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Abstract: Knowledge tracing (KT) is based on modeling students’ behavior sequences to obtain
students’ knowledge state and predict students’ future performance. The KT task aims to model
students’ knowledge state in real-time according to their historical learning behavior, so as to predict
their future learning performance. Online education has become more critical in recent years due
to the impact of COVID-19, and KT has also attracted much attention due to its importance in the
education field. However, previous KT models generally have the following three problems. Firstly,
students’ learning and forgetting behaviors affect their knowledge state, and past KT models have yet
to exploit this fully. Secondly, the input of traditional KT models is mainly limited to students’ exercise
sequence and answers. In the learning process, students’ answering performance can reflect their
knowledge level. Finally, the context of students’ learning sequence also affects their judgment of the
knowledge state. In this paper, we combined educational psychology theories to propose enhanced
learning and forgetting behavior for contextual knowledge tracing (LFEKT). LFEKT enriches the
features of exercises by introducing difficulty information and considers the influence of students’
answering behavior on the knowledge state. In order to model students’ learning and forgetting
behavior, LFEKT integrates multiple influencing factors to build a knowledge acquisition module
and a knowledge retention module. Furthermore, LFEKT introduces a long short-term memory
(LSTM) network to capture the contextual relations of learned sequences. From the experimental
results, it can be seen that LFEKT had better prediction performance than existing models on four
public datasets, which indicates that LFEKT can better trace students’ knowledge state and has better
prediction performance.

Keywords: educational data mining; knowledge tracing; artificial intelligence; learning and forget-
ting; online education; educational psychology

1. Introduction

In recent years, online education platforms have become increasingly popular among
students because of their convenience and freedom, and the online education market has
further expanded [1]. Online education methods such as online education and online
courses are not limited by time and space. Students can flexibly arrange their study time
and study freely. They can also share high-quality educational resources remotely. These
advantages make online education a valuable form of learning. Coupled with the threat of
COVID-19, many schools have been forced to adopt strict epidemic prevention policies,
which has resulted in many students who were originally studying at school being forced
to stay at home [2]. Against this backdrop, online education, which plays an integral role in
minimizing disruption to education, is growing on an unprecedented scale and is gradually
becoming a fashionable way of learning. It is foreseeable that, with the change in people’s
educational concepts, online education will play an increasingly important role.
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Online education systems such as massive open online courses (MOOCs) offer millions
of online courses and exercises, attracting the public’s attention [3,4]. Students can study
according to their plans in these online systems [5]. However, students’ blind study is
not conducive to their improvement, so KT is needed to help students understand their
mastery of various knowledge, and they can strengthen themselves according to their
weaknesses. KT is inherently complex, necessitating the modeling of students’ learning
sequences to obtain their knowledge state [6]. How to use KT and other technologies to
diagnose and analyze students’ knowledge mastery state in real-time to provide targeted
and personalized learning guidance has become a hot topic in intelligent education and
educational data mining [7].

The KT task can be formally expressed as a supervised sequence learning task [8].
As shown in Figure 1, ei is an exercise, and its color represents the knowledge concept
(KC) that the exercise contains. In the online learning process, the student interacts with
exercises containing different KCs and generates an exercise–answering interactive record.
The student answers five exercises in sequence (e1–e5); e1, e2, e3, and e4 were correct, and e5
was wrong, indicating that he/she may be proficient in “Absolute value”, but not familiar
with “Linear Equations”. Through learning, the student’s knowledge state Si would change,
and the color of the radar chart represents the student’s mastery of different KCs. With
the current mastery of each KC, how will the student perform in the following exercise e6,
which examines “Absolute value”? KT is a very effective technique for solving this problem.

Figure 1. Process description of KT tasks.

Traditional KT models mainly include Bayesian knowledge tracing (BKT) [5] based on
hidden Markov models (HMMs) [9], and early KT models mainly focused on probabilistic
modeling. Although these models have made much excellent progress, they mostly rely
on simplifying assumptions, such as the assumption that knowledge forgetting does not
occur during learning [5], which limits their application in real-world scenarios. In recent
years, deep learning technology has played a significant role in various fields, and many
KT models based on deep learning have also appeared in the field of KT. Deep knowledge
tracing (DKT) [6] uses a recurrent neural network (RNN) [10] or LSTM [11] to model
students’ learning sequences and uses the hidden vectors of the RNN or LSTM to represent
students’ knowledge state to predict students’ answering performance. Inspired by the
memory networks [12], dynamic key–value memory networks for knowledge tracing
(DKVMNs) [13] utilize the relationship between basic KCs to directly output students’
knowledge state. DKVMNs use a key matrix to store KCs and a value matrix to store and
update students’ knowledge state.

The above research introduced deep learning into KT models to improve the prediction
performance, but there are still three problems.

Firstly, the impact of student learning and forgetting behavior is underappreciated.
Most KT models were based on the simple assumption that students’ correctly answering
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exercises will increase their knowledge state and incorrectly answering exercises will
reduce their knowledge state [14]. However, such a simple assumption is inconsistent with
neurological theory. From the perspective of neurological theory, it is inevitable for students
to make mistakes in learning. Making mistakes is normal and is a kind of information that
can make students grow [15]. The process of students making mistakes and correcting
mistakes is also the process of growing myelin and gaining knowledge [16]. Students’
learning behavior determines the degree of knowledge growth obtained in the learning
process. Students’ forgetting behavior determines the degree of knowledge forgetting.
Many forgetting theories in educational psychology delved into various factors that affect
human forgetting. The Ebbinghaus forgetting curve theory explained in detail why people
forget [17]. The trace decay theory revealed that forgetting is induced by the gradual
disappearance of memory traces [18], and the deeper the original trace, the lower the
degree of forgetting. Memories are stored in engram cells, and forgetting occurs when
engram cells cannot be reactivated [19]. KT is a prediction based on previous performance,
but the real application is personalized learning. However, many KT models frequently
disregard students’ psychological and physiological aspects. Therefore, how to connect
KT with educational psychology theory and neurological theory to model learning and
forgetting behavior is a pressing issue that needs to be addressed.

Secondly, the input of KT models is mainly limited to KCs involved in students’ ex-
ercises and answers. Existing KT models directly use KCs to index exercises [7], which
ignores differences between exercises covering the same KC, resulting in the limited flexi-
bility and personalization potential of KT models. For students’ answering performance,
existing KT models usually summarize their performance with answers. In fact, in the
learning process, much answering behavior of students can reflect their ability level.

Finally, the context of students’ learning sequences also affects the judgment of their
knowledge state. Sequence context is often used in the field of natural language processing
to mine the latent information of text and has achieved remarkable results in previous
work [20]. Students’ answering performance is related to their historical performance in
answering related exercises, and their performance on similar exercises will have a certain
similarity [21].

Therefore, we focused on the following three questions:

• Can exercise embeddings and students’ answering performance be enriched to in-
crease the learnable information of models?

• Can contextual information for exercises be derived by considering students’ historical
learning sequences?

• Can the learning and forgetting behavior of students be modeled more accurately by
incorporating pedagogical theory?

The Ebbinghaus forgetting curve theory describes the phenomena of progressive mem-
ory deterioration over time. In the early exploration of forgetting behavior, models such as
augmenting knowledge tracing by considering forgetting behavior (DKT-Forgetting) [22]
simulated forgetting by adding a time-related factor, and models such as context-aware
attentive knowledge tracing (AKT) [23] controlled forgetting behavior by designing a
time-based decay function. In terms of exercise embeddings and students’ answering
performance, AKT was combined the Rasch model to enrich exercise features, and learning
process consistent knowledge tracing (LPKT) [14] enriched the answering performance by
adding answering time. However, integrating various educational psychology theories into
the KT models is a topic that requires more study. For example, the trace decay theory [24]
revealed that information not recalled or utilized infrequently is usually erased from mem-
ory. If students do not review what they have learned, their mastery of knowledge will
continue to deteriorate . In the Methodology Section, we examine various pedagogical
theories in depth.

We have published a short paper to discuss briefly how to model students’ learning
and forgetting behavior by combining educational psychology theory [25], but it is not
enough to answer all the above questions. To answer these questions, we propose a new
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KT model, enhanced learning and forgetting behavior for contextual knowledge tracing
(LFEKT). The main contributions of this paper are as follows:

• To distinguish exercises involving the same KC, we incorporated item response theory
(IRT) [26] to enrich the exercise embeddings with difficulty information. In addition,
we present an expanded Q matrix and an exercise–KC relation layer to address the
issue of subjective bias in the human-calibrated Q matrix. Then, we incorporated
students’ response time and hint times into the embeddings for their answer perfor-
mance. Students’ answering time and hint times reflect their proficiency in using the
corresponding KC. That is, the higher the proficiency of the corresponding KC, the
less the required answer time and hint times are.

• Inspired by self-attention KT models such as AKT, we modeled the contextual in-
formation of learned sequences using the LSTM network to represent the impact of
historically learned sequences.

• Combining our KT model with educational psychology theories, we split the students’
learning process into two parts: knowledge acquisition and knowledge retention. Knowl-
edge acquisition simulates the expansion of knowledge gained by students’ learning
behavior, and knowledge retention simulates students’ knowledge absorption and for-
getting to determine the degree of knowledge retention. Furthermore, we modeled three
factors affecting knowledge acquisition and retention: students’ repeated learning times,
sequential learning time intervals, and current knowledge state.

2. Related Works
2.1. Knowledge Tracing

The KT task can be formally represented as a supervised sequence learning task.
In the online learning process, users interact with exercises containing different KCs to
generate an interactive record of answering exercises [8]. The goal of KT is to model
user’s answering performance, evaluate their knowledge state, and predict their future
answering performance. According to the research direction of our paper, we divided the
main research directions of mainstream KT models, as shown in Table 1.

BKT [5] is one of the most-representative models [7], which uses the hidden Markov
model to update their knowledge state based on students’ exercise performance. In recent
years, as deep learning has been widely used in various fields, researchers have also tried
to apply deep learning techniques to KT tasks [8]. DKT was the first attempt of using the
RNN and LSTM in the KT task [6]. It took students’ learning history as the input and
used the hidden state vector of the RNN or LSTM to represent their knowledge state, so as
to predict their future learning performance. The DKT model cannot represent students’
knowledge state for each KC, but only their overall knowledge state. Although the DKT
model can automatically adjust the learning parameters of students without much human
intervention, it requires much computing power when the time series is too long, and the
hidden knowledge state is not smooth in time. Yeung et al. proposed DKT+ [27] to solve
the problem that the knowledge state generated by DKT is not smooth in time. Chen et
al. improved the prediction performance of DKT by considering the prior relationship
between KCs [28]. The DKVMN drew on the idea of a memory network, used a value
matrix to model students’ knowledge state of each KC, examined the relationship between
exercises and each KC, and traced students’ mastery of each KC. Abdelrahman et al.
proposed DKVMN-based knowledge tracing with sequential key–value memory networks
(SKVMNs) [29], which uses an improved LSTM to capture long-term dependencies between
exercises. The study of Sun et al. extended the behavioral characteristics of students
when answering exercises to the DKVMN so as to achieve better prediction results [30].
The self-attention model for knowledge tracing (SAKT) [31] was the first to introduce
transformers directly into the KT domain and was also the first model to use a self-attention
mechanism in the KT field. Relation-aware self-attention for knowledge tracing (RKT) [32]
was extended based on SAKT and improved that model by introducing the exercise relation
coefficient matrix. AKT [23] used context-aware attention to model students’ forgetting
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behavior and combined attention mechanisms with cognitive and psychometric models,
such as using IRT to model exercise difficulty. The sequential self-attentive model for
knowledge tracing (SSAKT) [33] also introduced a self-attention mechanism and used LSTM
to perform positional encoding in the self-attention layer. Convolutional knowledge tracing
(CKT) [34] introduced the hierarchical convolutional layer to trace students’ knowledge
state. GameDKT [35] applied KT to the field of educational games and used a CNN to trace
students’ mastery of the skills required for educational games.

Table 1. Main research directions of different KT models.

Model Deep Learning Forgetting Context Exercise Embedding Answering Performance

BKT
DKT !

DKT+ !

DKVMN !

PDKT-C ! !

SKVMN ! ! !

SAKT ! !

DKVMN-DT ! !

RKT ! ! ! !

AKT ! ! ! !

SSAKT ! ! ! !

CKT !

GameDKT !

KPT ! !

DKT-Forgetting ! !

LPKT ! ! !

HawkesKT ! !

iAKT ! !

ERAKT ! !

EKT ! ! !

SAINT ! ! !

SAINT+ ! ! !

DKT-IRT ! !

Deep-IRT ! !

DIMKT ! !

PEBG ! !

LFEKT ! ! ! ! !

2.2. Learning and Forgetting

During the learning process, students accumulate knowledge through learning, and
their knowledge state declines due to inevitable forgetting. Classic theories of forgetting,
such as the Ebbinghaus forgetting curve, assumed that memory retention declines over
time. A forgetting curve can be modeled as a power-law function, where memory declines
rapidly at first and then decays slowly over a longer time. In the field of KT, many models
also used time as an influencing factor to model forgetting.

Knowledge proficiency tracing (KPT) simulated students’ knowledge state through
learning and forgetting theory and dynamically captured changes in students’ knowledge
state over time [36]. DKT-forgetting tried to improve DKT by considering students’ repeated
learning times, the time interval from the last learning of the same KC, and the time interval
from previous learning [22]. RKT [32] assumed that students’ knowledge state decays over
time and involved an exponentially decaying kernel function in simulating the forgetting
effect. Qiu et al. considered the time interval from the last learning of the same KC and
added a new day’s mark to BKT to model the forgetting behavior of one day after the
previous learning [37]. Khajah et al. used students’ repeated learning times to estimate
the probability of forgetting to improve the prediction accuracy of BKT [38]. LPKT [14]
monitored changes in students’ knowledge state during their learning process by taking
into account their learning and forgetting. Wang et al. proposed HawkesKT, which assumed
that a student’s mastery of the KC is not only affected by previous interactions on the same
KC, but also by previous interactions with other problems [39]. Furthermore, the effects
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of interactions decay over time with different efficiencies, and some KCs may be more
forgettable than others.

2.3. The Context of Learning Sequence

Sequence context has often been used in the field of natural language processing
to mine the latent information of text, and has achieved remarkable results in previous
work [20]. Bert [40] utilized a bidirectional function to combine the context of a sentence to
determine specific semantics, addressing the semantic representation problem in previous
methods. Since LSTMs can capture aspects and semantic relationships between contextual
content in a flexible way, Tang et al. proposed aspect-dependent LSTM (TD-LSTM) and
aspect-connected LSTM (TC-LSTM) to extend LSTM by considering aspects [41], and they
combined a given aspect with contextual content for aspect-level sentiment classification.

Due to the serialization characteristics of students’ historical learning, the KT prob-
lem can be regarded as a supervised learning sequence prediction problem in the field of
machine learning [42], so the method of learning sequence context is also applicable to the
field of KT. AKT [23] obtained the learning sequence context by considering students’ entire
historical learning sequences to measure the impact of past exercises and answers. Subse-
quently, incremental context-aware attentive knowledge tracing (iAKT) [43] made further
improvements to the AKT model. iAKT first demonstrated an evolving knowledge tracing
(eKT) scene through experience and continued to learn incrementally from this scene.
Context-aware knowledge tracing integrated with the exercise representation and associa-
tion in mathematics (ERAKT) [42] considered both the textual semantics and conceptual
representation of exercises in the exercise embedding stage and proposed a bidirectional-
neural-network-based sequential exercise mining method to obtain the associated content.
Exercise-aware knowledge tracing (EKT) [21] captured contextual information through the
attention mechanism. SAINT+ [44], the successor of SAINT [45], was a transformer-based
KT model that processed exercise information and students’ response information separately.
Following the architecture of SAINT, SAINT+ had an encoder–decoder structure, where the
encoder applied self-attention layers to the motion embedding stream and the decoder applied
self-attention layers and encoder–decoder attention layers alternately to the response embed-
ding stream and encoder output stream. Furthermore, SAINT+ embedded two temporal
features into the response embedding: elapsed time and latency.

2.4. Item Response Theory

In traditional KT models, students’ knowledge state and correct answer rate were
usually predicted based on their learning sequences. The information used is the KCs
involved in exercises and students’ answers. If exercise is only represented by KCs, the
information about these exercises themselves will be ignored. The classic IRT in educational
psychology was a commonly used theory for cognitive diagnosis [46], which was used to
evaluate the quality of an item’s response. The theory usually used a probabilistic form to
describe how item response is affected by factors such as item difficulty or a combination
of factors. Items are affected by two dimensions: item difficulty and discrimination [26].
Through the research of [47], it was found that the difficulty of exercises plays a crucial
role in enriching the characteristics of exercises. In traditional KT models, Yudelson et
al. integrated the exercise difficulty to enhance the interpretability of BKT [48]. Inspired
by the above models, the DKT-IRT model [49] was proposed, incorporating IRT with
KT. While predicting students’ answers, it comprehensively analyzes the difficulty of
exercises to improve prediction accuracy. Reference [50] also made a similar attempt. They
combined IRT with the DKVMN model, used the DKMVN to model students’ learning
path, and used IRT to analyze the difficulty of exercises to improve the prediction efficiency.
Difficulty matching knowledge tracing (DIMKT) [51] simulated and analyzed the impact of
exercise difficulty on student learning to measure the difference of exercises on learning. In
DIMKT, an adaptive sequential neural network (ASNN) is carefully designed to establish
the relationship between students’ knowledge state and the level of exercise ambiguity



Information 2023, 14, 168 7 of 22

during learning. Pre-training embeddings via bipartite graphs (PEBGs) [52] pre-trained
each exercise embedding to extract exercises’ high-level information, then trained the KT
model on the obtained embeddings to improve the prediction performance.

3. Problem Definition

We define C = {c1, c2, . . . , ci, . . . , cI} as the set of KCs and E =
{

e1, e2, . . . , ej, . . . , eJ
}

as the set of exercises, each of which is related to a specific KC. The Q matrix consists of
0 and 1, ci, then Qji = 1, otherwise Qji = 0. Each student learns independently and does
not affect the other. The student will use what he/she has learned to answer the exercises,
and the answering process will take a certain amount of time. In the learning process,
the above answering behavior will be repeated continuously, and there is an interval
between adjacent answering actions, so the student’s answering history h is expressed as
{(eu1, pu1), it1, (eu2, pu2), it2, . . . , (eut, put), itt, . . .}, where eut represents the exercise unit,
including ct, et, and d f t. d f t indicates the difficulty of et. put indicates the performance
of answering exercises, including att, at, and htt. att indicates the time spent answering
et. at indicates the answer to the exercise; 1 means the correct answer, and 0 means the
wrong answer. htt indicates the hint times, and itt indicates the time interval between two
answers. (eu1, pu1) constitute a basic unit in the learning process eput. After a student
completes an exercise, his/her knowledge state St will be updated, and St contains his/her
knowledge mastery involved in all KCs. The student will forget part of the knowledge in
the learning process, resulting in the decay of the corresponding knowledge state. Given
a student’s answering history h, the purpose of KT is to monitor the student’s change in
knowledge state and predict his/her performance on the next candidate exercise et+1.

4. Methodology
4.1. Embedding Module

Before introducing the model’s overall structure (Figure 2), we briefly introduce the
embedding of elements from the following five categories.

Figure 2. LFEKT framework.
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4.1.1. Exercise Embedding

The mainstream way of exercise embedding is to use the corresponding KC to rep-
resent exercises, which will ignore the information of exercises themselves, resulting in
no distinction between exercises. EKT [21] extracted information from exercise text and
used a convolutional neural network (CNN) [53] to extract text features to obtain exercise
embeddings, but the number of datasets containing exercise text information is relatively
limited. In the field of educational psychology, IRT estimates students’ answers based
on their ability and the difficulty of the exercises. Therefore, we introduced difficulty
information to enrich the exercise embeddings. The difficulty is defined as follows:

di f f = 1−

N
∑

i=1
Gi

N
(1)

As shown in Formula (1), we calculated the proportion of each exercise being answered
correctly. Gi is the total score obtained by students who responded correctly on this exercise;
1 point is awarded if students answer this exercise correctly; no score is awarded for a
wrong answer; N is the total number of students. We mapped the correct rate to an interval
in the range of 0–10 by a normalization method. Then, the difficulty of each exercise is
represented as an embedding vector as d f t ∈ Rdk , where dk is the dimension of the vector.
The exercise embeddings can be enriched through the difficulty of exercises so that the
model can learn more helpful information.

We deeply integrated the exercise information et, the KC information ct, and the
difficulty information d ft into the exercise unit eut. The formula is expressed as

eut = WT
1 [et ⊕ ct ⊕ d f t] + b1 (2)

where ⊕ is the connection operation, et, ct ∈ Rdk . In this paper, Wi is the weight matrix of
the neural network layer and its output dimension is dk, and bi is the bias term.

4.1.2. Answering Performance Embedding

Some KT models [14,23] will directly express the answering performance as students’
answers. Students’ proficiency in KCs can be seen from many responses in the learning
process, such as the answering time and the hint times when answering exercises. For the
same exercise, the less time a student spends answering the exercise, the better his/her
mastery of the corresponding KC. Therefore, we considered the above factors to construct
the answering performance unit put. put includes the answer at, the answering time att,
and the hint times htt, and the formula is expressed as

put = WT
2 [at ⊕ att ⊕ htt] + b2 (3)

where at ∈ Rdk . For an answer of 0 or 1, we expanded it into a vector of 0 or 1. att ∈ Rdk .
We discretized att by seconds. htt ∈ Rdk .

4.1.3. Exercise Performance Embedding

We divided the learning sequence into basic exercise performance units eput, which
are the main components of students’ learning and can be used to measure students’
knowledge acquisition via exercise answering. eput includes exercise information and
students’ performance. Our original design was to capture eput with a fully connected
layer, connecting eut and put together and deeply fused, as shown below:

eput = WT
3 [eut ⊕ put] + b3 (4)

This approach will cause the model to focus only on the current exercise, ignoring
some useful contextual information and the correlation between exercises. Students may
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receive similar scores on similar exercises. For example, student stu1 is correct in answering
exercises e1 and e3 because these two exercises may be similar and have the same KCs. If
only the current interactive exercise information and students’ answering performance are
used as the input, the context information of the learning sequences will be ignored. More-
over, HawkesKT explained that students’ mastery of KCs is not only affected by previous
interactions with exercises examining the same KCs, but also by previous interactions with
other exercises, and this effect will decay over time. Inspired by the contextual encoding
in [54,55], we used LSTM to encode useful contextual information. In the field of natural
language processing, LSTM has often been used to capture context features. LSTM is an
excellent variant model of the RNN [56], which can be used to deal with problems and tasks
sensitive to time series and solves the long-term dependence problem of RNNs. Due to its
gating mechanism, LSTM can mitigate the effects of distant past exercises. Our LSTM takes
an exercise performance sequence (eut, put) as the input and outputs a context sequence.
Due to its recurrent structure, LSTM can encode contextual features into embeddings.
Therefore, eput can be expressed as

eput = LSTM(eut ⊕ put) (5)

where the output dimension of LSTM is dk.

4.1.4. Historical Behavior Embedding

Students’ historical learning behavior can be used to model learning and forgetting
behavior. According to Ebbinghaus curve theory [17], the retention rate of students’ KCs
is affected by historical behavior records, such as the lag time of interaction and students’
repeated learning times. The lag time can be calculated as the time interval for repeated
learning of the same KC and the time interval for sequential learning. The time interval
for repeated learning of the same KC was commonly used in previous studies [57,58]. We
used the sequential learning interval because the time interval for repeated learning of
the same KC is already reflected in the sequential learning interval. Furthermore, if the
KC of a student’s current answering exercise and other KCs of the previous exercises are
correlated, the time interval between these interactions may affect answering performance.
Incorporating sequential learning intervals into the model can capture this effect. Students’
repeated learning times refer to the total number of previous studies for the same KC. In
addition, for a specific KC, we introduced the historical accuracy rate of students’ answers
to exercises co ∈ Rdk as a reference for predicting students’ answering performance. The
time interval embedding vector is it ∈ Rdk , and the repeated learning times embedding
vector is lt ∈ Rdk .

4.1.5. Knowledge Embedding

We used a knowledge embedding matrix to represent students’ knowledge state. In
LFEKT, the knowledge embedding matrix s ∈ Rds×dk is initially initialized to 0 at the
beginning, where ds is the number of KCs. Each row represents the mastery state of each
KC. During the learning process, LFEKT will change students’ knowledge state according
to each learning interaction. The Q matrix represents the relationship between exercises
and KCs and is used to control the updated rows in the knowledge embedding matrix
after answering relevant exercises. Traditionally, if ci is not included in ej, Qji will be set
to 0, indicating that the student’s answering performance on ej has nothing to do with
the student’s mastery of ci. However, the human-calibrated Q matrix may be invalid due
to unavoidable errors and subjective biases [46]. Referring to [14], this paper defines an
enhanced Q matrix, where Qji will be set to a small fixed value to correct possible errors.
Furthermore, a relationship coefficient layer is introduced to measure the matching degree
between the current exercise and the KC, which is expressed as

relt = sigmoid(W T
4 [et ⊕ ct] + b4

)
(6)
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where sigmoid is a nonlinear activation function.

4.2. Knowledge Acquisition Module

During the interval between two learning interactions, students will forget knowledge
due to the unavoidable forgetting behavior. Therefore, when the learning interaction starts
at time t, students’ knowledge mastery state decreases from St−1 to S f

t−1. Then, we first

multiply S f
t−1 and the KC vector qet of the current exercise to obtain the knowledge mastery

of the KC related to the currently answered exercise s f
t−1:

s f
t−1 = qet S

f
t−1 (7)

where qet ∈ Rds is obtained through the Q matrix and qet is the KC involved in the exercise.
S f

t−1 ∈ Rds×dk is the students’ overall knowledge state, so s f
t−1 ∈ Rdk , which represents the

knowledge mastery of the KC related to the currently answered exercise.
Exercises may involve multiple KCs, and there are also correlations between KCs.

Therefore, the matching degree between the exercise and the KC is measured by the relation
layer in Equation (6), so as to know how much knowledge is required to correctly answer
the exercise. The relevant knowledge state srt−1 to answer the current exercise can be
expressed as

srt−1 = s f
t−1 ◦ relt (8)

What students gain in the learning process can be expressed as how much knowledge
is acquired. Traditionally, the amount of knowledge acquisition can be viewed as the
“travel distance” [59], which represents the difference in students’ performance between
two learning interactions. Not all students have the same knowledge acquisition, and
knowledge acquisition is directly related to exercises students perform. The KCs examined
by different exercises are different, and what students gain is the knowledge growth
of different KCs. Exercises of different difficulty bring different degrees of knowledge
growth to students. Then, the current knowledge state of students reflects the room for
their improvement to a certain extent and affects their knowledge acquisition. Students
with lower mastery have more room to improve, and students with higher mastery may
encounter bottlenecks. Therefore, we introduce eput and srt−1 to build the knowledge
acquisition layer to model the evolution of students’ knowledge acquisition. Besides, no
one is perfect, and failure is the mother of success. Making mistakes is an essential factor in
the learning process of students, and people will grow by making mistakes [60]. Even if
students answer an exercise incorrectly, they can still learn from it and gain knowledge.
Therefore, we always set students’ knowledge acquisition kat to a positive value through
the tanh activation function:

kat =
(

tanh
(

WT
5
[
eput−1 ⊕ eput ⊕ srt−1

]
+ b5

))
/2 (9)

4.3. Knowledge Retention Module

While there are some studies that considered forgetting when modeling students’
knowledge state, some models only consider part of the information affecting forgetting,
and others consider multiple factors that influence forgetting, ignoring students’ learning
sequences. Students’ knowledge retention mainly consists of two parts: the proportion of
knowledge absorption they have learned and the natural forgetting over time.

4.3.1. Knowledge Absorption Module

The absorption of knowledge emphasizes that the knowledge learned is effectively
interpreted and understood by students. Students need to effectively integrate new knowl-
edge with existing knowledge, because the knowledge that cannot be understood is difficult
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to reuse and develop. Therefore, we designed a knowledge absorption layer to evaluate
students’ knowledge absorption rate.

Trace decay theory [24] revealed that the forgetting of memory content gradually
declines because it is not strengthened. Repeated learning can consolidate previously
learned knowledge and strengthen students’ understanding of knowledge. The theory
of extinction interference inhibition believes that different learning contents will interfere
with each other and affect students’ learning, including both proactive and backward
inhibition [61]. Proactive inhibition means that the previously learned content interferes
with the later learned content, and backward inhibition means that the later learned content
interferes with the previously learned content, indicating that the time interval will affect
the learning behavior of students, which means efficient learning processes tend to be
compact and continuous. Our answering behavior, such as hint times and answering
time, reflects students’ proficiency in using the corresponding KC to a certain extent.
Moreover, answering exercises through a large number of requests for hints will also
lead to a reduction in students’ thinking processes and affect their knowledge absorption
rate. eput contains exercise information and students’ answer information. The human
brain is indeed complex, and the factors that affect students’ forgetting are far more than
these. However, limited by real public datasets, we combined the above-mentioned classic
forgetting theory to extract common factors affecting forgetting and designed a knowledge
absorption layer to simulate the absorption rate of learned knowledge Il

t :

Il
t = sigmoid

(
WT

6 [eput ⊕ srt−1 ⊕ kat ⊕ ltt ⊕ itt] + b6

)
(10)

We needed to obtain the knowledge absorption that students really absorb, so we
multiplied the knowledge absorption rate Il

t by kat:

kan
t = Il

t ◦ kat (11)

Then, the overall knowledge absorption amount KAt can be obtained by multiplying
qT

et by kan
t :

KAt = qT
et kan

t (12)

where qet ∈ Rds and kan
t ∈ Rdk , so KAt ∈ Rds×dk represents the overall knowledge absorp-

tion amount at each KC.
Therefore, the current overall knowledge state St is the overall knowledge state at

time t−1 S f
t−1 plus the overall knowledge absorption amount KAt:

St = S f
t−1 + KAt (13)

4.3.2. Knowledge Forgetting Module

Forgetting is an integral part of the brain’s regular operations. Due to the limitation
of the brain’s working mechanism, it is impossible for people to reproduce all they have
seen and heard. Models such as AKT simulated the exponential decay of memory over
time by designing a time-based kernel function without considering other potentially
influencing factors. According to the trace decay theory [24], students’ mastery of KCs
affects their forgetting degree, and the amount of memorized learning materials decays
exponentially with time. Memory is a function of the human brain in accumulating
knowledge and experience, and memory traces in the brain decline over time. Learning
alters the central nervous system, and unless the information is used or repeated regularly,
it will gradually decay and disappear completely. Therefore, information not recalled
or used infrequently is often easily lost from memory. If students have not reviewed
the knowledge they have learned, their mastery of knowledge will continue to decline.
Ebbinghaus forgetting curve theory [17] revealed that active repetition and recall of learned
knowledge can enhance memory. It can be seen that time and students’ repeated learning
times are common factors affecting students’ forgetting. On the other hand, knowledge
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acquisition from the last learning time also has an impact. The more knowledge acquired
in single learning, the greater the probability of forgetting, and cramming education is
often counterproductive. In order to model the complex forgetting behavior, based on
the theories above, we designed the knowledge forgetting layer to measure the overall
forgetting degree of students’ knowledge state. The knowledge forgetting layer can decide
which knowledge to keep and which to ignore.

The knowledge forgetting rate I f
t can be expressed as

I f
t = sigmoid

(
WT

7 [KAt−1 ⊕ St−1 ⊕ itt ⊕ LTt] + b7

)
(14)

where LTt is the number of historical learning times for each KC. We eliminated the effects
of forgotten knowledge by multiplying I f

t by St−1. Knowledge S f
t−1 is updated to

S f
t−1 = I f

t ◦ St−1 (15)

4.4. Predicting Module

After obtaining students’ knowledge state at time t, we can make predictions about the
performance of students’ interaction at time t + 1. For the candidate exercise et+1, students
will use relevant knowledge to answer this exercise. Whether or not students answer the
exercises correctly is closely related to the exercises and students’ relevant knowledge
state. The historical accuracy of students on the corresponding KC can also be used as a
reference. Therefore, we connected eut, srt, and cot and then projected them to the output
layer through a fully connected network. The predicted performance of students yt+1 can
be expressed as

yt+1 = sigmoid
(

WT
8 [eut+1 ⊕ srt ⊕ cot] + b8

)
(16)

where yt+1 is the range of (0, 1), representing the predicted performance of students in the
next exercise et+1. According to the relationship between yt+1 and the threshold, students’
performance is judged. If yt+1 is greater than the threshold, it is predicted that students’
answers are correct. Otherwise, it is incorrect. We set the threshold to 0.5.

5. Experiments
5.1. Training Details

To train the LFEKT model, we chose the cross-entropy loss function between the real
result of the answer at and the predicted value yt as the objective function and used the
Adam optimizer [62] to minimize the objective function:

L(θ) = −
T

∑
t=1

(atlog yt + (1− at)log(1− yt)) + λθ‖θ‖2 (17)

We conducted experiments on four popular public datasets. Their statistics are shown
in Table 2. For all datasets, 70% of the students were used as the training set, and the rest
were used as the test set. Ten-fold cross-validation is the standard for machine learning.
Still, the effects of 5-fold, 20-fold, and 10-fold cross-validation are similar. Referring to
the experimental settings of AKT [23], RKT [32], and other articles, we performed 5-fold
cross-validation to evaluate all models, and each fold was split randomly.

We first sorted the learning records of all students according to their interaction order.
For processing the input sequences, we set the input sequence length according to the
average length of every dataset. If the length of the sequences was greater than the input
sequence length, we sliced them into several unique subsequences based on the input
sequence length. If the length of sequence was less than the input sequence length, we
padded with a zero vector to the input sequence length. For the dataset ASSIST2009, since
there was no start time for answering the exercises, the time interval cannot be calculated.
We used the difference of the interaction sequence numbers as the interval time.
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Table 2. Details of all datasets.

Model ASSISTChall ASSIST2012 ASSIST2009 Statics2011

Students 1709 29,018 4151 333
Exercises 3162 50,803 17,751 278
Concepts 102 198 123 1178

Answer Time 1326 26,747 140 2031
Interval Time 2839 29,538 25,290 4241

Learning Times 745 335 290 24
Hint Times 41 11 10 50

Our proposed model was implemented with PyTorch, and to establish the training
process, we randomly and uniformly initialized all parameters in the distribution [63]. In
LFEKT, a dropout layer was set to prevent overfitting, and its dropout was 0.2. In our
implementation, the parameter dk was set to 256. The γ of the enhanced Q matrix was set
to 0.03. For all the comparison models, we referred to the settings in the original paper to
debug them to the best level. For example, the implementation of AKT on the ASSIST2009
dataset was based on the Rasch model, while on the Statics dataset, due to the lack of
corresponding parameters, the implementation of AKT was not based on the Rasch model.
All model training was performed on an A100-SXM4 server.

5.2. Datasets

To evaluate our model, we conducted controlled experiments on four real-world
public datasets. A brief description of all the datasets is listed as follows:

• ASSISTments 2009 (ASSIST2009) (https://sites.google.com/site/assistmentsdata/
home (accessed on 1 March 2022)) was collected by the online intelligent tutoring
system ASSISTment [64] and has been widely used in the evaluation of KT models in
several papers.

• ASSISTments 2012 (ASSIST2012) (https://sites.google.com/site/assistmentsdata/
home (accessed on 1 March 2022)) was also collected from ASSISTments, which
contains data and impact forecasts for the 2012–2013 school year.

• ASSISTments Challenge (ASSISTChall) (https://sites.google.com/site/assistmentsdata/
home (accessed on 1 March 2022)) belongs to the same source as ASSISTments2009
and ASSISTments2012. The researchers gathered these data from a study that traced
secondary school students’ use of teaching assistant blended learning platforms be-
tween 2004–2007. The average learning sequence length of students in this dataset is
the longest.

• Statics2011 (https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507 (accessed
on 1 April 2022)) was provided by the university-level Engineering Statics course and
has the most KCs in the four datasets.

5.3. Baseline Models

To illustrate the advantages of LFEKT, we compared LFEKT with several other ad-
vanced KT models. We grouped these control models into the following categories.

Classic KT models without deep learning:

• BKT [5] is a classic KT model using the HMM. BKT uses the HMM to trace and
represent students’ mastery of KCs.

Classic KT models with deep learning:

• DKT [6] was the first to apply the RNN and LSTM to KT. We used LSTM to simulate
students’ changing knowledge state.

• The DKVMN [13] borrowed the idea of a memory network to obtain interpretable
students’ knowledge state. When updating students knowledge state, the forgetting
mechanism is also considered.

https://sites.google.com/site/assistmentsdata/home
https://sites.google.com/site/assistmentsdata/home
https://sites.google.com/site/assistmentsdata/home
https://sites.google.com/site/assistmentsdata/home
https://sites.google.com/site/assistmentsdata/home
https://sites.google.com/site/assistmentsdata/home
https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507
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• CKT [34] proposed a student-personalized KT task called convolutional knowledge
tracing model, which uses hierarchical convolutional layers to extract personalized
learning rates based on continuous learning interactions.

Classic KT models using context encoding:

• SAKT [31] introduced a self-attention mechanism to the KT task and used a trans-
former model to capture the relationship between students’ learning interactions
over time.

• AKT [23] adopted two self-attention encoders that are used to learn the contextual
software representations of exercises and answers and combined self-attention and
monotonic attention mechanisms to capture long-term temporal information. Besides,
AKT also generated an embedding for exercises based on the Rasch model.

Classic KT models that simulate learning and forgetting behavior:

• LPKT [14] recorded the changes after each learning interaction of students, taking into
account the impact of students’ learning and forgetting.

5.4. Evaluation Methodology

We used the area under the curve (AUC) and the accuracy (ACC) as the metrics to
evaluate the prediction performance. The AUC is defined as the area enclosed by the ROC
curve and the lower coordinate axis. The four public datasets are balanced, so an AUC
value of 50% represents the prediction performance obtained by random guessing. A high
AUC value indicates that the model has a higher prediction performance. The ACC is the
accuracy rate, that is the percentage of the correct prediction results in the total results. A
high ACC value indicates that the model has a high prediction performance.

5.5. Experimental Results and Analysis

From Table 3, it can be seen that LFEKT had different degrees of improvement for the
four datasets compared with the other models, indicating that LFEKT is more effective at
predicting students’ performance on exercises.

Table 3. Results of the comparison methods on performance prediction. We denote by “*” and
“**” that LFEKT is significantly better than the corresponding baseline by p < 0.05 and p < 0.01,
respectively.

Model
ASSISTChall ASSIST2012 ASSIST2009 Statics2011

AUC ACC AUC ACC AUC ACC AUC ACC

BKT 0.562 ∗∗ 0.555 ∗∗ 0.613 ∗∗ 0.601 ∗∗ 0.678 ∗∗ 0.661 ∗∗ 0.719 ∗∗ 0.698 ∗∗

DKT 0.724 ∗∗ 0.693 ∗∗ 0.730 ∗∗ 0.737 ∗∗ 0.741 ∗∗ 0.708 ∗∗ 0.815 ∗∗ 0.723 ∗∗

DKVMN 0.711 ∗∗ 0.684 ∗∗ 0.725 ∗∗ 0.735 ∗∗ 0.739 ∗∗ 0.618 ∗∗ 0.814 ∗∗ 0.722 ∗∗

CKT 0.726 ∗∗ 0.692 ∗∗ 0.731 ∗∗ 0.737 ∗∗ 0.707 ∗∗ 0.654 ∗∗ 0.829 0.805
SAKT 0.661 ∗∗ 0.679 ∗∗ 0.725 ∗∗ 0.736 ∗∗ 0.735 ∗∗ 0.679 ∗∗ 0.803 ∗∗ 0.797 ∗

AKT 0.756 ∗∗ 0.712 ∗∗ 0.774 ∗∗ 0.755 ∗ 0.835 ∗ 0.785 ∗∗ 0.827 ∗ 0.777 ∗∗

LPKT 0.799 ∗∗ 0.741 ∗∗ 0.777 ∗∗ 0.758 ∗ 0.760 ∗∗ 0.729 ∗∗ 0.771 ∗∗ 0.763 ∗∗

LFEKT 0.853 0.771 0.795 0.766 0.841 0.809 0.835 0.807

The advantages of LFEKT are mainly reflected in the following three aspects:

• The KT models based on deep learning outperformed the traditional methods. For
all four datasets, DKT, the DKVMN, SAKT, AKT, LPKT, and LFEKT had significant
improvements over BKT, which can be seen as the effectiveness of the deep-learning-
based KT models.

• Students’ learning and forgetting behavior cannot be ignored. Compared to the tradi-
tional KT model, the LSTM-based DKT exhibited excellent performance. However,
DKT represents the overall knowledge state of students through the latent vector of
LSTM, and it is impossible to obtain students’ mastery of each KC. The DKVMN can
represent students’ knowledge mastery on each KC through a value matrix, but it does
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not consider the forgetting behavior in the learning process. The DKVMN defaults to
the students’ mastery of KCs remains unchanged over time and is somewhat straight-
forward in modeling learning behavior, so the prediction performance of the DKVMN
was not as good as that of LFEKT. Both SAKT and AKT use a self-attention mechanism
to optimize their performance. AKT combines the Rasch model to enhance exercises’
information, so AKT’s prediction performance was better than that of SAKT. However,
AKT only uses a decaying kernel function to simulate the forgetting behavior of stu-
dents, and LFEKT, which comprehensively models students’ learning and forgetting
behavior, performed better and could more accurately predict students’ future per-
formance. Both CKT and LFEKT performed well on the Statics2011 dataset; however,
LFEKT performed significantly better than CKT on the other datasets, demonstrating
that generality is an advantage of our model.

• The setting of the exercise performance units containing exercise information and
students’ answering performance was valid. Compared with LPKT, which also models
learning and forgetting effects, LFEKT showed certain advantages on the four datasets.
It can be seen that the enhancement of the exercise unit and the performance unit was
effective, and encoding the learned sequence context was helpful for improving the
prediction performance.

5.6. Ablation Experiments

To investigate how each module and each parameter in LFEKT affects the final result,
we designed six variants to conduct ablation experiments on the ASSISTChall dataset:

• LFEKT-NF refers to the LFEKT that does not consider knowledge forgetting, that is
the knowledge forgetting layer was removed.

• LFEKT-NL refers to the LFEKT without considering knowledge retention, that is the
knowledge absorption layer was removed.

• LFEKT-NCT refers to the LFEKT that does not use LSTM to capture contextual infor-
mation as set by Equation (5).

• LFEKT-NQ refers to the LFEKT without using an enhanced Q matrix and the rel layer.
• LFEKT-ND refers to the LFEKT that does not introduce difficulty information to

enhance the information of the exercise itself.
• LFEKT-NP refers to the LFEKT that does not introduce other answering performances,

that is it does not include the answering time and the hint time.

From the results in Figure 3, we can draw some conclusions. First, students’ answering
performance is indispensable because it is an important reference for students’ knowledge
state in our KT model. Compared to LFEKT, the prediction performance of LFEKT-NP
showed the largest prediction performance loss because it simply defines answering perfor-
mance as answers. Secondly, it can be seen from LFEKT-NL that the role of the knowledge
absorption rate cannot be ignored, and ignoring knowledge absorption will lead to a sig-
nificant loss in prediction performance. Then, the performance of LFEKT-NF decreased
to a certain extent, which showed that the forgetting behavior also plays an indispensable
role in simulating students’ knowledge state. We set up a knowledge acquisition layer that
is always positive to simulate the knowledge growth of students and then controlled the
natural decline of students’ knowledge state over time through the knowledge forgetting
layer. From LFEKT-NQ, it can be seen that the degree of matching between exercises
and KCs also affected the model’s prediction performance, that is the Q matrix described
by humans may have some errors. Students’ answering performance is related to their
historical learning records. Compared with LFEKT-NCT, LFEKT had a certain degree of
improvement, indicating that modeling the learning sequence context can also improve
the model’s performance. Finally, it can be seen from LFEKT-ND that simply using the KC
as the exercise embedding is not enough to describe the complex information of exercises,
and introducing the difficulty of exercises can effectively enrich the input of our model and
improve the model’s performance.
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Figure 3. Ablation experiment results on ASSISTChall.

5.7. The Effect of the Length of the Learned Sequence

We also conducted experiments to evaluate how LFEKT is affected by the length of
learned sequences.

We compared the student performance prediction results of LFEKT, LPKT, and AKT
under different learning sequence lengths. We set four lengths: 50, 100, 200, and 500. Gen-
erally speaking, the length of learning sequences represents the completeness of student’s
learning process, and the more complete the learning sequence, the more conducive to KT
modeling it is. It can also be seen from Figures 4 and 5 that the prediction performance of
all models decreased as the sequence length decreased. However, the decrease of LFEKT
was smaller than that of the other two comparison models, and finally, a gap can be seen
between LFEKT and the other two comparison models. It can be seen that LFEKT can
better model student learning, as it was least affected by incomplete learning sequences.
In real learning environments, students’ learning sequences are usually incomplete, and
LFEKT’s robustness to incomplete sequences is also one of its advantages.

Figure 4. AUC at different sequence lengths.
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Figure 5. ACC at different sequence lengths.

5.8. Knowledge State Visualization

We selected the learning sequences of the same student of length 20 for visualization.
Figure 6 shows that LFEKT traced the changing knowledge state over the course of the
same student’s learning.

Figure 6. Visualization of LFEKT predictions of students’ knowledge state changes for the three KCs
during the learning process. Each serial number represents a different KC included in the exercises.
The heat map in the middle is the student’s knowledge state, with darker colors representing
better mastery.

At the beginning, the student’s knowledge state at each KC was set to 0 and was
updated through learning. It can be seen that if the student answered correctly, the
knowledge state corresponding to the KC increased accordingly. For example, when the
student correctly answered the seventh exercise with KC3, the knowledge state displayed
in the third row increased accordingly. Moreover, we set a constant positive knowledge
acquisition. If the student answered incorrectly, the corresponding knowledge state may
also improve, but if he/she continuously gives the wrong answers, LFEKT will dynamically
adjust his/her knowledge state to an appropriate level. Furthermore, even if the student
answers correctly, he/she does not necessarily gain much knowledge, which is related
to the difficulty of the exercise and the time to answer the exercise. During the learning
process, we can observe that the mastery of a certain KC will be affected by other KCs.
For example, the student only learned KC2 in Step 8, but the knowledge state of KC2 also
changed at other times, except for Step 8, mainly because there are potential connections
between different KCs, so they may affect the updating of each other’s mastery during
learning. Eventually, we can obtain the student’s final knowledge state of each KC, and
it can be seen that the student’s knowledge state improved to varying degrees compared
with the beginning.

5.9. Effectiveness of Exercise Embedding

To understand how exercises are related to each other, we used t-SNE [65] to visualize
them. Figures 7 and 8 present t-SNE visualizations of exercise embeddings et and exercise
embedding units eut in the ASSISTChall dataset. Each point in Figure 7 represents the
exercise embedding, and each point in Figure 8 represents the exercise embedding unit.
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The color of points in the figure represents the KCs of the exercises. Points with the same
color mean they contain the same KC.

Figure 7. t-SNE visualizations of exercise embeddings.

Figure 8. t-SNE visualizations of exercise embedding units.

Figure 7 shows that the distribution of exercise embeddings was relatively discrete,
and the items of the same KC were not clustered together. Figure 8 shows a clear pattern.
The exercise embedding units of the same KC were clustered, and different exercises were
differentiated due to their different difficulty levels, which showed that simple exercise
embedding cannot capture complex exercise information, while exercise embedding unit
vectors can capture the KC and the difficulty of exercises to enrich the differentiated features
of exercises. Although not all clustering results were correct, exercise embedding units can
expand the information of exercises and improve the prediction performance.

6. Conclusions

In this work, we proposed a new KT model, LFEKT, incorporating pedagogical theory.
Our learning process was divided into basic learning units. The basic unit included exer-
cise information, students’ answering performance, and the time interval. We introduced
difficulty information to enrich exercise information and introduced the answering times
and hint times to enrich the answering performance. To capture the dependencies between
exercises, we used LSTM to encode the learned sequence context, and we introduced an
augmented Q matrix and added a layer of exercise–KC relations. Then, we combined peda-
gogical theory to focus on the factors that affect students’ learning behavior and forgetting
behavior, measure their knowledge acquisition through the knowledge acquisition layer,
and then, obtain students’ real knowledge absorption through the knowledge absorption
layer. The forgetting layer simulates the process of knowledge forgetting caused by vari-
ous forgetting factors and traces the changing process of the knowledge state caused by
students’ forgetting behavior in real-time. Experiments on four benchmark datasets in KT
research demonstrated the effectiveness and robustness of LFEKT. We also used LFEKT to



Information 2023, 14, 168 19 of 22

visualize the change in each student’s knowledge state during the learning process, proving
that LFEKT can obtain an interpretable knowledge state.

However, our model also has some limitations, which we will optimize in the future:

• The definition of exercise difficulty is relatively simple and may not be applicable in
all educational scenarios. Currently, the Bloom taxonomy [66] is a popular method
for determining difficulty. In addition, difficulty may be determined by performing
a semantic extraction of the question text. For programming questions with less
text information, it is feasible to extract information from suggested answers (i.e.,
the codes).

• Although our model is robust to changes in sequence length, the prediction perfor-
mance will still decrease if the length of sequences becomes shorter. In a real learning
environment, it is difficult to obtain the complete learning sequences of students.
Therefore, achieving better results in short-sequence KT scenarios will also be a very
challenging topic.

• In this paper, we integrated educational psychology theory and some neurological
theories into our KT model. However, several other learning-related theories should
be explored. Bruner learning theory highlighted the significance of learning moti-
vation [67]. The learning process of students is motivated by their high cognitive
requirements. Integrating students’ learning motivation into the KT model is a di-
rection that may be explored. Furthermore, students’ learning behavior is a kind of
physiological activity, so we can also try something more biologically inspired.

• Most of the public datasets used in current research are balanced, but real-world data
are likely to be unbalanced. How to deal with unbalanced data and perform the
corresponding preprocessing are questions to be studied.
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