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Abstract: Alzheimer’s disease (AD) is an illness affecting the neurological system in people commonly
aged 65 years and older. It is one of the leading causes of dementia and, subsequently, the cause
of death as it gradually affects and destroys brain cells. In recent years, the detection of AD has
been examined in ways to mitigate its impacts while considering early detection through computer-
aided diagnosis (CAD) tools. In this study, we developed deep learning models that focus on early
detection and classifying each case, non-demented, moderate-demented, mild-demented, and very-
mild-demented, accordingly through transfer learning (TL); an AlexNet, ResNet-50, GoogleNet
(InceptionV3), and SqueezeNet by utilizing magnetic resonance images (MRI) and the use of image
augmentation. The acquired images, a total of 12,800 images and four classifications, had to go
through a pre-processing phase to be balanced and fit the criteria of each model. Each of these
proposed models split the data into 80% training and 20% testing. AlexNet performed an average
accuracy of 98.05%, GoogleNet (InceptionV3) performed an average accuracy of 97.80%, and ResNet-
50 had an average performing accuracy of 91.11%. The transfer learning approach assists when
there is not adequate data to train a network from the start, which aids in tackling one of the major
challenges faced when working with deep learning.

Keywords: Alzheimer’s disease; transfer learning; CNN; convolutional neural network; MRI; de-
mentia; machine learning; deep learning; GoogleNet; AlexNet

1. Introduction

Alzheimer’s disease (AD) is a disorder that affects the nervous system, particularly
the human brain. It not only impairs a person’s abilities to carry out basic memory,
thinking, and social functions, but it is also chronic and irreversible. It is one of the most
common forms of dementia. Early symptoms of Alzheimer’s disease include difficulties
with thinking, self-management of language skills, and memory loss [1]. AD gradually
damages memory and impairs the ability to perform everyday tasks. As mental capacity
gradually declines, patients face increasing barriers to leading an independent, normal life.
Patients become more reliant on their immediate family and other caregivers for survival
as the disease progresses.

Alzheimer’s disease is among the most well-known varieties of dementia in people
aged 65 and older. By 2050, it is anticipated that 1 out of every 85 people will be diagnosed
with the disease, and in the following 20 years, that number will double. Alzheimer’s
Association report suggests that age is among the largest risk factors for Alzheimer’s
disease. The likelihood of AD affecting someone increases with age 65 to 74 years old,
and risks increase by 5.0% to 13.1% for the age 75 to 84 years old and 33.2% for people
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85 years old and over. According to the Alzheimer’s Association, it is estimated that in
2022, 6.5 million people aged 65 and older in the United States had Alzheimer’s disease [1].

Alzheimer’s disease was formally recognized as the sixth predominant cause of death
in the United States in 2019 and the seventh leading cause of death in 2020 and 2021.
While Alzheimer’s disease is still to be ranked the fifth leading cause of death for people
65 and older, the actual fatalities might be significantly higher than what official reports
suggest. A person with Alzheimer’s disease lives through harsh years as the disease
advances, incapacitated, and ill health before passing away. The Alzheimer’s Association
report in 2022 indicates that 121,499 people have died from Alzheimer’s disease in 2019
alone; conversely, the report also suggests these numbers underrepresent deaths from
Alzheimer’s disease due to inaccurate reporting of cause of death. Many injuries and
diseases are linked to Alzheimer’s disease, particularly in the elderly, such as pneumonia,
since severe dementia could cause further complications such as swallowing disorders,
immobility, and malnutrition, which results in higher chances of serious acute conditions
and ultimately death (comorbidity). In 2021, About USD 290 billion was the expected total
cost of dementia patients’ long-term medical treatment [2]. Even though there is no cure
for Alzheimer’s disease known at this time, detecting it early could be beneficial since there
are some treatments available to slow its progress [1]. Prior to clinical manifestation, early
AD detection is essential for prompt treatment.

In order to recognize AD and its various stages from conventional controls, a multiclass
decision system is necessary. Since AD can be detected without the help of any specialists
or skills when it is too late for therapy, differentiating AD from MCI or normal people is
crucial [3].

Though the causes of Alzheimer’s disease are not completely understood, the disease
occurs when irregularities in protein function cause damage to nerve cells, leading to a
loss of connectivity. Two irregularities are required to diagnose AD—extracellular amyloid
plaques and intracellular neurofibrillary tangles [3]. In the first irregularity, layers of
amyloid plaque become deposited on the outside of neurons, disrupting their connectivity.
In the second, neurofibrillary tangles composed of filamentous tau proteins further disrupt
connectivity and are linked to neuronal death [4]. These plaques and tangles have been
commonly used to aid in the diagnosis of AD [5].

In imaging diagnosis, there are multiple types of imaging to diagnose AD accurately,
such as structural and functional imaging. Single-photon emission computed tomography
(SPECT) is an imaging technology used in AD diagnosis. PET and fMRI are examples of
functional imaging, while MRI and CT are examples of structural imaging. A CT scan
stands for computed tomography and uses multiple X-ray scans at once with different
angles of the targeted organ, while MRI uses radio waves and electromagnetic fields to
generate images of the targeted organ. On the other hand, positron emission tomography
(PET) and functional MRI (fMRI) use molecular imaging, which targets radiotracers in
order to spot chemical and cellular variations linked to a specific condition or disease.
Considering the accessibility limitation of functional imaging and CT’s limited capabilities,
MRI has been ubiquitously used due to its availability and efficiency [1,2]. Compared
to other procedures, MRI is far superior in its cost and effectiveness without the use of
ionizing radiation. It could be used for all phases of Alzheimer’s disease as well as to
differentiate between healthy people and the ill. Additionally, MRI could be utilized for the
detection of mild cognitive impairment (MCI) and Alzheimer’s disease (AD), as well as
the conversion from MCI to AD. It can also be used to distinguish between distinct forms
of dementia, such as frontotemporal dementia and AD, which may exhibit similar clinical
symptoms [6,7].

Computer-aided diagnosis based on artificial intelligence (AI) has emerged as a vi-
able and well-liked instrument in medicine mainly because of its affordability and open
decision-making process [8]. One artificial intelligence (AI) area is the deep neural net-
works machine learning algorithm (ML), where a computer learns about similarities and
differences among a dataset to form a connecting relationship for decision-making without
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direct knowledge. The majority of development in machine learning algorithms was to
exceed the abilities of humans, especially back in the late 1990s; however, it has not reached
adequate functionality [9].

A convolution neural network (CNN) was developed with the inspiration of the
human brain’s visual processing [10]. Moreover, the development did not stop there; it
continued to introduce deep convolution neural networks. The deep convolutional neural
network has reached new and potent levels of learning abilities especially since it utilizes
multiple feature extraction strategies that could instinctively learn patterns and unique
features. In recent years, the advancement in computer capabilities has created more
powerful processors, which has enabled the progress and enhancement in the research
and development of convolutional neural networks. The hierarchical structure of CNN is
one of its defining features. The CNN structure is made up of a combination of the layers:
Convolution, Pooling, Activation, Normalization, and Fully Connected. The output of the
convolution layer, also known as CONV, is computed by breaking the input image up into
smaller blocks and convolving those blocks with weights. Concisely, CONV layers extract
characteristics from the input images [9].

Deep learning lies within machine learning that consists of copious layers and pa-
rameters, and most deep learning utilizes neural network architecture. Any deep learning
usually requires a large set of data. Once the dataset has been gathered and labeled properly,
it can proceed to the deep learning process [11,12]. The most commonly used models of
deep learning are Training from Scratch, Transfer Learning, and Feature Extraction. Train-
ing from scratch is the most unfavored among the three since it requires building the model
with every minor and major detail in mind, but it is also excellent for new applications.
Feature extraction is the second favored one, requiring some specialty to use the network
as a feature extractor. After the extraction features process is completed, models such as
support vector machines (SVM) could be used for classification. Finally, transfer learning
is the most commonly used in deep learning applications, which involves pre-processing
and fine-tuning to an already existing pre-trained network or model such as AlexNet and
GoogleNet [13,14].

A pre-trained network is used regularly as it has many advantages; one of them stands
out very much, which is the amount of data these networks have gone through to be very
efficient and fairly accurate compared to other methods, especially for classification. These
pre-trained networks could then be used again by other people to aid in the line of work,
considering how much work, time, and accuracy they have once they are integrated [15].
Convolutional neural networks (CNN) are composed of layers that are capable of convolu-
tionally extracting local information, such as edges from an input image. A small number of
neurons with spatial connections connect each node in a convolutional layer. The connection
weights are distributed among the convolutional layer nodes to look for the same local feature
over the whole input image. A convolution kernel is the name given to each set of shared
weights. Every series of convolution layers has a pooling layer after it to lessen computational
complexity. The max pooling layer, known as the most common layer, minimizes the size of
feature maps by choosing the highest possible feature response in nearby areas [16,17]. In
this paper, we proposed a deep learning models approach that focuses on early detection and
classifying each case accordingly through transfer learning (TL), AlexNet, ResNet-50, and
GoogleNet (InceptionV3) by utilizing magnetic resonance images (MRI).

2. Related Work

There has been a substantial sum of work in Alzheimer’s disease (AD) recently in early
diagnosis, detection, and classifications, where most of the focus has been on techniques
and approaches to achieve the goal of optimality and operationality in day-to-day clinics.
Some techniques used different imaging formats, transfer learning with modified layers,
added layers, and more data for training. These efforts have been very helpful in combating
Alzheimer’s disease, and in the age of artificial intelligence and transfer learning, recent
and considerable related work has been analyzed and summarized in Table 1 below.
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Table 1. Summary of all recent related work.

References Computational Techniques Study Objectives Datasets Results Years

Brain MRI analysis for
Alzheimer’s disease diagnosis
using an ensemble system of
deep convolutional neural
networks [18]

A deep convolutional neural
network is proposed for
early-stage Alzheimer’s disease
diagnosis using brain MRI data
analysis, outperforming existing
binary classification methods,
and outperforming baselines in
experiments.

The study offers a deep CNN
capable of identifying and
classifying Alzheimer’s disease,
demonstrating superiority and
capability in performance on a
small dataset, and efficiently
approaching imbalanced data to
train and learn.

Data obtained from Open Access
Series of Imaging Studies OASIS.

The presented model achieves an
accuracy rate of 93.18%, with
precision of 94%, recall of 93%, and a
f1-score of 92%.

2018

Transfer Learning With
Intelligent Training Data
Selection for Prediction of
Alzheimer’s Disease [16]

A transfer learning VGG,
pre-processing the dataset
includes images while applying
image entropy to select the most
relevant information.

Lowering the reliance on large
data training while applying the
layer-wise transfer learning to
examine the training size
impacts.

The dataset has been acquired by
the benchmark dataset for deep
learning based on Alzheimer’s
Disease Neuroimaging Initiative
(ADNI).

Results technique has shown a 10–20
times smaller data size improvement
in accuracy (4–7%) in classification
problems involving AD vs. NC, AD
vs. MCI, and MCI vs. NC.

2019

Neuroimaging and Machine
Learning for
Dementia Diagnosis: Recent
Advancements and Future
Prospects [19]

A comprehensive survey of
automated diagnostic methods
for dementia that utilizes medical
image analysis through machine
learning algorithms published in
recent years.

To discuss the most recent
neuroimaging procedures in the
field of dementia diagnosis for
clinical applications and
Evaluating deep learning
approaches in early-stage
detection of dementia.

(ADNI), (OASIS),
Australian Imaging, Biomarker
and Lifestyle Flagship Study of
Ageing (AIBL), and CAD
Dementia, structural brain MRI
scans.

Considering the current diagnostic
approaches for AD using MRI scans,
it is essential to work on diagnosing
other types of dementia, such as FTD,
VD, and PD. Deep learning
techniques approaches outperform
brain images obtained, rather than
the conventional ML, in terms of
accuracy and early diagnosis of
dementia.

2019

Ensembles of Patch-Based
Classifiers for Diagnosis of
Alzheimer’s Diseases [20]

Feature extractors and softmax
cross-entropy (CNNs) classifier,
while the addressed framework
consists of three individual
models for generating decisions.

Accuracy, overfitting issues, and
proven brain landmarks for
discernible AD diagnosis features
on both the left and right
hippocampus areas.

National Research Center for
Dementia (GARD), Gwangju
Alzheimer’s and Related
Dementia dataset

Achieving 90.05% accuracy
compared to the other state-of-the-art
models on the same dataset.

2019

A Data Augmentation-Based
Framework to Handle Class
Imbalance Problem for
Alzheimer’s Stage Detection [21]

TL using data augmentation for
3D Magnetic Resonance Imaging
(MRI)

TL for multiclass AD with
pre-trained AlexNet model. Two
approaches for the brain and 3D
brain MRI view while
considering an extensive image
augmentation to avoid
overfitting issues.

From the publicly available
dataset (OASIS).

The presented model’s accuracy
utilizing a 3D view of the brain MRI
is 95.11%, whereas using a one-sided
view is 98.41%.

2019
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Table 1. Cont.

References Computational Techniques Study Objectives Datasets Results Years

Optimized One vs One Approach
in Multiclass Classification for
Early Alzheimer’s Disease and
Mild Cognitive Impairment
Diagnosis [22]

A pairwise t-test feature selection
is employed to estimate selected
features onto a
Partial-Least-Squares multiclass
subspace for one vs one output
error correction.

To improve accuracy and reduce
dependency on large data
trained.

the data from the international
challenge for automated
prediction of MCI from MRI data
to address the multiclass
classification problem.

The proposed multiclass
classification approach outperformed
with 67% accuracy, illustrating the
robustness towards small
fluctuations.

2020

Spatial-Temporal Dependency
Modeling and Network Hub
Detection for Functional MRI
Analysis via
Convolutional-Recurrent
Network [23]

An end-to-end deep learning
Spatial-Temporal
convolutional-recurrent neural
Network (STNet) model

To predict Alzheimer’s disease
automatically considering the
use of progression and network
hub detection implying rs-fMRI
time series.

The rs-fMRI time-series data
collected from the Alzheimer’s
Disease Neuroimaging Initiative
(ADNI) database1 were studied
in this paper.

Results from experiments conducted
on 563 rs-fMRI images from the
ADNI database show that the
employed approach can both
enhance classification performance
when compared to cutting-edge
techniques and offer new
perspectives on the pathogenic
cascade that underlies AD.

2020

Resting-State fMRI and
Improved Deep Learning
Algorithm for Earlier Detection
of Alzheimer’s Disease [24]

Using an Improved Deep
Learning Algorithm (IDLA)
which utilizes resting state fMRI
along with important
un-identifying information such
as age and sex. It also utilizes
autoencoder customization for
the categorization of MCIs vs.
NCs.

Detecting Early-stage
Alzheimer’s disease considers
deep neural network data.

ADNI-2 fMRI data in the ADNI
database

The methodology proposed increases
diagnostic accuracy by
approximately 25% compared with
traditional approaches, which means
combining the brain with improved
deep learning is an excellent way to
diagnose neurological disorders
early.

2020

Diagnosing Alzheimer’s Disease
Based on Multiclass MRI Scans
using
Transfer Learning
Techniques [25]

They used whole slide
2-dimension (2D) images to
classify AD mild cognitive
impairment and normal control
subjects using state-of-the-art
CNN base models. Also, they
evaluated their effectiveness
using an AD Neuroimaging
Initiative dataset and
demonstrated uniqueness using
MR images.

Early Alzheimer’s diagnosis and
classification are crucial for
preventing dementia progression
in medical image analysis.
Therefore, the primary objective
was to use Deep learning
techniques to detect early
Alzheimer’s disease.

The study uses the (ADNI) brain
MR images.

Three models split data to 70:30
ration training and testing,
respectively. The top result was
shown by
ResNet-101, with 98.37% accuracy
and outstanding performance in
multiclass classification, is the best
out of the three.

2020
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Table 1. Cont.

References Computational Techniques Study Objectives Datasets Results Years

Deep Learning of Static and
Dynamic Brain Functional
Networks for Early MCI
Detection [26]

CNN framework to
simultaneously learn embedded
features from BFNs for brain
disease diagnosis.

To learn deeply embedded
spatial patterns of the static and
dynamic BFNs for eMCI
diagnosis.

A rigorously collected, publicly
accessible, multisite Alzheimer’s
Disease Neuroimaging Initiative
2 (ADNI2) dataset

Significant diagnostic performance
improvement by almost 10%,
including deep learning’s efficiency
in the preclinical diagnosis of
Alzheimer’s disease, according to the
intricate and multidimensional
voxel-wise spatiotemporal patterns
of the brain’s functional
connectomics at rest.

2020

A 3D densely connected
convolution neural network with
connection-wise attention
mechanism for Alzheimer’s
disease classification [27]

The paper introduces
CAM-CNN, an enhanced densely
connected network with a
connection-wise attention
mechanism From pre-processed
images, it extracts multi-scale
features and uses a
connection-wise attention
technique to integrate
connections between layers. To
distinguish AD, MCI converters,
and non-converters, the approach
was tested on 968 participants’
baseline MRIs Using data from
each 3D convolution layer.

The study proposes a deep
learning method for efficient
detection and prediction of
Alzheimer’s disease (AD) using a
densely connected convolution
neural network and
connection-wise attention
mechanism.

Collected from ADNI.

The proposed algorithm
outperformed previous methods in
distinguishing AD patients from
healthy controls, with a 97.35%
accuracy rate, MCI converters vs.
Healthy subjects with 87.82%, MCI
converters vs. non-converters with
78.79%.

2021

Deep learning-based pipelines
for Alzheimer’s disease
diagnosis: A comparative study
and a novel deep-ensemble
method [17]

The study uses a deep learning
approach to apply transfer
learning techniques to CNN
architectures pre-trained on
Imagenet. The top three
networks are AlexNet,
Inception-ResNet-v2, ResNet-50,
ResNet-101, and GoogLeNet.
After fine-tuning, they are
combined and classified using an
ensemble bagged trees model.

This study presents an
automated deep-ensemble
approach for dementia-level
classification from brain images,
compares deep learning
architectures, and evaluates
robustness in detecting
Alzheimer’s disease and different
dementia levels.

Data acquired from OASIS,
KAGGLE, and ADNI.

The proposed strategy, tested on
three MRI and one fMRI datasets,
achieved an accuracy of 98.51% in
binary classification (different levels
of dementia recognition) and 98.67%
in multiclass classification,
surpassing cutting-edge methods.

2021
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Table 1. Cont.

References Computational Techniques Study Objectives Datasets Results Years

Brain Asymmetry Detection and
Machine Learning Classification
for Diagnosis of Early
Dementia [28]

The study introduces a new
method for early dementia
diagnosis using an asymmetry
segmentation algorithm,
allowing visualization of
differences between brain
hemispheres, simplifying feature
engineering, and offering an
advantage over existing methods.

The proposed pipeline offers a
cost-effective solution for
classifying dementia and
possibly other brain degenerative
disorders influenced by changes
in brain asymmetries.

Acquired from the ADNI
database

The C-SVM and Q-SVM showed the
best performance among SVM
variants. The C-SVM accuracy of
EMCI vs. NC, AD vs. NC, and AD
vs. EMCI was 92.5%, 93.0%, 93.0%,
and 85.0%, respectively. The Q-SVM
accuracy of EMCI vs. NC, AD vs.
NC, and AD vs. EMCI was 92.5%
and 92.5%, sensitivity and specificity,
respectively. The CNN’s prediction
results are comparable to those of
other classifiers.

2021

Differentiating Dementia with
Lewy Bodies and Alzheimer’s
Disease by Deep Learning to
Structural MRI [29]

ResNet was implemented due to
its unique characteristics in
preserving features in 3D images
while performing similarly to
other Convolutional Neural
Networks.

This study explores the potential
of a deep learning technique to
distinguish between Alzheimer’s
Disease (AD) and Dementia with
Lewy Bodies (DLB) through
structural MRI data, compared to
traditional voxel-based
morphometry (VBM).

208 participants, 101 DLB, 69 AD,
and 38 controls, which it was
obtained from Wellcome
Department of Imaging
Neuroscience, University College
London, UK, www.fil.ion.

Conventional statistical analysis
showed no significant atrophy, but
the deep learning method accurately
distinguished DLB from AD with
79.15% accuracy and the
conventional method with 68.41%,
confirming fine differences that
conventional methods may
underestimate.

2021

Comparison Of Machine
Learning approaches for
enhancing Alzheimer’s disease
classification [30]

The study developed three
machine learning-based MRI
data classifiers to predict
Alzheimer’s disease (AD) and
infer brain regions. They were
compared to each other, SVM,
VGGNet, and ResNet, and a
transfer learning strategy was
applied to improve performance
and efficiency.

This study compares three
models, one SVM-based and two
deep learning algorithms,
3D-VGGNet and 3D-ResNet, for
predicting Alzheimer’s Disease
(AD) and identifying brain
regions contributing to disease
progression.

A total of 560 images were
acquired from ADNI;
T1-weighted MR.

The ResNet model outperformed the
other two classifiers in detecting
Alzheimer’s disease (AD) in elderly
control subjects with an accuracy of
90% for SVM, 95% for VGGNet, and
95% for ResNet.

2021

www.fil.ion
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Table 1. Cont.

References Computational Techniques Study Objectives Datasets Results Years

Analysis of Features of
Alzheimer’s Disease: Detection
of Early Stage from Functional
Brain Changes in Magnetic
Resonance Images Using a
Fine-tuned ResNet18
Network [31]

proposed fine-tuning model uses
ResNet-18, consisting of 3 × 3
filters, 1 × 1 filter, and a fully
connected layer; last layer
softmax layer. The model adapts
pre-trained parameters to the
new dataset by unfreezing all
layers.

The paper shows a deep
learning-based method for
predicting MCI, early MCI, late
MCI, and AD using hippocampal
fMRI data from the ADNI
database for early diagnosis.

Data from The ADNI; fMRI
dataset. A total of 138 subjects
were used for evaluation.

The proposed model performed
exceptionally compared to other
models with classification accuracy
of 99 99.99%, 99.95%, and 99.95% on
EMCI vs. AD, LMCI vs.
AD and MCI vs. EMCI classification
scenarios, respectively.

2021

An Intelligent System for Early
Recognition of Alzheimer’s
Disease Using
Neuroimaging [32]

Testing the AD multiclass
classification’s performance with
ResNet18 and DenseNet201.

The study explores the challenge
of using randomized
concatenated deep features from
two pre-trained models that
extract discriminative features
from MRI images of brain
functional networks.

The data was acquired from the
ADNI.
A total of 138 MRI scans,
25 AD, 25 CN, 25 SMC, 25 EMCI,
13 MCI and 25 LMCI scans.

The proposed model achieved
98.86% accuracy, 98.94% precision,
and 98.89% recall in multiclass
classification, demonstrating its
potential for predicting
neurodegenerative brain diseases
like Alzheimer’s disease.

2022
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3. Materials and Methods

Firstly, the data were acquired from Kaggle, which consists of combined MRI images
from multiple sources such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI),
IEEE, Data.gov, and Cordis EU [33]. The data consisted of a large number of images
in various stages that were found to be helpful to this study for generating a robust
and accurate system. The dataset was made of 6400 MRI images and consisted of four
classes: moderate demented, mild demented, very mild demented, and non-demented.
The moderate demented had 64 images, the mild demented class had 896 images, the very
mild demented had 2240 images, and the non-demented had 3200 images, as shown in
Table 2. All of these MRI images were later pre-processed accordingly for training [25].

Table 2. Alzheimer’s dataset—imbalanced.

Label Count

Moderate Demented 64
Mild Demented 896

Very Mild Demented 2240
Non-Demented 3200

Part of the image pre-processing was to ensure we had balanced data, that is, the same
number of images per class, to ensure the accuracy of the results. The data augmentation
technique is one of many to evade overfitting or underfitting. The minority and the majority
classes are another system of representation to which class is referred to that has the lowest
number of data and the highest number of data; the minority class here would be the
moderate demented class with 64 images followed by mild demented with 896 images,
and very mild demented with 2240 images, respectively. The majority class would be
the non-demented with 3200 images. Image augmentation was implemented to resolve
the data imbalance between classes where all classes, except the non-demented, were
augmented to reach 3200 images per class, which resulted in an equilibrium between all
classes. Part of the imagining pre-processing phase was performed using Python image
augmentation [5,34]. Table 2 shows the images’ quantity per class before applying data
augmentation. The image augmentation process started with configuring Microsoft Visual
Studio Code to Python and installing the Python Augmentor library, then importing the
dataset into the program. Then, the image augmentation parameters were customized, as
illustrated in Table 3.

Table 3. Image augmentation.

Images’ Class Pre Augmentation
Quantity

Zoom Flip Top to
Bottom

Sample Post Augmentation
QuantityProbability Min Factor Max Factor

Mild Demented 896 0.3 0.8 1.5 0.4 2304 3200

Moderate Demented 64 0.3 0.8 1.5 0.4 3136 3200

Non-Demented 3200 0.3 0.8 1.5 0.4 None 3200

Very Mild Demented 2240 0.3 0.8 1.5 0.4 960 3200

After augmentation, all data, including non-demented, very mild demented, mild
demented, and moderate demented, were 3200 images for each class. Training a deep learn-
ing model on an imbalanced dataset could potentially cause overfitting to the model, and
to address this issue, this research balanced the dataset using an augmentation technique.
Therefore, before applying the data augmentation technique, each class of the data had a
significantly different number of images. On the other hand, Table 4 lists the number of
images for each class after applying the data augmentation technique. Therefore, each class
contains the exact number of images.
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Table 4. Alzheimer’s dataset—balanced.

Label Count

Moderate Demented 3200
Mild Demented 3200

Very Mild Demented 3200
Non-Demented 3200

3.1. Transfer Learning

Transfer learning’s foundation lies in the notion that knowledge that has already been
learned may be applied effectively and efficiently to address new issues and challenges.
Hence, transfer learning necessitates effective and reliable machine learning techniques that
retain and recycle previously acquired knowledge [35]. Transfer learning is one of the very
well-established methods in deep learning and is mostly used due to its high efficiency,
where one would use a pre-existing trained network for their application. This method
is vastly preferred due to its efficiency, and, in some cases, it yields the best results with
proper fine-tuning. To employ transfer learning, there are two main ways to perform this:
training the original network without any modifications or alterations to the layers and
fine-tuning where adjustments would be applied to tailor-fit the chosen network for the
job. Some examples of pre-existing transfer learning networks are ResNet-50, AlexNet, and
VGG19 [36].

3.1.1. AlexNet

AlexNet has 25 layers and a depth of 8 and is considered among the most compact
pre-trained networks for transfer learning. Convolution, normalizing, pooling, and a
Rectified Linear Unit (ReLU) are fully linked layers in the order in which AlexNet’s layers
are arranged. AlexNet is a great example of a simple, small, and yet effective pre-existing
network for its size [36,37].

3.1.2. ResNet-50

The residual network has multiple versions in which they are different mainly on
how many layers each has, and ResNet-50 has 50 layers consisting of 1 × 1, 3 × 3, 7 × 7
convolution filters; 48 convolution, 1 average pool, and 1 MaxPooling layer. The Resnet-50
architecture propagates the added results of the convolution layer and input called residue.
This lowers the overhead associated with the propagation of more characteristics. Thus, the
over-fitting issue is diminished to enable quicker optimization of bigger networks [36,37].

3.1.3. GoogleNet (InceptionV3)

GoogleNet or VGG19 is another pre-trained network example that consists of 144 lay-
ers and works on input images of size 224 × 244 × 3. The network depth layers are 22.
The GoogleNet inception is created by combining the output of abundant simultaneous
convolution layers with capricious filter sizes. As a result, the concatenated feature map
comprises features from the same input attained using several filtering spaces. The aux-
iliary categorization output layers that result in a deeper network are another trait of
GoogleNet [36,37].

3.1.4. SqueezeNet

SqueezeNet has 50 times less parameters in comparison with AlexNet and it was
trained on over a million photos. The groundwork for this network is laid out as a fire
model that comprises the squeeze layer and expand layer. Only 1 × 1 filters are used in the
squeeze layer, which feeds into an expand layer that combines 1 × 1 and 3 × 3 convolution
filters [37].

The diagram below in Figure 1 outlines the workflow of the system in detail, such as
AlexNet, ResNet-50, and GoogleNet, since they were the main focus of the implantation.
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Once the dataset has been balanced and augmented, using Python, the remaining process
would be carried out in MATLAB.

Information 2023, 14, x FOR PEER REVIEW 11 of 16 
 

 

Thus, the over-fitting issue is diminished to enable quicker optimization of bigger 
networks [36,37].  

3.1.3. GoogleNet (InceptionV3) 
GoogleNet or VGG19 is another pre-trained network example that consists of 144 

layers and works on input images of size 224 × 244 × 3. The network depth layers are 22. 
The GoogleNet inception is created by combining the output of abundant simultaneous 
convolution layers with capricious filter sizes. As a result, the concatenated feature map 
comprises features from the same input attained using several filtering spaces. The 
auxiliary categorization output layers that result in a deeper network are another trait of 
GoogleNet [36,37]. 

3.1.4. SqueezeNet 
SqueezeNet has 50 times less parameters in comparison with AlexNet and it was 

trained on over a million photos. The groundwork for this network is laid out as a fire 
model that comprises the squeeze layer and expand layer. Only 1 × 1 filters are used in 
the squeeze layer, which feeds into an expand layer that combines 1 × 1 and 3 × 3 
convolution filters [37]. 

The diagram below in Figure 1 outlines the workflow of the system in detail, such as 
AlexNet, ResNet-50, and GoogleNet, since they were the main focus of the implantation. 
Once the dataset has been balanced and augmented, using Python, the remaining process 
would be carried out in MATLAB.  

 
Figure 1. Detailed workflow for the proposed model. 

After the first phase of image pre-processing was completed, the dataset was called 
Matlab, where it was stored and organized according to its labels. Then, the data were 
split randomly into a training set and a testing set, 80% training and 20% testing, for each 
category. The pre-processing continues to resize all images according to each pre-trained 
network input layer’s specification, such as GoogleNet 224 × 224, and converting from 
grayscale to RGB, which concluded the pre-processing phase, thus deeming them ready 
to be injected into the pre-trained network after each pre-trained network has been fine-
tuned. 

4. Results 
This section illustrates the experiment setup, result, and evaluation of this research. 

Pre-trained neural network classifiers, which are AlexNet, ResNet-50, and GoogleNet 
(InceptionV3), were employed. Each transfer learning model was trained to classify 
images into four categories: Mild Demented, Moderate Demented, Non-Demented, and 

Figure 1. Detailed workflow for the proposed model.

After the first phase of image pre-processing was completed, the dataset was called
Matlab, where it was stored and organized according to its labels. Then, the data were
split randomly into a training set and a testing set, 80% training and 20% testing, for each
category. The pre-processing continues to resize all images according to each pre-trained
network input layer’s specification, such as GoogleNet 224 × 224, and converting from
grayscale to RGB, which concluded the pre-processing phase, thus deeming them ready to
be injected into the pre-trained network after each pre-trained network has been fine-tuned.

4. Results

This section illustrates the experiment setup, result, and evaluation of this research.
Pre-trained neural network classifiers, which are AlexNet, ResNet-50, and GoogleNet
(InceptionV3), were employed. Each transfer learning model was trained to classify images
into four categories: Mild Demented, Moderate Demented, Non-Demented, and Very Mild
Demented. Each dataset class contains 3200 images; thus, the total images are 12,800.

Each pre-trained neural network classifier is evaluated using two types of evaluations:
(1) k-Fold Cross-Validation and (2) Partitioning the Dataset into Training and Test Sets.

4.1. k-Fold Cross-Validation

K-fold cross-validation is a method used for evaluating the performance of machine
learning and deep learning models. Specifically, we employed 10-fold cross-validation, in
which each dataset is divided into 10 sets; 9 sets are applied for training, and the remaining
set is used for testing. The process of training and testing is repeated k times, with k
being 10 in our case [38]. We utilized a dataset of 12,800 images, employing the 10-fold
cross-validation method for both training and testing purposes [38].

Tables 5–8 display the overall confusion matrix and the average accuracy of the
10-fold cross-validation. Table 5 presents the performance of the AlexNet model based on
10-fold cross-validation. The diagonal values represent the accuracy of correct predictions
produced by the AlexNet model for each class of Alzheimer’s disease. For example, the
class Mild Demented is correctly predicted with 98.66% accuracy. Additionally, Moderate
Demented is correctly predicted at 100.00%. Non-Demented and Very Mild Demented
are correctly predicted with accuracies of 98.91% and 94.66%, respectively. The average
accuracy is 91.63%. The same role is used for Tables 6–8 but for different pre-trained models.
It is clear that the performance of the AlexNet model exceeded the other models.
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Table 5. AlexNet 10-fold cross-validation.

AlexNet Overall
Confusion Matrix

Average
Accuracy

Mild
Demented 98.66% 0.34% 0.03% 0.97%

98.05%

Moderate
Demented 0.00% 100.00% 0.00% 0.00%

Non-
Demented 0.03% 0.03% 98.91% 1.03%

Very Mild
Demented 4.13% 0.25% 0.97% 94.66%

Mild
Demented

Moderate
Demented

Non-
Demented

Very Mild
Demented

Table 6. InceptionV3 10-fold cross-validation.

InceptionV3 Overall
Confusion Matrix

Average
Accuracy

Mild
Demented 98.59% 0.06% 0.09% 1.25%

97.80%

Moderate
Demented 0.06% 99.94% 0.00% 0.00%

Non-
Demented 0.28% 0.00% 98.44% 1.28%

Very Mild
Demented 4.25% 0.06% 1.47% 94.22%

Mild
Demented

Moderate
Demented

Non-
Demented

Very Mild
Demented

Table 7. ResNet-50 10-fold cross-validation.

ResNet-50 Overall
Confusion Matrix

Average
Accuracy

Mild
Demented 92.88% 1.03% 0.63% 5.47%

91.11%

Moderate
Demented 2.97% 95.19% 0.00% 1.84%

Non-
Demented 2.44% 0.47% 93.16% 3.94%

Very Mild
Demented 11.63% 1.25% 3.91% 83.22%

Mild
Demented

Moderate
Demented

Non-
Demented

Very Mild
Demented

4.2. Partitioning the Dataset into Training and Test Sets

The dataset was split into 80:20 portions, so 80% of the images were used for training,
and 20% were used for testing. For the training parameter, the initial learning rate is set to
0.0010, and the maximum number of epochs is set to 50. As for optimization measures, a
stochastic gradient descent with momentum (SGDM) was applied. The experiment was
performed on a machine with the following hardware: an Intel® Core™ i-7 processor and
an NVIDIA GeForce RTX 2070 GPU. We utilized MATLAB R2023a.
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Table 8. SeqeezNet10-fold cross-validation.

ResNet-50 Overall
Confusion Matrix

Average
Accuracy

Mild
Demented 83.94% 0.53% 2.19% 13.34%

86.37%

Moderate
Demented 0.66% 98.91% 0.03% 0.41%

Non-
Demented 1.28% 0.00% 88.13% 10.59%

Very Mild
Demented 9.69% 0.22% 15.56% 74.53%

Mild
Demented

Moderate
Demented

Non-
Demented

Very Mild
Demented

The classification accuracy, precision, recall, and F1 score were calculated to test and
evaluate the experiment conducted in this study. The classification accuracy is shown
in Equation (1). TP, TN, FP, and FN refer to true positive, true negative, false positive,
and false negative, respectively. Precision is computed using Equation (2), recall using
Equation (3), and F1-score using Equation (4) [39].

Accuarcy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 − Score = 2 ∗ Precision × Recall
(Precision + Recall)

(4)

Table 9 illustrates the evaluation of this research work, which includes four differ-
ent pre-trained neural networks. Each pre-network is responsible for performing multi-
classification for Alzheimer’s MRI Scans. According to Table 5, AlexNet is superior to
other pre-trained networks. It is significant to mention that GoogLeNet (Inception V3) and
ResNet-50 performed comparable performances with similar margins of accuracy (between
92% and 94.776%). SeqeezNet shows the lowest performance compared to other pre-trained
neural networks.

Table 9. Transfer learning evaluation.

Model Accuracy Precision Recall F1-Score

AlexNet 96.616% 96.621% 96.619% 96.620%
GoogleNet (InceptionV3) 94.776% 94.784% 94.775% 94.779%

ResNet-50 94.363% 94.341% 94.363% 94.352%
SeqeezNet 91.602% 92.207% 91.601% 91.904%

5. Conclusions

In this paper, we performed Alzheimer’s disease detection and classification into
four classes using transfer learning (pre-trained networks) through AlexNet, ReNet-50,
and GoogleNet (InceptionV3). The concept of using transfer learning in deep learning
abolishes challenges faced with training networks with a small set of data. The previously
mentioned models used 12,800 images for training and testing. These pre-trained networks’
architectures were altered to fit the attained MRI images, 12,800 images, and classified
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into four categories: non-demented, mild demented, moderate demented, and very mild
demented. The data were acquired from Kaggle and collected from different sources such
as the Alzheimer’s Disease Neuroimaging Initiative (ADNI), IEEE, Data.gov, and Cordis
EU. The performance of each model was evaluated with multi-classifications in mind. The
performance of AlexNet was superior to all other pre-trained networks covered in this
study, while it is worth mentioning that GoogleNet (InceptionV3) performed very closely
to ResNet-50 with similar margins of accuracy (between 92% and 94.776%). In conclusion,
while designated deep learning models for medical imaging detection could potentially
yield different results, transfer learning promotes very promising results when dealing
with limited data. One of the limitations that is worth mentioning is the limited dataset
available as compared to other fields where deep learning is used. As for future direction,
it is worth looking into Generative Adversarial Networks (GANs) and/or Self-Organizing
Maps (SOMs) with or without CNN or the current model to be combined with another state-
of-the-art model for a rigid system. Our study demonstrates the value of deep learning,
particularly transfer learning, as a tool for medical advancement in AD detection from MRI
imaging. Although such systems are not ready for practical use without medical personal
supervision, it is not farfetched as these promising results could serve as an aid tool for
medical professionals.
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