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Abstract: The accurate classification of landfill waste diversion plays a critical role in efficient waste
management practices. Traditional approaches, such as visual inspection, weighing and volume
measurement, and manual sorting, have been widely used but suffer from subjectivity, scalability,
and labour requirements. In contrast, machine learning approaches, particularly Convolutional
Neural Networks (CNN), have emerged as powerful deep learning models for waste detection and
classification. This paper analyses VGG-16, InceptionResNetV2, DenseNet121, Inception V3, and
MobileNetV2 models to classify real-life waste when trained on pristine and unadulterated materials,
versus samples collected at a landfill site. When training on DiversionNet, the unadulterated material
dataset with labels required for landfill modelling, classification accuracy was limited to 49.69% in
the real environment. Using real-world samples in the newly formed RealWaste dataset showed
that practical applications for deep learning in waste classification are possible, with Inception V3
reaching 89.19% classification accuracy on the full spectrum of labels required for accurate modelling.

Keywords: classification; machine learning; deep learning; convolution neural networks; dataset;
landfill waste; waste management; sustainability

1. Introduction

Solid waste encompasses all materials that are produced as a result of human and
societal activities but have lost their utility or desirability [1]. This waste may be items
belonging to three primary groups: (i) recyclable inorganics fit for repurposing, i.e., plastics,
metals; (ii) divertible organics from which energy and fertilizer can be derived, i.e., food
and vegetation; and (iii) inorganic materials requiring landfill, i.e., ceramics, treated wood.
Improper management of the disposal of waste poses significant risks to environmental
sustainability and human health, resulting from toxic wastewater byproducts and the
global warming potential of methane in landfill gas [2–4]. For example, in 2020, 3.48% of
global greenhouse gas production was attributed to the waste disposal sector, with the
methane component of landfill gas accounting for 20% of worldwide methane emissions in
the following year [5,6]. The chemical composition and production of both wastewater and
landfill gases are heavily dependent on the organic content within the waste processed,
with significant variations arising in the presence of food and vegetation materials [7–10].
Detection of the waste types under meticulously refined material classes in both an accurate
and timely manner is therefore essential in sustainable waste management, by ensuring
accountability for both seasonal variations and recycling uptake [11–13].

In the literature, various approaches for the detection and classification of solid waste
have been explored, including both traditional and machine learning methods. Traditional
approaches, such as visual inspection, weighing and volume measurement, and manual
sorting, have been widely used for waste detection. Visual inspection relies on the expertise
of human operators to visually assess and classify waste based on its appearance. Weighing
and volume measurement techniques quantify waste by measuring its weight or volume,
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providing valuable information for waste estimation and management planning. Manual
sorting, commonly employed in recycling facilities, involves the physical separation of
different types of waste by workers. While these traditional approaches have their utility,
they are limited by subjectivity, scalability, and labour requirements.

On the other hand, machine learning approaches have emerged as powerful tools in waste
detection and classification. Image processing and computer vision techniques, combined
with machine learning algorithms, enable automated waste detection and classification based
on visual characteristics. These approaches analyse images or video footage to identify
and categorize different types of waste, enhancing waste sorting, recycling efforts, and
landfill operations [14–18]. As an alternative to visual analytics, sensor-based systems that
are integrated with machine learning algorithms utilize Internet of Things (IoT) devices or
embedded sensors in waste bins and collection vehicles to detect abnormalities belonging
to material types that are not allowed in the given waste stream [19]. Real-time analytics
provided by these systems offer valuable insights for decision-making in waste management.

One prominent deep learning architecture used in waste classification is the Con-
volutional Neural Network (CNN). CNNs are specifically designed for processing and
analysing visual data, making it an ideal choice for classifying landfill waste diversion.
Landfills contain a wide range of waste materials, and accurately categorizing them is
essential for effective waste management. By leveraging CNNs, the classification process
can be automated, significantly improving the efficiency and accuracy of waste diversion
strategies such as recycling, composting, and proper disposal. CNNs excel at image analysis
and feature extraction, allowing them to capture intricate details and patterns from waste
images. The convolutional layers in CNNs are able to identify edges, textures, and other
relevant characteristics, enabling the network to learn and leverage these features for accu-
rate waste classification. Pooling layers nested throughout the architecture down-sample
produced feature maps, allowing models to generalize object specific characteristics into
differing contexts. The hierarchy of the aforementioned layers enables models to extract
low-level features early in the architecture and derive semantical information in later layers
forming the basis of classifications at the output (Figure 1).
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Despite the promising potential of machine learning approaches, they also present
challenges. Sensor-based systems may be limited in their ability to detect all material types,
providing no information on other items present in the waste stream, which can affect
their suitability for comprehensive waste classification. Image processing and computer
vision techniques heavily rely on the quality and representativeness of their datasets,
and biases in the dataset labels will impact the accuracy of trained models in real-world
waste environments. Furthermore, the current state of deep learning models used in
waste classification often focuses on a limited number of waste material classes, failing to
adequately represent the full range of detectable material types found in real-world waste
scenarios. Additionally, these models often rely on object representations that assume
the pristine forms of materials, disregarding the diverse and degraded states commonly
observed in waste materials. These limitations indicate the need for more diverse and
comprehensive datasets that accurately represent the appearance and characteristics of
waste materials.
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Based on the above limitations, this paper proposes a comprehensive dataset called
RealWaste that covers various classes of landfilled waste for sustainable waste management.
Furthermore, five deep learning models are applied over RealWaste, and other existing
datasets and we provide a critical analysis over the results to see the impact of quality of
the dataset and more detailed classes of the waste. Hence, the main contributions of this
paper are as follows:

• We created the first dataset, RealWaste, to comprehensively cover more classes of
landfilled waste required for sustainable waste management. It includes three primary
material types for divertible organics, recyclable inorganics, and waste, with meticu-
lously refined labels for food, vegetation, metal, glass, plastic, paper, cardboard, textile
trash, and miscellaneous trash. There are 4808 samples captured with the resolution
of 524 × 524 from the Whyte’s Gully Waste and Resource Recovery Centre’s landfill
site located in Wollongong, New South Wales, Australia, where waste items from
municipal waste collection comingle and contaminate one another.

• The evaluation and analysis of five deep learning models over the RealWaste dataset
and the datasets existing in the literature. The selection of models used has been
intentionally made broad with respect to their design motivations to draw generalised
outcomes on the larger input image resolution. Moreover, our objective is to evaluate
the performance of the model when type of material over different items is important
to be detected. The outcome shows that waste detection is indeed achievable for the
meticulously refined classes required in sustainable waste management, with every
model reaching above 85% classification accuracy, with the best performer at 89.19%.

The remainder of this paper is structured as follows: Section 2 discusses the related
works. The RealWaste dataset and the proposed models for evaluation are detailed in
Section 3. Section 4 discusses the results and outcomes and Section 5 concludes the paper.

2. Related Work

The impact of the training phase of a CNN model on performance is well recognized.
Overfitting occurs when datasets lack diversity in the object features present in labels,
causing models to become proficient at classifying training data but lose the ability to
generalize label features. Deep learning often faces the challenge of small datasets, which
makes it difficult to effectively model the problem domain. To address this, large-scale
datasets with thousands of labels and millions of images have been assembled, such as Im-
ageNet by Russakovsky et al. [20]. Training models on such datasets with diverse features
has led to the exploration of heterogenous transfer learning in deep learning applications.
This supposition has been extensively investigated in the literature. For example, He
et al. [21] examined the potential of heterogeneous transfer learning in hyperspectral image
classification. Their novel heterogenous approach outperformed four popular classifiers
significantly across four datasets, with an improvement of 5.73% in accuracy compared to
the closest performer on the Salinas dataset. Heterogenous transfer learning becomes a
vital consideration for applications on smaller datasets to ensure success.

The relationship between dataset labels and size, and the depth and width of fully
connected layers has been studied by Basha et al. [22]. Their findings indicate that, regard-
less of dataset size, fully connected layers require fewer parameters in deeper networks,
while shallower architectures require greater width to achieve the same results.

The connections and organization of hidden layers within networks have also been
analysed by Sharma et al. [23]. They compared three popular architectures: AlexNet,
GoogLeNet, and ResNet-50. The performance accuracy on the CFIR-100 dataset revealed
significant differences, with AlexNet scoring 13.00%, GoogLeNet scoring 68.95%, and
ResNet-50 scoring 52.55%. These results demonstrate that deeper networks are not always
the best option, and that connections and network layouts are often more important for the
specific task at hand.

Data preprocessing and augmentation play a crucial role in deep learning. Data
augmentation, which generates new images from existing samples, is particularly important
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when training on smaller datasets. It improves a model’s generalization capacity and
learnable features by increasing the diversity of training data. Shijie et al. [24] evaluated the
effectiveness of different data augmentation techniques on the AlexNet model trained on the
CFIR-10 and ImageNet datasets. Geometric and photometric transformations were found
to boost performance, with geometric transformations performing the best. This result
was confirmed by Zhang et al. [25] in their study on leaf species classification. Geometric
transformations outperformed photometric transformations across the same model and
dataset, indicating their effectiveness in improving performance and generalization.

Data augmentation also helps address the performance degradation caused by im-
balanced datasets. Lopez de la Rosa et al. [26] explored this issue in semiconductor defect
classification. By applying geometric augmentations to scale an imbalanced dataset, the
study achieved a significant improvement in the mean F1-score, demonstrating the effec-
tiveness of geometric augmentation in handling imbalanced datasets.

Image resolution is another factor that can affect feature extraction. Sabottke and
Spieler [27] investigated the impact of resolution on radiography classifications. Higher
resolutions provided finer details for feature extraction and led to increased classification
accuracy. However, trade-offs between smaller batch sizes and higher resolutions had to be
considered due to hardware memory constraints. The study highlights the importance of
choosing the optimal resolution for specific applications.

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC), introduced by
Russakovsky et al. [20], has been a driving force in advancing CNNs. Models developed
for the ILSVRC have tackled challenges related to dataset size and real-world applicability.
For example, the AlexNet model, developed by Krizhevsky et al. [28] to win the ILSVRC in
2012, addressed the computational time requirements by spreading its architecture across
two GPUs for training. Subsequent advancements, such as the VGG family of architectures
proposed by Simonyan and Zisserman [29], GoogLeNet (Inception V1) developed by
Szegedy et al. [30], and ResNet architectures developed by He et al. [31], pushed the
depths of networks even further and achieved high object detection and classification
accuracies. DenseNet architectures, as described by Huang et al. [32], offered an alternative
approach by connecting convolution and pooling layers into dense blocks. InceptionResNet,
combining inception blocks with residual connections and developed by Szegedy et al. [33],
demonstrated improved convergence and lower error rates compared to the Inception and
ResNet families of models from which it was inspired. MobileNetV2, developed by Sandler
et al. [34], addressed the computational complexity issue by replacing standard convolution
layers with depth wise convolutions, enabling processing on hardware-restricted systems.

In waste classification literature, various models from the aforementioned architec-
tures have been implemented and evaluated on the TrashNet dataset [35]. The combination
of a Single Shot Detector (SSD) for object detection and a MobileNetV2 model trained
via transfer learning achieved high accuracy, outperforming other models [14]. Moreover,
optimization techniques applied to baseline models, such as the Self-Monitoring Module
(SMM) for ResNet-18, showed significant improvements in performance [15]. However,
studies have shown that under the right conditions, popular baseline models can achieve
similar or even better results compared to more complex implementations [16,17]. Nonethe-
less, the major issue in the literature is the lack of organic labels in the TrashNet dataset,
limiting its suitability for waste auditing and landfill modelling.

To address the limitations of the TrashNet dataset, Liang and Gu [18] proposed a multi-
task learning (MTL) architecture that localized and classified waste using the WasteRL
dataset. Their specialized network achieved high accuracy compared to other architectures.
However, the dataset’s labelling does not capture the spectrum of waste required for accu-
rate modelling, as the absence of organic breakdown and inorganic recyclable breakdown
limits its practical application.

Outside of the CNN approach, advancements in deep learning transformers have
shown significant promise to image classification. Originally designed for natural language
processing tasks to address the weighted context of individual words in the meaning
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of sentences through self-attention mechanisms, transformers have achieved significant
performance at lower computational complexities. Yu et al. demonstrated their particular
suitability towards long-term predictions on time series data, showing their efficiency at
representing complex problem domains [36]. Dosovitskiy et al. demonstrated how this
ability translates to computer vision, matching the performance of modern CNNs across
an array of benchmark datasets [37]. Within the waste classification space, transformers
have begun to find particular use in recognising construction waste composition based
off mixed samples in images. Dong et al. showed significant improvements within this
scope for semantic segmentation and fine-grained classification over baseline results when
applying transformers to the task [38].

In summary, the related work has investigated various aspects of deep learning, includ-
ing the impact of dataset size, network architecture, data preprocessing and augmentation,
image resolution, and the influence of the ILSVRC on CNN advancements. The studies
have provided insights into improving performance, handling imbalanced datasets, and
addressing computational constraints. However, the limitations in the datasets and the
lack of comprehensive labelling in waste auditing studies remain challenges for practical
applications in waste composition data and landfill modelling.

3. Methodology

This section has been structured towards addressing the major gap in the waste classifi-
cation literature, which pertains to the limitations in datasets and the lack of comprehensive
labelling in waste auditing studies [14–18]. To overcome these challenges and improve
the accuracy and practicality of waste classification models, we collect and preprocess
data to be utilized by different models. Hence, we aim to (i) evaluate the effectiveness
of pristine, unadulterated material datasets for training models to classify waste in the
real environment; (ii) assess the impacts of training on real waste samples to compare the
dataset approaches and reveal the suitability of each; and (iii) determine the optimal model
for waste classification in the live setting.

An experimental study has been conducted to analyse the performance of five popular
CNN models, on labelling waste across two datasets. Specifically, VGG-16 has been selected
for its shallow design [29], DenseNet121 for pushing layer depth [32], Inception V3 for its
grouping of hidden layers [30], InceptionResNet V2 for combining techniques [33], and
finally MobileNetV2 for its lightweight design [34].

In terms of dataset, the first dataset is DiversionNet, that has been assembled by
combining the TrashNet dataset with elements from several opensource datasets to populate
the labels which TrashNet lacks and represent the approach in the literature largely based
on pristine and unadulterated objects for model training [14–18]. The second dataset is
called RealWaste and we collected the samples during the biannual residential waste audit
at the Wollongong Waste and Resource Recovery Centre’s landfill. The samples were taken
from bins of municipal, recycling, and organic waste streams. To clearly demonstrate the
quality of the two datasets, DiversionNet relies on object samples in their pristine and
unadulterated forms, shown in Figure 2a. Conversely, RealWaste is made up of items
arriving at landfill, where comingling occurs between material types and objects undergo
structural deformation, shown in Figure 2b. The comingling of materials is attributed to
the presence of organic waste, where its decomposition and remains in food packaging
contaminate other items.

For evaluation purposes, a test dataset was assembled prior to the curation of Real-
Waste, consisting of 10% of the total images collected from each class during the residential
waste audit, selected at random. Both RealWaste and DiversionNet training applied an
80:20 training to validation split.

Table 1 provides insights into the distribution of images across different waste cate-
gories and highlight potential imbalances or variations within the datasets. For instance, in
the DiversionNet dataset, the label with the highest image count is Paper (594 images), fol-
lowed by Plastic (482 images) and Glass (501 images). On the other hand, the label with the
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lowest image count in the DiversionNet dataset is Miscellaneous Trash (290 images). These
variations in image counts suggest that certain waste categories may be overrepresented or
underrepresented in the dataset.
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Table 1. Labels and image count of datasets.

Label DiversionNet RealWaste Test

Cardboard 403 417 46
Food Organics 311 370 41

Glass 501 378 42
Metal 410 711 79

Miscellaneous Trash 290 445 50
Paper 594 497 55
Plastic 482 831 92

Textile Trash 417 286 32
Vegetation 519 392 44

3.1. Data Preprocessing

From the findings of the literature, two strategies have been implemented to treat the
datasets before commencing training: relatively large image sizes; and data augmentations.

3.1.1. Image Size

Each dataset has been scaled to 524 × 524 image resolutions to better distinguish
the finer object features and reach better classification accuracies [27]. The selection was
made to accommodate several factors present in waste classification: the comingled state
of material types; transparent objects in plastic and glass classes; and similarities between
specific objects (e.g., glass and plastic bottles). Although the resolution is relatively high, the
smaller datasets and mini-batch sizes meet hardware memory requirements, and transfer
learning, the process of initializing models with pretrained weights from generalized
classification tasks, allows for manageable training times.

3.1.2. Data Augmentation

Data augmentation methods have been applied to the training datasets, using Python
and the Augmentor library. Two sets of augmentations outlined in Table 2 have been
selected and applied to each image, respectively, tripling the total number of images within
each training dataset.

Both sets from Table 2 consist of a combination of geometric transformations and
are aimed at reducing the effects of overfitting to the training dataset. Geometric trans-
formations have been selected due to their enhancements on deep learning vision-based
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tasks [14–16,25] and effectiveness on imbalanced datasets [26]. The techniques were com-
bined to further increase performance as found in [24].

Table 2. Training dataset data augmentation.

Set No. Augmentation Techniques

1 Horizontal flip and elastic distortion
2 Rotate and shear

Each combination contains one transformation on the orientation of the object to
provide its features in a different context (horizontal flipping and rotation) and another
distorting objects to increase the feature space diversity, to account for the varied structural
state of objects received at landfill (elastic distortion and shear). Samples have been included
for an original image, elastic distortion and horizontal flipping, and rotation and shearing
in Figure 3a–c, respectively.
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3.2. Model Training

Prior to training, each model was loaded with pretrained weights from the ImageNet
dataset [20]. To preserve the feature extraction capability imparted through transfer learn-
ing, models were trained in progressive stages. Initially, the fully connected layers were
trained to adapt the model to the waste domain before fine tuning the feature extraction
layers. Different learning rates were applied across the stages where required to prevent
destabilization of the pre-learned feature extraction.

Hyperparameter Specification

The hyperparameter selection of batch sizes and learning rate has been detailed in
Table 3. A mini-batch approach was taken for batch sizing, whilst relatively low learning
rates were selected to ensure stability. No preset epoch size was set as each model displays
varied convergence behaviour and rather, model training was cut off once performance on
the validation dataset ceased to improve.

Table 3. Hyperparameter specifications.

Model Batch Size Learning Rate for Fully
Connected Layers

Learning Rate for Feature
Extraction Layers

VGG-16 4 1 × 10−5 1 × 10−5

DenseNet121 16 1 × 10−4 1 × 10−5

Inception V3 32 1 × 10−5 1 × 10−5

InceptionResNet V2 32 1 × 10−6 1 × 10−6

MobileNetV2 4 1 × 10−5 1 × 10−5
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4. DiversionNet versus RealWaste

This section details the results achieved by the five models over DiversionNet and
RealWaste during training and testing. Further to this, the best performing model and
dataset combination has been considered with respect to its confusion matrix to reveal
greater insights on deep learning waste classification.

4.1. Model Training

To analyse the learning behaviour of each model, the training and validation accuracies
have been plotted against the epoch span in Figures 4–8.
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The convergence behaviour suggests that the authentic waste materials in RealWaste
present a more diverse and complex feature space than their pristine counterparts in
DiversionNet, as training and validation accuracies were greater in every model when
trained on the latter. Furthermore, the differences between the metrics increased under
RealWaste training by 4% for VGG-16 in Figure 4a,b, 3% for DenseNet121 in Figure 5a,b,
4% for Inception V3 in Figure 6a,b, 5% for InceptionResNet V2 in Figure 7a,b, and 3% for
MobileNetV2 in Figure 8a,b. Aside from the differences between the training datasets,
the individual performance of models exposes insights on deep learning waste classifiers.
On both datasets, VGG-16 performed the worst reaching lower training and validation
accuracies compared to the deeper models. Although increasing the network depth is not a
certain way to success [23], this outcome suggests that some degree is required for accurate
waste classification due to the complex feature space present in the waste material.

4.2. Testing Performance

The performance of the models trained on DiversionNet and RealWaste has been
evaluated on the testing dataset with the results presented in Table 4.

The results from Table 4 are very similar to the training performance of the mod-
els. Both Inception V3 and DenseNet121 models achieved 89.19% classification accuracy
when trained on RealWaste; however, the former performed the best by achieving the
highest results in the other metrics. Specifically, the 91.34% precision, 87.73% recall, and
90.25% F1-score reached by Inception V3 were more than 0.5% greater than the next closest
DenseNet121 model for each metric. With respect to accuracy between RealWaste and
DiversionNet training in Table 4, VGG-16 showed an improvement of 58.83%, 48.86% in
DenseNet121, 31.50% in Inception V3, 42.62% in InceptionResNet V2, and finally, 60.50% in
MobileNetV2.
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Table 4. Performance results on testing dataset.

Model Accuracy Precision Recall F1-Score

DiversionNet Training
VGG-16 26.82% 28.80% 25.99% 27.32%
DenseNet121 40.33% 44.80% 34.93% 39.25%
Inception V3 49.69% 55.43% 39.29% 45.98%
InceptionResNet V2 44.70% 52.83% 40.75% 46.01%
MobileNetV2 27.65% 28.50% 24.95% 26.61%
RealWaste Training
VGG-16 85.65% 87.74% 84.82% 86.26%
DenseNet121 89.19% 90.06% 86.69% 89.62%
Inception V3 89.19% 91.34% 87.73% 90.25%
InceptionResNet V2 87.32% 89.69% 85.03% 88.49%
MobileNetV2 88.15% 89.98% 85.86% 87.87%

In every single case from Table 4, the RealWaste trained networks greatly outper-
formed their DiversionNet counterparts. Any model trained on data from a certain sample
space has a bias towards classification within said sample space. The significantly greater
performance in every metric shows the negative impact from the training samples collected
outside the authentic waste environment. The results show that the learning imparted by
the pure objects is far too biased for their characteristics to be generalized in the real-life
landfill setting, indicating that waste objects possess a much more complex feature space.

In both datasets detailed by Table 4, VGG-16 performed the worst with a classification
accuracy of 26.82% when trained on DiversionNet and 85.65% on RealWaste. Like the
training results, this can be attributed to the lack of layer depth within the architecture.
MobileNetV2 performed well on RealWaste training with 88.15% accuracy, but like VGG-16,
rather poorly on DiversionNet with 27.65%. Interestingly, the difference in classification
accuracy between the worst performing shallow and lightweight designs compared to the
best performing Inception V3 model was much larger when trained on DiversionNet rather
than RealWaste, with a difference of around 20% in the former case, and only 4% in the
latter. Even though the results have indicated that the pristine and unadulterated objects
within DiversionNet misrepresent real-life waste conditions, the deeper, more complex
models are shown to be better at generalizing the available features to the live environment.

With respect to the individual datasets in Table 4, the remaining DenseNet121 and
InceptionResNet V2 architectures performed well relative to the others, with classification
accuracies of 40.33% and 44.70% on DiversionNet, and 89.19% and 87.32% on RealWaste, re-
spectively. These classifications accuracies along with the results of Inception V3 give some
credit towards increased layer depth and complexity being required for waste classification
in real-life conditions. Specifically, the computational complexity within the models can
be considered through the number of parameters in the network. These parameters refer
to weights and biases applied to the inputs of neurons within the hidden layers and are
updated during training to encode the learned feature representations. Therefore, larger
numbers of parameters require more computational resources and thus increase the time of
processing the images. Although more parameters may surmise a greater ability to capture
feature representations, the structuring of the layers themselves is often more important to
the specific task at hand [23].

The results demonstrated this notion, where MobileNetV2 outperformed Inception-
ResNet V2 in the RealWaste experiment group with the former having just over 2 million
parameters and the latter 58 million, meaning that network specific classification techniques
outweigh this factor. Inception V3 outperforming InceptionResNet V2 emphasizes this
finding, where the latter combines the inception block design of the former with residual
connections. In the past, the more complex InceptionResNet V2 has been shown as the
better out of the two [33]; however, the model’s ability to classify waste feature space has
proven otherwise.
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Of further note is the extremely similar performance compared to the complexity of
DenseNet121 and Inception V3, with the former having around 7 million parameters, and
the latter a much larger amount at 26 million. Although VGG-16 has the second largest
number, totalling close to 34 million, its lack of performance is attributed to its architectural
constraints with limited depth.

Aside from raw accuracy, the RealWaste trained models performed extremely well in
precision, recall, and F1-scores in Table 4. The DiversionNet trained models performed signif-
icantly worse, furthering the indication that waste classification requires training samples
from the real environment. However, both experiment groups have the tendency towards a
higher precision than recall. The difference on average for RealWaste was 3.74% and 8.89%
for DiversionNet. In practice, this shows that models will tend to minimise the false positives
rather than false negatives. In the case of RealWaste, this is less of an issue given the smaller
difference and high F1-scores showing a good balance; however, it is still notable. Minimising
the number of false negatives to increase recall is the more desirable outcome. Classifiers
need to be able to predict the correct label for any object input to the system, given the almost
endless diversity in the actual objects belonging to each waste label.

4.3. Analysis

To gain a deeper understanding of its classification performance, a detailed analysis
was conducted using the confusion matrix, as shown in Figure 9. The confusion matrix
provides insights into the model’s performance in correctly classifying different waste
categories and reveals the presence of false negatives and false positives.
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Out of all the labels in Figure 9, the confusion between classes was the most prominent
with miscellaneous trash objects. The accuracy for this category was only 74.00%, indi-
cating a significant challenge in correctly identifying these objects. The class encountered
13 false negatives, where actual miscellaneous trash items were mislabelled, and eight false
positives, where other waste types were incorrectly classified. The diverse and sparse fea-
ture space of miscellaneous trash, characterized by different shapes, textures, and colours,
makes it difficult to encode identifiable features into the convolution layers. This issue is
somewhat unavoidable due to the label’s purpose of containing objects that do not fit into
any other material types. However, the poor performance highlights the need for further
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refinement in labelling objects belonging to the miscellaneous trash category to decrease
feature space diversity and improve overall accuracy.

The cardboard label also exhibited relatively poorer performance, with only 80.44%
of the total sample size correctly labelled. An analysis of the labels responsible for false
negatives and positives revealed confusion with other waste categories. Samples from
the metal, paper, and plastic classes, which can possess branding and graphical designs
similar to certain cardboard products, caused mislabelling. This confusion is evident in
Figure 10, where cardboard was labelled as metal, paper, or plastic. The lower image count
of cardboard compared to other labels suggests that increasing the number of samples
could help the model learn better representations and prevent misclassifications.
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Figure 10. Confusion between cardboard, metal, paper, and plastic: (a) Cardboard labelled as metal.
(b) Cardboard labelled as paper. (c) Cardboard labelled as plastic.

Similar confusion was observed between the metal and plastic labels. The model
correctly classified 92.41% of the total metal objects but mislabelled four objects as plastic.
The plastic label itself performed slightly poorer, accurately classifying 84.78% of the actual
objects in its category. Six items were mislabelled as metal, and one item was mislabelled
as cardboard. The similarities between certain objects in the plastic, metal, and cardboard
waste categories pose challenges for the model, indicating the need for better differentiation
between these materials.

Interestingly, the paper label demonstrated the best performance overall, with an
accuracy of 98.18% when correctly identifying paper objects. Only a single image was
mislabelled as cardboard. This superior performance may be attributed to the distinctive
structural properties of paper, which can become more deformed compared to other
materials, providing distinct features for differentiation.

The plastic class encountered confusion with the glass label, where five plastic ob-
jects were mislabelled as glass. This confusion arises from the fact that plastic and glass
containers share a similar feature space, particularly with transparent objects, as shown in
Figure 11a,b. The glass label achieved 90.48% accuracy, with two false negatives occurring
with the metal and plastic classes. The misclassifications with the metal class are interesting
as both false negative objects contain a small amount of metal material, causing confusion
due to their transparency, as seen in Figure 12a,b. This transparency issue poses a significant
challenge for practical applications.

The final inorganic material type, textile trash, achieved an accuracy of 93.75%. Al-
though the model performed well, two false negatives occurred with the miscellaneous
trash label. The decision to separate the textile and miscellaneous trash labels was mo-
tivated by the uniqueness of the textile feature space compared to miscellaneous trash.
However, the limited number of images in the textile trash class may contribute to the false
negatives. Increasing the number of samples could improve the model’s differentiation
between these labels.
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Turning to the organic waste types, the food organics label performed second best
overall, with 97.56% accuracy. Only a single false negative occurred, where a food organics
item was mislabelled as miscellaneous trash, as shown in Figure 13a. The diverse feature
space of miscellaneous trash may lead to false negatives for objects at the fringes of the
food organics category. Similarly, the vegetation label, which shares similarities with food
organics in terms of leafy green objects, achieved 95.45% accuracy. A single false negative
occurred with the miscellaneous trash label, as shown in Figure 13b, again indicating the
challenge of distinguishing objects at the edges of different waste categories. Figure 13c
also shows a false negative, where a vegetation object was mislabelled as food.
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Interestingly, no other false negatives or positives were encountered between food
organics and vegetation objects with any of the other labels apart from miscellaneous trash.
This indicates that the model can handle the compositing issue of organic waste materials
when provided with sufficient feature space to learn from.
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Outside of Inception V3, most models showed a similar trend for classifying organic
material types. InceptionResNet V2 encountered two false positives labelling food organics
as vegetation, whilst MobileNet V2 had one. A notable exception to this was DenseNet121
that did not encounter any confusion between the two. All models displayed the same
trend between glass and plastic, with MobileNet V2 proving the worst by labelling six
plastic objects as glass. Similar signs were shown between cardboard, metal, paper, and
plastic with all models performing slightly worse than Inception V3. The largest deviation
in performance from Inception V3 was the false positives arising when labelling plastics as
miscellaneous trash, with the other models encountering five to six errors compared to two
in Inception V3.

In summary, the analysis of the confusion matrix for the Inception V3 model trained
on the RealWaste dataset reveals important insights into the strengths and weaknesses of
waste classification. It highlights the challenges of correctly identifying miscellaneous trash
objects due to their diverse feature space, the potential confusion between different waste
materials such as cardboard, plastic, metal, and glass, and the superior performance of the
model in distinguishing paper and vegetation objects. These findings underscore the need
for refined labelling, increased sample sizes, and feature space differentiation to enhance
the accuracy and practicality of waste classification models.

5. Conclusions

In this paper, we have shown that machine learning approaches based on CNN deep
learning models provide a practical alternative to traditional manual methods for waste
classification and are therefore suited towards alleviating the subjectivity, scalability, and
labour requirement issues of the latter. The analysis of the VGG-16, InceptionResNet
V2, DenseNet121, Inception V3, and MobileNetV2 models has proven the ability of deep
learning to classify waste across the full spectrum of labels required for accurate modelling
with a classification accuracy reaching 89.19% on the Inception V3 architecture. However,
these outcomes have revealed the requirement of sampling training data from the real-life
environment, exposing the unsuitability of models relying on waste materials represented
in their pristine and unadulterated states with classification accuracy being at best limited
to 49.69%.

The potential for the Inception V3 within waste classification has been proven as
significant, based off the outcomes of training on RealWaste. However, it has been shown
to encounter difficulty in differentiating between cardboard, paper, plastic, and metal waste
materials. Although the confusion is understandable given the labelling appearing on these
material types, this places a limitation on the accuracy of landfill modelling projections.
As all other models showed the same trend to a worse degree, this appears more of an
issue of complexity within the waste feature space than the model’s classification ability
itself. Therefore, future work is suggested to consider expanding images within RealWaste
to account for unbalanced labels and explore the implications of further label refinement
within the dataset.
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17. Aral, R.A.; Keskin, Ş.R.; Kaya, M.; Hacıömeroğlu, M. Classification of TrashNet Dataset Based on Deep Learning Models.
In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December 2018;
pp. 2058–2062. [CrossRef]

18. Liang, S.; Gu, Y. A deep convolutional neural network to simultaneously localize and recognize waste types in images. Waste
Manag. 2021, 126, 247–257. [CrossRef] [PubMed]

19. Funch, O.I.; Marhaug, R.; Kohtala, S.; Steinert, M. Detecting glass and metal in consumer trash bags during waste collection using
convolutional neural networks. Waste Manag. 2021, 119, 30–38. [CrossRef] [PubMed]

20. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

21. He, X.; Chen, Y.; Ghamisi, P. Heterogeneous Transfer Learning for Hyperspectral Image Classification Based on Convolutional
Neural Network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3246–3263. [CrossRef]

22. Basha, S.H.S.; Dubey, S.R.; Pulabaigari, V.; Mukherjee, S. Impact of fully connected layers on performance of convolutional neural
networks for image classification. Neurocomputing 2020, 378, 112–119. [CrossRef]

23. Sharma, N.; Jain, V.; Mishra, A. An Analysis Of Convolutional Neural Networks For Image Classification. Procedia Comput. Sci.
2018, 132, 377–384. [CrossRef]

24. Shijie, J.; Ping, W.; Peiyi, J.; Siping, H. Research on data augmentation for image classification based on convolution neural
networks. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 4165–4170.
[CrossRef]

25. Zhang, C.; Zhou, P.; Li, C.; Liu, L. A Convolutional Neural Network for Leaves Recognition Using Data Augmentation. In
Proceedings of the 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and
Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, Liverpool, UK, 26–28
October 2015; pp. 2143–2150. [CrossRef]

26. de la Rosa, F.L.; Gómez-Sirvent, J.L.; Sánchez-Reolid, R.; Morales, R.; Fernández-Caballero, A. Geometric transformation-based
data augmentation on defect classification of segmented images of semiconductor materials using a ResNet50 convolutional
neural network. Expert Syst. Appl. 2022, 206, 117731. [CrossRef]

https://doi.org/10.1016/j.wasman.2007.06.018
https://doi.org/10.1016/j.renene.2006.04.020
https://www.legislation.gov.au/Details/F2020C00673
https://www.legislation.gov.au/Details/F2020C00673
https://www.climatewatchdata.org/ghg-emissions
https://doi.org/10.1016/S0956-053X(01)00040-X
https://www.ncbi.nlm.nih.gov/pubmed/11952174
https://doi.org/10.1016/j.wasman.2015.07.030
https://www.ncbi.nlm.nih.gov/pubmed/26346020
https://doi.org/10.1021/es100240r
https://www.ncbi.nlm.nih.gov/pubmed/20496890
https://doi.org/10.1016/j.jclepro.2017.08.016
https://doi.org/10.1186/s12302-015-0050-9
https://doi.org/10.1016/j.resconrec.2018.11.020
https://doi.org/10.1016/j.wasman.2014.09.019
https://doi.org/10.3390/app10207301
https://doi.org/10.1016/j.resconrec.2021.105636
https://doi.org/10.1016/j.resconrec.2020.105132
https://doi.org/10.1109/BigData.2018.8622212
https://doi.org/10.1016/j.wasman.2021.03.017
https://www.ncbi.nlm.nih.gov/pubmed/33780704
https://doi.org/10.1016/j.wasman.2020.09.032
https://www.ncbi.nlm.nih.gov/pubmed/33039979
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/TGRS.2019.2951445
https://doi.org/10.1016/j.neucom.2019.10.008
https://doi.org/10.1016/j.procs.2018.05.198
https://doi.org/10.1109/CAC.2017.8243510
https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.318
https://doi.org/10.1016/j.eswa.2022.117731


Information 2023, 14, 633 16 of 16

27. Sabottke, C.F.; Spieler, B.M. The Effect of Image Resolution on Deep Learning in Radiography. Radiol. Artif. Intell. 2020, 2, e190015.
[CrossRef] [PubMed]

28. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2012,
60, 84–90. [CrossRef]

29. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
[CrossRef]

30. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 12 June 2015; pp. 1–9. [CrossRef]

31. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [CrossRef]
32. Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
[CrossRef]

33. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-ResNet and the impact of residual connections on learning.
In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 12 February 2017.

34. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 4510–4520. [CrossRef]

35. Yang, M.; Thung, G. TrashNet, Github. 2016. Available online: https://github.com/garythung/trashnet (accessed on
20 November 2023).

36. Yu, C.; Wang, F.; Shao, Z.; Sun, T.; Wu, L.; Xu, Y. DSformer: A Double Sampling Transformer for Multivariate Time Series
Long-term Prediction. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management,
Birmingham, UK, 21–25 October 2023. [CrossRef]

37. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929.

38. Dong, Z.; Chen, J.; Lu, W. Computer vision to recognize construction waste compositions: A novel boundary-aware transformer
(BAT) model. J. Environ. Manag. 2022, 305, 114405. [CrossRef]

39. Single, S.; Iranmanesh, S.; Raad, R. RealWaste, Electronic Dataset, Wollongong City Council, CC BY-NC-SA 4.0. Available online:
https://github.com/sam-single/realwaste (accessed on 20 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1148/ryai.2019190015
https://www.ncbi.nlm.nih.gov/pubmed/33937810
https://doi.org/10.1145/3065386
https://doi.org/10.48550/ARXIV.1409.1556
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2018.00474
https://github.com/garythung/trashnet
https://doi.org/10.1145/3583780.3614851
https://doi.org/10.1016/j.jenvman.2021.114405
https://github.com/sam-single/realwaste

	Introduction 
	Related Work 
	Methodology 
	Data Preprocessing 
	Image Size 
	Data Augmentation 

	Model Training 

	DiversionNet versus RealWaste 
	Model Training 
	Testing Performance 
	Analysis 

	Conclusions 
	References

