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Abstract: The problem of finding the global minimum of multidimensional functions is often applied
to a wide range of problems. An innovative method of finding the global minimum of multidimen-
sional functions is presented here. This method first generates an approximation of the objective
function using only a few real samples from it. These samples construct the approach using a ma-
chine learning model. Next, the required sampling is performed by the approximation function.
Furthermore, the approach is improved on each sample by using found local minima as samples for
the training set of the machine learning model. In addition, as a termination criterion, the proposed
technique uses a widely used criterion from the relevant literature which in fact evaluates it after each
execution of the local minimization. The proposed technique was applied to a number of well-known
problems from the relevant literature, and the comparative results with respect to modern global
minimization techniques are shown to be extremely promising.

Keywords: global optimization; neural networks; stochastic methods

1. Introduction

An innovative method for finding the global minimum of multidimensional functions
is presented here. The functions considered are continuous and differentiable and defined
as f : S→ R, S ⊂ Rn. The problem of locating the global optimum is usually formulated as:

x∗ = arg min
x∈S

f (x) (1)

with S:
S = [a1, b1]⊗ [a2, b2]⊗ . . . [an, bn]

A variety of problems in the physical world can be represented as global minimum prob-
lems, such as problems from physics [1–3], chemistry [4–6], economics [7,8], medicine [9,10],
etc. During the past years, many methods, especially the stochastic one, have been pro-
posed to tackle the problem of Equation (1), such as Controlled Random Search meth-
ods [11–13], Simulated Annealing methods [14–16], Differential Evolution methods [17,18],
Particle Swarm Optimization (PSO) methods [19–21], Ant Colony Optimization [22,23],
Genetic algorithms [24–26], etc. A systematic review of global optimization methods can
also be found in the work of Floudas et al. [27]. In addition, during the last few years,
a variety of work has been proposed on combinations and modifications to some global
optimization methods to more efficiently find the global minimum, such as methods that
combine PSO with other methods [28–30], methods aimed to discover all the local minima
of functions [31–33], new stopping rules to efficiently terminate the global optimization
techniques [34–36], etc. In addition, due to the massive use of parallel processing tech-
niques, several methods have been proposed that take full advantage of parallel processing,
such as parallel techniques [37–39], methods that utilize the GPU architectures [40,41], etc.

In addition, during the past years, many metaheuristic algorithms have appeared to
tackle global optimization problems such as the Quantum-based avian navigation optimizer
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algorithm [42], a Tunicate Swarm Algorithm (TSA) inspired by simulating the lives of
Tunicates at sea and how food is obtained [43], Starling murmuration optimizer [44,45], the
Diversity-maintained multi-trial vector differential evolution algorithm (DMDE) used in
large-scale global optimization [46], an improved moth-flame optimization algorithm with
an adaptation mechanism to solve numerical and mechanical engineering problems [47],
the dwarf-mongoose optimization algorithm [48], etc.

In this paper, a new multistart method is proposed that uses a machine learning model,
which is trained in parallel with the evolution of the optimization process. Although mul-
tistart methods are considered the basis for more modern optimization techniques, they
have been successfully used in several problems such as the Traveling Salesman Problem
(TSP) [49–51], the maximum clique problem [52,53], the vehicle routing problem [54,55],
scheduling problems [56,57], etc. In the new technique, a Radial Basis Function (RBF) net-
work [58] is used to construct an approximation of the objective function. This construction
is carried out in parallel with the execution of the optimization. A limited number of sam-
ples from the objective function and the local minima discovered during the optimization
are used to construct the approximation function. During the execution of the method,
the samples needed to start local minimizers are taken from the approximation function
that is constructed by the neural network. The RBF network was used as an approximation
tool as it has been successfully used in a wide range of problems in the field of artificial
intelligence [59–62] and its training procedure is very fast, if compared to artificial neu-
ral networks, for example. In addition, for a more efficient termination of the method,
a termination method proposed by Tsoulos is used [63], but this termination method is
applied after each execution of the local minimization procedure. The mentioned method
was applied to some test functions provided by the relevant literature and the results are
extremely promising as compared with other global optimization techniques.

The proposed method does not sample the actual function but an approximation of
it, which is generated incrementally. The creation of the approximation is done by using
an RBF neural network, known for its reliability and its ability to efficiently approximate
functions. The initial approximation is created from a limited number of points, and then,
it will be improved through the local minimizers that will be found during the execution of
the method. With the above procedure, the required number of function calls is drastically
reduced, since the actual function is not used to produce samples, but an approximation of
them. Only samples with low function values are taken from the approximation function,
which means that finding the global minimum is likely to be performed faster than other
techniques and more efficiently. Furthermore, the generation of the approximation function
does not use any prior knowledge about the objective problem.

The rest of this article is organized as follows: in Section 2, the description of the
proposed method is provided. In Section 3, the used experimental functions as well as the
experimental results and comparisons are listed, and finally, in Section 4, some conclusions
and final thoughts are given.

2. Method Description

The proposed technique generates an estimation of the objective function during the
optimization using an RBF network. This estimation is initially generated from some sam-
ples from the objective function and gradually local minima that will have been discovered
during the optimization are added to it. In this way, the estimation of the objective func-
tion will be continuously improved to approximate the true function as much as possible.
At every iteration, several samples are then taken from the estimated function and sorted in
ascending order. Those with the lowest value will be starting points of the local minimiza-
tion method. The local optimization method used here is a BFGS variant of Powell [64].
This process has the effect of drastically reducing the total number of function calls that are
made and, at the same time, the points used as initiators of the local minimization technique
approach the global minimum of the objective function. In addition, the proposed method
checks the termination rule after the application of every local search method. That way,
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if the absolute minimum has already been discovered with some certainty, no more function
calls will be wasted finding it.

In the following subsections, the training procedure of RBF networks as well as the
proposed method are fully described.

2.1. RBF Preliminaries

An RBF network can be defined as:

N
(−→x ) = k

∑
i=1

wiφ
(∥∥−→x −−→ci

∥∥) (2)

where

1. The vector −→x is called the input pattern to the equation.
2. The vectors −→ci , i = 1, . . . , k are called the center vectors.
3. The vector −→w stands for the the output weight of the RBF network.

In most cases, the function φ(x) is a Gaussian function:

φ(x) = exp

(
− (x− c)2

σ2

)
(3)

The training error for the RBF network on a set of points T = {(x1, y1), (x2, y2), . . . , (xM, yM)}
is estimated as

E
(

N
(−→x )) = M

∑
i=1

(N(xi)− yi)
2 (4)

In most approaches, Equation (4) is minimized with respect to the parameters of the RBF
network using a two-phase procedure:

1. In the first phase, the K-Means algorithm [65] is used to approximate the k centers
and the corresponding variances.

2. In the second phase, the weight vector −→w = (w1, w2, . . . , wk) is calculated by solving
a linear system of equations as follows:

(a) Set W = wkj.
(b) Set Φ = φj(xi).
(c) Set T = {ti = f (xi), i = 1, . . . , M}.
(d) The system to be solved is identified as:

ΦT
(

T −ΦWT
)
= 0 (5)

With the solution:
WT =

(
ΦTΦ

)−1
ΦTT = Φ†T (6)

2.2. The Main Algorithm

The main steps of the proposed algorithm are as follows:
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1. Initialization step.

(a) Set k the number of weights in the RBF network.
(b) Set NS the initial samples that will be taken from the function f (x).
(c) Set NT the number of samples that will be used in every iteration as starting

points for the local optimization procedure.
(d) Set NR the number of samples that will be drawn from the RBF network at

every iteration with NR > NT .
(e) Set NG the maximum number of allowed iterations.
(f) Set Iter = 0, the iteration number.
(g) Set (x∗, y∗) as the global minimum. Initially, y∗ = ∞

2. Creation Step.

(a) Set T = ∅, the training set for the RBF network.
(b) For i = 1, . . . , NS do

i. Take a new sample xi ∈ S.
ii. Calculate yi = f (xi).
iii. T = T ∪ (xi, yi).

(c) End For
(d) Train the RBF network on the training set T.

3. Sampling Step.

(a) Set TR = ∅.
(b) For i = 1, . . . , NR do

i. Take a random sample (xi, yi) from the RBF network.
ii. Set TR = TR ∪ (xi,yi).

(c) End For
(d) Sort TR according to the y values in ascending order.

4. Optimization Step.

(a) For i = 1, . . . , NT do

i. Take the next sample (xi, yi) from TR.
ii. yi = LS(xi), where LS(x) is a predefined local search method.
iii. T = T ∪ (xi, yi); this step updates the training set of the RBF network.
iv. Train the RBF network on the set T.
v. If yi ≤ y∗, then x∗ = xi, y∗ = yi.
vi. Check the termination rule as suggested in [63]. If it holds, then report

(x∗, y∗) as the located global minimum and terminate.

(b) End For

5. Set iter = iter + 1.
6. Goto to Sampling step.

The steps of the algorithm are illustrated graphically in Figure 1.
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Figure 1. The steps of the proposed algorithm.
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3. Experiments

To estimate the efficiency of the new technique, a number of functions from the relevant
literature were used [66,67]. These functions are provided in Appendix A. The proposed
technique was tested on these test functions and the results produced were compared
with those given by a simple genetic algorithm or a PSO method or differential evolution
(DE) method. The used genetic algorithm is based on the GA(cr1, l) algorithm from the
work of Kaelo and Ali [68]. In order to have fairness in the comparison of the results,
for all global optimization techniques, the same local minimization method as that of the
proposed method has been used. In addition, the number of chromosomes in the genetic
algorithm and the number of particles in the PSO method are identical to the parameter
NT of the proposed procedure. In addition, for the DE method, the number of agents was
set to NT . The values for the parameters used in the conducted experiments are shown
in Table 1. For every function and for every global optimizer, 30 independent runs were
executed using a different seed for the random generator each time. The proposed method
is implemented as the method with the name NeuralMinimizer in the OPTIMUS global
optimization environment, which is freely available from https://github.com/itsoulos/
OPTIMUS (accessed on 25 January 2023). All the experiments were conducted on an AMD
Ryzen 5950X with 128 GB of RAM and the Debian Linux operating system.

Table 1. Experimental settings.

Parameter Meaning Value

k Number of weights 10

NS Start samples 50

NT Number of samples used as starting points 100

NR Number of samples that will be drawn from the RBF network 10× NT

NC Chromosomes or Particles or agents 100

NG Maximum number of iterations 200

The experimental results from the application of the proposed method and the other
methods are shown in Table 2. The number in the cells represent average function calls.
The number in parentheses indicates the fraction of runs where the global optimum was
successfully discovered. Absence of this fraction indicated that the global minimum is
discovered for every execution (100% success). At the end of the table, an additional row
named AVERAGE has been added to show the total number of function calls and the
average success rate in locating the global minimum. In the experimental results, the
superiority of the proposed technique over the other two methods in terms of the number
of function calls is clear. The proposed technique requires an average of 90% fewer function
calls than the other methods. In addition, the proposed technique appears to be more
efficient than the other two as it finds, on average, more often the global minimum of most
test functions in the experiments. In addition, the statistical comparison between the global
optimization methods is shown in Figure 2.

https://github.com/itsoulos/OPTIMUS
https://github.com/itsoulos/OPTIMUS
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Table 2. Comparison between the proposed method and the Genetic and PSO methods.

Function Genetic PSO DE Proposed

BF1 7150 9030 (0.87) 5579 1051

BF2 7504 6505 (0.67) 5598 921

BRANIN 6135 6865 (0.93) 5888 460

CAMEL 6564 5162 6403 778

CIGAR10 11,813 18,803 13,313 1896

CM4 10,537 11,124 9018 1877 (0.87)

DISCUS10 20,208 6039 7797 478

EASOM 5281 2037 7917 258

ELP10 20,337 16,731 2863 2263

EXP4 10,537 9155 5944 750

EXP16 20,131 14,061 3653 885

EXP64 20,140 8958 3692 948

GRIEWANK10 20,151 (0.10) 17,497 (0.03) 16,469 (0.03) 2697

POTENTIAL3 18,902 9936 5452 1192

POTENTIAL5 18,477 12,385 3972 2399

HANSEN 10,708 9104 14,016 2370 (0.93)

HARTMAN3 8481 12,971 4677 642

HARTMAN6 17,723 (0.60) 15,174 (0.57) 14,372 (0.90) 883

RASTRIGIN 6744 7639 (0.97) 6148 1408 (0.80)

ROSENBROCK4 20,815 (0.63) 11,526 16,763 1619

ROSENBROCK8 20,597 (0.67) 16,967 16,631 2444

SHEKEL5 14,456 (0.73) 15,082 (0.47) 13,178 2333 (0.87)

SHEKEL7 16,786 (0.83) 14,625 (0.40) 12,050 1844 (0.93)

SHEKEL10 15,586 (0.80) 12,628 (0.53) 13,107 2451

SINU4 11,908 10,659 9048 802

SINU8 20,115 13,912 16,210 1500 (0.97)

TEST2N4 13,943 12,948 10,864 878 (0.93)

TEST2N5 15,814 13,936 (0.90) 15,259 971 (0.77)

TEST2N6 18,987 15,449 (0.70) 12,839 997 (0.70)

TEST2N7 20,035 16,020 (0.50) 8185 (0.97) 1084 (0.30)

TEST30N3 13,029 7239 4839 1061

TEST30N4 12,889 8051 5070 854

Average 472,596 (0.89) 368,218 (0.86) 296,814 (0.96) 42,994 (0.94)

In addition, Table 3 presents the experimental results for the proposed method and for
various values of the parameter NS. As can be seen, the increase in this parameter does
not cause a large increase in the total number of function calls, while, at the same time, it
improves to some extent the ability of the proposed technique to find the global minimum.
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Figure 2. Statistical comparison between the global optimization methods.

Table 3. Experimental results for the proposed method and for different values of the critical
parameter NS (50, 100, 200). Numbers in the cells represent averages of 30 runs.

Function NS = 50 NS = 100 NS = 200

BF1 1051 1116 1224

BF2 921 949 1058

BRANIN 460 506 599

CAMEL 778 676 739

CIGAR10 1896 1934 2042

CM4 1877 (0.87) 1859 (0.93) 1877 (0.90)

DISCUS10 478 531 634

EASOM 258 307 450

ELP10 2263 2339 3130

EXP4 750 778 884

EXP16 885 932 1030

EXP64 948 998 1091

GRIEWANK10 2697 2647 2801

POTENTIAL3 1192 1228 1305

POTENTIAL5 2399 2417 2544

HANSEN 2370 (0.93) 2602 (0.93) 2578 (0.97)

HARTMAN3 642 696 798

HARTMAN6 883 940 1038

RASTRIGIN 1408 (0.80) 989 (0.83) 1041

ROSENBROCK4 1619 1674 1751

ROSENBROCK8 2444 2499 2583

SHEKEL5 2333 (0.87) 1267 1878 (0.97)
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Table 3. Cont.

Function NS = 50 NS = 100 NS = 200

SHEKEL7 1844 (0.93) 1517 (0.93) 1685 (0.97)

SHEKEL10 2451 2695 1498

SINU4 802 821 901

SINU8 1500 (0.97) 1216 1247

TEST2N4 878 (0.93) 934 850 (0.97)

TEST2N5 971 (0.77) 941 (0.80) 993

TEST2N6 997 (0.70) 1087 (0.77) 1098

TEST2N7 1084 (0.30) 1160 (0.53) 1313 (0.57)

TEST30N3 1061 998 1320

TEST30N4 854 830 1108

Average 42,994 (0.94) 42,083 (0.96) 45,088 (0.97)

The efficiency of the method is also shown in Table 4, where the proposed method
is compared against the genetic algorithm and particle swarm optimization for a range
of number of atoms of the Potential problem. As can be seen in the table, the proposed
method requires a significantly smaller number of function calls compared with the other
techniques and its reliability in finding the global minimum remains high even when the
number of atoms in the potential increases significantly.

Table 4. Optimizing the Potential problem for different number of atoms.

Atoms Genetic PSO Proposed

3 18,902 9936 1192

4 17,806 12,560 1964

5 18,477 12,385 2399

6 19,069 (0.20) 9683 3198

7 16,390 (0.33) 10,533 (0.17) 3311 (0.97)

8 15,924 (0.50) 8053 (0.50) 3526

9 15,041 (0.27) 9276 (0.17) 4338

10 14,817 (0.03) 7548 (0.17) 5517 (0.87)

11 13,885 (0.03) 6864 (0.13) 6588 (0.80)

12 14,435 (0.17) 12,182 (0.07) 7508 (0.83)

13 14,457 (0.07) 10,748 (0.03) 6717 (0.77)

14 13,906 (0.07) 14,235 (0.13) 6201 (0.93)

15 12,832 (0.10) 12,980 (0.10) 7802 (0.90)

Average 205,941 (0.37) 137,134 (0.42) 60,258 (0.93)

4. Conclusions

An innovative technique for finding the global minimum of multidimensional func-
tions was presented in this work. This new technique is based on the multistart procedure,
but also generates an estimation of the objective function through a machine learning model.
The machine learning model constructs an estimation of the objective function using a small
number of samples from the true function but also with the contribution of local minima
discovered during the execution of the method. In this way, the estimation of the objective
function is continuously improved and the sampling to perform local minimization is done
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from the estimated function rather than the actual one. This procedure combined with
checking the termination criterion after each execution of the local minimization method
led the proposed method to have excellent results both in terms of the speed of finding the
global minimum and its efficiency. In addition, the method shows significant stability in its
performance even in the presence of large changes of its parameters as presented in the
experimental results section.

In the future, the use of the RBF network to construct an approximation of the objective
function can be applied to more modern optimization techniques such as genetic algorithms.
It would also be interesting to create a parallel implementation of the proposed method,
in order to significantly speed up its execution and to be able to be used efficiently in
optimization problems of higher dimensions.

Author Contributions: I.G.T., A.T., E.K. and D.T. conceived of the idea and methodology. I.G.T. and
A.T. conducted the experiments, employing several test functions and provided the comparative
experiments. E.K. and D.T. performed the statistical analysis and all other authors prepared the
manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

• Bent Cigar function. The function is

f (x) = x2
1 + 106

n

∑
i=2

x2
i

with the global minimum f (x∗) = 0. For the conducted experiments, the value n = 10
was used.

• Bf1 function. The function Bohachevsky 1 is given by the equation

f (x) = x2
1 + 2x2

2 −
3

10
cos(3πx1)−

4
10

cos(4πx2) +
7

10

with x ∈ [−100, 100]2.
• Bf2 function. The function Bohachevsky 2 is given by the equation

f (x) = x2
1 + 2x2

2 −
3

10
cos(3πx1) cos(4πx2) +

3
10

with x ∈ [−50, 50]2.

• Branin function. The function is defined by f (x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+

10
(

1− 1
8π

)
cos(x1) + 10 with −5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15. The value of global

minimum is 0.397887 with x ∈ [−10, 10]2.
• CM function. The Cosine Mixture function is given by the equation

f (x) =
n

∑
i=1

x2
i −

1
10

n

∑
i=1

cos(5πxi)

with x ∈ [−1, 1]n. For the conducted experiments, the value n = 4 was used.
• Camel function. The function is given by

f (x) = 4x2
1 − 2.1x4

1 +
1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2, x ∈ [−5, 5]2

The global minimum has the value of f (x∗) = −1.0316.
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• Discus function. The function is defined as

f (x) = 106x2
1 +

n

∑
i=2

x2
i

with global minimum f (x∗) = 0. For the conducted experiments, the value n = 10
was used.

• Easom function. The function is given by the equation

f (x) = − cos(x1) cos(x2) exp
(
(x2 − π)2 − (x1 − π)2

)
with x ∈ [−100, 100]2 and global minimum −1.0.

• Exponential function.
The function is given by

f (x) = − exp

(
−0.5

n

∑
i=1

x2
i

)
, −1 ≤ xi ≤ 1

The values n = 4, 16, 64 were used here and the corresponding function names are
EXP4, EXP16, EXP64.

• Griewank10 function, defined as:

f (x) =
n

∑
i=1

x2
i

4000
−

n

∏
i=1

cos
(

xi√
i

)
+ 1

with n = 10.
• Hansen function. f (x) = ∑5

i=1 i cos[(i− 1)x1 + i]∑5
j=1 j cos[(j + 1)x2 + j],

x ∈ [−10, 10]2. The global minimum of the function is −176.541793.
• Hartman 3 function. The function is given by

f (x) = −
4

∑
i=1

ci exp

(
−

3

∑
j=1

aij
(
xj − pij

)2
)

with x ∈ [0, 1]3 and a =


3 10 30

0.1 10 35
3 10 30

0.1 10 35

, c =


1

1.2
3

3.2

 and

p =


0.3689 0.117 0.2673
0.4699 0.4387 0.747
0.1091 0.8732 0.5547

0.03815 0.5743 0.8828


The value of the global minimum is −3.862782.

• Hartman 6 function.

f (x) = −
4

∑
i=1

ci exp

(
−

6

∑
j=1

aij
(
xj − pij

)2
)
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with x ∈ [0, 1]6 and a =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

, c =


1

1.2
3

3.2

 and

p =


0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381


The value of the global minimum is −3.322368.

• High Conditioned Elliptic function, defined as

f (x) =
n

∑
i=1

(
106
) i−1

n−1 x2
i

with n = 10 for the conducted experiments.
• Potential function used to represent the lowest energy for the molecular conformation

of N atoms via the Lennard–Jones potential [69]. The function is defined as:

VLJ(r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]

(A1)

In the current experiments, two different cases were studied: N = 3, 5.
• Rastrigin function. The function is given by

f (x) = x2
1 + x2

2 − cos(18x1)− cos(18x2), x ∈ [−1, 1]2

• Shekel 7 function.

f (x) = −
7

∑
i=1

1
(x− ai)(x− ai)T + ci

with x ∈ [0, 10]4 and a =



4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 3 5 3


, c =



0.1
0.2
0.2
0.4
0.4
0.6
0.3


.

• Shekel 5 function.

f (x) = −
5

∑
i=1

1
(x− ai)(x− ai)T + ci

with x ∈ [0, 10]4 and a =


4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7

, c =


0.1
0.2
0.2
0.4
0.4

.

• Shekel 10 function.

f (x) = −
10

∑
i=1

1
(x− ai)(x− ai)T + ci
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with x ∈ [0, 10]4 and a =



4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3.6 7 3.6


, c =



0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.6


.

• Sinusoidal function. The function is given by

f (x) = −
(

2.5
n

∏
i=1

sin(xi − z) +
n

∏
i=1

sin(5(xi − z))

)
, 0 ≤ xi ≤ π.

The global minimum is located at x∗ = (2.09435, 2.09435, . . . , 2.09435) with f (x∗) =
−3.5. For the conducted experiments, the cases of n = 4, 8, and z = π

6 were studied.
• Test2N function. This function is given by the equation

f (x) =
1
2

n

∑
i=1

x4
i − 16x2

i + 5xi, xi ∈ [−5, 5].

The function has 2n local minima in the specified range and, in our experiments, we
used n = 4, 5, 6, 7.

• Test30N function. This function is given by

f (x) =
1
10

sin2(3πx1)
n−1

∑
i=2

(
(xi − 1)2

(
1 + sin2(3πxi+1)

))
+ (xn − 1)2

(
1 + sin2(2πxn)

)
with x ∈ [−10, 10]. The function has 30n local minima in the specified range and we
used n = 3, 4 in the conducted experiments.
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