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Abstract: Advancements in artificial intelligence are leading researchers to find use cases that were
not as straightforward to solve in the past. The use case of simulated autonomous driving has been
known as a notoriously difficult task to automate, but advancements in the field of reinforcement
learning have made it possible to reach satisfactory results. In this paper, we explore the use of
the Unity ML-Agents toolkit to train intelligent agents to navigate a racing track in a simulated
environment using RL algorithms. The paper compares the performance of several different RL
algorithms and configurations on the task of training kart agents to successfully traverse a racing
track and identifies the most effective approach for training kart agents to navigate a racing track and
avoid obstacles in that track. The best results, value loss of 0.0013 and a cumulative reward of 0.761,
were yielded using the Proximal Policy Optimization algorithm. After successfully choosing a model
and algorithm that can traverse the track with ease, different objects were added to the track and
another model (which used behavioral cloning as a pre-training option) was trained to avoid such
obstacles. The aforementioned model resulted in a value loss of 0.001 and a cumulative reward of
0.068, proving that behavioral cloning can help achieve satisfactory results where the in game agents
are able to avoid obstacles more efficiently and complete the track with human-like performance,
allowing for a deployment of intelligent agents in racing simulators.

Keywords: reinforcement learning; autonomous driving; virtual robotics; simulation

1. Introduction

Reinforcement learning (RL) is a powerful approach for training intelligent agents to
perform a wide range of tasks, from playing games to navigating complex environments [1].
The possible applications include the following: robotics, where RL can be used to train
robots to perform tasks such as grasping objects or navigating through a physical envi-
ronment [2] with strong potential to drive adapting industrial environments, a potential
technological driver to emerge under the revolution of Industry 4.0 [3]; game playing,
where RL has been used to train agents to play games [4] such as chess, Go and poker
at a superhuman level; Autonomous vehicles, where RL can be used to train self-driving
cars to make decisions [5] such as when to change lanes or when to stop at a traffic light;
healthcare, where RL can be used to optimize treatment plans for patients and to design
personalized medicine [6,7]; industrial control, where RL can be used to optimize control of
industrial systems [8,9] such as power grids, water treatment plants and factories; energy,
where RL can be used to optimize energy consumption [10], renewable energy systems
and storage; recommendation systems, where RL can be used to optimize personalized
recommendations for users [11], such as products or movies to watch; cybersecurity, where
RL can be used to train agents to detect and respond to cyber attacks [12].

One particularly promising application of RL is in the development of autonomous
racing agents [13,14], which can navigate a racing track and make decisions about how
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to navigate obstacles and other competitors in real time. In most cases, particularly for
testing, simulation environments are used [15,16]. One key advantage of using simulation
environments for the training of RL agents is the ability to easily generate large amounts of
data for training and testing. This is particularly important for tasks such as autonomous
driving [17] and autonomous path planning [18,19] and tracking control [20,21], where
real-world data can be difficult and expensive to collect. Simulation environments also
allow for greater control over the training environment, enabling researchers to easily vary
factors such as the layout of the track or the weather conditions [22].

The development of autonomous racing agents is important for mobile robotics be-
cause it presents a challenging problem that requires the integration of many different
skills, including perception, control, path planning [23] and decision-making. Autonomous
racing involves navigating through a dynamic, unstructured environment at high speeds
while avoiding obstacles, moving over irregular terrain [24,25] and competing against
other agents. Solving this problem requires the development of advanced algorithms for
perception, control and decision-making, as well as the ability to process large amounts
of data in real time. Additionally, the use of simulation environments allows for the safe
and efficient testing of these agents in crowded environments [19] or partially unknown
environments [26], which is important when working with mobile robots. The development
of autonomous racing agents can also lead to the development of more capable mobile
robots that can be used in a variety of different applications, such as search and rescue,
delivery and other tasks. The development of autonomous racing agents can also lead to
important breakthroughs in the field of robotics, as the challenges that need to be overcome
for autonomous racing are similar to those that need to be overcome for other mobile
robotic applications. In addition, autonomous racing can serve as a test bed for various
technologies, such as sensors, cameras, lidars and other technologies that can be used in
mobile robotics [27,28]. These technologies are then further improved to meet the demands
of autonomous racing and then can be used in other mobile robotic applications.

In this paper, we investigate the the Unity ML-Agents toolkit [29], a widely used
platform for training intelligent agents using RL algorithms, to train kart agents to navigate
a racing track. The Unity engine [30] provides a rich and realistic simulation environment
that allows for the development and testing of intelligent agents in a wide range of scenarios.
By training kart agents to navigate a racing track using RL algorithms, we aim to identify
the most effective approach for training autonomous racing agents. The novelty of this
paper is that it explores the use of the Unity ML-Agents toolkit to train intelligent agents to
navigate a racing track in a simulated environment using RL algorithms.

The paper contributes to the field by comparing the performance of several RL al-
gorithms, including Multi-Agent Proximal Policy Optimization (MA-PPO) and POCA
(Parallel Online Continuous Arcing), in training intelligent agents to navigate a racing track
in a simulated environment. Additionally, the paper proposes the use of behavioral cloning
as a pre-training condition with the default PPO algorithm to assist the model in learning
the required behavior and to improve the performance of intelligent agents for solving the
racing task. The paper also provides insight into the capabilities and limitations of different
RL algorithms and can inform the development of more effective and efficient approaches
for training intelligent agents in simulated environments. Our results provide insight into
the relative strengths and weaknesses of different RL approaches and contribute to the
growing body of literature on the use of RL algorithms for training intelligent agents in
simulated environments [31,32].

2. State of the Art Review

There have been numerous advances in reinforcement learning algorithms for training
intelligent agents to perform tasks in simulated environments [33], such as using the
Unity engine [34]. One example is the use of deep RL, which combines the use of deep
neural networks with RL algorithms to enable the learning of complex tasks from high-
dimensional sensory input [35]. This approach has been applied to a range of tasks in
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simulated environments, including the training of autonomous vehicles to navigate roads
and traffic [36].

Another notable development in RL for simulation environments is the use of multi-
agent RL algorithms, which enable the training of multiple agents to interact and learn from
one another in a shared environment [37]. This has the potential to enable the development
of more complex and realistic simulations, as well as to facilitate the training of agents
to perform collaborative tasks. In addition, there has been a growing interest in the use
of RL algorithms for training autonomous racing agents to navigate tracks in simulation
environments [38]. These approaches often involve the use of actor–critic algorithms, which
learn to predict the value of different actions in a given state and use this information to
guide the selection of actions [39]. In another paper, the authors [40] extend the Generative
Adversarial Imitation Learning (GAIL) approach of Reinforcement learning (which uses
human-provided inputs) to solve shortcomings when training several agents. They propose
parameters sharing GAIL which proves superior to GAIL in interacting stably in a multi-
agent environment. In the paper [41], the author presents an RL-based approach where
multiple agents cooperate and coordinate their actions in a simulated traffic environment.
The author uses a deep RL to train said agents to improve and optimize the actions made
based on actions of other agents in the environment. The author proposes a reward function
that takes into consideration not only the performance of each agent, but additionally the
total performance of the whole system. The author also introduces a mechanism for the
agents to communicate and share information of the actions performed in certain conditions
and what results that leads to. Temporal information and historical data can also be used to
train agents to traverse roads and tracks. In the paper [42], the authors used Convolutional
Neural Networks (CNN) to extract features from the road, after which an LSTM (long short
term memory) network is used to choose an action based on historical data of different
actions taken based on different features extracted. The approach was tested on the open
racing car simulator and has been able to mimic human decisions with a relatively high
degree of accuracy.

Some approaches use both real-world and simulated environments to train and im-
prove models in autonomous driving environments [43]. Deep and traditional RL-based
models can be trained on simulated agents, after which the models are fine tuned in real-
world environments where the model is fine tuned to perform more in line with what is
expected [44]. The authors of [45] suggest a comprehensive learning approach for self-
driving systems which utilizes neural networks to approximate suitable motor commands
from sensory input. The authors tackle the issue of returning a car to its designated lane
when it deviates off course by gathering recovery data based on the distance from a pre-
ferred track while conducting a road test using a simulator. The proposed method consists
of three phases: firstly, data are gathered by means of a path-following module during a
hundred laps of driving; secondly, a neural driving module is trained using these data to
generate driving behavior, such as adjusting the accelerator, brake and steering based on a
particular threshold; finally, the neural driving module is re-trained using data collected
from the path-following module during another hundred laps of driving. The efficacy of
the proposed approach is assessed by comparing the average distance from the nearest
waypoint link and the average distance traveled per lap across datasets with no recovery,
random recovery and the proposed method with recovery. The findings demonstrate that
the model based on the proposed method performed well and demonstrated a greater focus
on the road as opposed to unrelated objects, across both trained and untrained courses and
various weather conditions.

We compare the discussed studies based on their application domain, reinforcement
learning algorithm used and performance metrics in Table 1.
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Table 1. Comparison of studies based on application domain, reinforcement learning algorithms and
performance metrics.

Study Application Domain RL Algorithm Performance Metrics

[33] virtual vehicle
simulation PPO and BC

torque, steering,
acceleration, rapidity,
revolutions per minute
(RPM) and gear number

[35] game playing deep Q-learning with
experience replay win rate

[36] autonomous driving - autonomy
[37] robotics MADDPG communication success

[38] autonomous driving soft actor–critic and
rainbow DQN

angle, track position, speed,
wheel speeds, RPM

[39] pole balancing
associative search element
(ASE) and adaptive critic
element (ACE)

score

[40] autonomous driving
Parameter Sharing
Generative Adversarial
Imitation Learning (GAIL)

RMSE

[41] autonomous driving DQN successful intersection
crossings

[42] autonomous driving DQN driving decisions
[43] robotics DQN distance run

[44] robotics
A3C (Asynchronous
Advantage Actor–Critic),
PPO

OpenAI Gym benchmark
metrics

[45] autonomous driving - distance travelled

The state of the art in RL algorithms for simulation environments continues to evolve,
with ongoing research focused on developing more efficient and effective approaches for
training intelligent agents to perform a wide range of tasks. RL algorithms have been
increasingly used to train agents to perform tasks in simulated environments, such as the
Unity engine. Deep RL, which combines deep neural networks with RL algorithms, has
been used to learn complex tasks from high-dimensional sensory input, such as training
autonomous vehicles to navigate roads and traffic. Multi-agent RL algorithms have also
been developed, allowing the training of multiple agents to interact and learn from one
another in a shared environment. These have potential for the development of more
complex and realistic simulations, as well as the training of agents to perform collaborative
tasks. RL approaches have also been used to train autonomous racing agents to navigate
tracks in simulation environments using actor–critic algorithms and to train multiple agents
to cooperate and coordinate actions in a simulated traffic environment. CNNs and LSTMs
have been used to extract features from the road and historical data to choose actions for
autonomous driving. Some approaches use both real-world and simulated environments
to train and fine tune models in autonomous driving environments.

3. Materials and Methods
3.1. Reinforcement Learning for Autonomous Cart Racing

Reinforcement learning (RL) is a learning framework where an agent learns to make
decisions by interacting with an environment. The agent’s goal is to maximize the expected
cumulative reward over time. Autonomous cart racing is a task where multiple agents,
represented by autonomous carts, navigate through a track while competing against each
other to reach the finish line as fast as possible. A mathematical definition of RL for this
task can be defined as follows:

Let there be a set of agents A = a1, a2, . . . , an, where n is the total number of agents.
Each agent ai is an autonomous cart that interacts with the track environment in a sequence
of discrete time steps t = 1, 2, . . . , T. At each time step t, each agent ai takes an action
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ai,t from a set of actions Ai, which include acceleration, braking and steering and the
environment transitions to a new state st+1 and provides each agent with a scalar reward
ri,t. The agent’s goal is to learn a policy πi(ai,t|st), which is a probability distribution over
actions given the current state, that maximizes the expected cumulative reward over time,
also known as the return, defined as:

J(πi) = Eπi

[
∑ t = 0T−1γtri,t

]
(1)

where γ ∈ [0, 1] is a discount factor that determines the importance of future rewards
and ri,t is the reward associated with reaching the finish line as fast as possible, avoiding
collisions and penalties. This can also be defined by considering the state value function
Vπi (st) which represents the expected time to reach the finish line starting from state st and
following policy πi:

Vπi (st) = Eπi

[
∑ k = 0T−t−1γkri,t+k

∣∣∣st] (2)

and the action-value function Qπi (st, ai,t) which represents the expected time to reach the
finish line starting from state st, taking action ai,t and following policy πi:

Qπi (st, ai,t) = Eπi

[
∑ k = 0T−t−1γkri,t+k

∣∣∣st, ai,t] (3)

The objective of RL for multiple agents in autonomous cart racing is for each agent ai
to learn a policy πi that maximizes its own expected time to reach the finish line as fast as
possible while avoiding collisions and penalties.

3.2. Test Environment

The simulation/test environment was chosen to be the Unity game engine. The exper-
iments conducted for this project used a publicly available environment (repository name
https://github.com/jaredbest/unity-ai-racing-karts-ml-agents accessed on 8 April 2023).
This environment includes a racing track as well as the karts/agents. There are 24 agents in
total. Multiple agents are used to speed up training. Agents are independent of each other,
meaning their training occurs independently. An illustration of the environment can be
seen below in Figure 1.

Figure 1. Illustration of the Unity environment used to test.

The environment also includes kart models that are able to traverse the track. There
are 24 such karts and they are used as the agents in our experiments. There are three ways
by which the agents can be controlled, one is through the usage of ML-agents, by which
the ML-agent’s so-called “brain” is used to control the agents. This is the default so-called

https://github.com/jaredbest/unity-ai-racing-karts-ml-agents
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“behavior type”. The second option is the “inference only” behavior type, with which the
agents use an already trained network to control the agents. The final behavior type is
called “heuristic only”; with it, a user controls the agent using pre-specified keys. All three
types are used during our experimentation. The 24 mentioned karts/agents can be seen in
Figure 2.

Figure 2. Agents for training.

The second part of the experiments included adding obstacles on the track to see if
it is possible to train agents that can both traverse the track as well as avoid all obstacles.
The obstacles used are simple round roadblocks. They are placed randomly along the track.
Their positions will change for some of the experiments to showcase the robustness of
trained models. Some of the obstacles can be seen in Figure 3.

Figure 3. A snapshot of some of the randomly placed obstacles.

3.3. Algorithms

In this paper two main algorithms are used, with some modifications of each to
train our agents. The two algorithms are the well-known Proximal Policy Optimization
(PPO) [46] and POCA [47] algorithms. Those algorithms are used as they are available
in the ML-agents framework used. Both of the algorithms support multi-agent train-
ing. Training multiple independent agent speeds up training and makes good use of
distributed computing.
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3.3.1. MA-PPO Algorithm

The MA-PPO (Multi-Agent Proximal Policy Optimization) algorithm is a variant of
the PPO (Proximal Policy Optimization) algorithm that is specifically designed for training
multiple agents in a shared environment. PPO is a reinforcement learning algorithm that
uses a combination of value and policy gradients to optimize the performance of an agent
in an environment. It is known for being stable and relatively easy to implement compared
to other reinforcement learning algorithms. The MA-PPO algorithm extends the standard
PPO algorithm to work with multiple agents, allowing them to learn and interact with each
other within a shared environment. This can be useful for training agents to coordinate their
actions, such as in multi-agent games or simulations, including for the task of autonomous
cart racing. The MA-PPO algorithm can be defined as follows:

Let there be a set of agents A = a1, a2, . . . , an, where n is the total number of agents.
Each agent ai has a policy πi(ai,t|st; θi) that is parameterized via θi, where πi is a probability
distribution over actions given the current state. The objective of the MA-PPO algorithm is
to find the policy parameter θi that maximizes the expected cumulative reward over time,
also known as the return, defined as:

J(πi) = Eπi

[
∑ t = 0T−1γtri,t

]
(4)

where γ ∈ [0, 1] is a discount factor that determines the importance of future rewards.
The MA-PPO algorithm updates the policy parameters θi by maximizing a surrogate

objective function LMA−PPO(θi) defined as:

LMA−PPO(θi) = Eτ∼πi

[
min

(
rt(θi)

πi(at|st; θi)

πi(at|st; θold
i )

, clip(rt(θi), 1− ε, 1 + ε)

)]
(5)

where τ is the trajectory of the agent, rt(θi) is the likelihood ratio between the new and old
policy, πi(at|st; θi) and πi(at|st; θold

i ), respectively, and ε is a hyperparameter that controls
the step size.

The MA-PPO algorithm repeatedly updates the policy parameters θi by performing
gradient ascent on the surrogate objective function LMA−PPO(θi) using mini-batch of trajec-
tories sampled from the current policy. In summary, MA-PPO is a variant of PPO that can
be used to train multiple agents simultaneously for the task of autonomous cart racing by
updating the policy parameters θi with the goal of maximizing the expected cumulative
reward over time. The MA-PPO algorithm has been shown to be effective in a variety
of environments, including multi-agent games and cooperative tasks [48]. A simplified
diagram of how the PPO algorithm works can be seen in Figure 4.

Figure 4. MAPPO workflow diagram.
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The pseudocode of the PPO can be seen in Algorithm 1:

Algorithm 1 MA-PPO algorithm

1: Initialize a policy network π and a value network V
2: Initialize a set of parameters θ for the policy and value networks
3: Initialize a set of old parameters θold for the policy and value networks
4: Initialize a set of trajectories τ = {}
5: for each iteration do
6: Reset the environment and get initial state s0
7: for each time step do
8: Sample an action at from the current policy πθ

9: Execute action at and observe reward rt and new state st+1
10: Store the transition tuple (st, at, rt, st+1) in τ
11: Update the value network: Vθ(st)← Vθ(st) + α(rt + γVθ(st+1)−Vθ(st))
12: end for
13: Calculate the advantages using the GAE (τ ← compute_advantages(τ, γ, λ))
14: Normalize the advantages
15: Update the old policy parameters: θold ← θ
16: Optimize the policy using the PPO objective: θ ← optimize_policy(τ, θ, θold)
17: end for

3.3.2. POCA Algorithm

POCA (Parallel Online Continuous Arcing) [49] is a boosting algorithm that differs
from traditional arcing algorithms such as Adaboost. While traditional arcing algorithms
construct an ensemble by adding and training weak learners sequentially on a round-by-
round basis, POCA performs training over an entire ensemble continuously and in parallel.
This allows POCA to adapt rapidly to non-stationary environments, as members of the
ensemble are not frozen after an initial learning period. Additionally, POCA does not
require the explicit storage of exemplar statistics, making it capable of online learning. As a
result, POCA is a boosting algorithm that trains an ensemble of weak learners in parallel
and continuously, enabling fast adaptation to non-stationary environments and online
learning capabilities. In Figure 5, a simplified view of the way POCA algorithm works can
be seen. The pseudocode can be seen in Algorithm 2.

Figure 5. POCA diagram.
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Algorithm 2 POCA

1: Initialize a set of policies π1, π2, . . . , πN for each agent
2: Initialize a set of value functions V1, V2, . . . , VN for each agent
3: Initialize a set of parameters θ1, θ2, . . . , θN for the policy and value functions of each

agent
4: Initialize a set of old parameters θold,1, θold,2, . . . , θold,N for the policy and value functions

of each agent
5: Initialize a set of trajectories τ = {}
6: for each iteration do
7: Reset the environment and get initial state s0
8: for each time step do
9: Sample actions a1,t, a2,t, . . . , aN,t from the current policies π1,θ1 , π2,θ2 , . . . , πN,θN

10: Execute actions a1,t, a2,t, . . . , aN,t and observe rewards r1,t, r2,t, . . . , rN,t and new
state st+1

11: Store the transition tuples (st, a1,t, a2,t, . . . , aN,t, r1,t, r2,t, . . . , rN,t, st+1) in τ
12: Update the value functions: Vi,θi (st)← Vi,θi (st) + α(ri,t + γVi,θi (st+1)−Vi,θi (st))

for all agents i
13: end for
14: Calculate the advantages using the GAE (τ ← compute_advantages(τ, γ, λ))
15: Normalize the advantages
16: Update the old policy parameters: θold,i ← θi for all agents i
17: Optimize the policies using the MPOCA objective: θi ← optimize_policy(τ, θi, θold,i)

for all agents i
18: end for

3.4. Reward Structure of the Implementation

The reward structure of the environment was not edited except for the addition of
punishment/negative reward in the case of the added obstacles. The list below explains,
without going into detail, how the episodes are portrayed and when rewards or punish-
ments are added.

1. Agents begin at the starting position where the ML-agents’ ‘brain’ starts listening to
input and provides actions for agents to perform.

2. Whenever an agent passes through a checkpoint, a reward is added to the agent’s
total that equals the 0.5/n, n here being the total number of checkpoints.

3. If the time to reach the next checkpoint exceeds 30 s, the episode ends, the agent
receives a punishment of −1 and the agent respawns at the start of the track.

4. Whenever the agent reaches the final checkpoint, a reward of 0.5 is given, the episode
ends and the agent respawns at the starting position.

5. To incentivize speed, agents are given a small −0.001 reward (punishment).
6. In the case of the added obstacles version of the environment, a negative reward of

−0.1 is given every time a collision occurs between the agent and any of the obstacles.

This can also be summarized in the pseudocode available in Algorithm 3.

3.5. Agents Sequence Diagram

The sequence diagram in Figure 6 shows how the ML-agent clients use the ML-
Agents Server to understand the environment. If the agent successfully navigates past
checkpoints and obstacles with Action(At), it receives a Reward(Rt) from the ML-Agents
server. However, if the agent is not efficient, it receives a Punishment(Pt) and returns to the
server with a State(Sn) to receive the next Action(At+1) and Reward(Rt+1). This process
repeats multiple times, with the agent receiving different Action(At+n), Reward(Rt+n),
Punishment(Rt+n) and State(St+n).
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Algorithm 3 Reward structure

1: Input: kart agents, track, obstacles (optional)
2: Output: trained kart agents
3: Initialize: agents at starting position, total reward = 0, total number of checkpoints = n
4: repeat
5: Begin episode:
6: while agent has not reached final checkpoint do
7: agent performs actions based on input and brain’s output
8: if agent passes through checkpoint then
9: total reward += 0.5/n

10: end if
11: if time to reach next checkpoint > 30 s then
12: end episode
13: agent receives punishment of −1
14: agents respawn at start of track
15: end if
16: if agent collides with obstacles (added version only) then
17: total reward += −0.1
18: end if
19: agent receives punishment of -0.001 for every time step
20: end while
21: End episode:
22: agent receives reward of 0.5
23: agents respawn at start of track
24: until agents are sufficiently trained

Figure 6. ML-agent Sequence Diagram.
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4. Experimental Evaluation and Results
4.1. Settings

The evaluation of the different experiments carried out is carried out by comparing
the mean reward for all karts in the final step. The results of the rewards of the experiments
carried out with and without obstacles should not be directly compared, as having obstacles
slows down and thus adds a significant negative reward to agents. Thus, we first compare
different algorithms using the default environment where obstacles were not added and
select the algorithm/model with the highest mean reward. For experiments that include
obstacles, the best algorithm from the previous steps is used to train the agents. Experiments
carried out in the environment with added obstacles on the track are evaluated separately.

The experiments shall be divided into two main sections and further subsections.
These are listed below.

• Environment without obstacles.

– Default models.

* Default PPO algorithm configurations.
* Default POCA algorithm configurations.
* ML-agents default, which also uses the PPO algorithm.
* Adding RNN to the best model from the default models.

• Environment with obstacles.

– Default PPO algorithm.
– Adding behavioral cloning as a pre-training condition with the default PPO algorithm

Before going into the results, we must first look at the tools used to perform those
experiments. In Table 2, both the hardware and software used can be seen.

Table 2. Hardware and software used.

Hardware GPU Pipelines Video
Memory

Memory
Type

Nvidia 1650
ti 1024 4 GB GDDR6

Software Unity Editor
Version

ML-Agents
Package
Version

Pytorch
Version

CUDA
Version

Python
Version

2020.3.39f1 0.29.0 1.8.0 + cu111 11.4 3.8.0

4.2. Results
4.2.1. Environment without Obstacles

First we train and compare different models in the default environment without
obstacles. This will be divided into two, the default models and the best model chosen with
added RNA as (1) default models and (2) default model of the ML-agents.

First, the default ML-agents model was experimented with. The results were not
satisfactory as the agents were unable to navigate the track easily and did not produce
decent rewards or loss of value. The model yielded a mean cumulative reward of −1.582
and a value loss of 0.006. The plots of the model can be seen in Figure 7. This model uses
the configurations seen in Table 3.
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(a) (b)

Figure 7. Default ML-agents model result plots: (a) reward value, (b) loss value.

Table 3. ML-agent’s default model configurations.

Parameter Value

batch_size 1024
buffer_size 10,240

learning_rate 0.0003
beta 0.005

epsilon 0.2
lambda 0.95

num_epoch 30
learning_rate_schedule linear

4.2.2. Default PPO Model (Also Environment’s Default)

The default PPO model was experimented with and yielded the best results with a
mean cumulative reward and value loss of 0.761 and 0.0013, respectively. The plots of the
model can be seen in Figure 8. This model uses the configurations seen in Table 4.

(a) (b)

Figure 8. Default PPO result plots: (a) reward value, (b) loss value.
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Table 4. Configurations of the default PPO model

Parameter Value

batch_size 120
buffer_size 12,000

learning_rate 0.0003
beta 0.001

epsilon 0.2
lambda 0.95

num_epoch 30
learning_rate_schedule linear

4.2.3. Default POCA Model

The default POCA model achieved decent results with a cumulative reward and value
loss of −0.372 and 0.002, respectively. The plots of the model can be seen in Figure 9. This
model uses the configurations seen in Table 4.

(a) (b)

Figure 9. Default POCA model result plots: (a) reward value, (b) loss value.

Adding memory or RNN blocks to the model was attempted with the results shown
below. The cumulative reward degraded with the number of steps and did not reach
satisfactory results after the set number of steps with a final reward of −2.411 and a loss of
0.082. The plots of the model can be seen in Figure 10. This model uses the configurations
seen in Table 5.

(a) (b)

Figure 10. Adding RNN to the default PPO model: (a) reward value, (b) loss value.
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Table 5. PPO model with added memory.

Parameter Value

batch_size 1024
buffer_size 10,240

learning_rate 0.0003
beta 0.005

epsilon 0.2
lambda 0.95

num_epoch 30
learning_rate_schedule linear

memory_size 128
sequence_length 64

The next set of experiments will include an environment where obstacles were placed
in random positions, where agents would be required to traverse the track and avoid any
obstacles in their way.

4.2.4. Default PPO Model

The default PPO was retrained using an environment for which obstacles were
added.The results were not satisfactory, with a final mean reward of −2.574 and a loss
value of 0.018. The plots of the model can be seen in Figure 11. The configurations used
can be found in Table 4.

(a) (b)

Figure 11. Default PPO (obstacle environment) result plots: (a) reward value, (b) loss value.

The default PPO was retrained using an environment in which obstacles were added.
Behavioral cloning was used here as a pre-training condition with a strength hyperparame-
ter set to 0.1. The results were not satisfactory with a final mean reward of −2.547 and a
loss value of 0.0042. The plots of the model can be seen in Figure 12. The configurations
used can be found in Table 4.
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(a) (b)

Figure 12. Default PPO (obstacle environment) result plots with behavioral cloning (strength of 0.1):
(a) reward value, (b) loss value.

After adding behavioral cloning as a pre-training condition with a strength hyper-
parameter set to 1.0, agents were able to learn the desired behavior. The results were not
satisfactory, with a final mean reward of 0.0681 and 0.0011. Plots of the model can be seen
in Figure 13. The configurations used can be found in Table 4.

(a) (b)

Figure 13. Default PPO (obstacle environment) result plots with behavioral cloning (strength of 1.0):
(a) reward value, (b) loss value.

4.2.5. Comparing the Final Model on Different Obstacle Positions

As a robustness test, the final model trained on the obstacles that includes the obsta-
cles (17 obstacles in total) was tested on three different random configurations that are
listed below:

1. First configuration: the figure shows the configuration that the model was trained
with Figure 14a.

2. Second configuration: a configuration in which obstacles were placed in different
random positions, as can be seen in Figure 14b.

3. Third configuration: another configuration in which obstacles were placed again in
different random positions and this can be seen in Figure 14c.
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(a) (b) (c)

Figure 14. Configurations: (a) first, (b) second, (c) third.

To compare the model with the positions of the aforementioned obstacles, we run the
model in inference mode for one minute per configuration. The metric used here is simply
the number of times the agent collides with an obstacle. It is important to note here that the
tests that follow were carried out on a single agent (all other agents were disabled). This is
done for better interpretability and for demonstration purposes. The results are presented
in Figure 15.

Figure 15. Comparison of different obstacle configurations.

4.2.6. Comparing Model Sizes

To compare the size of the models, we use the actual memory size of each model in
kilobytes. These do represent the sizes of the models directly as the file format used to store
the models is not compressed and is stored as is. The comparison of the different model
sizes can be seen in Figure 16. Every model that uses the default PPO hyperparameters has
the same size (hence why we only have four bars).
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Figure 16. Comparison of model sizes.

5. Discussion and Future Research
5.1. Evaluation of Findings

The results of our experiments confirm the usefulness of behavioral cloning for im-
proving the performance of intelligent agents for racing tasks. Behavioral cloning is a
technique where an agent is trained to mimic the behavior of an expert. In the context of
this paper, it involves training an agent using a dataset of expert demonstrations where
a human-controlled kart navigates the racing track and avoids obstacles. Adding behav-
ioral cloning as a pre-training condition with the default PPO algorithm can improve the
performance of intelligent agents for solving the racing task in several ways.

• First, pre-training with behavioral cloning can help to initialize the agent’s policy
network with a set of good initial weights. This can help to improve the convergence
speed of the RL algorithm during training, allowing the agent to learn faster and
achieve better performance.

• Secondly, behavioral cloning can help to improve the agent’s ability to generalize to
new situations such as different obstacle configurations. By training the agent on a
dataset of expert demonstrations that includes a variety of different scenarios and
obstacle configurations (see Figure 15), the agent can learn to recognize and respond
appropriately to different situations it may encounter during the racing task. This can
help to improve the agent’s overall performance and reduce the likelihood of it getting
stuck in local optima during training.

• Finally, adding behavioral cloning as a pre-training condition with the default PPO
algorithm can improve the stability and robustness of the agent’s policy network.
By training the agent to mimic the behavior of an expert, the agent can learn to avoid
certain mistakes or suboptimal behaviors that may arise during the RL training process.
This can help to improve the overall quality of the agent’s policy network and make it
more resistant to noise and other sources of variability in the environment.

In summary, adding behavioral cloning as a pre-training condition with the default
PPO algorithm can improve the performance of intelligent agents for solving the cart racing
task by improving the initialization of the policy network, improving the agent’s ability to
generalize to new obstacle configurations and improving the stability and robustness of
the model.
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5.2. Network Simplification Using Pruning Techniques

Network pruning techniques can be used to simplify deep networks used for training
ML-agents using RL, which can help to reduce the number of parameters and memory
usage [50–52]. Deep neural networks typically consist of millions of trainable parameters,
which can make them computationally expensive and difficult to train. Network pruning
techniques involve removing unnecessary connections or neurons from a network, which
can reduce the number of parameters and improve the efficiency of the network. There are
several different network pruning techniques that can be used, including weight pruning,
neuron pruning and filter pruning. Weight pruning involves removing small-weight
connections from the network, while neuron pruning involves removing entire neurons
that are not contributing significantly to the network’s output. Filter pruning involves
removing entire filters from convolutional layers that are not contributing significantly
to the network’s output. By using network pruning techniques, it is possible to simplify
deep networks used for training ML-agents using RL, which can reduce the number of
parameters and memory usage. This can make the networks more efficient and easier to
train, which can ultimately lead to better performance. Additionally, network pruning
can help to reduce the risk of overfitting, as it can prevent the network from memorizing
noise in the training data. Overall, network pruning techniques can be a useful tool for
simplifying deep networks used for training ML-agents using RL. By reducing the number
of parameters and memory usage, network pruning can make the networks more efficient
and easier to train, which can ultimately lead to better performance.

5.3. Possible Applications

The use of the Unity ML-Agents toolkit to train intelligent agents to navigate a racing
track in a simulated environment using RL algorithms has several potential real-world
applications. One possible application is in the development of autonomous vehicles,
where RL algorithms can be used to train agents to navigate complex environments and
avoid obstacles. The use of a simulated environment allows for safe and efficient testing
of autonomous vehicle systems before they are deployed on real roads. Another potential
application is in the development of robotics, where RL algorithms can be used to train
robots to perform complex tasks in a variety of environments. For example, robots could be
trained to navigate through cluttered environments, such as warehouses or factories, to per-
form tasks such as picking and packing items. The use of RL algorithms to train intelligent
agents in simulated environments can also have applications in the field of gaming. Game
developers can use these algorithms to create more intelligent and realistic non-player
characters (NPCs) [53,54] that can interact with players in more complex ways. Overall,
the use of the Unity ML-Agents toolkit to train intelligent agents using RL algorithms has
the potential to revolutionize several industries, including autonomous vehicles, robotics
and gaming.

5.4. Future Research

There are many areas where this research could be expanded on. Our research has been
very specific to, as is clear to, one environment and to one framework (ML-agents) which
has a limited number of algorithms to choose from. To summarize areas of expansion
for future research, we list them below and go into some detail concerning what each
would mean.

• Expansion of the algorithms used and hyperparameters experimented with. As men-
tioned above, ML-agents only provide a small subset of algorithms to choose from.
It does simplify experimentation and makes it more convenient for any researcher
while being very user-friendly with great documentation and a large community.
However, it does not explore the large number of algorithms available. It is a great
tool/framework, but does have limitations.

• Environment augmentation. There is little research in this particular area. Laskin
et al. [55] proposed the enhancement of input data that agents receive, but do not
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exactly go into the enhancement of the environment. A proposed methodology
would include either different random changes to the environment which would
prevent the agents from overfitting into the environment they are trained in (this
could even be totally different environments trained on). Agents find optimal paths
to complete the tasks, making it harder to generalize to different environments or
setups. Augmentation of this kind can help generalize the model so that different
tracks are completed under different conditions. Examples of such an augmentation
are given below:

– Different escape positions for agents during training. Instead of respawning in
the same area, agents can respawn and restart episodes in random positions in
random orientations. This could prevent overfitting.

– Changing the positions of the obstacles during training. As can be seen in the
results, different positions of obstacles (or a larger number of such obstacles) than
what it has been trained on make it more difficult for the agents to avoid the
said obstacles. This would also decrease overfitting and help generalize to any
position of an obstacle.

– Using completely different environments during training. This would be the
most challenging task, as this would require much more robust and much larger
models. This, however, would almost certainly prevent any overfitting to any
one environment.

6. Conclusions

In this paper, we explore the use of the Unity ML-Agents toolkit to train kart agents
to navigate a racing track in a simulated environment using reinforcement learning (RL)
algorithms. We have compared the performance of several different RL algorithms and
configurations on the task of training kart agents to successfully traverse a racing track
and have identified the most effective approach for training kart agents to navigate a racing
track and avoid obstacles in that track.

In general, our findings have important implications for the design and implemen-
tation of intelligent agents in racing simulations. Our results provide insight into the
capabilities and limitations of different RL algorithms and can inform the development of
more effective and efficient approaches to training intelligent agents in simulated environ-
ments. We draw on a variety of sources, including in our analysis and conclusions.

1. Different models were trained and the results were recorded. The best model turned
out to be the default environment, which uses the PPO algorithm. The model produces
a loss value of 0.0013 and a cumulative reward of 0.761 for the final step.

2. Adding obstacles and retraining using the best algorithm found did not produce
satisfactory results. AI agents were unable to find a policy that results in decent
rewards. The reward and loss at the final step of this model were found to be
−1.720 and 0.0153, respectively. To assist the model in learning the required behavior,
behavioral cloning was used as a pre-training condition. A recording of the desired
behavior was made using physical input from the authors. Using behavioral cloning,
the model was able to achieve satisfactory results where the agents were able to avoid
obstacles and complete the track. The reward and loss for these were 0.0681 and
0.0011, respectively.
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