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Abstract: Video question answering (QA) is a cross-modal task that requires understanding the
video content to answer questions. Current techniques address this challenge by employing stacked
modules, such as attention mechanisms and graph convolutional networks. These methods reason
about the semantics of video features and their interaction with text-based questions, yielding
excellent results. However, these approaches often learn and fuse features representing different
aspects of the video separately, neglecting the intra-interaction and overlooking the latent complex
correlations between the extracted features. Additionally, the stacking of modules introduces a
large number of parameters, making model training more challenging. To address these issues, we
propose a novel multimodal knowledge distillation method that leverages the strengths of knowledge
distillation for model compression and feature enhancement. Specifically, the fused features in the
larger teacher model are distilled into knowledge, which guides the learning of appearance and
motion features in the smaller student model. By incorporating cross-modal information in the early
stages, the appearance and motion features can discover their related and complementary potential
relationships, thus improving the overall model performance. Despite its simplicity, our extensive
experiments on the widely used video QA datasets, MSVD-QA and MSRVTT-QA, demonstrate
clear performance improvements over prior methods. These results validate the effectiveness of the
proposed knowledge distillation approach.

Keywords: video question answering; multimodal fusion; knowledge distillation

1. Introduction

Video question answering (QA) [1] is a research task that evaluates a computer’s
ability to efficiently process video information through question answering. It is similar
to earlier tasks, such as visual question answering (VQA) [2] and text question answering
(TQA) [3]. Video QA has gained significant attention from researchers since its proposal.
In this task, as shown in Figure 1, a video and a set of questions related to the video are
provided, and the machine is expected to analyze the video content and understand the
question content in order to provide accurate answers.

The video QA task presents unique difficulties and challenges that are not encountered
in general QA tasks, placing higher demands on the model. Firstly, the nature of the
complex questions in video QA requires a comprehensive understanding of various aspects
of the question, including the way it is framed, its purpose, and the specific focus of the
video. This complexity necessitates a thorough understanding of all question elements.
Secondly, video processing introduces temporal dynamics that are absent in static images.
For example, in action-based questions such as “What are men doing?”, understanding
the actions often requires analyzing a sequence of frames rather than a single static image.
The machine needs to observe information within each frame, identify targets, analyze
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their relationships, recognize motion features of objects throughout the sequence, and
exhibit reasoning capabilities [4–6]. Additionally, video QA is a cross-modal task that
involves processing information from multiple modalities, including video and textual
questions. Effectively integrating and leveraging information from different modalities to
derive accurate answers poses a significant challenge.

Figure 1. This is an example of video QA. Given a video and a series of questions about the video,
the video QA task requires the machine to give the correct answer after analyzing the video content
and understanding the question semantics.

Although today’s video QA task has received extensive attention from the academic
community compared with the earlier visual QA and text QA, its research status still has
many deficiencies. With respect to feature extraction, studies always used the pretraining
model to extract the appearance and motion features to represent the video, while using the
word vectors to represent the text [1,4,6]. These are then input into two separated streams
to obtain the latent representation which is finally fused into a visual representation.
In the interaction and fusion between video and problem text, recent works have mainly
used attention [7,8], graph convolution for feature enhancement and object-relational
reasoning [5,6,9–11]. These methods can effectively extract the important frames and
objects of interest in the video, and reason with the guidance of the question. However,
they lack interaction and ignore the latent complex correlation between the appearance and
motion of the video.

This paper introduces a novel video QA model that addresses the limitations men-
tioned earlier. The proposed model enhances the fusion between the appearance features
and motion features while also compressing the overall model size using knowledge dis-
tillation techniques [12]. The approach starts by training a teacher model, which serves
as a reference model. Based on the knowledge learned by the teacher model, a relatively
simpler student model is constructed and trained to improve the overall performance. This
approach reduces the number of trainable parameters in the model, making its volume less
while maintaining or improving its performance. Importantly, the proposed model focuses
on capturing the latent complex correlations between the appearance and motion of the
video, which strengthens the feature fusion process. The knowledge obtained from the
multimodal fusion in the teacher model is distilled and used for uni-modal learning in the
student model. As a result, the student model can leverage rich multimodal information
during the process of uni-modal training. This early-stage multimodal interaction enables
improved fusion effects between the appearance and motion modalities. In summary, the
proposed model not only compresses the overall model size but also emphasizes the latent
complex correlations between appearance and motion in videos, leading to enhanced fea-
ture fusion. By leveraging knowledge distillation and a student-teacher model framework,
the proposed approach achieves improved performance while reducing model complexity.
The main contributions of our work can be summarized as follows:

(1) Teacher-student framework: We introduce a teacher-student framework leveraging
knowledge distillation techniques. This framework allows for the training of a simpler
student model in a more convenient and efficient manner. By distilling the knowledge
learned by the teacher model, the student model benefits from the expertise while
maintaining a reduced model size.
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(2) Multimodal knowledge distillation: We propose a novel approach to multimodal
knowledge distillation. This technique enables the student model to acquire rich
multimodal information during the training process of individual modalities. By
incorporating multimodal interactions early on, the fusion of appearance and motion
features is significantly enhanced.

(3) Competitive results on MSVD-QA and MSRVTT-QA: Through extensive experiments,
we demonstrate the effectiveness of our proposed model on the popular MSVD-QA
and MSRVTT-QA datasets. Our model achieves competitive performance compared
to existing approaches, showcasing its capabilities in video question answering tasks.

2. Related Work

The video QA task was introduced later than the general QA task and its develop-
ment has been relatively slow due to the challenges in collecting video QA data and the
complexity of video semantic analysis. However, with the continuous construction and
improvement of datasets and the advancements in deep learning technology, research on
video QA tasks has made significant progress. Various modeling methods have emerged,
attracting significant attention from the academic community. The video QA datasets
primarily fall into three categories: film and television, real-life, and generated datasets.
Film and television datasets comprise video clips from movies and TV shows, including
datasets such as MovieQA [13] and TVQA [14]. Real-life datasets consist of videos that
capture daily life scenes, making them more applicable in practical scenarios. An example
of such a dataset is LifeQA [15]. Generated datasets involve automatically generating
videos with different virtual geometric objects. For instance, the SVQA dataset [16] contains
videos generated using the Unity3D tool. Video QA datasets take various forms, including
video retrieval, selection, filling in the blanks, and other methods. The answers in these
datasets are generally predicted through classification techniques.

In recent years, research on the video QA task has been advancing steadily, and a
common solution can be abstracted into a basic video QA framework. This framework
comprises video feature extraction, question feature extraction, multimodal fusion, and final
answer generation. Video feature extraction typically involves extracting static appearance
features and dynamic motion features. For static appearance feature extraction, a common
approach is to utilize pretrained models on ImageNet [17]. Network models such as VGG
and ResNet [18] are commonly employed for this purpose. Dynamic motion features are
typically extracted using pretrained models trained on the Kinetics dataset [19]. The C3D
model [20] is a popular choice for extracting dynamic motion features. Subsequent research
has sought to enhance the performance of the model by refining each module. Various
improvements and optimizations have been explored by modifying the details of each
component in the video QA framework.

For the extraction of textual features, pretrained word vectors are primarily utilized
to encode each word, representing them as fixed-length vectors. Common techniques
include Word2Vec, Glove [21], and BiLSTM. In the context of video QA tasks, the research
has focused on the interaction and fusion of video appearance features, video motion
features, and question text features. Various implementation methods have emerged,
such as attention mechanisms, graph convolution networks, and more. Jang et al. [22]
employed attention in both temporal and spatial dimensions to fuse video and question fea-
tures, identifying crucial areas in key video frames and classifying their resulting features.
Kim et al. [23] introduced memory mechanisms to enable the model to learn deeper rep-
resentations and the meanings of features. Xu et al. [1] proposed an attention memory
unit (AMU) based on dynamic memory network (DMN) principles, continually improving
video feature attention through text-based cues. Gao et al. [4] considered the correlation
between appearance and motion features, proposing the co-memory network method
and utilizing dynamic attention to learn video features. Zhang et al. [7] explored con-
volutional approaches instead of recurrent neural networks and proposed hierarchical
convolutional self-attention networks (HCSA), incorporating attention mechanisms at each
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stage to continuously focus on problem-related information. While these methods primar-
ily employ attention and memory mechanisms to represent learning, they often overlook
object relationships and may have limitations in reasoning. Le et al. [24] introduced the
conditional relationship network (CRN) to model relationships between visual objects, but
it may be less efficient in dealing with multiple object relationships. With the emergence
of graph convolution networks, Wang [5] and others leveraged this approach to perform
object-relationship reasoning in behavior recognition tasks, effectively improving the learn-
ing effects between objects and relationships. Consequently, it has gained widespread
use in video QA tasks. Jiang et al. [9] proposed heterogeneous graph alignment (HGA),
employing fusion alignment features of the problem and video as graph nodes to perform
graph convolution operations and infer relationship representations within and between
modalities using an undirected heterogeneous graph. Huang et al. [10] proposed the
location-aware graph convolution network (LGCN), which combines time embedding and
position embedding and considers the interaction between objects in each frame.

Finally, when generating answers in video QA tasks, the common approach is to
employ classification. Based on the probability distribution of each candidate answer
calculated within a predefined set of possible answers, the cross-entropy loss function is
utilized to compute the loss during training. During validation, the predicted answer is
determined as the one with the highest probability.

3. Materials and Methods

In the video QA task, the goal is to classify the correct answer to a given question
by comprehending both the video content and the question itself. The answer choices are
predefined and form a fixed set of possible answers. To tackle this task, our proposed
approach utilizes a knowledge-distillation-based video QA model. This model acts as an
answer classification model, taking multimodal features, including videos and questions,
as its input.

This paper models the overall framework of the teacher model according to Du-
alVGR [6], which is shown in Figure 2. Based on this foundation, to compress the model
and leverage the abundant multimodal knowledge of a larger model to enhance the fea-
ture learning process of a smaller model, this paper introduces a multimodal knowledge
distillation approach to further enhance model performance. The teacher model and the
student model share the same model structure, with only a slight difference in the number
of graph layers. The teacher-student training structure of this approach is illustrated in
Figure 3. The teacher model consists of two separate stacking modules for the appearance
and motion modalities, which are trained individually. Through experimental adjustments
of parameters, an optimal teacher model is obtained. Subsequently, the student model is
constructed with fewer stacking modules, resulting in a simplified model. The knowledge
distillation process involves transferring the fused visual features from the teacher model
as “soft labels.” These soft labels serve as guidance for the student model’s learning of the
appearance and motion features, respectively.

3.1. Teacher Model
3.1.1. Encoder

In the visual encoder module, capturing both the static spatial features and dynamic
temporal features of the video is essential due to their spatio-temporal nature. To extract
the appearance features, we employ the pretrained model ResNet-101 and process each
video clip using BiLSTM. The resulting static appearance features are denoted as Va. For
the motion features, we utilize the pretrained model ResNeXt-101. The extracted dynamic
motion features are denoted as Vm.

In the text encoder module, we aim to capture the word feature representation of the
question sentence. To achieve this, we utilize the pretrained GloVe word vectors to encode
and represent each word in the question. This process results in obtaining the word feature
of the question, denoted as Qw. Furthermore, to extract both the contextual features of
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words and the semantic features of the entire sentence, we employ two BiLSTMs. One
LSTM focuses on extracting the embedded features of each sentence, denoted as Qe, while
the other LSTM focuses on capturing the semantic features of the sentence, denoted as q.

Figure 2. This is the overall framework of the teacher model, which includes four modules. First, an
encoder extracts and represents the video and question. Then, visual–text interaction achieves the
reasoning between the visual and textual features. The visual fusion is used to fuse the appearance
and motion feature to the visual representation. Finally, answer generation predicts the answer using
a decoder.

Figure 3. Multimodal knowledge distillation architecture. The teacher model with multiple GCN
layers is first trained. Then, its fusion visual feature is used to guide the training of visual features in
the student model, which has just one GCN layer.

3.1.2. Visual–Text Interaction

To emphasize the importance of certain words and downplay the significance of others
in the word embedding of the text, the model incorporates the attention mechanism. This
allows for the optimization of features by assigning attention scores to each word. These
scores are calculated using the embedded feature Qe as weights, and the word features
Qw are then weighted and summed to obtain the overall representation of the question,
denoted as Qatt. The calculation formula is as follows:

α = So f tmax(L2Norm(QeW1)W2) (1)

Qatt = αTQw (2)

where W1 and W2 are learnable parameters.
In a video, there are multiple clips, and, when answering a question, the question

may only pertain to a subset of these clips. The model needs to focus on understanding
these specific clips in order to answer the question accurately, without considering the
entire video. To achieve this, question-guided attention is applied to each clip of the video,
determining the attention score. This allows the model to prioritize certain clips while
appropriately disregarding others. This module follows the same processing steps for both
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the appearance features (a) and motion features (m) of the video, which are uniformly
represented as a/m. The attention score Sa/m for each clip can be calculated as follows:

Sa/m = Sigmoid(Va/mQattWa/m) (3)

where Wa/m are learnable parameters of the appearance and motion features.
To capture the relationships between clips in the video and achieve a deeper feature

representation, this approach draws inspiration from DualVGR [6], which combines the
graph convolution network (GCN) model of GAT (graph attention network) and the
concept of AM-GCN (attribute-matching graph convolutional network) for relational
reasoning. GAT utilizes a multi-head graph convolution (multi-head GCN) strategy and
incorporates an attention mechanism to effectively represent the relationships between
nodes. In the teacher model, multiple layers of graph convolution are used to fully leverage
the information obtained through graph convolution. In contrast, the student model aims
to compress the model and reduce trainable parameters, so it only employs a single layer
of graph convolution during training. Additionally, following the idea of AM-GCN, this
method not only extracts the independent features of appearance and motion, but also
obtains the joint features that fuse motion information into appearance and vice versa.
By applying a loss function constraint, the approach emphasizes the distinction between
independent features and joint features while encouraging similarity among joint features.
This module processes appearance and motion features in a similar manner, which is why
they are collectively represented as a/m.

Firstly, the visual feature Va/m, serving as the input to the graph convolution network,
undergoes multiple iterations of the graph convolution operation to obtain independent
and joint features. The formulas for calculating these features are as follows:

Ga/m
0 = Va/m (4)

Xa/am
i = GCNa/am

i (Ga
i−1, Sa) (5)

Xm/ma
i = GCNm/ma

i (Gm
i−1, Sm) (6)

Ga/m
i = Xa/m

i (7)

where Gi−1 represents the input features of the i-th layer graph convolution, and Xi repre-
sents the output features of the i-th layer graph convolution. The subscript am represents
the joint feature obtained by fusing the appearance information in the appearance, while
the subscript ma represents the joint feature obtained by fusing the appearance information
in the motion. GCNi represents the graph convolution operation at the i-th layer, where i is
less than or equal to g.

In each layer of GCN, the input feature G is passed through k graph convolution heads
for processing, and the results of each head are concatenated. Firstly, the input feature G
is mapped to a dimension of dk using a linear layer, and this mapped feature is denoted
as the visual feature g for further processing by the graph convolution heads. Each gj is
then multiplied by the visual attention score S to obtain the visual feature under attention,
denoted as hj. Additionally, in order to effectively represent the relationships between
video clips, g is transformed into an undirected and fully connected graph g′. The attention
mechanism is utilized to obtain the weights of the relationships between each pair of nodes,
denoted as β j. The formula for obtaining β j is as follows:

g′j = Graph(gj) (8)

β j = So f tmax(ReLU(gjW)) (9)

where Graph represents the operation of constructing a fully connected undirected graph,
and W is a learnable parameter. Then, the feature xj of each segment is obtained by
weighting the relationships between each clip. Finally, the features xj obtained from the
convolution of multiple graph convolution heads are concatenated, resulting in the output
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feature of the layer graph denoted as X. With the above process, we obtain the independent
feature Ca and joint feature Cam of appearance, and the independent feature Cm and joint
feature Cma of motion.

3.1.3. Visual Fusion

In the process of fusing visual features, an attention mechanism is used to emphasize
the importance of independent features and joint features. This results in the fused visual
features Fa, which can be represented by the following formula:

[αa, αam] = So f tmax(tanh([Ca, Cam]W1)W2) (10)

Fa = αaCa + αamCam (11)

where W1 and W2 are learnable parameters, resulting in the final fused appearance feature
Fa. Similarly, the fused motion features Fm are obtained using the same process.

At the same time, to address the issue of vanishing gradients during back-propagation,
this method employs the residual connection strategy [18] to obtain the final visual feature
Va/m that incorporates the relationship information. The formula for obtaining Va/m with
residual connection is as follows:

Va/m = Va/m + Fa/m (12)

Then, the visual appearance features and visual motion features are fused. This
method utilizes the multimodal factored bilinear pooling [25] approach to obtain the fused
visual features for each video clip, denoted as Vc. Furthermore, drawing inspiration from
the graph readout operation [26], the fusion feature representation Vall for the entire video
is obtained.

3.1.4. Answer Generation

This module integrates the visual features with the semantic features of the question,
decodes these features, and generates the final answer. The model employs a standard
decoder to decode the answer, resulting in the final feature p used for answer generation.
The formula for obtaining p is as follows:

y = [Vall , qW1] (13)

p = ELU(yW2)W3 (14)

where W1, W2 and W3 are learnable parameters, and n is the number of answer categories.

3.2. Student Model

This method employs a multimodal knowledge distillation approach. It distills the
knowledge obtained from multimodal fusion in the teacher model and utilizes it for
unimodal learning in the student model. By doing so, the student model can leverage the
rich multimodal knowledge of the teacher model during unimodal training, allowing for
early-stage interaction and fusion between multimodal models. This approach aims to
enhance the effectiveness of multimodal fusion in the later stages, leading to improved
model performance. Moreover, this method not only reduces the model’s complexity but
also enhances the learning capabilities of multiple modal features.

As previously mentioned, the teacher model utilizes multi-layer graph convolution
to iteratively process visual features. This approach enables the model to perform multi-
step reasoning on video relationships and extract relationship features effectively through
multiple graph convolution layers. On the other hand, the student model, designed for
compression purposes, employs only one graph convolution layer to process visual features,
resulting in a smaller model size. During the training stage, this method leverages the
knowledge obtained from multimodal fusion in the teacher model to guide the unimodal
learning of the student model. This guidance aims to optimize the learning process and
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improve the overall performance of the student model. The training details of the student
model can be found in Figure 3.

The method of knowledge distillation is based on the teacher-student framework. In
this work, the teacher model trains its appearance and motion modal features separately
using several stacking modules. Through experimentation and parameter adjustments, the
optimal teacher model is obtained. Subsequently, the student model is constructed with
fewer stacking modules, making it a simpler model. The knowledge distillation process
involves transferring the fused visual features from the teacher model, referred to as “soft
labeling”, to guide the learning of the appearance and motion features in the student model.
More specifically, the fused feature Vc from the teacher model is distilled into knowledge
and used to guide the learning of the appearance feature Va and the motion feature Vm
in the student model. The details of the loss function calculation will be described in the
next section. This approach allows the student model to learn from the knowledge of the
other modality during the unimodal processing of appearance or motion, enhancing the
interaction and fusion between modalities. Additionally, this compensates for the reduced
number of graph convolution iterations, ensuring sufficient information extraction.

3.3. Loss Function

In the vision–text interaction module of the model, the objective is to learn both
the independent knowledge of each visual modality (appearance and motion) and the
knowledge associated with the other modality. To achieve this, four features are generated
in the graph convolution of each layer for appearance and motion: the independent features
Ga and joint feature Cam for appearance, and the independent feature Gm and joint feature
Gma for motion. The model aims to have a significant difference between the independent
and joint features, while keeping the difference between the joint features small. To achieve
this, the method draws inspiration from DualVGR and employs the Hilbert–Schmidt
independence criterion (HSIC) [27] to constrain the differences between features at each
layer, resulting in the matrix distance L1. Additionally, a similarity constraint mechanism
using a matrix distance method is applied to ensure similarity between the joint features,
resulting in the matrix distance L2. By incorporating these constraints, the model can
effectively extract both the information specific to each visual modality and the information
associated with other modalities, enhancing the representation of multimodal interactions.

The cross-entropy loss function is used to calculate the loss of the predicted probability
distribution and the real label. The formula is as follows:

LT = −∑ z ln y (15)

where y represents the predicted probability distribution, and z represents the real proba-
bility distribution.

To sum up, the loss function of the teacher model can be finally denoted as follows:

LT
total = LT + γL1 + ηL2 (16)

Among them, the coefficients γ and η represent superparameters, which can be adjusted to
optimize the model.

The student model includes the loss mentioned in the teacher model, LT , L1 and L2.
Additionally, it also includes the loss of distillation knowledge to learn from teachers. In
order to learn the knowledge of other modals in the early stage of uni-modal learning, this
method combines the teacher model with the feature Vc. Its knowledge is distilled to guide
the appearance feature of the student model Va and the motion feature Vm to improve
the interaction and integration between the various modals. First, the Softmax activation
function is normalized at the appropriate temperature T, and then the cross-entropy is used
to calculate the loss. The loss function is as follows:

LT
a/m = L0(So f tmax(Vt

c /Ta/m), So f tmax(Vs
a/m/Ta/m)) (17)
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where L0 represents the cross-entropy loss calculation operation, Vt
c is the fusion feature of

the teacher model, Vs
a/m is the appearance and motion feature of the student model, Ta/m is

the temperature of knowledge distillation for appearance and motion. The temperature is
used to justify the soft label’s distribution. Its distribution is smoother while the temperature
is higher. The weight is used to justify the knowledge distillation’s influence on the
total loss.

Therefore, the total loss of the student model can be denoted as follows:

LS
total = LT + γL1 + ηL2 + λaLa + λmLm (18)

where the coefficients γ and η directly use the coefficients of the teacher model, λa and λm
is a superparameter, and the model is optimized by adjusting them.

4. Experimental Results Analysis
4.1. Dataset

This method selects the widely used video QA dataset, MSVD-QA [28] and MSRVTT-
QA [29] for the experiment. The MSVD-QA dataset consists of 1970 videos and 50,505
question-answer pairs. It is a popular choice for evaluating Video QA tasks due to its rich
and diverse instances. The video content in this dataset is extracted from the Microsoft
Research Video Description (MSVD) dataset. These videos mainly depict short daily life
scenes, and the questions are generated programmatically based on the video description.
On average, the videos have a duration of around 10 s, and the questions have an average
length of approximately 6 words. MSRVTT-QA is a larger dataset comprising 10,000 videos
and 243,000 question-answer pairs. The videos in this dataset have an average duration of
approximately 15 s, and the questions have an average length of around 7 words.

In both the MSVD-QA and MSRVTT-QA datasets, each video has an average of about
25 questions. The questions in these datasets are open-ended and can be categorized into
five different types: what, where, how, who, and when. However, there is a significant
imbalance in the distribution of the question types. Taking MSVD-QA as an example, the
majority of the questions belong to the ‘what’ and ‘who’ types, accounting for more than
96% of the total questions. Among these, the ‘what’ type questions are the most prevalent,
making up more than 62% of the questions. On average, each video has around 16 ‘what’
type questions. On the other hand, the ‘how’, ‘when’, and ‘where’ types are relatively rare,
collectively accounting for about 3.3% of the total questions. Many videos do not have any
questions belonging to these three types.

4.2. Implement Details
4.2.1. Teacher Model

In the video preprocessing stage, each video is divided into a fixed number of equally
spaced clips. For the MSVD-QA dataset, the number of clips is set to 8, while for the
MSRVTT-QA dataset, it is set to 16. Each clip consists of a certain number of image frames,
where the number of frames per clip is 16. If a clip contains fewer than 8 frames at either the
beginning or the end, it is padded with the first frame or the last frame to reach the required
length. The dimension size of the model, denoted as d, is set to 768. This represents the
size of the visual and textual feature vectors used in the model. In the encoder module,
a bidirectional LSTM (BiLSTM) is employed for both visual coding and text coding. The
BiLSTM is configured with a single layer. In the vision–text interaction module, the number
of layers of graph convolution, denoted as g, is set to 4 for the MSVD-QA dataset and 6 for
the MSRVTT-QA dataset. Additionally, the number of graph convolution heads, denoted
as k, is set to 4. In the visual fusion module, the number of factors, denoted as f , is set to 4
for the multimodal factorized bilinear pooling.

In the loss function, the constraint loss coefficients γ and η of the independent and
joint features are set to 100 and 1× 10−6, respectively. The optimizer used in the training
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process is the Adam optimizer, the learning rate of training is set to 1× 10−4, the batch
size of training data is 256, and the number of training iterations is 25.

4.2.2. Student Model

In the student model, the parameter configuration is kept the same as the teacher
model, except for the number of layers in the graph convolution. Specifically, the student
model utilizes a single-layer graph convolution operation to process the visual features,
while maintaining the same parameter settings as the teacher model. By using only one
layer of graph convolution, the student model achieves model compression by reducing
the network size and complexity compared to the teacher model.

In the knowledge distillation loss function, the parameters for distilling the visual
appearance and motion features are determined through a grid search experiment. The
search is conducted to find the relatively appropriate configuration for these parameters.
For the distillation of visual appearance features, the final temperature parameter Ta is
set to 1, indicating a standard distribution. The coefficient parameter λa is set to 1. For
the distillation of visual motion features, the temperature parameter Tm is set to 0.7 for
MSVD-QA and 1 for MSRVTT-QA. The coefficient parameter λm is set to 100 for MSVD-QA
and 1 for MSRVTT-QA.

4.3. Results Analysis
4.3.1. Visual Analysis

Analyzing the changes in accuracy and loss during the training process can provide
insights into the model’s learning dynamics and performance. By visualizing these metrics,
we can observe how the model progresses over time and identify any potential issues
or improvements.

The loss changes of the training set and the validation set during the training process
in MSVD-QA are shown in Figures 4 and 5, which, respectively, represent the real label loss,
the appearance feature distillation loss and the motion feature distillation loss. The continu-
ous decrease and convergence of the loss values for both the training set and the validation
set indicate that the training process is effective. This means that the model is learning and
making progress in fitting the data. Furthermore, the decrease in the distillation loss of
the appearance and motion features indicates that the knowledge distillation process is
effective in transferring the knowledge from the teacher model to the student model.

Figure 4. The loss changes of the training set during the training process represent the real label
loss, the appearance feature distillation loss and the motion feature distillation loss, respectively. The
hard loss is calculated by output and real labels; the APP and MO loss are calculated by features and
soft labels.

Then, in order to further analyze the prediction performance of the model, some
examples of incorrect prediction are selected from the prediction results of the model, as
shown in Figure 6. The shortcomings and improvements of the model in the video QA
task can be analyzed based on the errors in the model predictions. In question 1, due
to the limited number of words in the word list, some words need to be represented by
‘<UNK>’, which leads to the model being unable to understand the semantics of some
words, and, thus, unable to accurately predict the answers. In question 2, the model
incorrectly predicting “rabbit” instead of “bear” suggests a limitation in target recognition.
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The similarity between the brown background and the color of the bear might have misled
the model. In question 3, the model providing a verb “chase” instead of identifying the
target object indicates a deficiency in sentence semantics understanding. Regarding the
errors in question 4 and question 5, where the model’s predicted answers may align with
human understanding but do not match the fixed answers in the dataset, this could be
attributed to the limitations of the dataset itself.

Figure 5. The loss changes of the validation set during the training process represent the real label
loss, the appearance feature distillation loss and the motion feature distillation loss, respectively. The
hard loss is calculated by output and real labels; the APP and MO loss are calculated by features and
soft labels.

Figure 6. Examples of some false predictions.

4.3.2. Comparative Analysis

In order to analyze and verify the effectiveness of this method in video QA tasks,
the most advanced model algorithms based on video QA tasks are compared. Next,
these algorithms are briefly introduced, and then the experimental results are compared
and analyzed.

• Co-Mem [4]. This method is developed from the dynamic memory network (DMN) in
visual QA, and is improved based on video QA. In the context memory module, the
attention mechanism of appearance-action collaborative memory is introduced, and
the convolution-deconvolution network, based on time-series and the dynamic fact
integration method, is used to mine video information deeply.

• AMU [1]. The algorithm is an end-to-end video QA model, which applies the fine-
grained features of the question to video understanding. It reads the words in the
question word-by-word, interacts with the appearance features and motion features
through the attention mechanism, constantly refines the video attention features, and
finally obtains the video understanding that integrates the different scale features of
the problem.

• HGA [9]. The graph network is introduced into the model for reasoning learning.
It constructs the video clip and the question word into the form of a graph, and carries
out a cross-modal graph reasoning learning process.
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• HCRN [24]. This is a stackable model of relational network modules based on clips.
The relational network takes the input as a set of tensor objects and a conditional
feature, outputs a set of relational information containing them, and then realizes
multi-step reasoning of the relational information by hierarchically stacking the net-
work modules.

• DSAVS [8]. The answer to the question may be deduced from a few frames or frag-
ments in the video, and the appearance and motion information are generally com-
plementary. To this end, the author proposes a visual synchronization dynamic
self-attention network, which selects important video clips first and synchronizes
various features in time.

• DualVGR [6]. This model is a stacked model of an attention graph inference network.
In the attention graph inference network module, the query punish mechanism is used
to strengthen the features of key video clips, and then the relationship is modeled
by the multi-head graph network combined with attention. The model performs
multi-step reasoning of the relationship information by stacking the network module.

Tables 1 and 2 summarize the comparison of the experimental results of each model
on the MSVD-QA and MSRVTT-QA datasets, which shows a competent result for our
method. The observation that the proposed method surpasses the DualVGR model in
terms of accuracy demonstrates the effectiveness of the approach. This method successfully
improved the accuracy compared to other comparison models on the MSVD-QA and
MSRVTT-QA datasets. This suggests that knowledge distillation serves as an effective
technique for reducing model complexity while enhancing the performance of cross-modal
information transmission and fusion, thereby improving the feature extraction capabilities
of individual modalities. Overall, the results indicate that knowledge distillation not only
enables model compression but also enhances the overall performance of the model. By
distilling knowledge from the teacher model to guide the learning process of the student
model, the proposed approach achieves improved accuracy in video question answering
tasks, surpassing existing models.

Table 1. Comparison to other models on MSVD-QA.

Model What Who How When Where All

Co-Mem 19.6 48.7 81.6 74.1 31.7 31.7
AMU 20.6 47.5 83.5 72.4 53.6 32.0
HGA 23.5 50.4 83.0 72.4 46.4 34.7

HCRN / / / / / 36.1
DSAVS 25.6 53.5 85.1 75.9 53.6 37.2

DualVGR 28.7 53.8 80.0 70.7 46.4 39.0
ours 29.22 53.98 80.81 74.14 53.57 39.48

Best result in bold.

Table 2. Comparison to other models on MSRVTT-QA.

Model What Who How When Where All

Co-Mem 23.9 42.5 74.1 69.0 42.9 32.0
AMU 26.2 43.0 80.2 72.5 30.0 32.5
HGA 29.2 45.7 83.5 75.2 34.0 35.5

HCRN / / / / / 35.6
DSAVS 29.5 46.1 84.3 75.5 35.6 35.8

DualVGR 29.4 45.6 79.8 76.7 36.4 35.5
ours 29.67 45.51 80.91 76.51 35.20 35.71

Best result in bold.

4.3.3. Ablation Study

In this method, it is mainly proposed to compress the model through knowledge dis-
tillation and strengthen the cross-modal feature learning and fusion to achieve the purpose
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of improving the model. In order to verify the effectiveness of knowledge distillation, an
ablation study was conducted.

In MSVD-QA, the learnable parameters in the constructed ‘Teacher’ model include
about 31.19 million parameters. This method trains the teacher model and adjusts the
parameters to achieve the optimal parameter configuration of the teacher model. Finally,
the accuracy achieved on the test set is 39.03%. Then, this method constructs a relatively
simple student model by reducing the number of layers of graph convolution, and its
learnable parameters are reduced to about 24.09 million. In the case that other parameter
configurations are the same as the teacher model, this method first trains the student
model separately, which is denoted as ‘Student’ here. Then, through the method of multi-
modal knowledge distillation, the teacher model guides and trains the student model, and
we optimize the knowledge distillation temperature and weight. The model with extra
knowledge is denoted as ‘Student-kd’. The results of the whole ablation study are shown
in Table 3. Similar to MSVD-QA, the experimental results for the MSRVTT-QA dataset
also demonstrate this phenomenon, as shown in Table 4. The student model has poor
strength to represent the visual semantics due to the less learnable parameters. However, it
demonstrates excellent accuracy when guided by the teacher model, even higher than that
of the teacher model.

Table 3. Ablation Study on MSVD-QA.

Model Accuracy Number of Trainable
Parameters

Teacher 39.03% 31.19 million
Student 38.85% 24.09 million

Student-kd 39.48% 24.09 million

Table 4. Ablation Study on MSRVTT-QA.

Model Accuracy Number of Trainable
Parameters

Teacher 35.52% 41.29 million
Student 35.11% 29.09 million

Student-kd 35.71% 29.09 million

By comparing the test results of ‘Student’ and ‘Student-kd’, it can be observed that both
models have the same architecture and the same number of trainable parameters. However,
‘Student-kd’, which benefits from knowledge distillation and the learned cross-modal
features from the teacher model, exhibits higher accuracy. This suggests that knowledge
distillation effectively improves the inter-modal fusion. Prior to the fusion module, the
individual modalities, such as appearance, can acquire multimodal knowledge, enabling
them to have a pre-inclination towards the fusion distribution. This approach helps avoid
unstable fusion of the appearance and motion features.

Furthermore, comparing the test results of ‘Teacher’ and ‘Student-kd’, it becomes
evident that knowledge distillation significantly reduces the model size and the number of
trainable parameters, while maintaining or slightly increasing the accuracy. The prediction
differences among these three models are illustrated in Figure 7. For easy questions, all
three models achieve correct predictions. However, in more challenging scenarios, due to
its limited parameter learning, the student model struggles to arrive at the correct answer.
In such cases, the teacher’s knowledge effectively guides the student in making the right
choice. Notably, when faced with exceptionally difficult questions that even the teacher
model struggles with, the student model, equipped with rich multimodal knowledge,
surpasses the teacher and achieves accurate predictions.
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These results highlight that, in this approach, knowledge distillation not only reduces
the model size but also enhances the feature fusion between modalities, leading to improved
performance and feature enhancement.

Figure 7. Examples of prediction difference of three models.

5. Conclusions

This paper introduces a novel video question answering model that utilizes knowledge
distillation to address the challenge of capturing the latent complex correlation between
appearance and motion in videos. While existing methods, such as attention mechanisms
and graph convolution networks, enhance the attention of visual and text-specific features
and reasoning about video relationships, they often overlook the interaction between
appearance and motion. To overcome this limitation, our proposed approach leverages
knowledge distillation to uncover the latent correlation between the static appearance and
dynamic motion features in videos. By distilling the knowledge from a teacher model, our
method strengthens the fusion of appearance and motion features while compressing the
model. This enables the student model to learn from the rich multimodal knowledge of
the teacher model, improving the interaction and fusion between appearance and motion
features. The ablation experiments and comparisons conducted in our study validate the
effectiveness of our approach in visual feature learning and its ability to enhance video
QA performance. However, we acknowledge a limitation in our work, which is that the
proposed knowledge distillation method is currently limited to the fusion of appearance
and motion features in videos. As part of our future work, we plan to explore the application
of knowledge distillation in other types of video features beyond appearance and motion.
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