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Abstract: In recent years, digital audio tampering detection methods by extracting audio electrical
network frequency (ENF) features have been widely applied. However, most digital audio tampering
detection methods based on ENF have the problems of focusing on spatial features only, without
effective representation of temporal features, and do not fully exploit the effective information in the
shallow ENF features, which leads to low accuracy of audio tamper detection. Therefore, this paper
proposes a new method for digital audio tampering detection based on the deep temporal–spatial
feature of ENF. To extract the temporal and spatial features of the ENF, firstly, a highly accurate ENF
phase sequence is extracted using the first-order Discrete Fourier Transform (DFT), and secondly,
different frame processing methods are used to extract the ENF shallow temporal and spatial features
for the temporal and spatial information contained in the ENF phase. To fully exploit the effective
information in the shallow ENF features, we construct a parallel RDTCN-CNN network model
to extract the deep temporal and spatial information by using the processing ability of Residual
Dense Temporal Convolutional Network (RDTCN) and Convolutional Neural Network (CNN) for
temporal and spatial information, and use the branch attention mechanism to adaptively assign
weights to the deep temporal and spatial features to obtain the temporal–spatial feature with greater
representational capacity, and finally, adjudicate whether the audio is tampered with by the MLP
network. The experimental results show that the method in this paper outperforms the four baseline
methods in terms of accuracy and F1-score.

Keywords: electrical network frequency; audio tampering detection; temporal–spatial representation
learning; temporal convolution networks

1. Introduction

The boom in Internet information technology has made digital audio, such as tele-
phone recordings, voice messages, and music files, readily available in our daily lives [1,2].
Due to the low threshold and powerful operation of existing audio editing software, digital
audio tampering can be easily accomplished by an average user without any expertise
in audio processing [3,4]. In addition, millisecond digital audio tampering fragments
are often difficult to identify [1,5,6], and unscrupulous individuals may use digital audio
tampering to try to evade legal sanctions and even cause harm to society. As a result, digital
audio forensic methods are increasingly in demand in areas such as judicial forensics,
scientific discovery, and commercial applications to reduce the impact caused by such
incidents [7–12].

Forensic techniques for digital audio are mainly divided into two types: active foren-
sics and passive forensics [1]. The active forensic technique of digital audio is mainly used
to determine the authenticity or integrity of audio by detecting whether the pre-embedded
digital signature or digital watermark is corrupted. However, in practical applications,
most of the audio signals are not pre-embedded with watermarks or signatures at the time
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of recording, so digital audio active forensic techniques have limitations in applications.
Passive detection of digital audio tampering means that there is no need to add any infor-
mation, and the authenticity and integrity of digital audio are discriminated only by the
characteristics of digital audio itself. Passive detection of digital audio tampering is more
practical for audio forensics in complex environments, which is why the method proposed
in this paper focuses on it.

In recent years, research results in the field of passive detection of digital audio
tampering have focused on the selection of audio features, such as difference information of
background noise [13–17], spectrograms of audio content [18,19], pitch [20–22], resonance
peaks [22], ENF difference information [23], ENF harmonic signals [24], ENF phase and
frequency information [6,25,26], etc. The ENF is automatically embedded in the audio
when recording and is characterized by random fluctuations at nominal frequencies (50 Hz
or 60 Hz) with some stability and uniqueness [27]. Therefore, ENF is widely used for
tampering detection of digital audio.

Most of the methods based on the ENF digital audio tampering detection extract ENF
feature information and achieve tampering detection by classification algorithms. However,
in the selection of features, most researchers only use spatial or temporal information of
the ENF, resulting in a certain degree of loss of tampering information, which leads to a
weak characterization of features and a low classification accuracy.

To solve the problems of weak feature representation and low classification accuracy,
inspired by the success of deep representation learning in speaker recognition [28,29],
computer vision [30–38], and big data [39,40], this paper proposes a digital audio tampering
detection method based on the ENF deep temporal–spatial feature. Moreover, this paper
first extracts the phase sequence of the ENF by using the first-order DFT analysis method
and then divides the frames according to the ENF temporal variation information to obtain
the time series matrix of ENF phases to represent the shallow temporal features of ENF.
Finally, the unequal phase sequences are framed by adaptive frameshifting to obtain a
matrix of the same size to represent the shallow spatial features of ENF. The construction of
the parallel RDTCN-CNN network model mainly consists of four parts: a deep temporal
feature extraction module, a deep spatial feature extraction module, a temporal–spatial
feature fusion module, and a classification module. In the deep temporal feature extraction
module, we extract deep temporal features based on the causal convolution principle of
RDTCN. In the deep spatial feature extraction module, we extract deep spatial features by
using the excellent spatial representation ability of CNN. In the temporal–spatial feature
fusion module, we use the branch attention mechanism to adaptively assign weights
to deep spatial and temporal features to obtain the fused temporal–spatial features. In
the classification module, we determine whether the audio is tampered with or not by a
multilayer perceptron (MLP).

The main contributions made in this paper are as follows:

• Based on the extraction of high-precision ENF phase sequences, we frame the ENF
according to its temporal volatility variation to represent the temporal features of
the ENF and frame the ENF by adaptive frameshifting to obtain a phase feature
matrix of the same size to represent the spatial features of the ENF. The feature
representation capability is enhanced by deeply mining the tampering information of
different dimensions in the ENF.

• We exploit the excellent modeling ability of RDTCN in the time domain and the spatial
representation ability of CNN to extract deep temporal and spatial features and use
the branch attention mechanism to adaptively assign the weights of temporal and
spatial information to achieve the fusion of temporal–spatial features. The fused
temporal–spatial features, with complementary advantages, are beneficial to improve
detection accuracy. The implementation code for this study is posted at https://github.
com/CCNUZFW/DTSF-ENF (accessed on 21 February 2023).

• The proposed framework achieves state-of-the-art performance on the datasets Cari-
oca, New Spanish, and ENF_Audio compared to the four baseline methods. Compared

https://github.com/CCNUZFW/DTSF-ENF
https://github.com/CCNUZFW/DTSF-ENF
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with the baseline model, the accuracy is improved by 0.80% to 7.51% and the F1-score
is improved by 0.86% to 7.53%.

The rest of this paper is organized as follows. Section 2 describes the existing related
work. In Section 3, we provide the problem definition for this study and summarize the
important symbols that appear in this paper. Section 4 describes the framework proposed
in this paper. Section 5 presents the dataset used to evaluate the performance of the
framework, details of the specific experimental setup, and comparison experiments. Finally,
the paper concludes in Section 6 and lists the directions for future work.

2. Related Work

Digital audio files are obtained by recording equipment in a certain environment,
so the audio must contain features of recording equipment and recording environment,
and these features have a certain degree of stability. From the perspective of digital audio
components, these features can be divided into three kinds: (1) based on background noise
consistency detection; (2) based on the analysis of audio content features; (3) based on
electrical network frequency consistency detection.

2.1. Based on Background Noise Consistency Detection

Digital audio is recorded in a specific environment, and when audio is recorded in a
complex environment, the recorded audio will contain background noise information in
the current environment. When audio tampering operations such as deletion and insertion
occur, it will lead to discontinuity of the background noise in the audio, so the detection
of tampering operations can be performed by analyzing the background noise part of the
digital audio [41].

When recording audio in a room or closed environment, reverberation is introduced
in the recorded audio. Many scholars have conducted audio forensic studies through the
reverberation of audio. Malik et al. [42] analyzed the consistency of reverberation in digital
audio with the recording environment by statistical methods. Mascia et al. [43] classified
the recording environment by using the reverberation time and Mel Frequency Cepstral
Coefficient (MFCC) as features. The consistency of the background noise when recording
audio in a noisy environment can also be used as a basis for determining whether the
audio has been tampered with. Noise information is separated from digital audio and
its consistency is analyzed for audio tampering detection. Ikram et al. [44] proposed to
first extract the preliminary noise signal based on the spectral estimation of geometric
transformation, and then remove the speech residual part of the preliminary noise signal
using the audio higher-order harmonic structure feature to obtain a purer noise signal.
To detect audio splicing operations using information such as background noise in the
audio, Meng et al. [13] detected heterogenous splicing tampering of audio by comparing
the similarity between the background noise variance of syllables.

Although several research results have been obtained based on the analysis of back-
ground noise, there are still some limitations. One is that the complexity of the actual
environment is difficult to predict, and the second is that the audio noise separation un-
der very short noise samples is also difficult to carry out. In addition, in the consistency
analysis of noise or reverberation, how to select the optimal feature set to characterize the
environmental noise is still a problem worth exploring.

2.2. Based on the Analysis of Audio Content Features

The tampering of audio speech content leads to the weakened and abrupt inter
-frame correlation of audio characteristics, so we can determine whether digital audio
has been tampered with based on the variability of audio content features [14,22].
Chen et al. [45] implemented the detection of tampered audio in the time domain
by performing discrete wavelet packet decomposition and singularity analysis on the
speech signal. Imran et al. [46] used chaos theory so that tampering points may exist
anywhere in the audio, and then detected copy-paste tampering by comparing the



Information 2023, 14, 253 4 of 22

differences in the speech spectrogram of the turbid parts. Yan et al. [21] used the
sequence of fundamental and resonant peaks of the turbid segment of the audio as
features and achieved copy-paste tampering detection by comparing the similarity
with a threshold value, and the method is highly robust to common post-processing
tampering operations.

After most tampering operations are performed, some post-processing operations are
often performed to mask the tampering traces [19]. Therefore, when such post-processing
operations are detected in the audio, this audio may have been edited. Yan et al. [3]
detected the smoothing operations of editing software using a support vector machine
(SVM) based on the local variance of the differential signal.

2.3. Based on Electrical Network Frequency Consistency Detection

When the recording device is powered by the electrical network, the ENF is automati-
cally embedded in the recording file, and because the ENF signal has a certain stability and
uniqueness [25] and shows reliable discrimination in audio tampering detection studies,
the technique based on ENF analysis has been widely used in the field of digital audio
tampering detection, and it is also one of the most effective methods in the last decade [1].

Esquef et al. [47] proposed the TPSW method to estimate the level of ENF background
variation based on the fact that the tampering operation causes a sudden change in the ENF
instantaneous frequency at the tampering point, using the Hilbert transform to calculate
the instantaneous frequency, thus obtaining the mutation point as both the tampering
operation point, and the accuracy of the algorithm is better than that of the Rodríguez
method [25]. In addition, Reis et al. [26] proposed an ESPRIT-based estimation of the phase
peak feature to measure the fluctuation of ENF for the case of phase discontinuity of the
tampered signal ENF and used SVM to automatically detect the abrupt change of ENF.
However, using only the tampering information in the phase features of ENF has some
limitations in the feature characterization capability. On this basis, Wang et al. [6] extracted
the phase features of the ENF component (ENFC) based on DFT0 and DFT1, extracted the
instantaneous frequency features of ENFC based on Hilbert transform, and used the SVM
classifier to determine whether the signal has been tampered with or not. In addition to
using ENF phase and frequency features, Mao et al. [48] extracted ENF features from audio
signals using multisignal classification, Hilbert linear prediction, and the Welch algorithm
and detected the extracted features by convolutional neural networks. Sarkar et al. [49]
decomposed the extracted ENF into low and high outlier frequency segments and then
used statistical and signal processing analysis to determine the potential feature vectors of
the ENF segments, and finally, an SVM classifier was used for validation.

To further increase the detection accuracy and robustness of ENF-based audio tam-
pering methods, some researchers have investigated the characteristics of ENF to obtain
better-quality features. Karantaidis et al. [50] added a customized delay window to the
Blackman–Tukey acoustic spectrum estimation method in order to reduce the interference
of speech content to make the estimated ENF with higher accuracy. There are often some
noises and interferences in the audio, and Hua et al. [51] proposed a Robust Filtering
Algorithm (RFA) to enhance the ENF signal in the audio, and this method makes the
extracted ENF signal more accurate. Based on this, Hua et al. [24] used RFA to enhance
each harmonic component of ENF and finally combined the harmonic components in a
weighted manner to finally obtain a more accurate ENF estimation.

For feature selection, tampering detection of audio is usually achieved by extracting
ENF static spatial information. However, these methods cause the loss of ENF temporal
information to the extent that the feature representation is weak. In classification algorithms,
audiovisual analysis or classical machine learning methods are used, and these methods
cannot strengthen important features and dig deep information, resulting in insufficient
tampering detection accuracy. Since the ENF in audio fluctuates randomly with time,
making full use of the temporal information of ENF can improve the representation ability
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of features. Based on this, we propose a digital audio tampering detection method based
on the deep temporal–spatial features of ENF.

3. Preliminaries

In this section, we first formally define the digital audio tampering detection task.
Next, we explain the definitions related to ENF shallow temporal and spatial features and
ENF deep temporal and spatial features. The mathematical notations and descriptions are
shown in Table 1. They are explained in more detail in the following sections.

Table 1. Mathematical notations and descriptions.

Notations Descriptions

v[n], vd[n], vENFC[n], n Digital audio signal, downsampled signal, ENFC signal, n is indexed
fd Downsampling frequency
DFT1, DFTk 1- order DFT, k- order DFT
v[k], v′[k] Signal after DFT of vENFC[n] and v′ENFC[n]
k, kpeak Indexing of signal and signal peak points per frame
φ0, φ1 0th order phase sequence, 1st order phase sequence
fDFT1 Frequency value of the first-order ENF signal
Tpn× fn Shallow temporal feature of ENF
Sm×m Shallow spatial feature of ENF
f loor, ceil Rounding down, rounding up
overlap(.) Calculation formula of the frameshift
F(.) Dilated convolution formula
Loss Binary cross-entropy loss function
ACC, F1− score Prediction accuracy, F1-score

3.1. Problem Definition

Definition 1. (Digital audio tampering detection task). The digital audio tampering detection
task is divided into a training phase and a testing phase. In the training phase, our training audio
is divided into tampered audio and untampered audio, after which these two classes of audio are
trained to obtain the audio tampering detection model. In the testing phase, the test audio is fed into
the audio tampering detection model to obtain two scores, i.e., the probability of belonging to the
tampered and untampered categories. When S∗ = Score1, the audio belongs to the untampered
audio class; when S∗ = Score2, the audio belongs to the tampered audio class. The flowchart of the
digital audio tampering detection task is shown in Figure 1.

3.2. ENF Shallow Temporal and Spatial Feature Definition

Definition 2. (ENF shallow temporal features). We frame the ENF phase based on the way the
ENF temporal variation is performed to obtain the ENF shallow temporal feature Tpn× fn , where pn
is the number of phase points contained in a frame and fn is the number of frames.

Definition 3. (ENF shallow spatial features). Since the ENF phase changes abruptly when audio
tampering occurs, we design a framing method for the static features of the phase sequence to
extract the shallow spatial features Sm×m of the ENF, where m is the dimension of the shallow
spatial features.
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Figure 1. Digital audio tampering detection task flowchart, where Score1 and Score2 denote the
probabilities of tampered and untampered categories and S∗ denotes the maximum of Score1
and Score2.

3.3. ENF Deep Temporal and Spatial Feature Definition

Definition 4. (ENF deep temporal features). Deep temporal features are extracted from Tpn× fn

by RDTCN. Deep temporal features are extracted from ENF shallow temporal features using deep
learning, which requires the use of networks with sequence modeling capabilities, such as Recurrent
Neural Networks (RNN) and Long Short-Term Memory (LSTM). In this paper, we use a modified
TCN to extract deep temporal features that reflect the temporal information in the feature data,
including the analysis of similarity information and mutation information between neighboring
frames, as well as the analysis of long-term fluctuation information.

Definition 5. (ENF deep spatial features). Deep spatial features are extracted by CNN from Sm×m.
The deep spatial features of ENF extracted by the CNN have a larger perceptual field and richer
information than the shallow features.

4. Methods

We propose a digital audio tampering detection method based on ENF deep temporal–
spatial features. The method is mainly divided into two parts: ENF shallow temporal
and spatial features extraction and the construction of a parallel RDTCN-CNN network
model. In ENF shallow temporal and spatial feature extraction, firstly, the ENF first-order
phase sequence feature φ1 is extracted based on DFT1 [6]; then, it is divided into frames by
adaptive frameshifting to obtain a phase feature matrix of the same size to represent the
spatial features of ENF; at the same time, it is divided into frames according to the ENF
phase temporal change information to represent the temporal features of the ENF. In the
parallel RDTCN-CNN network model, we first extract deep temporal and spatial features
using RDTCN and CNN, respectively, then use the branch attention mechanism to achieve
deep temporal and spatial feature fusion, and finally complete the tampering detection by
the MLP network. The framework of the digital audio tampering detection method based
on ENF deep temporal–spatial feature is shown in Figure 2.

4.1. Extraction of the Shallow Temporal and Spatial Features of ENF

Because ENF has temporal and spatial information, we can extract it by different frame
processing methods. The steps of extracting ENF shallow temporal and spatial features
include: extracting ENF first-order phase sequence, extracting ENF shallow temporal
features, and extracting ENF shallow spatial features.
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Figure 2. A framework diagram of digital audio tampering detection based on ENF deep temporal–
spatial feature, the model is divided into two steps: (1) shallow temporal and spatial feature extraction
and (2) parallel RDTCN-CNN network model construction.

4.1.1. Extraction of First-Order Phase Features

When the digital audio has been tampered with, the phase of the ENF changes abruptly
at the tampered position, as shown in Figure 3. We achieve tampering detection of dig-
ital audio by representing the ENF phase features and performing consistency analysis
on them.

To extract the first-order phase feature φ1 of the ENF, the ENFC in digital audio is first
extracted by downsampling and band-pass filtering. Then, the ENFC is subjected to DFT1

to estimate the ENF first-order phase sequence feature φ1, where DFTk denotes the DFT
transform of the kth-order derivative of the signal [6].

To extract the ENFC from the digital audio, firstly, the digital audio signal v[n] to be
measured is downsampled to obtain the downsampled signal vd[n], where the downsam-
pling frequency fd is set to 1000 Hz or 1200 Hz. Secondly, we use bandpass filtering to
narrowband filter the downsampled signal vd[n] to obtain the ENFC vENFC[n] in the signal
to be measured.
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Tampered point



Tampered point



a) Original audio b) Tampered audio

c) The phase of the original audio d) The phase of the tampered audio

Figure 3. Phase curve diagramof the original and tampered audio. (a) is the waveform graph of the
original audio, (b) is the waveform graph of the tampered audio. When the audio is not tampered
with, the phase curve is relatively smooth, as shown in (c). The phase of the audio; when phase
tampering occurs, the phase curve changes abruptly at the point of tampering, as shown in (d). The
phase of the tampered audio, where the audio undergoes a tampering operation of deletion at around
9 s.

To estimate the phase information more accurately, we use DFT1 to further extract the
first-order phase sequence information φ1. First, we calculate the approximate first-order
derivatives of the ENF signal vENFC[n] at point n. The equation to obtain the first-order
derivative signal v

′
ENFC[n] is as follows:

v′ENFC[n] = fd(vENFC[n]− vENFC[n− 1]) (1)

Secondly, a window is added to the first-order derivative signal v
′
ENFC[n]. Then, the

DFT transform is applied to vENFC[n] and v
′
ENFC[n] to obtain v[k] and v

′
[k], respectively.

We estimate the frequency values based on v
′
[kpeak] as follows:

fDFT1 =
1

2π

DFT1
[
kpeak

]
DFT0

[
kpeak

] , (2)

where DFT0
[
kpeak

]
= v

[
kpeak

]
and DFT1

[
kpeak

]
= F(k)v′

[
kpeak

]
. f (k) is a scale func-

tion. Finally, we use the DFT1 method to estimate φ1, which is as follows:

φ1 = arctan
{

tan(α)[1− cos(ω0) + sin(ω0)]

1− cos(ω0)− tan(α) sin(ω0)

}
, (3)

where ω0 ≈ 2π fDFT1 / fd. There are two possible values of the solution of φ1. In this paper,
we use φ0 as a reference and choose the value of φ1 that is closest to φ0 as the final solution.
We perform linear interpolation of v

′
[k] to obtain the value of α. α is calculated as follows:

α ≈ (kDFT1 − klow )
αhigh − αlow

khig h̄ − klow
+ αlow , (4)

where klow = f loor[kDFT1 ], khigh = ceil[kDFT1 ]. f loor[i] represents the largest integer less
than i, and ceil[j] represents the largest integer greater than j. kDFT1 = fDFT1 NDFT/ fd, and
fd is the downsampling frequency. The specific process is shown in Algorithm 1.
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Algorithm 1 Extraction of first-order phase features φ1.

Input: ENF component: vENFC[n], Down sampling frequency: fd
Output: φ1

1: Calculate the first derivative of v′ENFC[n]:
v′ENFC[n] = fd(vENFC[n]− vENFC[n− 1]).

2: Add Hanning windows to vENFC[n] and v′ENFC[n] respectively:
vN [n] = vENFC[n]w(n),
v′N [n] = v′ENFC[n]w(n).

3: DFT transform vN [n] and v′N [n] to get v[k] and v′[k]:
v[k] = DFT(vN [n]),
v′[k] = DFT

(
v′N [n]

)
.

4: By using the maximum value kpeak of each frame signal as the integer index of |v[k]|
and |v′[k]|, v[kpeak] and v′[kpeak] can be obtained.

5: Calculating zero-order phase sequence features φ0:
φ0 = arg

[
v
(

kpeak

)]
.

6: Calculating the frequency sequence of the ENF:

fDFT1 = 1
2π

DFT1[kpeak ]
DFT0[kpeak ]

.

7: Calculating first-order phase sequence features φ1:
φ1 = arctan

{
tan(α)[1−cos(ω0)+sin(ω0)]
1−cos(ω0)−tan(α) sin(ω0)

}
α ≈ (kDFT1 − klow )

αhigh −αlow
khig h̄−klow

+ αlow

8: return φ1

4.1.2. Extraction of ENF Shallow Temporal Features

Various information and phase sequences of ENF change with its non-periodic fluctu-
ations. In this paper, we propose a new framing algorithm based on the way of ENF timing
variation to obtain the ENF shallow temporal feature Tpn× fn , where pn is the number of
phase points contained in a frame, which is an artificially set value. Since the setting of
pn affects the amount of information contained in the ENF phase timing over a period
of time, we will experiment with pn as a variable for the ENF temporal representation in
the subsequent part of this paper. In addition, digital audio is often unequal in length,
corresponding to its ENF first-order phase sequence. To reduce the loss of ENF temporal
information, we calculate the number of frames from the longest audio. Based on the set
frame length pn, the number of frames fn can be calculated as follows:

fn =
Mmax

pn
, (5)

where Mmax is the maximum value of the ENF phase sequence. The frameshift overlap is
calculated as follows:

overlap = pn − f loor
[

length(φ1)

fn

]
, (6)

where the f loor is rounded down. Finally, the shallow temporal feature Tpn× fn is obtained
by traversing the phase information of ENF by frameshift overlap. The specific process is
shown in Algorithm 2.
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Algorithm 2 Temporal feature frame processing of ENF.

Input: Phase sequence features: φ1, the number of phase points contained in a frame: pn
Output: Shallow temporal features of ENF: Tpn× fn

1: Calculate the length of the phase sequence Mmax.
2: Calculate the number of frames: fn = Mmax

pn
.

3: for Phase sequence features of all audio do
4: Calculate the frameshift overlap:

overlap = pn − f loor
[

length(φ1)
fn

]
.

5: Split the frame.
6: Reshape into feature matrix Tpn× fn .
7: end for
8: return Tpn× fn

4.1.3. Extraction of ENF Shallow Spatial Features

When digital audio is tampered with, the ENF phase features cause abrupt changes [17].
To represent the static mutation information in the phase sequence, we designed a framing
method for the static features of the phase sequence to extract the shallow spatial feature
Sm×m of the ENF. The extracted phase sequence features φ1 are of different lengths due to
the unequal duration of each sample in the dataset. To reduce the information loss in the
feature extraction process, we calculate the frame length m by the longest phase len(φDFT1))
in the audio, which is as follows:

m = ceil(
√

X), (7)

where X = ceil
(√

len(φDFT1)
)

, and ceil is rounded upward. Then, the frameshift and
subframe are calculated, and the frameshift overlap is as follows:

overlap = m− ceil
(

X−m
m− 1

)
(8)

The shallow spatial feature matrix Sm×m is obtained by giving an adaptive frameshift
of unequal audio phase sequences to facilitate automatic learning of the CNN. The specific
process is shown in Algorithm 3.

Algorithm 3 Spatial feature frame processing of ENF.

Input: Phase sequence features: φ1
Output: Shallow spatial features of ENF: Sm×m

1: Calculate the longest phase len(φDFT1)).
2: Calculate the number of frames m:

m = ceil(
√

X), where X = ceil
(√

len(φDFT1)
)

.
3: for Phase sequence features of all audio do
4: Calculate the frameshift overlap:

overlap = m− ceil
(

X−m
m−1

)
.

5: Split the frame.
6: Reshape into feature matrix Sm×m.
7: end for
8: return Sm×m

4.2. Deep Feature Representation Learning Based on RDTCN-CNN Temporal–Spatial
Feature Fusion

Based on Tpn× fn and Sm×m extracted in Section 4.1, we design a parallel RDTCN-CNN
model to implement digital audio tampering passive detection, as shown in step 2 of
Figure 2. The parallel RDTCN-CNN model is divided into three main stages: extraction
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of deep temporal and spatial features, the fusion of temporal and spatial features, and
classification decision.

In the extraction stage of deep temporal and spatial features, we input the shallow
temporal features Tpn× fn into the RDTCN for representation learning to obtain the deep
temporal features, while the shallow spatial features Sm×m are input into the CNN for
representation learning to obtain the deep spatial features. In the fusion stage of deep
temporal and spatial features, we use the branch attention mechanism to fuse the deep
temporal and spatial features of different branches to obtain the temporal–spatial features
with stronger representation capability. In the classification decision stage, we input the
temporal–spatial features to the MLP network to determine whether the audio has been
tampered with.

4.2.1. Deep Temporal Feature Extraction Based on RDTCN Network

As the network deepens, the ordinary TCN network comes with residual layers
and each convolutional layer has different layer-size perceptual fields. However, the
deep temporal feature extraction network based on the ordinary TCN network neglects
to make full use of the information of different receptive fields in each convolutional
layer. This means that the common TCN network has a common residual structure, which
causes the intermediate convolutional layers to not directly transfer information to the
subsequent layers, so the memory block does not fully utilize the information of all the
convolutional layers inside it. In order to improve the disadvantage of underutilized
ordinary TCN memory blocks, we construct an RDTCN network using residual dense
blocks and then extract the ENF deep temporal features. The RDTCN further improves
information utilization compared with the ordinary TCN network. The RDTCN network
structure is shown in Figure 4.

𝑙2

𝑙1

𝑙3

𝑇𝑝𝑛×𝑓𝑛

𝑌

d=4

d=4

d=4

d=4

d=4Output:

Input:

d=1

d=2

d=4

Conv

BN

ReLU

Residual Dense Block

Conv Block

Conv Block

Conv Block

Concat

Conv

ReLU

… …𝑇1 𝑇2 𝑇3 𝑇𝑡−1 𝑇𝑡

𝑌1 𝑌2 𝑌3 𝑌𝑡𝑌𝑡−1……

Figure 4. RDTCN network structure figure (l: activation values in the l-th layer, d: dilation rate,
+: concatenate operation, ⊕: add operation).

To address the shortcomings of ordinary residual networks, such as the inability to
utilize feature information between each layer in the ENF deep temporal feature extraction
task, a residual dense network is proposed instead of the ordinary residual blocks. The
residual dense network is composed of a residual network and a dense network, with the
residual network extracting global features and the dense convolutional layer extracting
local features. In the dense connection, each layer of information fusion combines the
inputs of all previous layers and uses cascading to propagate the features of the current
layer to all subsequent layers, which is more effective in mitigating gradient disappearance
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and enhancing the propagation of all features, making the probability of feature reusability
greater. The residual dense network combines the characteristics of the residual network
and dense network to form a continuous memory mechanism by fusing global features and
local features, which is implemented by linking the features extracted from the previous
residual dense block to all layers of the current residual dense block. The residual dense
block supports continuous memory, and after extracting multiple layers of local dense
features, it will further fuse the global features and then retain the layered features in a
global manner adaptively, thus producing implicit deep supervision.

The RDTCN mainly consists of causal convolution, dilated convolution, and residual
dense modules. In causal convolution, a sequence T = (T1, T2, . . . , Tt) is input, and a
sequence Y = (Y1, Y2, . . . , Yt) is output after the operation of the model. The output at time
t is only convolved with the historical elements before time t, thus ensuring that the future
input will not affect the past input data prediction.

By adding holes to the standard convolution to expand the field of perception, the
output data can contain a larger range of information without losing data in the pooling
layer. The dilated convolution formula is as follows:

F(s) = (T ∗d k)(s) =
c−1

∑
t=0

k(i) · Ts−d·i, (9)

where the input sequence T = (T1, T2, . . . , Tt), filter k = (k1, k2, . . . , kc), d is the expansion
factor, c is the filter size, and s− d · i denotes the past direction. The value of d relates to
the size of the perceptual field, and d grows exponentially by 2.

In the residual dense block, each residual dense block is a combination of Conv
-BN-ReLU, and the residual block is as follows:

Ȳl
R = Hl

([
xl−1, x0

l−1, x1
l−1, · · · , xN−1

l−1

])
, (10)

where xl−1 is the input of the lth residual dense block, xl is the output of the lth residual
dense block, and Hl denotes the last convolutional layer that performs the splicing operation
on the output of the feature from all the convolutional layers in the brackets. The structure
of the residual dense network is shown in the residual dense block in Figure 4, where Conv
means convolution, BN means batch normalization, ReLU means activation function, and
the convolution kernel size is 3 ∗ 3 with a step size of 1.

4.2.2. Deep Spatial Feature Extraction Based on CNN Network

In this section, in order to extract the deep spatial features of ENF quickly and effi-
ciently, we design a CNN to implement the extraction of deep spatial features, as shown
in Figure 5.

CNN is a multilayer feedforward neural network that has been shown to have out-
standing performance in extracting spatial features. The sparse connectivity and weight-
sharing nature of the CNN greatly reduce the number of model parameters. The sparse
connectivity and weight-sharing nature of the CNN allow it to learn audio features with
less computational effort, with stable results, and without additional feature engineering
requirements on the data.

The CNN consists of a convolutional layer and a pooling layer. The convolutional
layer further extracts the deep spatial features by convolving the input shallow spatial
features. The input to the deep space feature extraction module of CNN is Sm×m, which
has dimensions (45, 45). The deep spatial feature extraction module consists of three
convolutional layers, three pooling layers, and two fully connected layers. The number of
convolutional kernels is 16, 32, 64, and the size of the kernels is (3, 3). 3 ∗ 3 convolutional
kernels can increase the number of network layers compared to larger convolutional kernels,
which also increases the nonlinear expression capability of the network and reduces the
network parameters. After each convolutional layer, a MaxPooling layer of size (2, 2) is
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set. The high-level feature map obtained after pooling not only reduces the dimensionality
and number of parameters of the original feature map, but also avoids problems such as
overfitting. After the convolutional pooling of multiple layers, the Flatten layer is connected
to transform the multidimensional data into one-dimensional data to realize the transition
from the convolutional layer to the fully connected layer. The number of nodes in the first
fully connected layer is 1024, and the number of nodes in the second fully connected layer
is 256. The convolutional layer cooperates with the pooling layer to extract local features of
spatial features, then connects with the fully connected layer to extract the global features
and finally obtains deep spatial features.

N
=

1
0

2
4

N
=

2
5
6

MaxPooling Conv FN Deep Spatial Features
𝑃𝑚×𝑚

Figure 5. Based on the CNN deep space feature extraction module, the network input is the shallow
space features Sm×m, m is 45, and the output is the deep space features extracted by the CNN network.

4.2.3. Deep Temporal and Spatial Feature Fusion Based on Branch Attention Mechanism

Because deep temporal and spatial features are extracted from different branches of
the parallel RDTCN-CNN, we choose the branch attention mechanism for deep temporal
and spatial feature fusion to achieve the fusion of temporal and spatial features. The branch
attention mechanism can achieve linear fusion of deep temporal features with deep spatial
features when performing the feature fusion task. The equation of the branch attention
mechanism is as follows: 

RC = concat
(

DTpn× fn , DSm×m

)
Wb = Fb(RC)
ST = RCWb

, (11)

where DTpn× fn and DSm×m are, respectively, the deep temporal and spatial features,
concat(.) is the join operation, RC is the spliced feature and Fb(.) is the convolutional
pooling operation in the branch attention mechanism, and ST reflects the deep temporal–
spatial features after fusion.

In addition, this mechanism assigns weights to different types of features through
network learning, so that important features have more prominent representational power
in model training. The branch attention fusion mechanism includes weight learning and
dot product assignment. In weight learning, we learn useful information in deep temporal
and spatial features by convolutional operations. In the dot product assignment, we dot
product the learned weights with the spliced deep temporal–spatial and spatial features
to adaptively assign the weights and obtain the temporal–spatial features with stronger
representational ability, as shown in Figure 6.
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Figure 6. Branch attention mechanism, where ⊕ is the concat operation and ⊗ is the dot product.

4.2.4. Classification Network Design

In this section, we use the MLP classification network to determine whether it has been
tampered with. The network consists of four fully connected layers (the number of neurons
is 256, 128, 32, and the activation function is LeakyReLU), a Dropout layer (dropout rate =
0.2), and a so f tmax layer, and the specific network structure is shown in Figure 2. so f tmax
layer can output the binary classification results for determining whether the audio has
been tampered with or not, and the formula is as follows:

ŷ(j) = so f tmax
(

I(j)W + b
)

, (12)

where ŷ(j) is the predicted value of the output, I(j) numbers the output features of the
previous layer, W is the weight, and b is the bias.

Our loss function adopts binary cross entropy. This is a commonly used loss function
in binary classification problems, and its expression is as follows:

Loss = − 1
N

N

∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)), (13)

where N is the number of audio data, y corresponds to the label value of each voice, and
p(y) is the probability that the output belongs to label y. Loss is the value of the binary
cross entropy loss function, which is used to judge the performance of our model.
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5. Experimental Results and Analysis

To validate the effectiveness of the proposed method, we conducted a large number of
experiments on different audio datasets. To validate the effectiveness of each independent
part of the framework, we followed the idea of the controlled variable method to conduct
an ablation study to observe the core modules and key hyperparameters of our method.

5.1. Dataset

In this paper, Carioca [25,47], New Spanish [52], and ENF_Audio are used as experi-
mental data. The detailed statistics of these datasets are shown in Table 2.

Carioca consists of Carioca 1 [25] and Carioca 2 [47], a database of speech signals from
telephone recordings on the public switched telephone network (PSTN), both with an ENF
of 60 Hz. Cariocacontains 500 speech signals. The audio in Carioca 1 was all sampled
at 44.1 kHz, with a word length of 16 bits, a bit rate of 705 kbps, a single channel, a file
format of WAV, and a signal-to-noise ratio (SNR) ranging from 16 dB to 30 dB (22.3 dB on
average). Carioca 1 has a total of 200 audio signals, and the audio signals range from 19
to 35 s in duration. There were 100 of these original audio signals, including 50 male and
50 female. For each gender, 25 signals were copied and 25 signals were cut, resulting in
another 100 tampered audios, where each signal was copied or cut only once. Carioca 2
had a sampling frequency of 11,050 Hz, a word length of 16, a bit rate of 176 kbps, a single
channel, a file format of WAV, and a signal-to-noise ratio of 10.1 dB to 30 dB (the average
Carioca 2 file contains a total of 300 signals with durations of 9 to 25 seconds). There were
150 raw audios, including 75 male and 75 female. An additional 150 tampered signals
were obtained by performing a delete or insert operation on all 150 original audios. The
processing was carried out in the same way as in Carioca 1.

New Spanish [52] comes from two public Spanish databases, AHUMADA and
GAUDI, containing stable 50 Hz ENFCs, which also contain 753 speech signals. All
signals have a sampling rate of 8 kHz, a word length of 16, a bit rate of 128 kbps, a single
channel, a file format of WAV, and an average signal-to-noise ratio of 35 dB. There were 251
original audio files. The 502 tampered audio files were obtained by deletion and insertion
operations.

ENF_Audio is our database, consisting of a random mix of Carioca and New Spanish,
with a total of 1253 audio signals.

Table 2. Dataset information.

The Dataset Carioca New Spanish ENF_Audio

Edited audio 250 502 752
Original audio 250 251 501

Total audio 500 753 1253
Audio duration 9∼35 s 16∼35 s 9∼35 s
The training set 350 527 877

The validation set 50 75 125
The test set 100 151 251

5.2. Evaluation Metrics

Tampering detection of digital audio is a complex task involving multiple domains
of security. To verify the reliability of the model, we cite feedback prediction as the main
evaluation task. In the experiments of this paper, we use prediction accuracy (ACC) and
F1-score (F1-score) as evaluation metrics.

ACC is the error between the prediction result and the actual feedback, demonstrating
the most significant value and progress of the model. The higher the Accuracy, the higher
the precision. The formula for prediction accuracy is:

ACC =
TP + TN

TP + FN + FP + TN
, (14)
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where TP is predicted to be positive and actually positive, TN is predicted to be negative
and actually negative, FP is predicted to be positive and actually negative, and FN is
predicted to be negative and actually positive. The ACC is calculated using the evaluate
function in the Keras library. (The API address for Evaluate is at https://keras.io/api/
models/model_training_apis/ (accessed on 10 April 2023))

F1-score is the result of combining the output of Precision (P) and Recall (R), and
the F1-score ranges from 0 to 1, with 1 representing the best output of the model and 0
representing the worst output of the model. The formula for the F1-score is as follows:

F1-score = 2
P ∗ R
P + R

, (15)

where P represents the precision rate, which is given by the formula: P = TP
TP+FP , and

R represents the recall rate, which is given by the formula: R = TP
TP+FN . The F1-score is

calculated using the metrics function in the Scikit-learn library. (The API address for Metrics
is at https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
(accessed on 10 April 2023))

5.3. Baselines

To evaluate the performance of our model, we need other baselines for comparison.
The details of the baselines are as follows: DFT1− SVM [25] and ES− SVM [26] are two
classical tamper detection methods. Therefore, we use them as baselines. In addition, in
our previous work, PF− SVM [6] is a new method proposed based on the advantages of
the above two methods [25,26], so we also use it as a baseline. X − BiLSTM [5] is a new
audio tampering detection method from the perspective of temporal feature representation
learning, so we also use it as a baseline.

DFT1− SVM [25] estimated the phase of ENFC by discrete Fourier variation and
used SVM for classification.

ES− SVM [26] used ESPRIT to estimate the characteristics of the phase peak and used
SVM for classification.

PF − SVM [6] used DFT0, DFT1, and Hilbert transform to extract the phase and
instantaneous frequency of ENFC and used an optimized SVM for the classification of
tamper detection.

X− BiLSTM [5] divides the extracted phase features into frames, and each frame is
represented as the information of ENF phase change over a period of time, and then the
BI-LSTM network is used to obtain the difference information between real audio and
tampered audio, and finally, a DNN classifier is used for classification.

5.4. Experimental Settings

Hardware Setting: In this paper, experiments were conducted on a professional
computer with an NVIDIA TITAN RTX high-performance graphics card. The CPU is an
I7-9700, the GPU is an RTX TITAN X, and the running memory is 64 GB.

Software Setting: Audio framing, windowing, filtering, and parameter extraction
were performed on MATLAB R2020a. Our model simulations were performed on Python
3.6, Tensorflow 1.15, Keras 2.1.5, Numpy 1.19, Pandas 0.25, etc.

Framework Setting: The shallow spatial feature Sm×m has an m of 46, the shallow
temporal feature Tpn× fn has a pn of 85 and fn of 25, the loss function is Binary_Crossentropy,
the optimizer is Adam, the training epoch is 300, the batch size is 64, and the initial learning
rate is 0.001. The training set, validation set, and test set are divided into 7:1:2.

5.5. Results and Discussion

To verify the effectiveness of the method in this paper, we demonstrate the effectiveness
of the features and classification models in this section and the superiority of the method
through four sets of experiments. The experiments are designed as follows: (1) comparison
with baseline methods; (2) verifying the effectiveness of RDTCN temporal feature extraction

https://keras.io/api/models/model_training_apis/
https://keras.io/api/models/model_training_apis/
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
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network; (3) verifying the effect of frame length setting on the shallow temporal features of
ENF; (4) verifying the effectiveness of the branch attention mechanism.

5.5.1. Comparison with Baseline Methods

In order to verify the effectiveness of our proposed digital audio tampering de-
tection method, we compare the proposed method RDTCN-CNN with the method of
baseline [5,6,25,26] in the public Carioca, New Spanish, and ENF_Audio datasets, and the
experimental results are shown in Table 3.

Table 3. Comparison with baseline.

Method Carioca New Spanish ENF_Audio
ACC (%) F1-Score (%) ACC (%) F1-Score (%) ACC (%) F1-Score (%)

DFT1-SVM [25] 89.90 90.22 88.86 86.84 90.51 90.55
ES-SVM [26] 90.88 90.62 90.62 88.26 93.52 93.44
PF-SVM [6] 93.05 92.86 90.22 87.56 92.60 92.82

X-BiLSTM [5] 97.03 97.22 92.14 90.62 97.22 97.02
RDTCN-CNN 97.96 97.54 95.60 94.50 98.02 97.88

From the results, it can be seen that the ACC and F1-score of X-BiLSTM and
the method in this paper are much higher than the other three methods for the same
dataset [6,25,26]. Both X-BiLSTM [5] and RDTCN-CNN use deep-learning methods, which
have better performance in extracting key information in features compared to classical
machine learning. For both methods using deep learning, the method in this paper uses a
parallel RDTCN-CNN network to extract both spatial and temporal information of ENF.
In comparison, the X-BiLSTM only utilizes temporal information in the ENF phase and
ignores information on ENF phase space, and is 1.20% higher than X-BiLSTM in terms
of accuracy.

As can be seen in Figure 7, the ACC and F1-score of RDTCN-CNN in different datasets
are higher than the other four baseline methods, which verifies the effectiveness of this
method.

5.5.2. Verifying the Effectiveness of the RDTCN Temporal Feature Extraction Network

To verify the effectiveness of RDTCN networks, a set of comparison experiments
based on ordinary TCN temporal feature extraction and RDTCN temporal feature based
on shallow spatial feature extraction networks are conducted in this section, both of which
adopt the structure of CNN.

In the RDTCN temporal feature extraction network, the original residual blocks of the
TCN network are replaced with residual dense blocks. From the experimental results in
Table 4, it can be seen that the ordinary TCN temporal feature extraction network based on
the RDTCN achieves 97.42%, while the TCN network with the addition of residual dense
blocks achieves 98.02%, which is an accuracy improvement of 0.6% to 98.02% compared to
the ordinary TCN temporal feature extraction network. In addition, the RDTCN temporal
feature extraction network also improves the F1-score by 0.42% compared to the normal
TCN temporal feature extraction network. Different evaluation metrics are sufficient to
prove that the RDTCN temporal feature extraction network is effective and that the features
in the layered convolution in the TCN network are effective for the digital audio tampering
detection task.

Table 4. Comparison of RDTCN and ordinary TCN.

Method Carioca New Spanish ENF_Audio
ACC (%) F1-Score (%) ACC (%) F1-Score (%) ACC (%) F1-Score (%)

Ordinary TCN 96.58 96.22 93.56 91.88 97.42 97.46
RDTCN 97.96 97.54 95.60 94.50 98.02 97.88
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Figure 7. Comparison between this method and the four baseline methods under different datasets
and different evaluation indexes, respectively. DFT1-SVM, ES-SVM, PF-SVM, and X-BiLSTM are
the baseline methods, RDTCN-CNN is this paper’s method, ACC and F1− score are the evalua-
tion metrics, and Carioca, New Spanish, and ENF_Audio are the three audio tampering detection
databases.

5.5.3. Verifying the Effect of Frame Length Setting on the Shallow Temporal Features
of ENF

The digital audio signal is a time-varying signal, and various information of audio and
parameters characterizing its basic features change with time but remain basically unchanged
in a short period of time, so the audio signal has long-term fluctuation and short-term stability.
Every 0.17 s contains 10 phase points, and the phase number pn determines the amount of
information of ENF phase change in a short time. A suitable frame length setting can better
represent the fluctuation of temporal information and is more conducive to the extraction
of temporal information by the RDTCN network. In order to analyze the effect of frame
length on features, we conducted comparison experiments on the frame length settings of
ENF shallow temporal features on Carioca, New Spanish, and ENF_Audio datasets, and nine
experimental groups were set in the frame length range of 0.255 s∼1.615 s, and the accuracy
variation curves with frame length are shown in Figure 8.

From the experimental results, we can see that the detection accuracy is high when the
frame length is 0.595 s and the number of phase points pn per unit frame is 35, the accuracy
tends to decrease after the frame length is 1.445 s, and the number of phase points pn per
unit frame is 85. Since the highest accuracy is achieved when the frame length is 1.445 s and
the number of phase points per unit frame pn is 85, we choose the frame length of 1.445 s,
the number of phase points per unit frame pn of 85, and the number of frames of 25 as the
parameters of the ENF shallow temporal feature Tpn× fn .

5.5.4. Verifying the Effectiveness of the Branch Attention Mechanism

To verify the effect of branch attention mechanism on parallel RDTCN-CNN, we
designed a comparison experiment between the feature fusion network based on the
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splicing structure and the feature fusion network based on the branch attention mecha-
nism. The former uses the splicing layer to replace the attention mechanism module to
achieve the fusion of deep temporal and spatial features, and the other network parameters
remain unchanged.

Figure 8. Comparison between this method and the four baseline methods under different datasets
and different evaluation indexes, respectively.

The experimental results are shown in Table 5. With our parallel RDTCN-CNN
network, based on the attention mechanism, the Carioca, New Spanish, and ENF_Audio
datasets all show significant improvement in accuracy compared to the parallel RDTCN
-CNN network based on the splicing structure. This proves that the branch attention
mechanism is effective for different types of feature weight distributions. Through adaptive
learning, the attention mechanism can give more weight to the features that are useful for
classification and suppress the invalid features, thus improving detection accuracy.

Table 5. A comparative experiment of branch attention mechanisms.

Method Carioca New Spanish ENF_Audio
ACC (%) F1-Score (%) ACC (%) F1-Score (%) ACC (%) F1-Score (%)

Splice Fusion 96.02 96.42 94.42 92.82 97.20 97.22
Branch 97.96 97.54 95.60 94.50 98.02 97.88

6. Conclusions

In this paper, we propose a digital audio tampering detection method based on ENF
deep temporal–spatial features. Structurally, our method includes the extraction of shallow
temporal and spatial features of ENF and the construction of parallel RDTCN-CNN network
models. For the extraction of shallow temporal and spatial features, the phase sequence
of ENF is first extracted by using the high-precision discrete Fourier analysis method.
Secondly, for the information on different dimensions of ENF, shallow temporal and spatial
features are extracted using different frame processing methods. In the construction of
a parallel RDTCN-CNN network model, we use RDTCN, which is good at processing
temporal signals, to further extract deep temporal features, and use CNN network, which
is good at extracting spatial features, to further extract deep spatial features, and realize
the fusion of temporal–spatial features by the branch attention mechanism. Finally, the
MLP network is used to determine whether the digital audio has been tampered with or
not. The experimental results show that our proposed method has a high accuracy and
F1-score in the Carioca, New Spanish, and ENF_Audio databases, outperforming the four
baseline methods.
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The method in this paper represents only the phase features of the ENF, while the
harmonic signal, spectrogram, and many other features of the ENF should be equally
valued. Moreover, the research in this paper focuses on whether the audio has been
tampered with and only addresses the basic issues. Further analysis is still needed to
determine the deeper location of tampering and the specific type of tampering. Therefore,
in future work, deeper mining of more features in the ENF and further analysis of tampering
locations and tampering types are necessary. In addition, we need to further automate
the filtering and feature extraction of the original audio waveform through the network
model and implement end-to-end tasks in the model to make it applicable to more complex
scenarios to facilitate applications.
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ENF Electrical Network Frequency
RDTCN Residual Dense Temporal Convolutional Networks
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