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Abstract: This paper considers approaches to the computation of association rules for intuitionistic
fuzzy data. Association rules can provide guidance for assessing the significant relationships that
can be determined while analyzing data. The approach uses the cardinality of intuitionistic fuzzy
sets that provide a minimum and maximum range for the support and confidence metrics. A new
notation is used to enable the representation of the fuzzy metrics. A running example of queries
about the desirable features of vacation locations is used to illustrate.
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1. Introduction

Knowledge discovery and data mining involve a number of approaches from the areas
of database processing, pattern recognition, and machine learning. These techniques are
used in order to find data patterns or associations of value for decision-making. To deal with
the uncertainty often found in real-world data, there have been significant considerations
about data mining involving uncertain and fuzzy data mining [1–4]. The use of fuzzy sets
is well established in managing real-world applications in which uncertainty is commonly
involved. More specifically for our interest here in association rules, a number of approaches
have been considered for fuzzy data [5–7].While fuzzy sets present some capabilities, a
simple membership function has limitations [8]. This motivates our use of intuitionistic
fuzzy sets, as they provide more flexibility for human interactions under uncertainty in
association rule data mining. Some concepts are more easily approached by separately
envisaging positive and negative instances. In preference modeling involving various
interrelated factors, it can be very difficult to simply specify a single simple membership
function. [9] For example, in formulating preferences for a family vacation location, there are
usually multiple criteria such as distance, costs, and location desirability which influence
the evaluation. It can then be very difficult to formulate a simple degree of suitability, but
by specifying membership and non-membership corresponding to preferences, the choices
can be more easily modeled.

This paper considers the modifications required for association rule computations
if fuzzy intuitionistic valued information is involved. The goal is to determine useful
associations and patterns from large data sources. Association rules are used to develop
valuable insights in determining significant correlations that can be found in the current
environment of large data sets, such as those found in various databases or the cloud [10].
The extension using intuitionistic sets is very significant as it captures both positive and
negative evaluations. This can then provide contrasting association rules to better inform
decision-making. Additionally this provides a complementary capability to the approaches
in which positive and negative association rules are generated [11,12].

There have been a large number of specific data mining and knowledge discovery
algorithms that have been designed and implemented [13]. Patterns and relationships that
can be discovered must be assessed based on interestingness measures in order to provide
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pruning of the combinatorial complexity of such relationships. Since this sort of information
often integrates with decision-making systems, effective user interfaces must be developed
with visualizations or other representations for presenting the knowledge discovered.

For this paper, association rule development is our main focus [14]. Associations
correspond to correlations among data items which are represented in the form of rules
composed of attribute–value conditions that occur with some significant correlations in
a set of data [15]. Association rules are of the form antecedents A, and consequents C,
A→ C, where data entries satisfying the antecedent A commonly occur in conjunction
with data values for C. The term “common occurrence” has a probabilistic implication and
is not a functional dependency as used in databases.

Finally, we provide an outline of the paper:
Section 2: Fuzzy set representations to be used are defined. A review of previous

research on fuzzy data mining, especially research on association rule data mining using
fuzzy sets, is presented.

Section 3: The metrics used in association data mining are defined. Specifics of basic
association rule data mining are given and a running example illustrates this. A case analy-
sis of the bounds of the basic measures, support and confidence, and the interestingness
metrics, lift and conviction, are provided.

Section 4: Next, the basics of the Apriori algorithm are illustrated using the running example.
Section 5: The extensions of association mining needed for intuitionistic fuzzy sets are

described, in particular the required set cardinality used for association rule generation.
The running example extended to fuzzy intuitionistic data is then used to illustrate the
approach using the various metrics.

2. Background

In this section we provide an overview of the fuzzy set representations that are relevant
to this paper. Then we discuss data mining in general and specifically fuzzy data mining.
In particular, we review other research for fuzzy association rules.

2.1. Uncertainty Representations

In this section we briefly overview common uncertainty representations [16], including
fuzzy sets and intuitionistic fuzzy sets for approaches to data mining.

2.1.1. Fuzzy Set Theory

Fuzzy set representations [17,18] provide the membership degrees of data values in a
set, as opposed to crisp sets. For domain D, a fuzzy set, FS, is

FS(D) = {<ai, m(ai)>|0 ≤m(ai) ≤ 1}, ai ∈ D, I = 1 . . . n

where ai is a data value and m(ai) is the membership of the data value.

2.1.2. Intuitionistic Fuzzy Sets

Intuitionistic fuzzy set theory extends ordinary fuzzy set theory by allowing both
positive and negative memberships to be specified. Recall that an ordinary fuzzy set
FS (D) = {<ai,m(ai)>} has only one membership value for a data element ai. An intuitionistic
fuzzy set IFS(D), [19] allows both positive, mS(ai), and negative membership values, mS*(ai).

IFS(D) = {<ai, mS(ai), mS*(ai)>|ai ∈ D} where mS(ai), m*S(ai), ∈ [0, 1].

Specifically, the sum of the membership, mS(ai), and non-membership, mS*(ai), is not
necessarily one, then: 0 ≤mS(ai) + m*S(ai) ≤ 1. Additionally the hesitation hS (ai)

hS (ai) = 1 − (mS(ai) + m*S(ai))

is the degree of indeterminacy (hesitation).
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2.1.3. Interval-Valued Fuzzy Sets

Interval values are used in many areas to capture the imprecision and uncertainty of
data. We first provide the formalisms for interval arithmetic [20,21] as needed for interval
valued fuzzy sets. We let D be the domain and intervals will be represented by the values
of the lower bound, z† = lb(ai), and an upper bound, z† = ub(ai), of an interval I (ai), for the
data value ai ∈ D

I (ai) = [z†, z†] = {z ∈ D|z† ≤ z ≤ z†}

Now, in an interval-based fuzzy set, IVF(D), representation is based on using upper,
mu(ai), and lower bounds, ml(ai), on fuzzy memberships

IVF(D) = {<ai, I (ai) >|I (ai) = [ ml(ai), mu(ai)]}

For an interval I (ai), the size or length of the interval, IW, is just the difference of the
lower and upper bounds,

IW (I (ai)) = |ml(ai) −mu(ai)|.

IW is often used as a representation of the uncertainty of a data value ai in an IVF as
an information measure [22].

We note that IVF and IFS sets are equivalent as generalizations of fuzzy sets [23]. In
particular, we have

mS(ai) = ml(ai) and mS*(ai) = 1 −mu(ai)

So,
IVF(D) = {<ai, I (ai)>|I (ai) = [ms(ai), 1 −mS*(ai)]}

This can be used for the set cardinality of IVF(D), as related to the set cardinality of
IFS(D) developed for the calculation of support and confidence of fuzzy association rules.

2.2. Data Mining Approaches

We are primarily concerned with some of the particular algorithms used for knowledge
discovery, but we will overview the complete processes involved in data mining. To begin,
the initial basic steps involve data preparation [24]. First is a data cleaning stage, which
includes resolution of missing data [25] or data errors. Additionally, the integration of data
from multiple sources which may be heterogeneous is performed [26–28]. Next are the
steps needed to prepare for actual data mining, which include the selection of the specific
data relevant to the task and the transformation of this data into a format required by the
data mining approach. Often, these steps are seen to be those involved in developing data
warehouses. This provides an organization for the formatting of data to facilitate data
mining approaches.

Knowledge discovery or data mining algorithms can generally be classified into two
categories: predictive and descriptive data mining. The descriptive category includes
association rules, classification, and class characterization. Typically, data generalizations
or characterizations are provided for class descriptions, such as data summarizations [29].
Additionally, data class comparisons allow discrimination of classes to be developed.

Lastly, a classification approach uses data with known class memberships and then
builds class models from the features extracted from the training data. Often, this is
output as classification rules or a type of decision tree to support predictive classification of
new data. Another well-developed knowledge discovery technique is predictive analysis
with clustering approaches. Discovery of collections of data items that are similar is
achieved by cluster analysis. A distance function is often developed by experts to provide
effective similarity metrics. The characteristics of an appropriate clustering algorithm are
that it results in high similarity for intra-cluster measures and low similarity for inter-
clusters. To determine potential values that may be missing or the distribution of attribute
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values, various prediction techniques may be used. Some such techniques include machine
learning, genetic algorithms, and regression and correlation analysis.

2.3. Fuzzy Data Mining

Many early efforts in knowledge discovery appear in pattern recognition, especially in
the form of fuzzy clustering [30]. There have been significant considerations of data mining
involving uncertain and fuzzy data mining using neural networks and genetic algorithm
approaches [2,3]. More specifically for our interest here in association rules, a number of
approaches have been considered for fuzzy data [7,31,32].

2.3.1. Fuzzy Association Rules

In one approach, fuzzy association rule data mining has been developed which can
use both fuzzy transactional and relational data [5]. Relational data enable extraction of
multidimensional association rules and transactional data make the discovery of patterns
more reliable. In another approach based on crisp sets of fuzzy transactions, a general
model was developed to discover association rules [33]. The model was capable of being
specialized to specific patterns or application data. Additionally, associative rules can
be formed by using generalized implicit knowledge based on quantitative transaction
data [34]. This technique uses a taxonomy, and items in the rules can be based on any level
of the taxonomy. Another paper [35] proposed an automated method for autonomous
mining of fuzzy association rules. They first find fuzzy sets by using an efficient clustering
algorithm, and then determine their membership functions. Using these they find inter-
esting fuzzy association rules. Two papers have proposed using type-2 fuzzy sets. In one,
the quantitative values in transactions are dealt with as type-2 values. These can then be
reduced to ordinary fuzzy data using split points and association data mining is carried
out on this data [36]. Another approach [37] proposes a fuzzy frequent pattern-mining
algorithm based on the type-2 fuzzy set theory of the data stream. The stream is partitioned
based on a sliding window. This is then used to extract fuzzy association rules.

2.3.2. Fuzzy Spatial Association Rules

Some interesting approaches have focused on spatial data. Spatial association rules
can be implemented by permitting spatial application features represented by fuzzy spatial
objects and topological relationships [6]. They extract association rules using application-
related spatial objects of interest and the fuzzy spatial features. Another approach to
extracting association rules on spatially related data includes uncertain geographic and
geologic information [38]. This makes use of fuzzy set cardinality to compute support and
confidence metrics for rule evaluation.

None of these approaches have considered alternative uncertainty representations. In
this paper we have extended the association rule approaches to consider the more flexible
representation of uncertainty using intuitionistic fuzzy sets.

3. Association Rules

This section will describe the basis for the computation of association rules and provide
examples demonstrating this. The extensions to the use of intuitionistic fuzzy sets will
then be developed and the examples used to provide illustrations of the approach. A
common example motivating association rules is the “market basket” of grocery items
often purchased in the same transaction [14]. This sort of relationship can provide guidance
on the marketing and placement of such items.

3.1. Association Rules Metrics

There are two main metrics, support and confidence, used for association rule data
mining. Others are called interestingness metrics, used to evaluate discovered rules.

Let E = { e1, . . . , en} be a set of data items of interest. We will later consider the possi-
bility that some of these items can involve uncertainty and be represented by intuitionistic
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fuzzy values. For the data in E we examine a set of items, R, that result from interactions
such as a transaction consisting of items related to a purchase order or a query finding
vacation locations for which desirable features appear. The interactions are specified by the
resulting subsets of E, R = {R1, R2, . . . , Ri, . . . } where Ri = { ej, . . . , ek} ⊆ E.

Specifically, we are concerned with the possible relationships among the data items
that occur in R. Let Sj, S k ⊆ E, then we are interested in rules of the form Fjk

Fjk: Sj ⇒ Sk

where Sj is the antecedent and Sk the consequent term of the rule. Such a rule means items
in Sj co-occur with items in Sk. We must make an assessment of the value of such rules
by using two common metrics, support and confidence, to be evaluated to quantify the
relationships. We first define two counts, Nsp and Nant, used in the computation of the
support and confidence metrics.

Nsp = |{Ri ∈ R|Sj ∪ Sk ⊆ Ri}|

Nant = |{Ri ∈ R|Sj ⊆ Ri}|

So Nsp is a count of the number of rules of the form Fjk and Nant is the number of
occurrences of the rule antecedent Sj.

3.1.1. Support Metric: Msp

The support of a rule is a measure of how frequently the antecedent, Sj, and consequent,
Sk, of a rule appear in the same entry Ri of the result set R. Using the count Nsp, we have

Support: Msp = Nsp/|R|

3.1.2. Confidence Metric: Mcf

The confidence factor indicates how strongly a relationship is represented in the set of
results R. That is if Sj ⊆ Ri then it is also the case that Sk ⊆ Ri. So we use the count Nant here.

Confidence: Mcf = Nsp/Nant

The percentage of results Ri in R satisfying Mcf will determine if the rule is of value
for decision-making.

The support and confidence can be interpreted as probabilities where we have

Msp: Prob (Sj ∪ Sk); Mcf: Prob (Sk|Sj)

Support and confidence metrics are distinct. Confidence measures a rule’s strength
while support is a measurement of statistical significance. In other words, we want a rule
with enough support above a threshold, or else it is not representative enough of the data.
Rules with support above a threshold are termed as being frequent.

3.2. Examples of Rule Support and Confidence

We can examine a simple example of responses in a query to illustrate the formation
of association rules Fjk. So we consider a website that can be queried to locate desirable
eco-tourism vacation locations. In Table 1 are responses to queries on vacation preferences
related to various available activities which constitute the items of interest, such as camping,
fishing, etc.:

E = {S1: camp; S2: fish; S3: hike; S4: raft; S5: ski}.
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Table 1. Vacation Features Items.

Query Responses Location Features

R1 {S1, S2, S5}: camp, fish, ski

R2 {S1, S2, S4}: camp, fish, raft

R3 {S1, S2, S4}: camp, fish, raft

R4 {S1, S3}: camp, hike

R5 {S1, S3, S4}: camp, hike, raft

R6 {S2, S3, S5}: fish, hike, ski

R7 {S1, S2, S3}: camp, fish, hike

Analyzing these query results, we can obtain association rules and the corresponding
support and confidence values. Table 2 shows an example of some representative potential
rules relating activities to be evaluated. Note that, in general, all possible combinations of
the items in E must be considered, which is then a potentially large space. We discuss the
Apriori algorithm in the next section to help prune computation of these combinations.

Table 2. Rules for Results of Table 1.

Rules: Fjk Msp—Support Mcf—Confidence

1. F12: camp→ fish 4/7 = 0.57 4/6 = 0.66

2. F21: fish→ camp 4/7 = 0.57 4/5 = 0.8

3. F31: hike→ camp 3/7 = 0.43 3/4 = 0.75

4. F25: fish→ ski 2/7 = 0.28 2/5 = 0.4

5. F52: ski→ fish 2/7 = 0.28 2/2 = 1

6. F54: ski→ raft 0/7 = 0 0/2 = 0

7. F{12}4: camp, fish→ raft 2/7 = 0.28 2/4 = 0.5

8. F5{12}: ski→ camp, fish 1/7 = 0.14 1/2 = 0.5

Consider the first line in Table 2 for the rule F12: “camp→ fish”, where camp is the
rule antecedent and fish the consequent. This rule shows that available locations with
camping often occurred in conjunction with a location in which fishing was allowed. Then,
for this rule, the support is 57% since camp and fish co-occur in four entries in Table 1, (R1,
R2, R3, R6), out of the seven query responses. Furthermore, the confidence is 0.66% since
the feature camp occurs in a total of six entries of Table 1. Additionally, the second rule, F21,
has 80% confidence since the feature S2—fish appears in five of the responses. Note that
not all potential rules have support such as F54, since the items ski and raft do not co-occur
in any of the responses.

In considering the rules in Table 2, we can see a range of support values. Most often
we are interested in rules with support above a minimum threshold Thsp. If the support
were not high enough, then the rule would not be significant enough to be considered, or
even simply not as preferred. So if a threshold were Thsp = 40%, then the first three rules
would be considered to be of interest. These three also have good confidence values, and
so are strong rules worth consideration. We see that rules that have high confidence are not
necessarily of interest as their support may be low (for example F25 or F5{12}).

3.3. Interestingness Metrics

Support and confidence are the most common metrics for association rules; however
we will examine others that can provide alternative analyses for rules. The commonly
used lift measure relates the rule confidence and the expected confidence [39]. Strong
rules with high support and confidence can be uninteresting depending on how much
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the rule antecedent and consequent are related. Lift is used to determine the statistical
relationship between the antecedent and consequent, which relates to the interestingness or
usefulness of the rule. Another metric is conviction, which relies on the expected support
that the antecedent of the rule appears without the consequent. For these metrics, we obtain
evaluations as to the prediction significance of the rule.

Although interestingness metrics are useful in evaluation of rules after they are deter-
mined, the rules were dependent on the thresholds for confidence and support. Similarly to
decisions on fuzzy set memberships, this can be somewhat arbitrary and user-dependent,
making consistency of the rule discovery process a problem. One interesting approach
addressing this that has been proposed [40] can be applied if rule antecedents follow a
determined distribution. Then the minimum confidence and support thresholds can be set
based on using a one-sided statistical confidence interval with hypothesis testing.

3.3.1. Lift Metric

First we consider lift given as:

Lift = confidence/expected confidence

We must first specify the support of the consequent of Fjk by defining

Ncon = |{Ri ∈ R|Sk ⊆ Ri}|;

and so the support of the consequent is

Consequent Support: Mcon = Ncon/|R|

Now the expected confidence for a rule is the product of the rule support and conse-
quent support divided by the rule support:

(Msp ∗Mcon)/Msp = Mcon.

Then finally we obtain:

Lift = Mcf/Mcon = (Nsp/Nant) ∗ (|R|/Ncon)

For the rule Sj ⇒ Sk, lift is interpreted as the correlation of the Sj and Sk.

(a) Lift > 1, positive correlation.
(b) Lift < 1, negative correlation.
(c) Lift = 1, correlation is independent.

So lift determines how much more frequently Sj and Sk appear concurrently than
would be expected if they were independent statistically.

In our example rules in Table 3, four rules have a lift less than 1. For example in rules
F12 and F21 there is not a significant correlation between the items S2: fish and S1: camp, as
camp occurs without fish twice and fish occurs without camp once. Now consider rules F25
and F52 for which the lift is 1.4. There is a positive correlation as there is a strong prediction
of S2: fish when S5: ski occurs since in the only two occurrences of ski, fish also appears in
the response.

3.3.2. Conviction Metric

Next we examine the conviction metric

Conviction = (1 −Mcon)/(1 −Mcf)

Conviction is sensitive to the direction of rules, Sj⇒ Sk versus Sk⇒ Sj. So, we see rule
1 (F12) and rule 2 (F21) differ in their direction, and conviction for rule 1 is 1.26 but for rule
2 it is 2.15. This can be attributed to the lower confidence (0.66) of rule 1, and so rule 2 has
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greater interest by this measure, leading to the stronger conviction. For logical implications
where confidence is 1, the value is unbounded (+∞), as is true for rule 5 (F52). That is,
S5 (ski) uniquely appears with S2 (fish) and not vice-versa.

Table 3. Lift Values.

Lift < 1 Lift > 1

F12: 0.93 F25: 1.4

F21: 0.93 F52: 1.4

F31: 0.87 F{12}4: 1.12

F5{12}: 0.88

3.4. Case Analysis of Metrics

We can examine the range of values of the metrics discussed by an analysis of the
possible extreme values. Let |R| = Z and consider a supported rule of interest Fjk. Then for
Fjk, {Sj ∪ Sk} must appear at least once, but can in the extreme, however unlikely, appear as
many as the maximum of Z times or occurrences. The range of counts for such rules is then

1 ≤ Nsp ≤ Z

3.4.1. Support and Confidence Analysis

So, the range for support, Msp = Nsp/Z, is

1/Z ≤Msp ≤ Z/Z = 1

Since, for each occurrence of a rule Fjk the antecedent Sj must appear, its ranges
are similarly

1 ≤ Nant ≤ Z

Recall that confidence is Mcf = Nsp/Nant. We analyze the possible cases in Table 4.

Table 4. Confidence Ranges.

Nsp = 1 Nsp = Z

Nant = 1 Mcf = 1 � (not possible)

Nant = Z Mcf = 1/Z Mcf = Z/Z = 1

Hence, the range of Mcf is:

1/Z ≤Mcf ≤ 1/1 = 1

3.4.2. Lift Analysis

Now, we can perform a similar extreme case analysis for lift. Consider the relationship
of Nant and Ncon. For Nsp = 1, the antecedent, Sj,, and consequent, Sk, must both appear at
least once, and independently can each appear up to the extreme of Z times. For Nsp = Z,
they must both appear Z times. The analysis of the cases for the range of lift is in Table 5.

From Table 5, the range for lift is:

1/Z ≤ Lift ≤ Z
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Table 5. Range of values for Lift: (Nsp/Nant) * (|R|/Ncon).

Lift Lift

Nant Ncon Nsp = 1 Nsp = z

1 1 1*Z/1*1 = Z � (not possible)

1 Z 1*Z/1*Z = 1 � (not possible)

Z 1 1*Z/Z*1 = 1 � (not possible)

Z Z 1*Z/Z*Z = 1/Z Z*Z/Z*Z = 1

3.4.3. Conviction Analysis

Finally, we examine conviction

Conviction = (1 −Mcon)/(1 −Mcf)

As for the antecedent, 1 ≤ Ncon ≤ Z. Then, since Mcon = Ncon/Z

1/Z ≤Mcon ≤ 1

Since 1/Z ≤ Mcf ≤ 1 and 1/Z ≤ Mcon ≤ 1, the ranges for both the numerator and
denominator are: [1 − 1/Z, 1 − 1] = [(Z − 1)/Z, 0)]. However Mcon and Mcf cannot both
be 1, so there is not a 0/0 case. Then, for conviction the range is:

0 ≤ Conviction ≤ +∞

4. Apriori Procedure

As discussed, a major issue for finding association rules is the combinatorial com-
plexity of computing all potential appropriate combinations of data items. This issue has
been addressed by developing algorithms using the Apriori property [41]. Examples of the
approach are described in this section.

An overview of the overall approach for discovering strong association rules can be
formulated in three stages:

A. Computing the frequent item sets: This is performed using the support metric for
evaluation and utilizing the Apriori property to simplify the search.

B. Determining strong association rules: From the frequent item sets in the first stage,
the confidence metric is used in the evaluation to determine strong rules.

C. Evaluating effectiveness of the resulting strong rules: Interestingness metrics, such as
lift and conviction, are used in the selection of the most useful strong rules.

We will illustrate some possible frequent item sets using an example from the recre-
ation locations application. A major issue is that there is a combinatorially large number
of possible frequent item sets. The Apriori algorithm is commonly used to reduce com-
putational complexity. It makes use of the prior knowledge of the support frequency to
help reduce the generation of frequent sets. This property means that all subsets of a
frequent set are frequent and if a set is not frequent all of its supersets are not frequent.
The basic characteristic of the Apriori property is that it treats the support measure as
being anti-monotonic.

Apriori Example of Frequent Set Generation

Finding frequent item sets is an iterative process that determines the next candidate
frequent set from previous ones. The search generates the next candidate k + 1 level item
set from the co-join of the previous k level item set. The Apriori property is then used to
prune the search by eliminating possible sets from the generated set. The process follows as
all item supersets of any item set that is not frequent are not frequent and can be eliminated.
This terminates when no new frequent sets are generated.
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We illustrate this with data similar to the previous discussion, with the same item set,

E = {S1: camp; S2: fish; S3: hike; S4: raft; S5: ski},

but suitable to illustrate the approach for computing frequent sets, Table 6.

Table 6. Example results for Apriori process.

Query Responses Location Features

R1 {S1, S2, S4}: camp, fish, raft

R2 {S2, S5}: fish, ski

R3 {S2, S3}: fish, hike

R4 {S1, S3}: camp, hike

R5 {S1, S, S4, S5}: camp, fish, raft, ski

R6 {S2, S3}: fish, hike,

R7 {S1, S3}: camp, hike

R8 {S1, S2, S3, S4}: camp, fish, hike, raft

R9 {S1, S2, S3}: camp, fish, hike

To start the algorithm, we determine the support for each of the five features, as their
support values determine the frequent feature sets.

For simplicity, we will use the first letter of the features for the rest of this example.
The iterative process starts using Table 7 as the candidate set C1 and generates the

next possible set C2 by a join, (C1 ⊕ C1), of the items for the next set of candidates:

{CF, CH, CS, CR, FH FS, FR, HS, HR, SR}

Table 7. Example features.

Feature Support

S1: Camp 6/9–0.66

S2: Fish 7/9–0.77

S3: Hike 6/9–0.66

S4: Raft 3/9–0.33

S5: Ski 2/9–0.22

Then we apply the Apriori condition using Table 7, where a set is pruned if any of its
subsets are not above the support count threshold. For example, the set CH has C and H as
subsets both with 0.66 support above the threshold and so CH is not pruned. However, if
our support threshold Thsp is 0.3 then any set with S as a subset will be pruned.

Again, any sets with S as a subset, {CS, HS, FS, RS}, are pruned, since S is not frequent,
and we obtain as the next candidate set, C2, Table 8.

From this candidate set we generate the next stage by joining C2 and C2 giving:

{CFH, CFR, CHR, FHR}

Now, these must be checked to see if all subsets are frequent. For example, the subsets
of {CFH} are {CF, CH, FH}, all of which are frequent. For {FHR} the subsets are {FH, FR,
HR}, and HR is not frequent, and it is pruned. Similarly, CHR is pruned. So, C3 = {CFH,
CFR} and the join of these is {CFHR}. Since FHR is a non-frequent subset we go no further
and the final result is C3.



Information 2023, 14, 372 11 of 16

Table 8. Candidate set C2.

Item-Set Support

S1 ⊕ S2: CF 4/9–0.44

S1⊕ S3: CH 4/9–0.44

S1 ⊕ S4: CR 3/9–0.33

S2 ⊕ S3: FH 4/9–0.44

S2 ⊕ S4: FR 3/9–0.33

S3 ⊕ S4: HR 1/9–0.11

5. Uncertainty Querying

In this section extensions to the use of intuitionistic fuzzy sets for association rules are
developed based on extensions of the metrics. The examples used to provide illustrations
of the approach are based on the running example of the querying of vacation locations.

We first examine more closely our example of querying of vacation locations described
in Table 1. As well as the specific features for each site, there are usually criteria such
as distance, costs, and location desirability influencing the user evaluation. With these
subjective criteria specified by linguistic values such as lower cost, nearness, or pleasantness
of location, we would then obtain a degree of the suitability of each location retrieved on
this basis. We can use the term “desirable” for the combination of the factors and capture
this using a fuzzy set representation for membership in the set of desirable locations. Basic
fuzzy sets were used in previous research [38], and here we want to extend this to more
flexible representations, including intuitionistic-based fuzzy memberships.

5.1. Fuzzy Intuitionistic Measures for Support and Confidence

Next we must consider how to deal with the uncertainty using intuitionistic fuzzy set
representations of subjective results of an operation such as a query. In the cases here for a
query response, Ri, we consider an intuitionistic fuzzy membership in R for the query.

{<Ri = {ej, . . . ek}, mR(Ri), m*R (Ri)>}

To determine frequent feature sets it is necessary to calculate the number of responses
Ri that support the rule Fjk. For crisp operations, the support count Nsp is simply the size or
cardinality of the set Ri. However, since we have a fuzzy membership, we must adapt the
support count. For the case of a query with simple fuzzy membership, this was modeled
using the set cardinality for fuzzy sets [42] as the sigma count, which is simply the sum of
its membership values.

Card(FS(D)) = ∑n
i=1 m(ai), ai ∈ D

5.1.1. Cardinality of Intuitionistic Fuzzy Sets

The cardinality of intuitionistic-valued fuzzy sets (IFS) is needed in the procedure
of determining association rules [43,44]. The development of the cardinality of an IFS
set follows a geometrical framework [45]. Specifically, they define two bounds, the least
cardinality: Min Card (IFS(D)) = ∑n

i=1 mS(ai)

and the maximum cardinality:

Max Card (IFS(D)) = ∑n
i=1(m S(ai) + hS(ai)) = ∑n

i=1 (m S(ai) + 1− (m S(ai) + m∗S(ai)))
= ∑n

i=1(1 −m∗S(ai))

Then, the overall cardinality is the interval of the least and maximum values:

Card(IFS(D)) = [Min Card (IFS(D)), Max Card (IFS(D))]
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An interval may not be as convenient to use in calculations, so the average possibility
cardinality AVCard can also be used:

AVcard(IFS(D)) = 1/2 (∑n
i=1(mS(ai) + 1−m ∗S (ai)) = 1/2 (∑n

i=1(mS(ai) + mS(ai) + hS(ai))
= ∑n

i=1(mS(ai) + hS(ai)/2)

It is noted that this is the midpoint of the interval of the Min–Max cardinalities for
the IFS.

5.1.2. Intuitionistic Metrics

Now, we can develop the support and confidence measures for fuzzy intuitionistic
memberships using these cardinality approaches. First adapting the counts, FNsp, FNant,
FNcon, for a rule Fjk we must define for each count, an index set.

I(sp) = {i|Sj ∪ Sk ⊆ Ri}; I(ant) = {i|Sj ⊆ Ri}; I(con) = {i|Sk ⊆ Ri};

Since the cardinality we use here is an interval, there are two measures for the Min
and Max cardinality, respectively, in the counts:

FNsp = |{<Ri, mR(Ri), m*R (Ri)>|Sj ∪ Sk ⊆ Ri}|

MinFNsp = Min|{< Ri, mR (Ri), m ∗R (Ri) >}| = ∑i∈I(sp) mR (Ri)

MaxFNsp = Max|{< Ri, mR(Ri), m ∗R (Ri) >}| = ∑i∈I(sp)(mR (Ri) + hR(Ri)) = ∑i∈I(sp)(1−m ∗R (Ri))

Similarly, for antecedent and consequent counts:

Min FNant = ∑i∈I(ant) mR (Ri); Max FNant = ∑i∈I(ant)(1−m ∗R (Ri))

Min FNcon = ∑i∈I(con) mR (Ri); Max FNcon = ∑i∈I(con)(1−m ∗R (Ri))

Now the measures become two values for support and confidence each. First for
fuzzy supports:

MinFMsp = MinFNsp/|R|

MaxFMsp = MaxFNsp/|R|

Following a similar approach for the counts for the antecedent, we have a min and a
max count. Then, to determine fuzzy confidence, we use::

MinFMcf = MinFNp/Min FNant

MaxFMcf = MaxFNsp/Max FNant

However, to proceed, we must consider that there are two possible interpretations of
|R|. It is an issue of whether or not the size or cardinality of R should be based on the
membership values. So we will use two interpretations of |R|:

1. Min|R| = ∑n
i=1 mR(Ri) 2. Max |R| = ∑n

i=1(1−m ∗R (Ri))

5.2. Fuzzy Query Example

We will first show the results of the query using the example of Table 1 with the
example fuzzy memberships. Then we compute support and confidence using the extended
measures we have developed.

Next, using the data in Table 9, we evaluate support and confidence for the same
example rules as shown in Table 2.
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Table 9. Query responses with intuitionistic uncertainty.

Query Responses Location Features Intuitionistic Membership
(m, m*)

R1 {S1, S2, S5}: camp, fish, ski <0.6, 0.3>

R2 {S1, S2, S4}: camp, fish, raft <0.5, 0.3>

R3 {S1, S2, S4}: camp, fish, raft <0.8, 0.2>

R4 {S1, S3}: camp, hike <0.6, 0.4>

R5 {S1, S3, S4}: camp, hike, raft <0.9, 0.1>

R6 {S2, S3, S5}: fish, hike, ski <0.8, 0.1>

R7 {S1, S2, S3}: camp, fish, hike <0.7, 0.2>

5.3. Discussion of Results

It is clear that the most consistent use of |R| is to use the min value for the min
support and the max value for the max support. These results for Min/Min and Max/Max
produce values bracketing the support values for the crisp cases in Table 2. Averaging
these produces values about 1% different from the crisp support values. Additionally, the
confidence values are compatible with previous values. This shows that we can use the
intuitionistic fuzzy sets to provide flexibility in capturing uncertainty in analyzing data
and obtain useful results, Table 10.

Table 10. Support and Confidence.

Rules: Fjk
MinFMsp
Min|R|

MinFMsp
Max |R|

MaxFMsp
Min |R|

MaxFMsp
Max |R| MinFMcf MaxFMcf

1. F12: camp→ fish 0.529 0.479 0.615 0.557 0.63 0.67

2. F21: fish→ camp 0.529 0.479 0.600 0.557 0.76 0.77

3. F31: hike→ camp 0.449 0.402 0.472 0.428 0.76 0.74

4. F25: fish→ ski 0.286 0.259 0.329 0.298 0.41 0.41

5. F52: ski→ fish 0.286 0.259 0.329 0.298 1.0 1.0

6. F54: ski→ raft 0.0 0.0 0.0 0.0 0.0 0.0

7. F{12}4:camp, fish→ raft 0.271 0.246 0.30 0.272 1.0 1.0

8. F5{12}: ski→ camp, fish 0.129 0.117 0.143 0.129 0.43 0.44

5.3.1. Effect of Negative Memberships

In our example of intuitionistic data in Table 9 we chose to focus only on stronger
positive memberships to allow a consistent analysis of rules. Now we examine the effect if a
few data values have higher negative memberships. Specifically, we will use a membership
of <0.3, 0.6> for R6 and then R1 to compare the effects on rule support. For the case of
R6, we consider rules F25 and F52 as there is only one other entry, R1, involved. We expect
less significant changes for rules in which more data is involved, and the effect of the one
change would not be expected to be as strong.

For rules F25 and F52, the change affects |R| and FNsp:

Min|R| = 4.4; Max |R| = 4.9; Min FNsp = 0.9; Max FNsp = 1.1

So,
Min FMsp = 0.9/4.4 = 0.205; Max FMsp = 1.1/4.9 = 0.224

Then, the support for both rules has decreased, to a support of 28% for MinFMsp and
25% for Max FMsp.
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Next, we replace the membership of R1 with <0.3, 0.6> and compare the effect on
F12. Here,

Min|R| = 4.6; Max |R| = 5.1; Min FNsp = 2.3; Max FNsp = 2.7

Then,
Min FMsp = 2.3/4.6 = 0.5; Max FMsp = 2.7/5.1 = 0.529

As expected, the changes in the support are now much less—roughly 9.5% for both supports.

5.3.2. Lift Metric

Now, we examine the lift metric with the data of Table 9. Again, the results are consistent
with the lift results of Table 3, as the same three rules, F25, F52, F{12}4, have lift >1, Table 11.

Finally, to be complete, we examine the same change in negative membership for R6
and R1 above. For F25 and F52, we see:

Lift Min: 1.52-6% increase; Lift Max: 1.44–3.5% increase.

For F12, the lift value changes are marginal:

Lift Min: 0.90-1% decrease; Lift Max: 0.91–1% decrease.

These results are still consistent with previous values, since F25 and F52 have lift >1,
and F12 has lift <1. The increases for F25 and F52 reflect the change in the co-occurrence of
the antecedents and consequents due to the increased negative membership as shown in
Section 5.3.1 above. Additionally, for F12 the change is negligible, again consistent with the
smaller changes in its support for similar reasons.

Table 11. Lift values for Intuitionistic Memberships.

Rules: Fjk Lift Min Lift Max

1. F12: camp→ fish 0.91 0.92

2. F21: fish→ camp 0.9 0.92

3. F31: hike→ camp 0.9 0.89

4. F25: fish→ ski 1.43 1.39

5. F52: ski→ fish 1.44 1.38

6. F54: ski→ raft 0 0

7. F{12}4:camp, fish→ raft 1.1 1.2

8. F5{12}: ski→ camp, fish 0.81 0.79

6. Conclusions

We have shown that it is quite feasible to discover association rules appropriate for
applications in which the data involves intuitionistic fuzzy set descriptions.

The extensions required were applications of the set cardinality for intuitionistic fuzzy
sets for determining the counts used in the metrics. This produced consistent results for the
support and confidence of rules. We also examined the effects of data with higher negative
memberships in some cases. The results implied that the approaches were still valid,
depending on the percentage of data with such memberships. Additionally, to provide
insight into the metrics used in the approach, the ranges of support and confidence as well
as lift and conviction were determined.

Since interval valued fuzzy sets have similar formulations, the use of such uncertainty
measures can be considered next for association rules. Entropy measures can be used [22]
to evaluate the IFS and IVFS in the association rule computations.
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