
Citation: Shen, G.-T.; Huang, Y.-F.

Dual-Pyramid Wide Residual

Network for Semantic Segmentation

on Cross-Style Datasets. Information

2023, 14, 630. https://doi.org/

10.3390/info14120630

Academic Editors: Nikolaos

Mitianoudis and Ilias

Theodorakopoulos

Received: 23 October 2023

Revised: 17 November 2023

Accepted: 21 November 2023

Published: 24 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Article

Dual-Pyramid Wide Residual Network for Semantic
Segmentation on Cross-Style Datasets
Guan-Ting Shen 1 and Yin-Fu Huang 2,*

1 Innovation and Incubation Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital,
Chiayi 600566, Taiwan; 15387@cych.org.tw

2 Department of Computer Science and Information Engineering,
National Yunlin University of Science and Technology, Douliou 64002, Taiwan

* Correspondence: huangyf@yuntech.edu.tw

Abstract: Image segmentation is the process of partitioning an image into multiple segments where
the goal is to simplify the representation of the image and make the image more meaningful and
easier to analyze. In particular, semantic segmentation is an approach of detecting the classes of
objects, based on each pixel. In the past, most semantic segmentation models were for only one
single style, such as urban street views, medical images, or even manga. In this paper, we propose a
semantic segmentation model called the Dual-Pyramid Wide Residual Network (DPWRN) to solve
the segmentation on cross-style datasets, which is suitable for diverse segmentation applications. The
DPWRN integrated the Pyramid of Kernel paralleled with Dilation (PKD) and Multi-Feature Fusion
(MFF) to improve the accuracy of segmentation. To evaluate the generalization of the DPWRN and
its superiority over most state-of-the-art models, three datasets with completely different styles are
tested in the experiments. As a result, our model achieves 75.95% of mIoU on CamVid, 83.60% of
F1-score on DRIVE, and 86.87% of F1-score on eBDtheque. This verifies that the DPWRN can be
generalized and shows its superiority in semantic segmentation on cross-style datasets.

Keywords: semantic segmentation; dilated convolution; multi-scale objects; feature fusions;
cross-style datasets

1. Introduction

Computer vision tasks can be divided into four categories, namely image classification,
object location, object detection, and semantic segmentation. Among them, semantic
segmentation is more advanced than the others. To improve the accuracy of segmentation,
it must maximize the efficiency of an encoder to obtain relevant features and understand
the context contained in an image. In semantic segmentation, the ultimate goal is to classify
all the marked pixels in the image.

In the past, to improve the performance of Convolutional Neural Networks (CNNs) for
semantic segmentation, pre-trained classification networks were usually used as backbones,
such as VGG [1], ResNet [2], and DenseNet [3] trained on ImageNet. Later, to enable the
network to have a larger receptive field and also to restore small objects in an image, dilated
convolution was proposed by Yu and Koltun [4], and then was used in the subsequent
research [5–7]. To segment larger objects and solve existing multi-scale objects in an image,
some techniques such as Pyramid Pooling Module in PSPNet [8], Atrous Spatial Pyramid
Pooling Module in DeepLabv2 [9], and Hierarchical Feature Fusion Module in ESPNet [10],
were proposed. Later, feature fusions between encoders and decoders were proposed in the
recent literature [11,12]. Finally, to enable computers to learn human viewing behaviors, an
attention mechanism was derived, such as Squeeze-and-Excitation Block in SENet [13] and
Convolutional Block Attention Module [14].
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In this paper, we propose an image semantic segmentation model called the Dual-
Pyramid Wide Residual Network (DPWRN) to solve the segmentation for cross-style
datasets, which is suitable for diverse segmentation applications. In general, U-Net was the
most frequently used as encoders and decoders in semantic segmentation. Here, in addition
to an encoder and decoder, the model also consists of two extra modules to improve the
accuracy of segmentation, i.e., Pyramid of Kernel paralleled with Dilation (PKD) and
Multi-Feature Fusion (MFF), so-called Dual-Pyramid. In addition, in the previous work,
most semantic segmentation models conducted experiments on datasets with only one
style. In this paper, to evaluate the generalization of the DPWRN and its superiority over
most state-of-the-art models, three datasets with completely different styles are tested in
the experiments, i.e., Cambridge-driving Labeled Video Database (CamVid) [15], Digital
Retinal Images for Vessel Extraction (DRIVE) [16], and eBDtheque [17]. As a result, the
DPWRN verified its generalization and also showed its superiority over most state-of-the-
art models. In summary, we identify the novelty and contributions of this paper as follows:

1. A model called the DPWRN was proposed to solve image semantic segmentation,
which integrated PKD and MFF to improve the accuracy of segmentation.

2. Three cross-style datasets were used to evaluate the generalization of the DPWRN, in
contrast to only one-style dataset tested in existing semantic segmentation models.

3. The DPWRN achieved very good results, as compared with the state-of-the-art models,
i.e., ranking third (mIoU 75.95%) on CamVid, ranking first (F1-score 83.6%) on DRIVE,
and ranking the first (F1-score 86.87%) on eBDtheque.

The remainder of this paper is organized as follows. In Section 2, the previous research
related to image semantic segmentation is described. In Section 3, an image semantic
segmentation model is proposed to solve the segmentation for cross-style datasets, which is
suitable for diverse segmentation applications. In Section 4, to evaluate the generalization
of the proposed model and its superiority over most state-of-the-art models, three datasets
with completely different styles are tested in the experiments. Finally, we make conclusions
and give future work in Section 5.

2. Related Work

The earliest deep-learning network for image semantic segmentation was the Fully
Convolutional Networks (FCNs) proposed by Long et al. [11], which is an end-to-end
network structure for the image classification on each pixel. To improve the network per-
formance for image semantic segmentation, pre-trained image classification networks were
usually used as backbones, such as VGG [1], ResNet [2], and DenseNet [3] trained on Ima-
geNet. In the down-sampling process, using multiple pooling layers or stride convolutions,
the dimensionality of an input image can be reduced, the number of parameters is also
reduced, and then a larger receptive field is obtained at the same time. Finally, the output
stride of the feature map is 32. Next, in the up-sampling process, the image is restored for
classification prediction.

However, output stride 32 is not beneficial to image semantic segmentation when an
object size in an image is less than 32 × 32 since the object cannot be restored. To enable
the network to have a larger receptive field and also to restore small objects in the image,
dilated convolution was proposed by Yu and Koltun [4]. In the down-sampling process, the
original convolution layers in the later stages are replaced with dilated convolution layers
to obtain the final high-resolution feature map. Later, Chen et al. [5], Yamashita et al. [6],
and Liu et al. [7] began to use dilated convolution to increase the receptive field.

In order to segment larger objects, it is important to increase the receptive field, but
multi-scale objects could exist in an image. In PSPNet [8], PPM (i.e., Pyramid Pooling
Module) was proposed by Zhao et al., which uses multiple varying-size pooling kernels
in parallel to obtain the features of different-scale objects. In DeepLabv2 [9], the ASPP
(i.e., Atrous Spatial Pyramid Pooling) module was proposed by Chen et al., which uses
multiple varying-dilated-rate convolutions in parallel to obtain the features of different-
scale objects. However, dilated convolution incurs gridding artifacts where adjacent pixels
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lack dependence on each other. This results in local information loss, especially when
too large dilated rates cause the features to be obtained from a long distance with little
correlation. To solve this problem, Mehta et al. proposed the HFF (i.e., Hierarchical Feature
Fusion) module in ESPNet [10]. The HFF module applies parallel dilated convolution and
serial residuals to effectively eliminate gridding artifacts.

The receptive field can be divided into low, medium, and high, determined by the
depth of an encoder. A deeper-layer encoder produces higher-order features, whereas a
shallower-layer encoder produces lower-order features. If only high-order features are used
to restore an image in a decoder, segmentation results could be inaccurate. Thus, feature
fusions between encoders and decoders were proposed. Long et al. [11] defined a skip
architecture that combines semantic information from a deep, coarse layer with appearance
information from a shallow, fine layer to produce accurate and detailed segmentations. In
addition, Ronneberger et al. [12] proposed U-Net, where the feature map of the decoder is
concatenated with the correspondingly cropped feature map from the encoder to produce
more accurate segmentations.

When humans watch a scene, they observe each block in the scene carefully by means
of local attention and find the most significant part so as to understand the content of
all objects in the scene. For the so-called contexts in an image, if only adjacent pixels
are considered for semantic segmentation, the results will be inaccurate, especially at the
boundary between two different object types. To enable computers to learn human viewing
behaviors, an attention mechanism was derived. Hu et al. proposed the SE (i.e., Squeeze-
and-Excitation) block in SENet [13], which uses the channel attention mechanism to let the
neural network learn what to look at, but the contexts of an image are not fully utilized. To
solve this problem, Woo et al. [14] proposed CBAM (i.e., Convolutional Block Attention
Module), which uses not only a channel attention mechanism but also a spatial attention
mechanism, enabling the neural network to learn what to look at and which parts of an
object to look at.

Recently, the methods of Transformer combined with CNN have been employed in
segmentation tasks. Zhang et al. [18] proposed a hybrid semantic network (HSNet) com-
bining both the advantages of Transformer and CNN and improving polyp segmentation.
HSNet contains a cross-semantic attention module (CSA), a hybrid semantic complemen-
tary module (HSC), and a multi-scale prediction module (MSP). Dong et al. [19] adopted a
Transformer encoder in the proposed model Polyp-PVT, which learns more powerful and
robust representations. In addition, Polyp-PVT also consists of three standard modules, i.e.,
a cascaded fusion module (CFM), a camouflage identification module (CIM), and a simi-
larity aggregation module (SAM). Wang et al. [20] proposed a multi-level fusion network,
HIGF-Net, which uses a hierarchical guidance strategy to aggregate rich information to
produce reliable segmentation results. HIGF-Net extracts deep global semantic information
and shallow local spatial features of images together using Transformer and CNN encoders.
Nanni et al. [21] explored the potential of using the SAM (Segment-Anything Model) seg-
mentator to enhance the segmentation capability of known methods. This work combines
the logit segmentation masks produced by SAM with the ones provided by specialized
segmentation models such as DeepLabv3+ and PVTv2.

3. Proposed Models

In this paper, we propose an image semantic segmentation model called the Dual-
Pyramid Wide Residual Network (DPWRN) to solve the segmentation for cross-style
datasets, which is suitable for diverse segmentation applications, as shown in Figure 1. The
whole architecture is composed of four modules, i.e., (1) encoder—wide residual networks
(WRNs), (2) Pyramid of Kernel paralleled with Dilation (PKD), (3) Multi-Feature Fusion
(MFF), and (4) decoder.
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Figure 1. Proposed model.

The encoder uses a WRN as the backbone to extract the features of an image. Through
five stages in the WRN, the high-level features of an image are extracted. However, if
only the high-level features are used in the semantic segmentation, the segmentation is
not good enough, because multi-scale objects and small objects in an image are not taken
into account in the WRN. To make full use of all the features (i.e., high-level, mid-level,
and low-level), the features should be further processed, i.e., processing them through the
PKD module and processing them through the MFF blocks. The PKD module refines the
high-level features from stage 5 using asymmetric convolution and dilated convolution,
thereby solving multi-scale object problems. The MFF blocks fuse the high-level, mid-level,
and low-level features from each stage, and effectively detect small objects. Finally, the
results of the PKD module and the MFF blocks are concatenated together in the decoder to
achieve the semantic segmentation of an image.

3.1. Wide Residual Networks

In general, for a deep-learning network, the deeper the network is, the more it learns.
However, if the network is too deep, network degradation can happen; in other words,
the deeper the convolution is, the less likely it is that the network learns effective features.
Then, the classification accuracy of the network will decrease and be even worse than
that of a shallow network. Thus, He et al. [2] proposed deep residual neural networks for
image recognition. By stacking residual blocks as shown in Figure 2a,b, the deep residual
neural network performs identity mapping, which causes better features learned in shallow
convolutional layers to map to deeper convolutional layers, thereby avoiding network
degradation when it is too deep. However, there is no guarantee that each convolutional
layer can learn effective weights. Later, Zagoruyk and Komodakis [22] proposed a wide
residual network which is a shallower and wider network, and the residual blocks used are
shown in Figure 2c,d.

In short, the residual blocks used in a residual network [2] could be basic and bottle-
neck, as shown in Figure 2a,b. For a deep network, a bottleneck residual block is a variant
of the residual block, which utilizes 1 × 1 convolution to create a bottleneck reducing the
number of parameters and matrix multiplications. The goal is to make residual blocks as
thin as possible to increase depth and have fewer parameters. Then, it restores the dimen-
sionality through another 1 × 1 convolution. In addition, the residual blocks used in a
wide residual network [22] could be basic-wide and wide-dropout, as shown in Figure 2c,d.
A basic-wide residual block using more filters is wider than a basic residual block, and a
wide-dropout residual block uses dropout to avoid overfitting when more parameters are
trained in a neural network.
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The architecture of the original WRN is shown in Table 1, where two coefficients, k
and N, are used to adjust the width and depth of the network, respectively. Coefficient
k is the multiplier of the fixed filter number corresponding to the block in its stage and
determines the width of the network. Coefficient N specifies how many blocks are needed
in a stage and determines the depth of the network.

Table 1. WRN (original) tested on the Cifar10 dataset.

Stage Output Size Block

stage1 (output stride 1) 32 × 32 (3 × 3, 16) ×1

stage2 (output stride 1) 32 × 32
(

3× 3, 16× k
3× 3, 16× k

)
×N

stage3 (output stride 2) 16 × 16
(

3× 3, 32× k
3× 3, 32× k

)
×N

stage4 (output stride 4) 8 × 8
(

3× 3, 64× k
3× 3, 64× k

)
×N

1 × 1 average pooling 8 × 8, Softmax

In the original WRN, Zagoruyk and Komodakis set coefficients k and N to a larger
value in stage 1 and stage 2 (i.e., in output stride 1). This operation makes the network keep
a fixed width and depth at the beginning of training. Although it can improve the network’s
performance, the network is only suitable for small images, just as only the Cifar10 dataset
was used as the subject in Zagoruyk and Komodakis’s experiments. As a result, the original
WRN cannot be applied to larger images. In addition, since the wider and deeper network
in the early stage incurs too many parameters to be trained, the graphics card memory
cannot be sufficiently supported in general, and the training would be disrupted.

In our study, the WRN can be modified to achieve better performance than Deep
Convolutional Neural Networks (DCNNs), based on keeping a balance between the width
and depth of the network. For datasets with larger images, the modified WRN requires
more stages (i.e., five stages) in the down-sampling path, and the output stride of stage 5 is
changed to 16 to increase the receptive field; in other words, in contrast with the original
WRN down-sampling performed by the first layers in stage 3 and stage 4, the modified
WRN performs down-sampling in the first layers from stage 2 to stage 5. Moreover, the
stage 1 process in the original WRN is not used in the modified WRN. Finally, we redefine
coefficient k corresponding to the blocks in all the stages. The architecture of the modified
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WRN is shown in Table 2. The last average pooling layer is just used to pre-train the
modified WRN and is not used in the proposed model.

Table 2. WRN (ours) tested on datasets with larger images.

Stage Output Size Block

stage1 (output stride 1) 480 × 360 (3 × 3, 16 × k, stride(1,1)) ×1

stage2 (output stride 2) 240 × 180
 3× 3, 32× k, stride(2, 2)

3× 3, 32× k, stride(1, 1)
3× 3, 32× k, stride(1, 1)

 ×N

stage3 (output stride 4) 120 × 90
 3× 3, 48× k, stride(2, 2)

3× 3, 48× k, stride(1, 1)
3× 3, 48× k, stride(1, 1)

 ×N

stage4 (output stride 8) 60 × 45
 3× 3, 64× k, stride(2, 2)

3× 3, 64× k, stride(1, 1)
3× 3, 64× k, stride(1, 1)

 ×N

stage5 (output stride 16) 30 × 23
 3× 3, 80× k, stride(2, 2)

3× 3, 80× k, stride(1, 1)
3× 3, 80× k, stride(1, 1)

 ×N

1 × 1 average pooling 30 × 23, Softmax

3.2. Pyramid of Kernel Paralleled with Dilation

Objects in an image have multiple scales. Even objects of the same category have
different scales due to the distance the image is taken from. Here, two methods are referred
to and integrated together to solve this problem. One is the ASPP (i.e., Atrous Spatial
Pyramid Pooling) module proposed by Chen et al. in DeepLabv2 [9], which uses multiple
varying-dilated-rate convolutions in parallel to obtain the features of different-scale objects,
as shown in Figure 3. The other is the LKD (i.e., Large Kernel paralleled with Dilation)
block proposed by Liu et al. [7], as shown in Figure 4, which uses the features from the
dense kernels obtained by asymmetric convolution and the features from the sparse kernels
of obtained by dilated convolution. The fusion of these two kinds of features effectively
enhances the receptive field and solves the gridding artifacts caused by dilated convolution.
In our model, three KD (i.e., Kernel paralleled with Dilation) blocks with coefficient k of
asymmetric convolution set to 3 are used to obtain denser features, compared with original
LKD blocks with larger coefficient k. In addition, the dilated convolution rate of these three
KD blocks is set to 6, 12, and 18, respectively. By imitating the ASPP module, these three
KD blocks are paralleled with different dilated rates. Finally, the feature maps output by
these three KD blocks and the feature map output by stage 5 are concatenated together and
then proceed to the next 1× 1 convolution. Here, we call the integration PKD (i.e., Pyramid
of Kernel paralleled with Dilation) module.

3.3. Multi-Feature Fusion

The multi-scale features provided by the PKD module are only for larger objects since
the PKD module uses the high-level features output from stage 5 in the WRN. In other
words, the PKD module cannot yet provide precise features for smaller objects. Here, the
Feature Pyramid Network (FPN) proposed by Lin et al. [23], as shown in Figure 5a, is used
for target detection. It is composed of a bottom-up pathway, a top-down pathway, and
lateral connections. The bottom-up pathway is the encoder part used to obtain the features
of different resolutions, i.e., the WRN in our model, whereas the top-down pathway uses
feature fusion techniques. The feature maps of the upper layers have smaller resolutions
but have richer high-level image information. On the other hand, the feature maps of lower
layers have larger resolutions but have more low-level image information. For the feature
fusion techniques, the deepest feature map of the encoder is passed to the top layer in the
top-down pathway, and each layer in the top-down pathway up-samples the features from
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the previous layer by a factor of two (using nearest-neighbor interpolation) and then merges
them with the features (processed through 1 × 1 convolution) from the corresponding layer
in the bottom-up pathway, i.e., adding them together. Since the FPN considers high-level,
mid-level, and low-level features at the same time, it can effectively detect large and small
objects. Here, we modify the feature fusion of the FPN and call it a Multi-Feature Fusion
(MFF) block, as shown in Figure 5b. The nearest-neighbor interpolation in the up-sampling
operations is replaced with the bilinear interpolation. Then, the original feature fusion
operation is replaced with concatenation, and the 1 × 1 convolution is added to reduce the
output dimensionality. The MFF block makes full use of the context in an image so that
more accurate segmentation results can be achieved.
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3.4. Decoder

The purpose of the decoder is to restore the image to the original size and to present
the segmentation results, in contrast to the encoder, which reduces the image resolu-
tion through multiple down-sampling operations to obtain the features. In the WRN,
four down-sampling operations are used, and the resolution of the final feature map be-
comes 1/16 of the original image size. To restore the image to the original size, the decoder
requires four up-sampling operations. In the first three up-sampling operations, the results
of the up-sampling operations are concatenated with the feature map from the MFF blocks
for further processing. But, in the last up-sampling operation, the results of the up-sampling
operation are concatenated with the feature map from stage 1 in the WRN. In the decoder,
the up-sampling operations just use bilinear interpolation to enlarge the image resolution
and are without any learning. Therefore, after each up-sampling operation, two 3 × 3
convolutional layers are needed to learn how to restore the image. After the feature map is
restored to the original size, we need a 1 × 1 convolutional layer for prediction using the
Softmax function, where the number of filters is the number of categories in the dataset.
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4. Experiments

In this section, to evaluate the generalization of the proposed model and its superi-
ority over most state-of-the-art models, three datasets with completely different styles are
selected and tested in the experiments, i.e., Cambridge-driving Labeled Video Database
(CamVid) [15], Digital Retinal Images for Vessel Extraction (DRIVE) [16], and eBDtheque [17].
In the following subsections, we introduce the datasets used in the experiments, the ex-
perimental environments, and the evaluation indicators used to compare the proposed
model with the state-of-the-art models. Finally, we present the experimental results of
the model on CamVid, DRIVE, and eBDtheque, and validate its superiority over most
state-of-the-art models.

4.1. Datasets

In general, an existing semantic segmentation model focuses on only one topic, such
as medical imaging, street view imaging, etc. In this study, we claim the proposed model
has the generalization and can achieve good results in semantic segmentation on cross-
style datasets. Thus, different-style datasets are used to evaluate the model where the
semantic segmentation represents different applications. Here, we use CamVid (i.e., urban
street scenes dataset), DRIVE (i.e., retinal blood vessel dataset), and eBDtheque (i.e., comic
dataset) as cross-style datasets in the experiments.

CamVid is the earliest urban street view dataset used for semantic segmentation.
The videos in the dataset were taken by a car driving in Cambridge. It is composed of
five video sequences, and each frame of the video is 960 × 720 pixels. In total, it provides
701 images with annotations, where 367 images are for training, 101 images for validation,
and 233 images for testing. Although 32 categories of objects are provided in Camvid, only
the combined 11 categories were presented and used in most of the literature since some
categories appear less frequently in the videos.

DRIVE is the retinal blood vessel segmentation dataset, and each image is 584 × 565 pixels.
It consists of 40 colored fundus images with annotations, where 20 images are for training
and 20 images for testing. Only 2 categories are provided in DRIVE, i.e., background and
blood vessels.

eBDtheque is the dataset of comic collections, including America, Japan, and Europe.
It is composed of 100 comic images with different sizes of pixels, and a total of 850 panels,
1092 balloons, 1550 comic characters, and 4691 lines of text.

4.2. Experimental Environments

The proposed model was implemented in TensorFlow 2.0 [24] and trained on the plat-
form NVIDIA Titan RTX 24 GB produced by Nvidia Corporation in Santa Clara, California.
The optimizer used was Adam [25] (learning rate 0.0001, beta1 0.9, beta2 0.999), and the
loss function used was categorical cross-entropy. The batch size of these three datasets used
to train the model were all set to 2. However, the numbers of epochs for training on these
three datasets are not the same, i.e., 15 for CamVid, 15 for DRIVE, and 300 for eBDtheque.
The hyper-parameters k and N of our encoder on CamVid and eBDtheque are set to 10 and
3, respectively, whereas the k and N on DRIVE are set to 8 and 4. Furthermore, to improve
the experimental results on CamVid, two pre-training processes are required. First, the
weights of the model were pre-trained on the Cifar100 dataset [26]. Then, the weights of
the model were further pre-trained on the Cityscapes dataset [27], and finally, the weights
of the model of the model were trained again on the target CamVid.

Here, we pre-processed the datasets for training the model. For CamVid, we resized
the sizes of the images to 480 × 360 and expanded the original training set from 367 to
3000. The augmentation method is to conduct horizontal flips and rotations at random on
the images. For DRIVE, we adopted the expanded training set (i.e., from the original 20 to
234) used in the SA-Unet [28] and resized the sizes of the images to 480 × 480 for training.
Finally, the images of eBDtheque were all resized to 480 × 480 for training.



Information 2023, 14, 630 10 of 18

4.3. Evaluation Indicators

To compare the proposed model with the state-of-the-art models, we use different
evaluation indicators on these three datasets.

For CamVid, the standard mean Intersection over Union (mIoU) is used to evaluate
the segmentation results as follows:

IoU =
TP

TP + FP + FN
(1)

For DRIVE, sensitivity (SE), specificity (SP), accuracy (ACC), area under the curve
(AUC), and F1-Score are used to evaluate the segmentation results as follows:

SE =
TP

TP + FN
(2)

SP =
TN

TN + FP
(3)

ACC =
TP + TN

TP + FP + TN + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1− score =
2× Precision× Recall

Precision + Recall
(7)

For eBDtheque, since no test sets are supported, 5-fold cross-validation is used to
evaluate the segmentation results, based on precision, recall, and F1-score.

4.4. Experimental Results on CamVid

In this subsection, the ablation experiments were conducted first to verify the benefits
of considering the PKD module and MFF blocks in the proposed model. Then, to optimize
the benefits of the PKD module and MFF blocks, we turned to refine the CamVid dataset
and conducted progressive training. Finally, we present the comparisons among the state-
of-the-art models on CamVid and the segmentation results of our model.

4.4.1. Ablation Study for the PKD Module and MFF Blocks

As mentioned in Section 3, the PKD module and MFF blocks facilitate the encoder
to grasp the context in an image, thereby achieving more accurate segmentation results.
As shown in Table 3, considering the PKD module and/or MFF blocks in the model
significantly improves the segmentation results, especially the MFF blocks. In total, the
mIoU increases by 2.12%, as compared with only using the encoder.

Table 3. Ablation study on CamVid.

Encoder PKD Module MFF Blocks mIoU
√

- - 73.71√ √
- 74.00√

-
√

75.60√ √ √
75.83

√
: included.
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4.4.2. Progressive Training

To optimize the benefits of the PKD module and MFF blocks and then to further
promote the mIoU (i.e., 75.83) of the model, we turned to refine the CamVid dataset. The
refined datasets were used in a series of training called progressive training. As mentioned
in Section 4.2, we expanded the original training set of CamVid from 367 to 3000 by
conducting horizontal flips and rotations randomly on the images. In the refining process,
a total of 8 training sets called Data1–Data8 are expanded, and each one has the same
3000 images. The differences between these 8 datasets are (1) random horizontal flips and
rotations on images and (2) dividing the length and width of images by equal proportions,
then enlarging images, and finally random cropping. The division ratios of Data1–Data8 are
0.6 (i.e., enlarging most), 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, and 1 (i.e., retaining the original size).

Then, progressive training is used to test if the refined datasets can be used to promote
the mIoU of the model. First, the model was trained using Data1, then trained using
Data2, and so on until Data8 was used. During the progressing training, if any dataset
cannot promote the mIoU, the dataset is discarded. As shown in Table 4, the training using
Data4, Data5, and Data 7 reduces the mIoU of the model, so they are not considered in the
later training. Finally, the mIoU after the progressive training is promoted to 75.95%, as
compared with the mIoU of 75.83%, as shown in Table 3.

Table 4. Results of progressive training.

Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8 mIoU
√

- - - - - - - 69.83√ √
- - - - - - 71.99√ √ √

- - - - - 72.85√ √ √ √
- - - - ×√ √ √

-
√

- - - ×√ √ √
- -

√
- - 73.58√ √ √

- -
√ √

- ×√ √ √
- -

√
-

√
75.95

√
: included. ×: unincluded.

4.4.3. Comparisons and Segmentation Results

As shown in Table 5, the IoU of each category and/or the mIoU of all the mod-
els including ours are presented. Our model (full) is in 3rd place and performs better
than most state-of-the-art models. Although DeepLabV3Plus+SDCNetAug proposed by
Zhu et al. [29] has the best mIoU, the training dataset was augmented by the synthesized
samples that led to significant improvements in accuracy; in other words, the images in
the training dataset are not completely real. Moreover, the segmentation results of our
model on CamVid are visualized as shown in Figure 6. We can find that considering the
PKD module and MFF blocks in the proposed model achieves more accurate segmentation
results of small objects, especially Sign, Pedestrian, and Pole.

4.5. Experimental Results on DRIVE

To verify the generalization of the proposed model, we conducted experiments on
DRIVE and compared it with the state-of-the-art models. As mentioned in Section 4.2,
we adopted the expanded training set used in the SA-Unet [28] for training. As shown
in Table 6, our model (full) is in first place (83.60%) for F1-score, where F1-score increases
by 0.97%, as compared with the SA-Unet [28]. Furthermore, the segmentation results of
SA-UNet [28], DeepLabV3Plus [29], and our model on DRIVE are visualized as shown
in Figure 7.
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Table 5. Comparisons among the models on CamVid.

Methods Year Build Tree Sky Car Sign Road Pedes. Fence Pole Swalk Cyclist mIoU

Dilate8 [4] 2015 82.6 76.2 89.0 84.0 46.9 92.2 56.3 35.8 23.4 75.3 55.5 65.3
PSPNet [8] 2017 - - - - - - - - - - - 69.1
SegNet [30] 2017 89.6 83.4 96.1 87.7 52.7 96.4 62.2 53.4 32.1 93.3 36.5 60.1

RTA [31] 2018 88.4 89.3 94.9 88.9 48.7 95.4 73.0 45.6. 41.4 94.0 51.6 62.5
BiseNet [32] 2018 83.0 75.8 92.0 83.7 46.5 94.6 58.8 53.6 31.9 81.4 54.0 68.7

DenseDecoder [33] 2018 - - - - - - - - - - - 70.9
VideoGCRF [34] 2018 86.1 78.3 91.2 92.2 63.7 96.4 67.3 63.0 34.4 87.8 66.4 75.2

DeepLabV3Plus+SDCNetAug [29] 2019 90.9 82.9 92.8 94.2 69.9 97.7 76.2 74.7 51.0 91.1 78.0 81.7
Li et al. [35] 2020 - - - - - - - - - - - 70.5

WideSeg [36] 2020 84.4 77.9 92.4 84.8 52.2 95.1 67.2 50.0 45.1 83.9 65.0 72.5
Additive FC-PRnets94 [37] 2020 89.0 91.2 94.6 77.8 60.1 97.0 46.5 73.3 32.6 86.3 80.9 75.4

PIDNet [38] 2023 - - - - - - - - - - - 80.1

Ours (encoder only) - 86.19 79.08 91.37 86.52 54.58 96.82 65.43 57.71 37.77 88.62 64.70 73.71
Ours (full) - 87.44 80.37 93.28 88.42 58.91 97.08 71.08 57.52 45.69 89.08 66.62 75.95
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Table 6. Comparisons among the models on DRIVE.

Methods Year SE SP ACC AUC F1-Score

Liskowski et al. [39] 2016 78.11 98.07 95.35 97.90 -
Orlando et al. [40] 2017 78.97 96.85 94.54 95.07 -

Yan et al. [41] 2018 76.53 98.18 95.42 97.52 -
MS-NFN [42] 2018 78.44 98.19 95.67 98.07 -
DEU-Net [43] 2019 79.40 98.16 95.67 97.72 82.70

Vessel-Net [44] 2019 80.38 98.02 95.78 98.21 -
AG-Net [45] 2019 81.00 98.48 96.92 98.56 -

DeepLabV3Plus [29] 2019 70.48 74.58 97.15 84.56 72.47
IterNet [46] 2020 77.35 98.38 95.73 98.16 82.05

SA-UNet [28] 2020 82.12 98.40 96.98 98.64 82.63
Study Group Learning [47] 2021 83.80 98.34 97.05 98.86 83.16

FR-UNet [48] 2022 83.56 98.37 97.05 98.89 83.16

Ours (full) - 83.07 97.80 95.98 97.96 83.60
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4.6. Experimental Results on eBDtheque

We also conducted experiments on eBDtheque to verify the generalization of our
model and compared it with the state-of-the-art models. As shown in Table 7, our model
(full) is the best one (84.86%) for recall and also the best one (86.87%) for F1-score. In
addition, the segmentation results of Dubray and Laubrock [49], DeepLabV3Plus [29],
and our model on eBDtheque are visualized as shown in Figure 8. We can find that the
segmentation results of Japanese-style comics are relatively poor, as shown in the second
row, because most of the comics in eBDtheque are mainly European and American styles.

Table 7. Comparisons among the models on eBDtheque.

Methods Year Recall Precision F1-Score

Arai and Tolle [50] 2011 18.70 23.14 20.69
Ho et al. [51] 2012 14.78 32.37 20.30

Rigaud et al. [52] 2013 69.81 32.83 44.66
Rigaud et al. [53] 2015 62.92 62.27 63.59

Nguyen et al. [54], Mask R-CNN 2019 75.31 92.42 82.99
Nguyen et al. [54], Comic MTL 2019 74.94 92.77 82.91

Dubray and Laubrock [49] 2019 75.19 89.05 78.42

DeepLabV3Plus [29] 2019 77.14 85.54 81.12

Ours (full) - 84.86 88.98 86.87
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5. Conclusions and Future Work

In this paper, we proposed an image semantic segmentation model called the Dual-
Pyramid Wide Residual Network (DPWRN) to solve the segmentation for cross-style
datasets. First, it uses the WRN to extract the features of an image. Then, the features are
further processed and fused through the PKD module and MFF blocks. This process makes
full use of the context in the image and makes the segmentation more accurate. Finally, the
image is restored through the decoder, and the pixels are classified. Next, we conducted
the experiments on three datasets with completely different styles, including CamVid for
urban street scenes, DRIVE for retinal blood vessels, and eBDtheque for comics, and then
compared the proposed DPWRN with the state-of-the-art models.

As a result, our model achieves 75.95% of mIoU on CamVid, 83.60% of F1-score on
DRIVE, and 86.87% of F1-score on eBDtheque. These achievements are attributed to the
integration of PKD and MFF in our model to improve the accuracy of segmentation. In
addition, if the training datasets used in our model can be augmented using GAN (although
it needs more computing resources), the results could be improved further. We also conduct
the extra experiments and show the evaluation of DeepLabV3Plus (i.e., without augmenting
the training datasets) on DRIVE and eBDtheque, respectively, as shown in Tables 6 and 7.
From the evaluation results, we observe that although DeepLabV3Plus has the best mIoU
on CamVid, it cannot achieve the same performance on DRIVE and eBDtheque. This
verifies that the DPWRN has the generalization and shows its superiority in semantic
segmentation on cross-style datasets.

In the future, since an encoder architecture has strong influences on the results of
semantic segmentation, we expect to extract the optimal features from the encoder. We will
use the Self-adaptive Harmony Search Algorithm proposed by Wang and Huang [55] to
optimize coefficient k, coefficient N, and the number of filters multiplied by k in all the
stages of the WRN, based on different datasets, so that the optimal features of an image can
be obtained from the WRN.
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