in the Al-Qaeda Section of Madrid. In
this organization, with the removal of just two nodes, Interoperability (Ir) drops to ≤ 0.05
using recalculated betweenness centrality, whereas it remains at ≥ 0.65 with the greedy
algorithm. Lastly, in the smaller terrorist organization Jamaah Islamiah Section of the
Philippines, the Interoperability value is below 0.5 after the removal of five nodes for both
node removal strategies.

Finally, it is worth mentioning that strategies of random node removal are the least
effective because they require the elimination of numerous nodes to achieve a remark-
able drop in network interoperability score. This highlights the crucial role of pre-attack
network analysis in identifying the most effective points for intervention. Ignoring such
research could lead to inefficient outcomes. Therefore, the tailored, data-driven, recalcu-
lated betweenness centrality approach emerges as an effective strategy and valuable tool
for counterterrorism interventions.

While our study provides valuable insights into the effectiveness of various node
removal strategies for network fragmentation, it is important to clarify that we are not
in a position to recommend specific methods for carrying out these removals. Decisions
involving arrest, detention, legal procedures, or any other form of intervention are subject
to ethical, legal, and sociopolitical considerations that lie outside the scope of this analysis.
These decisions require expertise in law, criminology, sociology, and ethical studies and
must be made by applicable local, national, and international regulations. Our focus is
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solely on the mathematical and network analysis aspects to aid counter-terrorism efforts
from a theoretical standpoint.
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Comparative Analysis with the Existing Literature

In the broader context of network science applied to counterterrorism, this study
distinguishes itself in several noteworthy ways. While numerous studies have investigated
targeted node removal strategies, the scope and methods often differ. For instance, research
has been conducted on the effectiveness of various node removal strategies, but a majority
of them rely heavily on synthetic or social media data [77–91]. In contrast, the current study
leverages real-world data from face-to-face interactions within terrorist networks, adding a
layer of practical relevance not universally present in the literature.

Additionally, many existing studies focus on a singular aspect of network centrality,
such as degree centrality or betweenness centrality, to identify key nodes for targeted
attacks [108–110]. Our research goes beyond this by examining a comprehensive set of
seven different centrality metrics, thereby providing a more nuanced understanding of
how different strategies impact the network’s interoperability. This multi-metric approach
has been explored less frequently in the existing literature [108,111–113]. The concept of
‘Interoperability’ as a measure for evaluating the effectiveness of node removal is also
relatively unique to this study. Earlier works have primarily used measures like network
efficiency [114–116]. Interoperability, as defined here, provides a more comprehensive
understanding of how well parts of the network can still communicate after node removal,
making it a robust metric for real-world application.

Furthermore, while some studies have employed machine learning algorithms for
node classification and targeted removal [114–118], our study employs a greedy algorithm
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in addition to centrality-based strategies, thus offering a more diverse range of approaches
for practical implementation [119–121]. Importantly, the current study is one of the few
to apply its methodology to multiple real-world terrorist networks [48,49,99,102,104,106].
This allows for a more robust validation of the strategies discussed and adds to the general-
izability of the findings.

In summary, this study contributes to the existing body of knowledge by its unique fo-
cus on face-to-face interaction networks, its comprehensive approach to node centrality, and
its application to multiple, real-world terrorist networks. These distinctions not only enrich
the academic discourse but also offer actionable insights for law enforcement agencies.

5. Conclusions

The primary objective of this investigation is to identify the most effective attack strat-
egy on terrorist networks, aiming to neutralize their operational ability. More specifically,
we focus on attacks involving face-to-face human networks, specifically bombings, hijack-
ings, and assassinations, rather than cyber-security. Extending our previously published
research [48,49], this study examines seven different node removal strategies based on
several centrality criteria in four terrorist networks. Each attack strategy is evaluated based
on “Interoperability”, estimated by the size of the giant component of the network. Unlike
most studies in this area, which rely on data from social media interactions [77–91], our
work is grounded in real-world social ties among terrorists, namely physical face-to-face
interactions [48,49,99,102,104,106].

5.1. Key Findings

1. Effectiveness of Recalculated Betweenness Centrality: Removing nodes based on
high recalculated betweenness centrality was found to be the most effective strategy in
reducing Interoperability. The effectiveness of this strategy was observed universally
across different-sized networks. The dynamic nature of recalculated betweenness
centrality is the key factor for outperforming the greedy algorithm, highlighting the
importance of updating network data, and reflecting the ever-changing nature of
terrorist organizations. The above finding suggests strongly that nodes acting as
“mediators” are the best targets, and this is our insight provided to the law enforce-
ment authorities.

2. Limitations of Random Node Removal: Random node removal was less effective,
emphasizing the importance of targeted interventions based on topological network
analysis with centralities.

3. Impact of Network Size: While the main results hold for all four networks examined,
the size of the network introduces nuances concerning the effectiveness of different
strategies. This fact emphasizes the need for a tailored approach based on each
network’s characteristics.

4. Critical Nodes for Counterterrorism: Regardless of the network’s structure, nodes
with high betweenness centrality consistently emerged as critical points of vulnerabil-
ity and thus represent optimal targets for counterterrorism efforts.

5.2. Implications and Contributions

These findings offer actionable insights for law enforcement agencies, aiding the
development of more precise, real-time intervention strategies. They also underscore the
necessity for ongoing data updates to reflect the dynamic nature of terrorist organizations.
Furthermore, our study brings forth ethical, legal, and sociopolitical dimensions that must
be considered when translating these insights into practice.

5.3. Future Directions

Given the pioneering nature of this work, future research could delve deeper into more
complex models and additional centrality metrics. As the field matures, a comparative
framework involving various real-world networks could provide even more nuanced insights.
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In summary, this study makes a substantial contribution to the development of more
effective, targeted, and globally applicable counterterrorism strategies, fulfilling a pressing
need for data-driven, real-world relevant interventions in this critical domain.
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