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Abstract: Big Data is a phenomenon that affects today’s world, with new data being generated every
second. Today’s enterprises face major challenges from the increasingly diverse data, as well as
from indexing, searching, and analyzing such enormous amounts of data. In this context, several
frameworks and libraries for processing and analyzing Big Data exist. Among those frameworks
Hadoop MapReduce, Mahout, Spark, and MLlib appear to be the most popular, although it is
unclear which of them best suits and performs in various data processing and analysis scenarios.
This paper proposes EverAnalyzer, a self-adjustable Big Data management platform built to fill this
gap by exploiting all of these frameworks. The platform is able to collect data both in a streaming
and in a batch manner, utilizing the metadata obtained from its users’ processing and analytical
processes applied to the collected data. Based on this metadata, the platform recommends the
optimum framework for the data processing/analytical activities that the users aim to execute. To
verify the platform’s efficiency, numerous experiments were carried out using 30 diverse datasets
related to various diseases. The results revealed that EverAnalyzer correctly suggested the optimum
framework in 80% of the cases, indicating that the platform made the best selections in the majority
of the experiments.

Keywords: Big Data; data management; data collection; data analysis; data processing; Hadoop;
MapReduce; Spark; Mahout; MLlib

1. Introduction

Global internet consumption has increased due to the growth of the Internet of Things
(IoT) and the extensive use of social media. As a result of this rise, vast amounts of data have
accumulated, which in most of the cases are extremely difficult to be handled. According
to Statista [1], the total amount of data consumed globally has increased to 64.2 Zettabytes
in 2020, 79 Zettabytes in 2021, and is expected to increase by more than 180 Zettabytes
by 2025. At the same time, Forbes [2] estimates that more than 150 Zettabytes of real-
time data will be required for analysis by 2025. Companies dealing with structured data
have different requirements than companies dealing with unstructured data, according to
Forbes, which discovered that over 95% of organizations require assistance in managing
unstructured datasets.

All this information is referred to as Big Data, which is defined as massive volumes of
data collected from multiple sources and formats [3]. Many businesses gather and analyze
data from various sources to make better business decisions regarding their customers,
market demands, and trends. For these purposes, various Big Data processing and analysis
technologies have been created to efficiently extract information from these large datasets
in order to successfully evaluate the underlying data [4]. Among those tools, the ones
created upon the Apache Hadoop Ecosystem are the most widely used [5]. Hadoop has
become one of the most well-known tools in the Information Technology (IT) business and
academic environment, due to its capacity to manage huge amounts of data.
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However, as modern internet users generate massive amounts of unstructured data,
the need for memory resources is increasing as well [6], with distributed data processing
being a good answer to the demand for increased memory resources [7]. In this regard,
two of the most widely used tools for data processing distribution are the open-source
tools of MapReduce [8] and Spark [9], which provide effective solutions for processing and
analyzing massive amounts of data, while providing useful functions to developers who
can easily exploit them via Application Programming Interfaces (APIs) [10]. Both tools are
based on the Hadoop Ecosystem, where MapReduce is used to process data in a processing
cluster in parallel, whereas Spark is another solution that has been built for clustered
data processing [11]. However, Spark’s major purpose is to provide a programming
model that can be utilized in any form of Big Data application that is constrained by the
MapReduce features, while remaining error tolerant [12]. Spark is not only an alternative
to MapReduce, but it also provides a variety of real-time data processing functionalities.
The aforementioned tools serve as the basis for the tools of Mahout [13] and MLlib [14],
which are used to perform Big Data analysis using Machine Learning (ML) algorithms [15].

The purpose of this research is to develop and deploy EverAnalyzer, a flexible Big Data
management platform capable of automatically gathering, pre-processing, processing, and
analyzing both real-time (i.e., streaming) and stored (i.e., batch) data. Nevertheless, most of
the existing Big Data management platforms already support such a pipeline, exploiting,
however, off-the-shelf technologies and tools. In addition, these platforms support tools
that perform standalone tasks, such as individual data processing or individual data analy-
sis tasks. Hence, using those platforms, specific frameworks are exploited, having their own
set of benefits, shortcomings, and limitations. The solution to this problem is the implemen-
tation of a system that can comprehend the advantages and disadvantages of the various
tools used to manage diverse case datasets for pursuing a processing or analytical activity
and identify the optimum tool per case for performing less time-consuming and more
efficient actions. EverAnalyzer comes to bridge exactly this gap, providing the innovation
that enables its system to automatically recognize which of the underlying data processing
(i.e., MapReduce or Spark) and data analysis (i.e., Mahout or MLlib) tools are most suitable
for successfully and efficiently processing and analyzing the ingested data. The system’s
choice is influenced not only by the amount of data, but also by the execution speed of
prior processing and analysis tasks that have been applied on relevant data scenarios. As a
result, EverAnalyzer may be applied to a wide range of scenarios, better assisting users
in both processing and analytical activities, hence decreasing their overall workload. To
verify all of the above, the platform was evaluated through an experiment that assesses
EverAnalyzer’s capability to provide empirical suggestions to its users about the best
framework to be utilized for the operations that they wish to perform. Data was collected
from thirty (30) distinct datasets related to various diseases and conditions in the healthcare
sector. The data was pre-processed, processed, and analyzed, while EverAnalyzer provided
a suggestion for the most suitable framework (i.e., MapReduce or Spark for processing
tasks, and Mahout or MLlib for analysis tasks, respectively) based on the shortest execution
time for the requested processing/analysis process. All the framework’s suggestions were
gathered and compared with the framework that had the best execution time between
the two chosen tools, revealing that EverAnalyzer made a correct recommendation 80%
of the time. However, when the number of datasets increased, this percentage appeared
to climb monotonically. This means that each performed processing/analysis task trains
EverAnalyzer to export better and more representative results. Hence, if the platform uses
a larger number of datasets, it is expected that the percentage of correct answers will be
increased, raising the overall platform’s accuracy to a percentage greater than 80%.

The remainder of this paper is organized as follows. Section 2 offers a detailed
summary of the literature review that was conducted to assess meaningful insights for
the study, focusing on Big Data and its lifespan, focusing in particular on the processing
and analysis phases. In Section 3, a thorough analysis of how the proposed platform
(EverAnalyzer) is designed and built is presented, including the platform’s goals and
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users as well as its architecture. Section 4 depicts the experimentation results generated by
EverAnalyzer, and Section 5 provides an interpretation of the exported results as well as
how they can be interpreted in relation to the studied literature. Finally, Section 6 contains
the study’s conclusions, limitations, next steps, and future research directions; it also
describes future experiments that would be interesting to conduct using EverAnalyzer’s
design and implementation guidelines.

2. Literature Review

Big Data is defined as large volumes of data collected from various sources and in
various formats [3]. Such data have some specific characteristics (Vs of the data), which
primarily refer to data Volume (i.e., data size), Variety (i.e., data format), Velocity (i.e., data
production rate), Veracity (i.e., size of data authenticity), Validity (i.e., data validity), Volatil-
ity (i.e., time of data validation), and Value (i.e., data usefulness in terms of analysis) [3].
These characteristics indicate that Big Data is challenging to be managed, but when it is
properly managed, it may be highly valuable. For this purpose, companies can use Big
Data to evaluate and extract important information about their products and customers.
However, due to the wide range of their forms and sizes, analyzing them is sometimes a
complicated and time-consuming task. At the same time, people are increasingly using the
Internet to help them with their everyday activities and entertainment, which causes the
amount of collected data to increase year after year.

This results in data that may be structured, semi-structured, or even unstructured,
making them difficult to manage with traditional Relational Database Management Systems
(RDBMS), which are expensive and time-consuming to implement [16]. Structured data
refers to data that are known for the information they contain and the manner in which
they are contained. Semi-structured data, on the other hand, lacks some specifications
about the information they contain, whereas unstructured data conveys no information on
their structure. Large amounts of these data can be collected by mobile phones, sensors,
Global Positioning System (GPS) signals, social media, and other sources that generate
massive amounts of data every second [17]. As a result, Big Data refers to either batch data
deriving from ready-to-use datasets that require some processing or analytic activities (e.g.,
already stored data derived from external systems’ databases), or streaming data derived
from live sources that are constantly streaming information (e.g., real-time data gathered
from social media) [18].

As a result, managing Big Data throughout their lifecycle has become a very chal-
lenging task that never ceases to pique the interest of enterprises and researchers. More
specifically, the utilization of Big Data is represented by a lifecycle that includes a plethora
of phases, beginning with collection of the data and concluding with their final destruc-
tion [19]. Figure 1 depicts all of these phases, referring to the: (i) collection, in which data
are collected from various sources, most of the time in formats that are difficult to handle
due to their unstructured nature; (ii) storage, in which the ingested data are stored in
the appropriate database; (iii) processing, in which data are pre-processed in a standard
structure to make it easier to manage in subsequent phases; (iv) analysis, in which various
ML methods are used to produce meaningful results and insights from the stored data;
(v) utilization, in which the extracted results and gained insights are put to use in a variety
of real-life and testing scenarios; (vi) destruction, the final and most important phase of the
entire lifecycle, since many sensitive data may be collected from various sources during the
collection phase, requiring the data’s compliance to a strict protocol to ensure that their
confidentiality, integrity, and availability are not compromised. To this end, it should be
emphasized that the suggested platform’s purpose is to investigate the phases of collection,
storage, processing, and analysis, which are further analyzed below.
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2.1. Big Data Collection

Big Data collection is described as the process of gathering massive amounts of data
in order to further analyze them and obtain useful results [20,21]. These data can be
collected using traditional methods such as questionnaires and interviews; however, there
is a plethora of more effective approaches. Web services, sensor-equipped devices such as
mobile phones and tablets, and smart transportation cards, are just a few examples [22]. All
the data collected from these devices may be either batch, meaning that they are collected
up to a predefined size and then stored all together to be analyzed later as a set of data, or
streaming, referring to data that are analyzed while being collected. The distinction between
those two kinds of data is that streaming data processing is applied directly to the ingested
data, whereas batch data processing collects and preprocesses a predetermined quantity of
data [18]. Furthermore, if it is not possible to collect enough data for a processing/analytical
activity, there are methods for creating synthetic data [23], which represent the real data
that an analysis would most likely use to properly execute the required analysis.

Various tools, such as Sebek [24], Hflow [25], Honeywall [26], Nepenthes [27], Ko-
joney [28], and Capture-HPC [29] have been built to successfully collect such varied types
and formats of data. Kafka [30] and Flume [31] are two of the most widely used data
collection tools. Whereas Kafka is a streaming data collection and processing tool, Flume is
primarily used to manage infrastructures for collecting streaming data as batch data. Flafka
is created by combining those two tools, providing the ability to save streaming data as
batch data exploiting both Kafka and Flume [32].

2.2. Big Data Storage

Big Data storage is described as the process of storing and managing large-scale
datasets while maintaining data access reliability and availability [33,34]. Big Data storage
has a significant impact on the infrastructure of the system that desires to adopt it. On the
one hand, the storage infrastructure must provide reliable space to storage services, but on
the other hand, it must also provide a dynamic access interface for querying and analyzing
large amounts of data.

Because the volume of Big Data is continuously expanding, complex systems known
as Database Management Systems (DBMS) are increasingly being employed to store and
manage these data. Structured Query Language (SQL) systems and Non-SQL (NoSQL)
systems are the two representative types of RDBSs [35]. NoSQL systems are preferable for
storing and managing Big Data, since SQL systems require organized data to be efficient,
whilst NoSQL systems are meant to be used for unstructured data. To better manage the
variety of the forms of the existing unstructured data, NoSQL DBMSs are classified into
three separate core categories, namely: (i) key-value stores that store data as a collection of
key-value pairs in which a key serves as a unique identifier, with both keys and values rang-
ing from simple objects to complex compound objects (e.g., Redis [36]; Scalaris [37], Tokyo
Tyrant [38], Riak [39]); (ii) document stores that are databases for storing information in
the form of documents (e.g., SimpleDB [40], CouchDB [41], MongoDB [42], Terrastore [43]);
(iii) column stores that use tables, rows, and columns, but unlike a relational database,
the names and format of the columns can vary from row to row in the same table (e.g.,
Bigtable [44], HBase [45], HyperTable [46], Cassandra [47]).

2.3. Big Data Processing

Big Data processing is a group of techniques for accessing large amounts of data in
order to extract meaningful information for decision support and provision [48,49]. Big
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Data processing employs a range of methods, such as wordcount and string matching,
which can be distributed across vast clusters of processing units [50]. Data processing
algorithms typically have low algorithmic complexity, allowing them to perform quick
computations. They are simple to implement and can interpret a variety of datasets,
whereas they may be used on any dataset, regardless of its size, due to their high speed.
However, directly obtained datasets (i.e., raw datasets) are frequently impossible to process
as a data processing task, since in the case of Big Data such datasets do not comply with a
specific structure as they derive from a broad range of sources. Thus, Big Data must first go
through a data pre-processing phase to normalize the data structure before going through
a data processing job. After the data structure is normalized, it is then simple to process the
data using the preferred data processing algorithms.

At the same time, traditional programming paradigms are incapable of handling
data effectively because it is often stored on thousands of commodity servers. As a result,
new parallel programming methods are being deployed in datacenters to improve the
performance of NoSQL databases [48]. MapReduce is a popular programming model for
Big Data processing on large-scale commodity clusters, and it has evolved as an important
component of the Hadoop ecosystem [48]. The main advantage of this programming model
is its simplicity, which allows its users to easily exploit it for Big Data processing tasks [51].
Pig is an SQL-like environment that is used for performing processing tasks upon Big
Data [52], whereas Hive is another example of such tool that provides a better environment
than MapReduce and simplifies the code development as programmers are not required to
deal with the complexities of MapReduce coding [53]. Similarly, many solutions have been
developed to address MapReduce’s gaps, such as delayed data loading and data reuse.
Among those tools are Starfish, which is a Hadoop-based framework aiming to improve
the performance of MapReduce jobs through the use of data lifecycle analytics, as well as
being a self-tuning system that adapts to users’ needs and systems’ workloads without
requiring users to configure or change the underlying settings or parameters [54]. Spark is
an alternative to MapReduce that aims to overcome disk I/O limitations and improve the
performance of prior solutions. The ability to perform in-memory computations is the main
feature that distinguishes Spark, since it enables data to be cached in memory, removing the
disk overhead limitation of MapReduce for iterative tasks [55]. Other programming models
similar to MapReduce include Dryad, which is a distributed execution engine for running
Directed Acyclic Graph-based (DAG) Big Data applications. While MapReduce only allows
for a single set of input and output data, Dryad allows users to use any number of input
and output data [56]. Pregel is another tool capable of processing large-scale graphs for a
variety of purposes, including network graph analysis and social networking services [57].
Finally, data processing technologies are available for streaming data as well. As data is
acquired from their source, these technologies provide processing workflows, removing
the requirement to convert data to batch data [58]. Examples of such tools are Storm [59],
Flink [60], Spark Streaming [61], Samza [62], Apex [63], and Google Cloud Dataflow [64],
among others.

2.4. Big Data Analysis

Big Data analysis is defined as the procedure for acquiring data from diverse sources,
processing them to extract relevant patterns and insights, and distributing the results to
the appropriate stakeholders [65,66]. Data analysis is classified into four (4) discrete types,
which refer to: (i) descriptive analytics that respond to the question “What happened?”
and mines information from raw data; (ii) diagnostic analytics that report on the past
while attempting to answer the question “Why did it happen?”; (iii) predictive analytics
that answer future-related questions “What will happen?” and “Why will it happen?”;
(iv) prescriptive analytics that suggest one or more courses of action and illustrate the
likely outcome/influence of each action, providing answers to the questions “What should
I do?” and “Why should I do it?”, based entirely on “what-if” scenarios. In this context,
there have been numerous techniques and methodologies proposed for addressing each
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analysis question [67,68]. Some of the most indicative techniques refer to: (i) clustering,
which is used to explore data and finding natural groupings; (ii) classification, which
is used for predicting a specific outcome; (iii) association, which finds rules associated
with frequently occurring items; (iv) regression, which is used for predicting a continuous
numerical outcome; (v) attribute importance, which ranks attributes based on the strength
of their relationships with target attributes; (vi) anomaly detection, which identifies cases
that are unusual or suspicious based on deviations from the norm; (vii) feature extraction
that creates new attributes by combining the existing ones in a linear fashion.

Numerous data analysis tools, largely open-source, have been developed to implement
such analytical approaches. Orange is a data analysis and visualization tool that includes
components for ML feature selection and text mining [69]. R is a statistical computing and
graphics programming language and software environment that is widely used for the de-
velopment of statistical software and data analysis [70]. Weka is a data mining software that
offers a set of ML algorithms for data mining activities, such as classification, regression,
clustering, association rules, and visualization [71]. Moreover, Shogun is a software toolbox
that provides a wide variety of algorithms and data structures for ML problems, with a con-
centration on data mining tasks, including regression and classification [72]. Rapid Miner
is another data manipulation, analysis, and modeling tool that operates through visual
programming [73]. In addition to open-source tools, there are various commercial data
mining solutions like Neural Designer [74], SharePoint [75], Cognos [76], and BOARD [77].
While the technologies listed above are intended for performing and visualizing analytics,
they do not follow the Big Data logic. Tools built in this manner are Sisense, a business
intelligence platform that can join, analyze, and visualize data [78], KEEL, which assists
users in evaluating evolutionary algorithms for data mining problems [79], Mahout, which
provides clustering, classification, and batch-based collaborative filtering algorithms that
run on top of MapReduce [13], and MLlib, a project with a similar approach to Mahout,
which executes its ML algorithms on top of the Spark framework to make extensive use of
the system’s Random Access Memory (RAM) [80].

3. Proposed Big Data Management Platform

Following the established baseline concepts, this section describes the architecture
of the EverAnalyzer platform, which has been built to cover the entire Big Data lifecycle
towards the successful collection, storage, processing, and analysis of either streaming
or batch data. The platform has been built around the Hadoop ecosystem and its vari-
ous supported frameworks, specifically exploiting the Kafka and Flume frameworks for
collecting the underlying data, MongoDB and Hadoop Distributed File System (HDFS)
for storing all the gathered data, the Spark and MapReduce frameworks for effectively
processing this data, as well as the ML libraries of MLlib and Mahout for finally analyzing
the data and extracting useful insights. All these tools have been selected based on the
thorough literature review that has been conducted (further examined in Section 5), which
indicated that these tools constitute the most popular and widely used Big Data collection,
storage, processing, and analysis frameworks, being rapidly studied and applied by both
industry and academia. Based on the research that has been conducted, even though
Kafka, Flume, MongoDB and HDFS constitute a common path for data collection and
storage in a wide range of research works, what is of major importance are the frameworks
that should be put in place to efficiently manage the data processing and analysis paths.
Towards this goal, there appears not to have been any attempt to manage data processing
and analysis using a hybrid system that could apply the most efficient of the processing
frameworks of Spark and MapReduce and the analysis frameworks of MLlib and Mahout
to the corresponding Spark and MapReduce framework. The platform of EverAnalyzer
tries to bridge this gap, not only by providing a solution to the users for managing their
processes using Spark or MapReduce, but also by allowing the platform to advise users
on the best framework for more efficiently and quickly processing and analyzing their
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collected data. With this feature, the platform will be a valuable resource for any user
looking to exploit the Hadoop ecosystem.

In deeper detail, EverAnalyzer’s objectives include the creation of a platform that
includes a registration subsystem that allows users to login and logout of their accounts.
This registration system will ensure the platform’s users’ confidentiality, integrity, and
availability. Aside from the registration subsystem, EverAnalyzer offers a Data Collection
subsystem that allows its users either to upload their own batch data into the platform, or
to collect streaming data from the Twitter database [81]. Additionally, a data processing
and analysis subsystem is provided, allowing users to perform configurable pre-processing,
processing, and analytics on their collected data, which is finally stored in the platform for
future use or access. Within these configurations, users can use Spark or MapReduce to
process their data, as well as analyze them using their respective MLlib or Mahout libraries.
The platform can respond to the optimal use of Spark or MapReduce and the appropriate
MLlib or Mahout libraries, depending on the tasks that the users wish to complete. Finally,
the results of the users’ analytics are graphically displayed in a user-friendly manner and
can be exported for future use. All these objectives are summarized in Table 1.

Table 1. EverAnalyzer objectives.

ID Objective

#1 Users can login to the platform with a registration system.
#2 Users can collect their desired batch or streaming data.
#3 Users can save their collected data and the analyzed data for future use or access.
#4 Users have the ability to pre-process their data.

#5 Users are recommended by the most suitable processing framework to be applied,
where the platform recommends the optimal use between Spark or MapReduce.

#6 Users are recommended by the most suitable analysis framework to be applied,
where the platform suggests the optimal use between MLlib or Mahout libraries.

#7 The users’ analytics results are displayed graphically, in a user-friendly way.

3.1. Platform Architecture

Figure 2 shows a high-level overview of the platform’s architecture. As shown in the
figure, EverAnalyzer contains various subsystems that deal with user interaction as well
as data management and storage within the platform. These subsystems create the entire
platform and work together to achieve the platform’s objectives depicted in Table 1.
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More specifically, the provided architecture is divided into two layers, the Data Manage-
ment Layer and the User Interaction Layer. The User Interaction Layer contains the subsystems
with which the users directly interact. In contrast to the preceding, the Data Management
Layer is primarily managed by the platform’s system. As a result, the users interact with
the containing subsystems indirectly through the data that they provide in the User Interac-
tion Layer. To be more specific, the Data Management Layer and the User Interaction Layer
subsystems include the:

• Verification System: Users can register and login to the platform.
• Data Collection System: Users are able to provide the configurations required to collect

the desired data.
• Data Analysis System: Users can configure the analytic jobs they want to run and then

execute them to acquire their results.
• Visualization System: Users can receive visual results of their analytic jobs/processes.
• Database System: This is only used by the platform and not the users since it saves

useful data for each process and each platform’s user.
• File System: This is only used by the platform and not by the users, as it distributes

across multiple machines all the users’ analyzed, pre-processed, processed, and col-
lected data.

Table 2 depicts the subsystems’ association with the platform’s overall objectives.

Table 2. Correspondence of subsystems and EverAnalyzer objectives.

EverAnalyzer Layer Subsystem Objective

User Interaction Layer

Verification System #1
Data Collection System #2
Data Analysis System #4, #5, #6
Visualization System #7

Data Management Layer Database System #1, #3
File System #3

Figure 3 displays a low-level representation of the platform’s architecture, indicating
how all of the platform’s subsystems interact.
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In more detail, initially the user can use the Verification System to authenticate and
register onto the platform. This system then communicates with the Database System
to determine whether the user can enter the platform or not. After the user is authenti-
cated, they can access the Data Collection System, the Data Analysis System, as well as
the Visualization System. The Data Collection System demonstrates the use of Flafka, a
combination of Flume and Kafka to obtain the requested data (either in a batch form or
in a streaming form by Twitter). Afterwards, the Data Analysis System allows the user to
select an action among pre-processing, processing, and analytics tasks, as well as to obtain
a recommendation for the framework that would better fit and perform in the user’s data
scenario. This proposal is provided once the Data Analysis System receives the response
from the Database System. Following the use of the Data Collection and Data Analysis
Systems, new metadata is provided to the Database System, while the appropriate updates
are made to the File System’s files. Finally, the Visualization System pulls the metadata and
the results from all the other systems via the Data Management Layer in order to perform
the visualizations requested by the user. All the above-mentioned functionalities of all the
subsystems are thoroughly explained in the following sections.

3.1.1. Verification System

The platform’s Verification System exists to authenticate different users, supporting
the features of: (i) user login and authentication; (ii) new user registration in the system;
(iii) user logout of the system; (iv) check of existing or non-existing users within the system
from the browser session where the platform is displayed, to prevent non-authenticated
users from abusing the platform.

3.1.2. Data Collection System

The platform’s Data Collection System allows its users to collect either batch data or
streaming data from the Twitter database. For streaming data, the following features are
supported: (i) customization of the number of tweets to be collected by the user; (ii) cus-
tomization of the words to be searched in the Twitter database by the user; (iii) naming
of user’s collected dataset; (iv) gathering of data based on user’s configurations directly
from Twitter’s database. For batch data, the following features are supported: (i) finding
the location of user’s filesystem for the data storing; (ii) uploading the dataset as batch
data; (iii) customizing the words searched in the uploaded dataset; (iv) naming the user’s
uploaded dataset.

3.1.3. Data Analysis System

The platform’s Data Analysis System is the most complicated and the most critical
component of the platform. In essence it is the subsystem that allows the users to pre-
process, process, and analyze their datasets. Its features are divided into three categories.
All the categories with their supported features are listed below:

Pre-processing: (i) The platform’s system determines whether data has been collected
by the user so that it can be pre-processed or not. If no datasets are collected, the system
notifies the user, whereas if data is gathered, the system displays to the user all the datasets
that it has collected, displaying useful metadata about them, such as labels, words used for
the collection and data size. (ii) After selecting the collected dataset for pre-processing, users
specify which data/tweets they want to keep based on their contained fields. (iii) After
selecting the collected dataset for pre-processing, users can specify which fields/attributes
should be retained in the new pre-processed dataset.

Processing: (i) The platform’s system determines whether pre-processed data exists or
not, so that the user can proceed with a word count processing phase. If no pre-processed
datasets exist, it notifies the user of their need to perform the desired processing job;
otherwise, the system displays relevant metadata about the datasets, such as labels, words
used for the collection, data size, and performed pre-processing results. (ii) After selecting
the pre-processed data for processing, the user is given the option of executing a word count
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process using MapReduce or Spark. (iii) If the user has not decided which framework to
use, the platform recommends to the user the most appropriate one. This proposal is based
on the system storage and the available RAM of the machine that the platform is installed
on. In addition to the aforementioned, the platform’s system examines prior processes, if
any, to provide an answer based on the knowledge gathered by the system. This feature
is considered of great importance for the platform, since the main goal of its developed
system is to be able to apply the most efficient and least time-consuming framework
between the processing frameworks of Spark and MapReduce. According to the literature,
most of the time, Spark is faster than MapReduce on the same use cases, using the same
resources. As the volume of datasets grows in different use cases, MapReduce is expected
to outperform Spark in terms of execution speed, but only until the distributed cluster’s
RAM is insufficient for Spark. When the dataset is small enough to fit in the system’s RAM,
Spark is the most suitable choice for processing jobs. EverAnalyzer utilizes this fact to guess
the better solution, after which MapReduce will be superior for the users. In more detail,
the platform’s system saves the execution speed of the process and the framework used
for each completed process, following the flow depicted in Figure 4, which is triggered
for each proposition query. Figure 4a indicates the flow followed for the MapReduce
proposition, where the users get the current dataset, and the system finds all the processing
jobs that used MapReduce for their processing and datasets smaller than the current one.
The system starts iterating the MapReduce processing jobs, and for each iterated job it
tries to find any completed Spark processing job that used a dataset even smaller than
the current processing job is using. If it finds any Spark processing job that was slower
than one of the iterated MapReduce processing jobs, then the system proposes MapReduce.
On the other hand, Figure 4b illustrates that if there has not been any suggestion yet by
the system, then it finds all the processing jobs that used MapReduce for their processing
and had larger datasets than the current one. The system starts iterating the MapReduce
processing jobs, and for each iterated processing job it tries to find any completed Spark
processing jobs that used a dataset even larger than the one currently being used. If it finds
any Spark processing that is faster than any of the iterated MapReduce processing jobs,
then the system proposes Spark. If there is no proposition yet, then the system randomly
chooses one of the frameworks, with a 50% chance for each framework being chosen.
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Analytics: (i) The platform’s system determines whether there are pre-processed
data that the user can use to create an analytic job, and if not, it informs the user of their
need to perform this process. If there are pre-processed data, the platform displays useful
metadata about the data, such as labels, words used for the collection, data size, and
performed pre-processing results. (ii) After selecting the pre-processed dataset, the user
can perform an analysis using the Mahout or MLlib libraries. (iii) If the user has not
determined which framework to use, the platform suggests one. This proposal is based on
the amount of available RAM and the dataset that the user wishes to analyze. This feature
is also considered highly important to the platform. Unlike the processing proposition
flow (Figure 4), the analytics proposition flow is monotonous. According to the literature,
MLlib will always outperform Mahout in terms of execution speed, except when the dataset
for analysis is larger than the RAM of the platform’s system. MLlib has been shown to
crash when it is unable to handle entire datasets within the system RAM, which has been
shown to be much slower in these cases. As a result, the algorithm used for the framework
proposition to be used for the analytics proposition flow only considers the system’s RAM.
If the system’s RAM is less than the size of the given dataset, the proposal is Mahout. If the
system’s RAM is larger than the size of the given dataset, the proposal is MLlib. Figure 5
depicts the concept of this proposition flow.

Information 2023, 14, x FOR PEER REVIEW 12 of 14 
 

 

 
Figure 5. Analytics proposition flow. 

3.1.4. Visualization System 
The platform’s Visualization System is used to display to the user the extracted re-

sults of each processing and analytic job. The purpose of this action is to aid the user in 
understanding the produced data analysis results. The visualization can be explained in 
two (2) steps: (i) The platform determines whether there are processed or analyzed data 
that the user can visualize or not. If no such data exist, the platform’s system notifies the 
user that the visualization requires processed or analyzed data, or else the analyzed data 
appear alongside various metadata related to the user’s analysis, such as data labels, 
words used for the data collection, data size, pre-processing performed, and analysis ap-
plied. (ii) When the user selects the analyzed data to be visualized, the platform displays 
the corresponding visualizations. 

3.1.5. Database System & File System 
The Data Management Layer, which includes the platform’s Database System, and 

File System interact with all the platform’s subsystems, being responsible for holding all 
the exported data from each user and each implemented activity. In addition to the fore-
going, this layer’s subsystems give the user access to all the generated and collected data. 

3.2. Platform Users 
EverAnalyzer was created and built to be used by a wide range of users, as illustrated 

in the use case diagram in Figure 6. Some indicative examples of such users may include: 
(i) Data Analysts who may use the platform to extract and interpret results from their 
data; (ii) data scientists who may be able to experiment with different methods and tools 
for extracting results from their collected data; (iii) data engineers who will be able to use 
all of the platform’s automated processes as a tool to supplement the rest of their tools. 

Figure 5. Analytics proposition flow.

3.1.4. Visualization System

The platform’s Visualization System is used to display to the user the extracted results
of each processing and analytic job. The purpose of this action is to aid the user in
understanding the produced data analysis results. The visualization can be explained in
two (2) steps: (i) The platform determines whether there are processed or analyzed data
that the user can visualize or not. If no such data exist, the platform’s system notifies the
user that the visualization requires processed or analyzed data, or else the analyzed data
appear alongside various metadata related to the user’s analysis, such as data labels, words
used for the data collection, data size, pre-processing performed, and analysis applied.
(ii) When the user selects the analyzed data to be visualized, the platform displays the
corresponding visualizations.

3.1.5. Database System & File System

The Data Management Layer, which includes the platform’s Database System, and File
System interact with all the platform’s subsystems, being responsible for holding all the
exported data from each user and each implemented activity. In addition to the foregoing,
this layer’s subsystems give the user access to all the generated and collected data.
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3.2. Platform Users

EverAnalyzer was created and built to be used by a wide range of users, as illustrated
in the use case diagram in Figure 6. Some indicative examples of such users may include:
(i) Data Analysts who may use the platform to extract and interpret results from their data;
(ii) data scientists who may be able to experiment with different methods and tools for
extracting results from their collected data; (iii) data engineers who will be able to use all of
the platform’s automated processes as a tool to supplement the rest of their tools.
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Figure 7 depicts the user’s interaction with the platform’s system during the authenti-
cation process (i.e., Objective #1 of the platform), in which the user can register in the system
with the option to login later, while the system saves and authenticates the user’s data.
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Figure 8 depicts the system and user operations during the data collection process (i.e.,
Objective #2 of the platform), where the user can configure the data collection, while the
system performs the collection and saves the data for later use.
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Figure 9 depicts the platform’s data storage process (i.e., Objective #3 of the plat-
form), in which the user completes any data collection, pre-processing, processing, or
analytic tasks, and then, as the responsible executor of the saving process, the system
stores all the information about the user’s data as well as the data itself in their respective
storage resources.
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Figure 10 depicts the platform’s data pre-processing process (i.e., Objective #4 of the
platform), in which the user can configure a pre-processing job and then the system handles
the user’s pre-processing task automatically, performing any configurations that are given
to it.
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Figure 11 displays the framework suggestion process that will be used in the user’s
processing and analytic activities (i.e., Objectives #5 and #6 of the platform), in which the
user seeks a proposal from the system and updates the system with the data for the desired
processing/analysis task. The system then collects the user’s processing/analysis data and,
after processing it, it informs the user of the best framework to select.
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Finally, Figure 12 illustrates how the system presents the extracted results (i.e., platform
objective #7), where the user picks the results for visualization while also having the
opportunity to inspect and display the final images of the finished operations. The system
then takes the user’s preference for how the outcomes should be represented as an input
and generates the appropriate diagrams of the executed procedure (i.e., processing or
analysis task).
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4. Case Example
4.1. Working Environment

The experimentation was carried out on a system with 237 gigabytes of Hard Disk
Drive (HDD) and eight gigabytes of RAM. There was no distribution because there was
only one cluster node using the platform’s distribution. The platform was running on a
machine using Windows 10 Home. Apache Hadoop v3.1.0 (including MapReduce), Apache
Flume v1.9.0, Apache Kafka v2.13-2.7.0, Apache Mahout v2.13-2.7.0, Apache Spark v3.1.2
(including MLlib), Apache Tomcat Server v9.0, and Twitter API v1.1 were the tools that
were used. On top, the platform was developed using the technologies of HTML (version 5),
CSS (version 3), Bootstrap (version 5) and JavaScript (version ES6) for its front-end part,
and Java (version 8) for its back-end part.

4.2. Use Case Description

Experiments were conducted on the EverAnalyzer platform to assess its functionality
and ability to offer appropriate recommendations based on the frameworks used. Specifi-
cally, each platform interface was used to create experimental processing and analytical
procedures using the proposal mechanisms of the MapReduce and Spark frameworks.
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Despite the fact that they supported libraries for performing the data analysis tasks (i.e.,
Mahout and MLlib), the experiment was solely focused on the MapReduce and Spark
proposals, using the metadata collected after each user processing task to suggest the most
suitable framework to be used in the investigated scenario. More precisely, the platform’s
functionalities were tested using various streaming health data deriving from Twitter.
Thirty different diseases and health conditions were chosen, and 500 Tweets were collected
as streaming data by EverAnalyzer, which were then placed within the EverAnalyzer Data
Management Layer as batch data using Flafka. The experimentation used keywords from
the World Health Organization’s (WHO) website to describe each selected disease and
condition for the collection [82]. Table 3 lists the diseases and conditions.

Table 3. Chosen diseases and conditions for collected data.

Anaemia Cancer Cholera Coronavirus Influenza Monkeypox

Obesity Pneumonia Smallpox Syphilis Tetanus Yellow fever
Zika virus Trachoma Diabetes Diarrhoea Ebola virus Epilepsy
Hepatitis HIV-AIDS Depression Disability Cardiovascular Chagas
Dementia Dracunculiasis Echinococcosis Foodborne Hypertension Infertility

4.3. Platform Evaluation

The platform was evaluated in two ways. The complete platform’s functionality
and given User Interfaces (UI) were first tested by its users, as stated in Section 4.3.1;
then its proposal performance was measured, as shown in the experimentation results in
Section 4.3.2. The results of the performance were further visualized and explained.

4.3.1. Functional Evaluation

This Section describes how EverAnalyzer is used, where each UI of the platform is
presented, referring to the: (i) authentication Interface that reflects the user’s registration
and authorization phase; (ii) homepage Interface that depicts the EverAnalyzer’s homepage;
(iii) collection interface that reflects the UI, through which the platform guides the user in
gathering data from the Twitter API; (iv) pre-processing interface that allows the user to
pre-process the ingested datasets; (v) processing interface that allows the user to perform
word count jobs on the pre-processed datasets; (vi) analytics interface that assists the user
in performing analytic tasks on the pre-processed datasets; (vii) visualization interface that
allows the user to see all of the datasets produced by the processing and analytics activities;
(viii) management interface that contains all of the user’s datasets, allowing the parsing
and downloading of all the user’s information.

In deeper detail, the authentication interface was created for user access in the EverAn-
alyzer platform. The verification system is deployed alongside it, securing the information
of all the EverAnalyzer users. Figure 13a,b depict the sign-in and sign-up interfaces, re-
spectively. More specifically, the user can use the sign-up page to provide a password
and a username for use on the platform’s sign-in page. The user’s password is encrypted
before it is saved in the database system, whereas in both interfaces the platform issues
user-friendly warnings if the user performs an incorrect action, such as entering different
values in the “password” and “verify password” fields or attempting to sign up with an
already existing username.

After logging in to the platform, a side bar is displayed in the Homepage Interface,
allowing the user to access and use the EverAnalyzer supported functionalities (Figure 14).
These functionalities refer to collection, pre-processing, processing, analytics, visualization,
and management, which will be covered in greater depth below.
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Figure 14. Homepage Interface.

In the collection interface, users can collect datasets from the Twitter API. They can
specify the collection’s label, as well as the number of Tweets to be collected and the
keywords to be used. The keywords are especially necessary for collection of the data,
as the Twitter API returns only Tweets that contain the keywords that the user provided.
The collection interface is depicted in Figure 15. To this end, it should be noted that the
UI assists the users in avoiding mistakes such as typing a label that already exists in one
of their current dataset labels or failing to fill out a field. This occurs through the use of
user-friendly warnings when the user performs an incorrect action, also preventing the
user from submitting the collection without a valid collection form.

As shown in Figure 16a, the pre-processing interface offers all the user’s collection
datasets as pre-processing options, whereas a metadata summary for each collection dataset
is displayed in greater detail. This metadata includes the dataset’s label, the date it was
collected, the number of Tweets it contains, its size in bytes, and the words used to retrieve
the dataset from Twitter. When the user decides which collection dataset to pre-process,
the platform displays the pre-processing form by pressing the “Select Dataset” button.
The user can select which fields of the raw Tweets to keep in this form. Because of the
platform’s ability to detect all the fields that the user requests, regardless of how nested
they are within the JavaScript Object Notation’s (JSON) schema, this choice is not limited
by the JSON schema. Following the pre-processing, only the Tweets with the required
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fields remain in the dataset. The pre-processing form is depicted in Figure 16b. To this
end, it should be noted that the UI always assists the user in avoiding mistakes such as
typing a label that already exists in one of the current dataset labels or failing to fill out a
field. This occurs through the use of user-friendly warnings when the user performs an
incorrect action, preventing the user from submitting the pre-processing without a valid
pre-processing form. Moreover, if there are no collection datasets yet, the interface notifies
the user that a pre-processing job is required.
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As shown in Figure 17, the processing interface offers all the user’s pre-processed
datasets as processing options, where a metadata summary is displayed for each pre-
processed dataset to provide greater detail. This metadata includes the dataset’s label, the
date it was built, the number of Tweets contained in it after its pre-processing, its size in
bytes, the pre-processed fields that the user chose to keep in the dataset, as well as the
label from the pre-processed collection dataset and the words used to collect the dataset
from Twitter.

When the user decides which pre-processed dataset to process, the platform displays
the processing form by pressing the “Select Dataset” button. In this form, the user can
execute a word count job on the chosen pre-processed dataset. This task can be completed
using the MapReduce or Spark frameworks. The word count job is ready for visualization
in the visualization interface after it has been processed. This form also includes a “Suggest”
button, which makes the platform recommend the most suitable framework to the user
based on the requested processing job, giving a choice between MapReduce and Spark.
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Figure 18a depicts the processing form, while Figure 18b depicts the platform’s proposal
for the chosen dataset (“p-anaemia”). It should be highlighted that the UI always supports
the user when it comes to avoiding mistakes such as typing a label that already exists in the
collected or generated dataset labels or neglecting to fill out a field. This is accomplished
by using user-friendly warnings when the user makes a mistake, also prohibiting the
user from submitting the process without a proper processing form. Furthermore, if no
pre-processed datasets are available, the interface informs the user that a pre-processing
operation is necessary.
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As shown in Figure 19, the analytics interface then shows all the user’s pre-processed
datasets as different options for the analytic jobs, where a metadata summary is displayed
for each pre-processed dataset. This metadata includes the dataset’s label, the date it was
built, the number of Tweets contained in it after its pre-processing, its size in bytes, the pre-
processed fields that the user chose to keep in the dataset, the label from the pre-processed
collection dataset, and the words used to collect the data from Twitter.
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Figure 19. Analytics Interface—Pre-processing datasets.

When the user selects a pre-processed dataset to analyze, the platform displays the
analysis form by clicking the “Select Dataset” button. In this manner, the user can choose
an algorithm to run on the chosen pre-processed dataset, which includes several ML
techniques such as the K-means clustering algorithm [83] utilized in the experiment. This
task can be done with the help of the Mahout or MLlib libraries. After the analysis, the
job is ready for visualizing the exported results in the Visualization Interface. This form
also has a “Suggest” button, which causes the platform to offer a framework to the user
for the desired analytics job, enabling the user to choose between Mahout and MLlib.
Figure 20a shows the analysis form, while Figure 20b shows the platform’s proposal for the
selected dataset (“p-anaemia”). It should be noted that the UI always assists the user in
avoiding mistakes such as typing a label that already exists in the dataset labels or failing
to fill out a field. This occurs via the use of user-friendly warnings when the user makes
a mistake, e.g., preventing the user from submitting the analysis without a valid analysis
form. Moreover, if no pre-processed datasets are available, the interface notifies the user
that a pre-processing job is required.
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The visualization interface then provides as visualization options all of the user’s
processed and analyzed results. The datasets are structured in lists that the user can
open and dismiss to examine only the processed or analyzed results they are interested in
(Figure 21a,b), and the lists warn the user if there are no results to be presented.
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Figure 21. (a) Visualization lists; (b) Visualizable results.

The user can access visualizations of the job that produced the selected result by
hitting the “Visualize” button on any of the given outcomes. Because the utility of each
visualization method differs, these visualizations differ for each outcome. Figure 22a,b
provide two examples of such visualizations, one for the executed processing task and one
for an executed analysis task, respectively.
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In addition, the management interface allows the user to access all of his/her collected,
pre-processed, processed, and analyzed datasets and results. It enables the user to view the
specified datasets and results as raw data and download all the information from all the
completed jobs. An additional functionality is provided for the collected and pre-processed
datasets, allowing the user to view all the JSON objects contained within the datasets
one by one. As shown in Figure 23a,b, the interface displays all the user’s datasets and
results as viewing options, organized into lists that the user can open and close to view
only one category of datasets, while the lists always notify the user if there are no datasets
or results to be displayed. Figure 24a,b illustrates some examples of how the user views
EverAnalyzer datasets and results.
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Figure 24. (a) Viewing pre-processing results; (b) Viewing processing results.

4.3.2. Performance Evaluation

As mentioned in Section 4.2, the experiment began with the collection of thirty (30)
different datasets, each of which contained 500 Tweets based on one of the chosen diseases
and conditions. The EverAnalyzer collection interface was used to collect the data, where
some words were kept as keywords for each chosen disease and condition to collect the
required Tweets. In the Collection Interface, the number of required Tweets, the collected
keywords and the user’s Twitter Keys and Tokens were provided, as well as a unique label
to distinguish the different collected datasets at the end of this process.

Following the collection of the thirty (30) different datasets, EverAnalyzer was used to
pre-process all the 15,000 retrieved Tweets, keeping only the fields related to each one’s full
text. To this end, it should be noted that Twitter records every Tweet as a JSON object, where
a JSON object can have many different keys or fields with their respective values in an
abstract form. Each value’s type can be of any kind, such as int, float, array, or a completely
new JSON object. Thus, the pre-processing system in EverAnalyzer detected these JSON
objects and found the key path within the JSON object that the user wanted to keep. In
the context of the conducted experiment, the retweeted_status/extended_tweet/full_text
fields for each retrieved Tweet were kept. This path was specified in EverAnalyzer as
“retweeted_status-extended_tweet-full_text”, which displayed the path of the keys inside
each JSON Tweet by separating it with the minus (-) character. Tweets with no full text
were not considered in the next stage of the experiment, because EverAnalyzer detected
and marked them as having no value. For each disease and condition, Table 4 shows the total
number of Tweets retrieved and saved for further analysis within the EverAnalyzer platform.
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Table 4. Pre-processing results.

Disease/
Condition

(Twitter
Keyword)

Byte Size
(Before

Pre-Processing)

Byte Size
(After

Pre-Processing)

Number of
Tweets
(Before

Pre-Processing)

Number of
Tweets
(After

Pre-Processing)

Anaemia 689,352 86,873 500 285
Cancer 643,186 90,810 500 294
Cholera 667,851 75,305 500 246

Coronavirus 682,377 67,983 500 225
Influenza 635,255 80,703 500 268

Monkeypox 52,702 48,319 500 173
Obesity 714,737 87,469 500 285

Pneumonia 625,063 81,848 500 264
Smallpox 659,805 92,679 500 299
Syphilis 158,457 86,303 500 268
Tetanus 415,683 75,669 500 246

Yellow fever 82,814 60,156 500 203
Zika virus 673,913 92,458 500 279
Trachoma 294,028 63,508 500 205
Diabetes 659,150 49,383 500 165

Diarrhoea 679,323 96,373 500 314
Ebola virus 653,989 75,345 500 241

Epilepsy 572,757 53,907 500 173
Hepatitis 612,424 84,098 500 275
HIV-AIDS 167,690 77,874 500 247
Depression 721,110 70,687 500 212
Disability 716,667 69,673 500 218

Cardiovascular 700,503 87,562 500 294
Chagas 624,708 74,773 500 251

Dementia 603,855 56,667 500 185
Dracunculiasis 119,143 78,416 500 255
Echinococcosis 617,787 67,816 500 224

Foodborne 163,814 84,306 500 264
Hypertension 669,548 68,421 500 224

Infertility 322,207 49,324 500 155

In the next phase, a word count job was performed on each pre-processed dataset’s
keywords, requesting that the user follow these steps: (i) Request a framework suggestion.
(ii) Run the wordcount job with MapReduce. (iii) Run the wordcount job with Spark. To
this end, it is important to note that the more datasets EverAnalyzer had, the better its
suggestions would be, since it would contain a greater amount of knowledge. Because
of steps (ii) and (iii) above, EverAnalyzer was gathering two new datasets as knowledge
for each new dataset after the first one. As a result, after pre-processing all the data, the
user first asked EverAnalyzer for its recommendation as to which framework (MapReduce
or Spark) should be used for the given dataset. Following the platform’s response, the
user executed two (2) word count jobs for the current dataset. Then, the user wrote
EverAnalyzer’s proposal and checked if the proposal was the better of the two for each
dataset based on execution speed, by first asking EverAnalyzer for the proposition and
then performing the execution. Table 5 displays all the captured results.

More specifically, the experiment obtained the following results from Table 5: (i) The
number of times EverAnalyzer was able to provide the faster framework for each of the
experiments’ 30 given datasets. Looking at EverAnalyzer recommendations in Table 5
and the expected recommendations, it is clear that the two columns match in their values
on 24 of the 30 rows; every time the rows of the two last columns matched, it meant that
EverAnalyzer was able to correctly provide the best suggestion for the user’s provided
dataset. (ii) The number of times that EverAnalyzer resulted in continuous correct answers
over the course of the experiments’ 30 datasets. By looking at the result of each suggestion



Information 2023, 14, 93 23 of 34

in Table 5 from top to bottom, it was clear that EverAnalyzer had given one correct
answer before giving a wrong one. Then, the platform gave four correct answers before
making the next mistake. Table 5 could then show the rest of the times when there were
continuous correct answers. (iii) EverAnalyzer’s number of correct responses in each
consecutive sequence of current replies. Table 5 shows all the occasions when EverAnalyzer
made a mistake in the “Suggestion Result” column, and the column “Consecutive Correct
Answers” shows the number of correct continuous answers provided by EverAnalyzer.
Table 6 describes the execution speed of each data processing operation at the top.

Table 5. Processing Results.

Disease/
Condition

Consecutive
Correct

Answers

Suggestion
Result

EverAnalyzer
Recommendation

Expected
Recommendation

Anaemia 1 Correct MapReduce MapReduce
Cancer 0 Wrong MapReduce Spark
Cholera 1 Correct Spark Spark

Coronavirus 2 Correct Spark Spark
Influenza 3 Correct Spark Spark

Monkeypox 4 Correct Spark Spark
Obesity 0 Wrong MapReduce Spark

Pneumonia 1 Correct Spark Spark
Smallpox 0 Wrong MapReduce Spark
Syphilis 1 Correct Spark Spark
Tetanus 2 Correct Spark Spark

Yellow fever 3 Correct Spark Spark
Zika virus 0 Wrong MapReduce Spark
Trachoma 1 Correct Spark Spark
Diabetes 2 Correct Spark Spark

Diarrhoea 0 Wrong MapReduce Spark
Ebola virus 1 Correct Spark Spark

Epilepsy 2 Correct Spark Spark
Hepatitis 3 Correct Spark Spark
HIV-AIDS 4 Correct Spark Spark
Depression 5 Correct Spark Spark
Disability 6 Correct Spark Spark

Cardiovascular 0 Wrong MapReduce Spark
Chagas 1 Correct Spark Spark

Dementia 2 Correct Spark Spark
Dracunculiasis 3 Correct Spark Spark
Echinococcosis 4 Correct Spark Spark

Foodborne 5 Correct Spark Spark
Hypertension 6 Correct Spark Spark

Infertility 7 Correct Spark Spark

An examination of the data and the results provided in Tables 5 and 6 leads to the
following conclusions: Firstly, as demonstrated in the literature, Spark performs better
with small dataset sizes, with MapReduce not being fast enough to outperform Spark in
terms of execution. MapReduce was only able to be faster in the first experiment (Anaemia)
due to the time it took for Spark to start its execution. Secondly, EverAnalyzer provided
the most efficient proposed framework 24 times out of the 30 times (i.e., 80% success). Of
course, it was expected that adding more datasets to the platform would increase this
percentage of success. Figure 25 depicts the consecutive correct sequences until a bad
proposal was found by the platform. The x-axis in the graph represents the number of
consecutive correct answers, while the y-axis represents the number of consecutive correct
suggestions. Although the last pillar has seven consecutive correct answers, it could have
had more if additional data had been collected, as no failed suggestions were found in the
last streak, and the platform simply ran out of data. As the graph indicates, EverAnalyzer’s
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continued success appears to be accompanied by an increasing monotony, implying that
for more data, its accuracy would be far more than 80%.

Table 6. Processing Execution Speeds.

Disease/Condition Spark Execution Speed
(Milliseconds)

MapReduce Execution
Speed

(Milliseconds)

Anaemia 11,185 1387
Cancer 649 1369
Cholera 469 1456

Coronavirus 474 1439
Influenza 552 1414

Monkeypox 531 1358
Obesity 489 1320

Pneumonia 424 1327
Smallpox 431 1416
Syphilis 427 1438
Tetanus 388 1388

Yellow fever 392 1401
Zika virus 389 1300
Trachoma 354 1472
Diabetes 480 1426

Diarrhoea 374 1343
Ebola virus 496 1434

Epilepsy 434 1420
Hepatitis 325 1418
HIV-AIDS 485 1426
Depression 345 1510
Disability 279 1482

Cardiovascular 291 1346
Chagas 351 1469

Dementia 365 1330
Dracunculiasis 292 1430
Echinococcosis 376 1344

Foodborne 384 1441
Hypertension 382 1522

Infertility 352 1317
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5. Discussion

Having thoroughly studied the literature review upon the collection, pre-processing,
processing, and analysis of Big Data, it is an undeniable fact that a plethora of research
works exist successfully covering such concepts. However, most of them focus on per-
forming the processing and analysis tasks exploiting specific tools and approaches. The
following sections depict all the relevant studied literature, concluding with their de-
ficiencies and how EverAnalyzer goes beyond such research, based upon its designed
self-adjustable architecture for efficiently processing and analyzing Big Data.

5.1. Overall Findings on Big Data Processing

As for the processing tasks, it becomes clear that most of the existing research works
make use of either the MapReduce or the Spark frameworks. More specifically, the authors
in [84] analyzed Twitter data, focusing on the treatments of MapReduce and Spark of such
data, while conducting experimental simulations on the two frameworks. A comparison
of two executions in terms of performance and architecture was introduced, along with
an analysis to characterize the simulations’ conclusions, and the shortcomings and draw-
backs of using MapReduce for real-time preparation, demonstrating that Spark was the
most useful tool for real-time streaming data. Pirzadeh investigated the time that was
spent in various parts of the Hadoop platform in his thesis [85]. Various criteria were
simulated and analyzed to understand the platform’s behavior while keeping in mind
the bottlenecks for effective implementation. Moreover, the authors in [86] conducted log
file analysis research on MapReduce and Spark. The authors improved the analysis of
applications to realistic log files in both frameworks, and SQL-type queries were performed
in real Apache Web Server log files. Furthermore, they conducted various experiments
with various parameters to compare and study the act and performance of the two struc-
tures and frameworks. The authors in [87] proposed a project based on MapReduce for
performing Big Data health analysis, having reported on the useful experience gained
from such implementation. What is more, the authors in [88] investigated the theoretical
differences and functional comparisons of the Spark and MapReduce platforms. Their
findings showed that Spark was much faster for its cache due to duplicate queries like
logistic regression. Several Big Data processing techniques were introduced in [89] from
system and application perspectives. Cloud data management and Big Data processing
mechanisms, such as a cloud computing platform, a cloud architecture, a cloud database,
and a data storage scheme, were considered. The authors introduced MapReduce optimiza-
tion strategies and applications as part of the MapReduce parallel processing framework.
In other research [90], the authors attempted to address the issue of detecting anomalies
in real-time Big Data processing. They have surveyed the state-of-the-art real-time Big
Data processing technologies related to anomaly detection, by first explaining the essen-
tial contexts and taxonomy of real-time Big Data processing and anomalous detection,
followed by the review of Big Data processing technologies. Finally, they discussed the
challenges of real-time Big Data processing in anomaly detection. On the same notion, the
study in [91] provided an overview of computing infrastructures for Big Data processing,
focusing on architectural, storage, and networking challenges associated with Big Data
support. It discussed emerging computing infrastructures and technologies that had the
potential to improve data parallelism, task parallelism, and to encourage vertical and
horizontal computation parallelism. Research [92] reviewed and discussed the mechanisms
for handling and processing Big Data in the healthcare domain, as well as providing a
detailed analysis of the mechanisms that are used. It presented a systematic and in-depth
examination of cloud computing applications in the healthcare Big Data sector. Also, this
research provided implications for research and practice as the direction of future study for
healthcare decision-makers. Based on the study’s findings, there was sufficient evidence to
recommend that cloud computing can provide significant benefits and opportunities to the
healthcare sector. The paper [93] investigated a practical case of a Hadoop-based medical
Big Data processing system that intelligently processed medical Big Data and uncovered
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some characteristics of hospital information system user behaviors. A five-node Hadoop
cluster was built to execute distributed MapReduce algorithms, which when compared
with single nodes, indicated promise in facilitating efficient data processing with medical
Big Data in healthcare services and clinical research.

Rather than choosing one specific tool for performing processing tasks, the study [88]
compared the architectures as well as the performances of the MapReduce and the Spark
frameworks, concluding with the findings summarized in Table 7.

Table 7. MapReduce and Spark differences.

MapReduce Spark

Inefficient for applications that repeatedly
reuse the same set of data.

Uses in-memory processing, reusing it for
faster computation.

Quite faster in batch processing. As memory size is limited, it is quite slower in
batch processing of huge datasets.

Data is stored in disk for processing. Data stored in main memory.
Difficulty in processing and modifying data in

real-time due to its high latency.
Processes and modifies data in real-time due to

its low latency.
Used to process from bygone datasets. Used for streaming/batch processing and ML.

Uses replication for fault tolerance. Uses Resilient Distributed Datasets (RDDs) for
fault tolerance.

Merges and partitions shuffle files. It does not merge and partition shuffle files.
Primarily disk-based computation. Primarily RAM based computation.

Relevant research was also conducted between the word count and tera-sort processes
in nine-node clusters with datasets ranging in size from 600 gigabytes to 600 terabytes [10].
According to the findings, the performance of the MapReduce and Spark systems was
largely determined by the sizes of the data entered and the configurations provided to
them. Finally, extensive research was conducted in [12] using various HiBench procedures
to compare MapReduce and Spark environments, where analytical procedures were carried
out within a processing cloud. Spark appeared to outperform MapReduce in almost every
experiment, with statistics reaching 92.25% increased efficiency and consuming up to 10%
more memory in some cases. Spark did not appear to perform as well with MapReduce in
cases where system memory was limited, causing it to make more frequent contact with
HDDs. As a result, these findings corroborate those of previous studies that found that
Spark stops performing better than MapReduce in large datasets with limited RAM.

5.2. Overall Findings on Big Data Analysis

As for the analysis tasks, it becomes clear that most of the existing research works
utilize either the Mahout or the MLlib frameworks. To be more specific, the authors in [83]
investigated the performance of MapReduce and Spark platforms on ML algorithms. The
results of running the K-means algorithm on datasets of various sizes on top of both
MapReduce and Spark showed that the runtime of the used algorithm implemented on
Spark was 4.5 times faster than that of MapReduce. MapReduce consumed more resources,
such as the system’s central processor and networking, whereas Spark consumed more
RAM than MapReduce. The comparison in [94] focused on various ML frameworks for Big
Data, providing a comparison among the ML tools of Mahout, MLlib, H2O, and SAMOA.
Furthermore, the authors assessed each tool based on a variety of criteria, including scal-
ability, fault tolerance, and usability. In the research work in [95], a Big Data platform
was established by using existing Hadoop ML components such as Mahout and MLlib to
realize customer automatic response and information analytic in the field of electric power.
It established a Big Data platform that used ML to process massive amounts of electric
power customer data, while also developing an automatic response and redirect mecha-
nism prototype. The authors in [96] proposed and implemented a Big Data solution for
proactive maintenance in manufacturing. Their architecture consisted of four layers—the
data sources, the data transmission, the Big Data analysis, and the visual presentation. For
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offline data distribution and calculation, the Hadoop system was used, while Apache Storm
was used for real-time processing. The architecture was emphasized in batch and real-time
processing, as well as how to use the components for predictive maintenance. In [97], the
authors proposed a framework for addressing real-time Big Data management, storage,
computation, and predictive data analytics challenges in condition-based maintenance
systems to predict and monitor changes in component behavior before they fail. In this
regard, Apache Kafka was used as a distributed messaging system to collect unstructured
and semi-structured data when dealing with real-time data; the data was collected and
delivered to Spark Streaming engine, whilst MLlib was used for data analytics, utilizing
HDFS as a file system. The authors in [98] presented a model for dealing with Big Data
that relied on a distributed computing environment. Apache Spark as an execution engine
and Hive as a database were used in the proposed model. In addition, in their hybrid
model, they used HDFS for distributed storage and Spark MLlib for analytic jobs. The
implemented model was capable of handling large amounts of data efficiently and could
process large datasets and deliver results in real-time.

Research [99] was created by putting the Mahout and MLlib frameworks to the test.
According to this study, the range of ML algorithms that the tools support is quite diverse.
Table 8 shows the algorithms supported by the frameworks during the reported research.

Table 8. Implemented Algorithms of Mahout and MLlib.

Category Algorithm Mahout MLlib

Dimension Reduction
Principle Component Analysis (PCA) Yes Yes
Singular Value Decomposition (SVD) Yes Yes

Regression Linear Regression No Yes
Logistic Regression No Yes

Clustering
Hierarchical Clustering No Yes

Distributed-based Clustering No Yes
Centroid-based Clustering (K-means) Yes Yes

Classification

Support Vector Machines (SVM) No Yes
Artificial Neural Networks (ANN) No Yes

Decision Tree No Yes
Naive Bayes Yes Yes

Ensemble Methods (Boosting, Random Forest) Yes Yes

In the same notion, the MLlib and Mahout frameworks were compared using the
K-means, Logistic Regression, and Alternating Least Squares algorithms in the research
experiment of [15]. The experiment was carried out by increasing the size of the imported
data to a maximum of 10 Gigabytes. The experiments generated these results: (i) MLlib is
much faster than Mahout. (ii) MLlib and Mahout become slower by increasing the data.
(iii) For MLlib, when data are extremely large, the memory on Spark is not enough to store
newly intermediates results, and as a result MLlib crashes. (iv) For Mahout, even if it
becomes slow when the data is large, it is always stable. Finally, this study concluded that
Mahout was a strict solution if the user wanted to analyze large amounts of data, but MLlib
performed better in all the other cases, assuming that it had enough memory to complete
its analysis.

5.3. Overall Findings of EverAnalyzer

While MapReduce is referred to as a new approach to Big Data processing in modern
computing environments, it has also been criticized as a “major step backwards” when
compared to DBMSs. As the debate continues, the outcome demonstrates that neither
MapReduce nor Spark are particularly satisfactory at what the other does well, and that the
two technologies are complementary. However, because of the numerous tools that have
been developed to perform common processing tasks, it is critical to select the appropriate
tool for the various processing cases. Apart from the comparisons presented above between
MapReduce and Spark, on which extensive research has been conducted, there appears not
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to have been any attempt to manage data processing using hybrid systems based on the
two frameworks. EverAnalyzer tries to fill in this gap by not only providing a solution for
a user to manage their data processes using Spark or MapReduce, but also by allowing the
platform to advise the users on the most appropriate use of the aforementioned tools. On
top of this, according to the literature, there is no reason to experiment with Mahout and
MLlib, since it is clear that Mahout should only be used instead of MLlib if the analysis
dataset is larger than the RAM of the given system. Because of the simple algorithm (i.e., K-
means clustering algorithm) during the experimentation with the EverAnalyzer’s proposal
system to select the best performance framework for analytic jobs, the results were as
expected. Overall, the innovation of EverAnalyzer lies in the fact that the developed system
can automatically recognize which one of the underlying data processing (i.e., MapReduce
or Spark) and data analysis (i.e., Mahout or MLlib) tools are most suitable and efficient for
successfully and more quickly processing and analysis tasks of either batch or streaming
ingested data.

Based on all the captured results, EverAnalyzer is expected to perform quite well
towards the goal of assisting its users with the management of their Big Data workflows.
The platform enables the user to automatically collect, pre-process, process, and analyze
data. The results of each processing and analysis job can be visualized, whereas all this
information can be downloaded to be used in the future in any way that the user desires.
Furthermore, the platform can assist its users by saving them time due to its hybrid nature
that makes use of the Apache Hadoop ecosystem, and its suggestion mechanism that is
continuously learning with each new processing and analysis job performed by a different
user. In an ideal system, the user will always use the most efficient framework for analytic
jobs, so the optimal time for the analysis would be the time for the optimal framework
of the two to execute the analytic processes on its specified use case. A user who does
not know which framework is best for an analysis could try to maximize the chances of
selecting the best framework by exploiting the EverAnalyzer platform.

Figure 26a depicts the best (red) and worst (blue) execution times of the two frame-
works for each dataset analysis performed, as well as the difference in milliseconds. As a
result, the red line represents the ideal time for a user to complete all 30 processes (based on
the 30 collected datasets), while the orange line represents the time “saved” from the worst
case by performing the subtraction of the worst execution time from the best execution time.
It is clear from the graph that the orange line has more than half the area of the blue line if
we draw vertical lines from the x-axis to the ends of the field that defines it. This means
that, from a mathematical standpoint, the user saves more than half of the total execution
time by choosing the best framework. Figure 26b, on the other hand, depicts the ideal (red)
and worst (blue) analysis times, but it also depicts the time a user would spend if they
consistently followed the EverAnalyzer (orange) proposals during the experimentation.
This figure combines the data from Figures 25 and 26a by displaying the exact times when
EverAnalyzer failed to make a correct suggestion. It is also clear that EverAnalyzer follows
the best execution time 80% of the time. Finally, due to EverAnalyzer’s good performance
(80%) in proposing the fastest framework for each given dataset, it can be seen that Ev-
erAnalyzer manages to reduce its users’ waiting time for the performed processing jobs.
Because EverAnalyzer is data-driven, the more metadata it collects, the closer its execution
speeds will be to the ideal red line. However, EverAnalyzer has the disadvantage that if its
system exports a wrong suggestion, the user is forced to wait for the worst time to perform
the analysis.
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6. Conclusions

In this study, a review of the Big Data industry and its tools for management and
analysis was conducted, focusing especially on the tools and frameworks that have been
developed around the Hadoop ecosystem. A thorough literature review on two of the
most popular Big Data processing and analysis tools of this ecosystem has been conducted,
referring to MapReduce and Spark, as well as their respective ML libraries, Mahout and
MLlib. Despite the comparison performed among such tools, the existing systems that use a
combination of the two frameworks for data processing do not appear to have been widely
built, so EverAnalyzer is one of the first ones that has tried to implement such an approach.
For successfully using such tools in the most suitable scenarios, EverAnalyzer was proposed
as a self-adjustable web application for Big Data management. This application aimed
to manage users’ analysis as fully error-tolerant, preventing them from making mistakes
through the use of user-friendly warnings. In addition to fault-tolerant logic, it allowed
users to collect, pre-process, process, analyze, and access all of their data. The design of
EverAnalyzer tries to provide a better experience for any analyst who wants to perform
text mining on text data via Twitter, which is currently one of the most popular and widely
used social media platforms for exploiting streaming data.

To verify the applicability and the efficiency of all the above-mentioned functionalities
of EverAnalyzer, various experiments were carried out on the platform, aiming to examine
the success rates of the platform’s suggestion functionality for wordcount jobs. Spark
appeared to outperform MapReduce in smaller datasets, as well as datasets smaller than
the total RAM of the system that managed them using MLlib, according to the literature.
However, MapReduce appeared to outperform in larger datasets, just as Mahout appears
to outperform MLlib in datasets larger than the total system RAM used. Finally, Spark
appeared to be less fault tolerant than MapReduce, resulting in a more friendly use of
MapReduce by those interested in these frameworks, despite the fact that it is not always
the best choice in terms of analysis speed.

It is also worth mentioning that the EverAnalyzer platform made use of the existing
literature to provide a better experience for its users. There do not appear to be many
platforms that use a combination of such frameworks. However, such systems are intended
to innovate in the field of Big Data management by providing optimal solutions to data
analysts. A representative example of a system that is providing optimal solutions to
its users is the Diastema Big Data analytics platform [100,101], which is providing a set
of efficient and scalable components that provide user-friendly analytics via graph data
modeling and supporting technical and non-technical stakeholders. In the same context,
by exploiting Big Data processing and analytics tools and technologies, the PolicyCLOUD
data-driven platform exploits added-value of analytics over various datasets to obtain
actionable insights and drive decision making [102].
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6.1. Future Research Directions

In general, it is difficult for a non-IT expert to fully understand every part of Data
Science, from developing Big Data software to evaluating and carrying out Big Data studies.
EverAnalyzer is a solution that tries to contribute to the aforementioned issue, relieving the
strain on data analysts, data scientists, and data engineers, facilitating at the same time the
work of all non-IT users. This platform is an infant step in comparison to the tremendous
growth of the Big Data management sector. Thus, building Big Data management platforms
like EverAnalyzer and attempting to integrate various software and functions on them
would be quite valuable for future research. Such functions could include the option to
rename the fields inside the JSON documents of the collected and created datasets, also
enabling addition of a field with some specific values in a user’s datasets. In addition,
a more dynamic Visualization System would be highly beneficial for data interpretation
by users, whereas additional valuable enhancements could include the capacity of the
platform to collect data from more social media networks, such as Facebook, Instagram, Tik
Tok, and Bereal, as well as from other sources that expose open data to the external world.
Besides, testing such platforms in distributed environments would be of great research
importance, since Spark and Hadoop frameworks, as well as their accompanying libraries,
are designed for such scenarios. As a result, systems such as EverAnalyzer can behave
substantially differently when it comes to the execution speed for the requested processing
and analytical processes. The same notion goes for the cloud environments as well, where
there is great research value in conducting relevant experiments and obtaining results.
Finally, experimenting with health data and the capabilities of the framework proposed for
processing EverAnalyzer jobs looks to have yielded promising results, and thus it would be
very useful to perform further experiments exploiting a larger number of datasets towards
achieving better healthcare decision-making.

6.2. Research Limitations

This document introduces EverAnalyzer, which makes use of a hybrid system that
exploits Spark and MapReduce, leaving, however, a variety of areas that could be improved.
In this context, the most significant limitation is the system’s limited computing resources.
As previously stated, the EverAnalyzer platform was tested on a computer with 237 GB
of HDD and eight GB of RAM. When referring to Big Data, these sizes are very small,
as seen by the data sizes mentioned in the research’s introduction. Additionally, despite
the fact that the sample size of 30 distinct datasets is statistically significant, there may
be values in datasets that are handled differently by the two frameworks. Experimenting
with this number of datasets is considered minor compared to the enormous number of
distinct datasets available from a variety of sources. Another research limitation could be
that the current research has been experimented on and evaluated considering mainly the
healthcare domain. Despite the fact that the overall system will equally perform in other
scenarios and domains according to the extracted insights, additional domain-agnostic
experiments, functional evaluations, and performance testing could make this assumption
clearer, and sufficiently widen the applicability of EverAnalyzer.
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