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Abstract: A Z-number is very powerful in describing imperfect information, in which fuzzy numbers
are paired such that the partially reliable information is properly processed. During a decision-
making process, human beings always use natural language to describe their preferences, and
the decision information is usually imprecise and partially reliable. The nature of the Z-number,
which is composed of the restriction and reliability components, has made it a powerful tool for
depicting certain decision information. Its strengths and advantages have attracted many researchers
worldwide to further study and extend its theory and applications. The current research trend on
Z-numbers has shown an increasing interest among researchers in the fuzzy set theory, especially
its application to decision making. This paper reviews the application of Z-numbers in decision
making, in which previous decision-making models based on Z-numbers are analyzed to identify
their strengths and contributions. The decision making based on Z-numbers improves the reliability
of the decision information and makes it more meaningful. Another scope that is closely related to
decision making, namely, the ranking of Z-numbers, is also reviewed. Then, the evaluative analysis
of the Z-numbers is conducted to evaluate the performance of Z-numbers in decision making. Future
directions and recommendations on the applications of Z-numbers in decision making are provided
at the end of this review.

Keywords: Z-number; fuzzy decision making; SWOT; fuzzy ranking; multi-criteria decision making

1. Introduction

Natural language (NL) is more understandable when a decision on certain things
should be made as human beings use NL to describe almost everything in daily life. It
is not accurate to describe things using crisp numbers 1 and 0 to represent the truth and
falsity, respectively. For example, when a person is required to describe the weather of
the day, then they are limited to describe the weather as ‘rainy’ or ‘not rainy’, in which
the linguistic terms, if mathematically written, are the crisp numbers 1 or 0, respectively.
Using the knowledge of fuzzy sets [1], the person can better describe the weather as ‘very
rainy’, ‘rainy’, ‘slightly rainy’, ‘cloudy’, ‘slightly cloudy’, ‘sunny’, ‘very sunny’, etc. The
application of fuzzy sets allows human beings to better describe their opinion in NL, and
some uncertainties can be reduced.

Using the classical fuzzy sets, each element in the set is assigned a membership
function in the interval [1] to depict its degree of belongingness to the set. Type-2 fuzzy
set was then introduced by [2] to describe the membership function using a classical fuzzy
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set (Type-1 fuzzy set) instead of any crisp value from the interval [1]. Hence, the Type-2
fuzzy set has a three-dimensional membership function. Realizing that it is not enough to
represent the elements in the fuzzy sets by the membership grade, Atanassov [3] defined
the non-membership grade that measures how much the elements do not belong to the
fuzzy set. The hesitancy grade was also defined to complement the value between the
membership and non-membership grades. In 2010, Torra [4] proposed a new concept of
a fuzzy set called the hesitant fuzzy set, which allowed the element of the fuzzy sets to
have more than one membership function. When it comes to decision making, the decision-
makers have some hesitancy in describing the variable using a single membership grade.
Hence, the hesitant fuzzy set allows the decision-makers to assign multiple membership
grades for such variables. In an intuitionistic fuzzy set, the membership, non-membership,
and hesitancy grades are treated as dependent variables. In contrast, Wang et al. [5]
extended Smarandache’s [6] work in defining the single-valued neutrosophic sets, in which
the truth-membership, falsity-membership, and indeterminacy-membership are all treated
as independent variables.

In the real world, decision information is almost always imperfect [7]. Information is
imperfect when it is imprecise, incomplete, unreliable, and vague [8]. The imprecision can
be described as either more than one or no realization match the available information [9].
According to [10], imperfect information leads to difficulties in giving accurate preferences
among decision-makers. The decision information is not completely reliable due to the
incompetency of decision-makers, complicated alternatives, and psychological biases [10].

According to Liu et al. [11], the traditional fuzzy numbers only depict nonlinear
and uncertain information, in which the level of sureness of such information is ignored.
Hence, Z-number was introduced by [12] to properly cater for imperfect information.
The Z-number is composed of a pair of fuzzy numbers, (A, B). The first component, A,
describes the restriction on the values that a random variable can take, while the second
component, B, is the measure of reliability or certainty of A. Using the reliability component,
the Z-numbers complement the fuzzy number describing a variable by defining its level of
certainty or sureness. Since Smets [9] defined perfect information as precise and certain
information that is free from inconsistencies, the emergence of Z-numbers can hence be
depicted as a new knowledge in the fuzzy set theory that directs into the appreciation of
much perfect information. The chronological evolvement of fuzzy sets can be summarized
as illustrated in Figure 1.
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According to Abdullahi et al. [13], a Z-number is a generalization of real, interval,
random, and even fuzzy numbers. It was noted that a Z-number has a higher level of
generality, which makes it very powerful in realistically modelling real-world systems. The
concept of Z-number is capable of better describing imperfect information in expressions
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that are almost close to the natural language [14]. This is due to the fact that Z-numbers
are capable of representing the uncertainty of the real world as well as the unreliability of
human languages [15]. The success of Z-numbers in many applications such as decision
making, regression analysis, system control, machine learning, and computing with words
has been illustrated in the literature [13].

The research on Z-numbers has attracted many researchers on expanding the knowl-
edge of the extension of fuzzy sets. Based on the Scopus database, there are more than 800
documents whose keyword is Z-number. The number of publications on Z-numbers has
shown an increasing trend from 2011 until 2022 with the term ‘decision making’ leading
to the top 10 keywords based on the search of ‘Z-number’ word in the Scopus database.
Among the 10 keywords, the keyword ‘decision making’ comprises 42.1% (refer to Figure 2).
Hence, a refined search on Z-numbers was further performed by combing the keywords
‘Z-number’ and ‘decision making’. The result shows that the number of publications
slowly increased from 2012 until 2016. From 2017 onwards, the number of publications
tremendously increased, which indicates that the applications of Z-numbers in decision
making have been widely studied. Hence, the current research trend on Z-numbers has
motivated the authors to conduct a literature review, specifically on the decision making
with Z-numbers.
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There have been several review papers on Z-numbers such as [13,16,17], but the topic
is quite wide and not only focused on decision making. The review by [13] focused on the
arithmetic concepts of Z-numbers and their applications in decision making, regression,
system control, machine learning, and computing with words (CWW). Banerjee et al. [16]
reviewed the theoretical concepts and applications of Z-numbers in CWW, decision making,
multisensor data fusion, dynamic controller, and safety analytics. Bilgin and Alci [17]
specifically reviewed the ranking methods of Z-numbers.

On the other hand, this review paper is more focused on the application of Z-numbers
in decision making, with strength, weakness, opportunity, and threat (SWOT) analysis
being conducted to evaluate the features of Z-numbers in solving real-world problems. It
is believed that each multi-criteria decision-making (MCDM) method has its strength and
weakness. Hence, existing MCDM methods based on Z-numbers were explored in this
research to make comparative evaluations of the advantages and disadvantages of each
of them. Based on the comparative analysis, the strength of each method was identified
for the implementation in the development of the MCDM method based on Z-numbers in
the future. In fact, the existing MCDM methods are either based on direct computation on
Z-numbers or their conversion into regular fuzzy numbers. Both approaches were analyzed
to identify the strengths and weaknesses of each approach.

In this review, existing MCDM methods based on Z-numbers are effectively identified.
The effectiveness of the hybrid MCDM models that integrate more than one decision-
making method was observed. The results of this review can be used to identify the current
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state of the MCDM method based on Z-numbers. Hence, researchers in fuzzy decision
making are able to find the gap that will expand the knowledge of fuzzy mathematics.
Moreover, this review provides a comparative analysis of the ranking approaches of
Z-numbers that will help researchers identify the best ranking method to be implemented
in the development of the MCDM model using Z-numbers later.

This section provides some background on the emergence of Z-numbers. In Section 2, the
review of the theoretical preliminaries of Z-numbers is discussed. Section 3 reviews various
decision-making methods and approaches that were developed based on Z-numbers. Section 4
reviews the previously proposed ranking methods of Z-numbers that are closely related to
the decision-making concept. Section 5 presents the evaluative analysis of Z-numbers with
some important remarks being discussed. Finally, Section 6 concludes this paper.

2. Theoretical Preliminaries

The theoretical construction of Z-numbers lies from their conversion into fuzzy num-
bers, arithmetic operations, and uncertainty measures to the aggregation in the group
decision making. Further, the entropy measure of Z-numbers and the method of generat-
ing Z-numbers are important concepts in the theoretical construction of Z-numbers. The
extension of Z-numbers into many types of other fuzzy Z-numbers has also attracted many
researchers in constructing the theoretical background of Z-numbers. These mentioned
concepts are summarized and illustrated as shown in Figure 3.
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The calculations involving Z-numbers have a high level of computational complex-
ity since they deal with the possibilistic and probabilistic restrictions [13]. As a way of
overcoming this issue, Kang et al. [18] proposed a method of converting Z-numbers into
regular fuzzy numbers. In their proposed method, the reliability part of Z-numbers is
transformed into a crisp number and treated as a weight, which is then added to the first
part of Z-numbers. However, converting Z-numbers into regular fuzzy numbers leads to a
significant loss of information [13,19,20]. Later, Aliev et al. [21] proposed arithmetic opera-
tions of discrete and continuous Z-numbers, which allow direct calculations on Z-numbers.
The proposed operations are mainly regarded with fuzzy arithmetic using α-cuts as well
as probabilistic arithmetic. These operations do not require the conversion of Z-numbers
into regular fuzzy numbers; thus, the issue of information loss can be overcome. Using
direct calculations on Z-numbers leads to computational complexity since they require the
applications of goal programming extensively just to solve a small problem.

Next, Aliev et al. [22] developed the arithmetic operations of Z-numbers using the hori-
zontal membership functions to overcome the loss of fundamental properties of arithmetic
operations over real numbers when the fuzzy arithmetic based on Zadeh’s extension principle
or the α-cuts are used. The proposed approach, which is based on the concept of horizon-
tal membership function and relative distance measure, increases the informativeness of
Z-numbers. In real-world applications, the calculations always involve a large number of
Z-numbers that need suitable and practical methods in terms of informativeness. Hence,
Aliev et al. [23] adopted the bandwidth approach [12] to simplify the computations and the
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horizontal membership function [24] for the preservation of the informativeness of Z-numbers.
In their approach, the arithmetic between the second components of Z-numbers is treated as
a multiplication between fuzzy numbers to reduce the complexity operations over Z-numbers.
The obtained value is the approximation of the probabilistic arithmetic and is suitable for appli-
cations when a large number of Z-numbers are involved. The representation of Z-numbers as
the fuzzy set of probability functions originating from the flexible restriction of the probability
of a fuzzy event has led to complex calculations. Hence, Dubois and Prade [25] described the
Z-numbers in light of the belief functions and p-boxes. The restriction and reliability compo-
nents of the Z-numbers were treated as crisps, allowing the generated set of probabilities to be
representable by a belief function that corresponds to the p-box.

An uncertainty measure of Z-numbers was proposed by considering the fuzziness of
the constraint and reliability as well as the inherent uncertainty. They also presented certain
properties of the developed uncertainty measures such as minimality, maximality, resolu-
tion, and symmetry. However, the association between Z-numbers should be compared
using the concept of underlying probability distribution [26]. Hence, a new uncertainty
measure of discrete Z-numbers is proposed by Li et al. [26] using the maximum entropy
method to calculate the underlying probability distributions of Z-numbers. Using the
obtained entropies, they formulated a new fuzzy subset in which their basic values are the
obtained entropies with the membership functions of the reliability component. However,
the uncertainty increases using their proposed uncertainty measure when the reliability
component becomes sharper. In fact, when the reliability component becomes sharper, it
means that the restriction component becomes more reliable and certain, and hence the
uncertainty measure should decrease. Thus, Li et al. [27] modified the uncertainty measure
of Z-numbers. In their method, they followed the maximum entropy method in computing
the underlying probability distributions similar to [26]. However, the final formula for the
uncertainty measure was modified.

Further, Li et al. [28] defined the relative entropy of Z-numbers based on the maximum
entropy method and the relative entropy of probability distributions. The maximum entropy
was used to calculate the underlying probability distributions of two Z-numbers, Z1 and Z2.
The relative entropy between the underlying probability distributions then determined the
relative entropy between Z1 and Z2. Recently, Xu and Deng [15] defined the information volume
of a Z-number, which can be used to measure the uncertainty level of a Z-number. As the
information volume increases, then the uncertainty measure of Z-numbers increases. They used
the maximum entropy method to calculate the probability distributions of Z-numbers. They are
then transformed into mass functions that are finally integrated using the weighted average.

Some studies have also been conducted to generate Z-numbers from discrete fuzzy
numbers. Kang et al. [29] illustrated the case when the fuzzy restriction on a variable is
performed with the absence of the reliability part. Hence, they proposed a method of
adding the reliability part using the concept of orness measure [30] and maximum entropy.
Three situations were considered according to the decision maker’s attitude: optimistic,
pessimistic, and normative strategies. Tian and Kang [31] modified Kang et al.’s [29] method
of generating Z-numbers by generating the ordered weighted averaging (OWA) weights
using maximum entropy, generating the value of the reliability part and evaluating its
membership function, and measuring the reliability of different decision makers’ attitudes
using a newly defined similarity measure based on the Hellinger distance. They further
illustrated their proposed method using numerical examples, in which the attitudes of
decision-makers could be measured based on the reliability values.

For the application of Z-numbers in group decision-making, Aliev et al. [32] defined
the Z-number valued t-norm and t-conorm. The defined t-norm and t-conorm were then
extended to define the aggregation operator to aggregate the decision information in
terms of Z-numbers defined by multiple decision-makers. Further, Wang and Mao [33]
combined the power average operator [34] with the weighted arithmetic average and
weighted geometric average operators for aggregating decision-makers’ opinions under
the Z-number environment. They successfully applied the defined aggregation operators
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in developing a new TOPSIS based on Z-numbers. Peng et al. [35] defined the aggregation
operators of Z-numbers based on new operations in light of t-norms and t-conorms. The
Bonferroni mean operator was integrated with the defined operations of Z-numbers to
obtain the Z-number-weighted Bonferroni mean. Further, Cheng et al. [36] defined the OWA
operator involving Z-numbers. The defined operator was based on Yager’s [37] work to
take into account the decision maker’s attitude in aggregating Z-numbers. Such attitude
could be age, experience, knowledge, and other factors [36]. On their defined OWA operator,
the hidden probability distribution of Z-numbers was considered, which preserved the
Z-number information and highly maintain the original meaning of Z-numbers. In another
work by [38], the Bonferroni mean operator was extended to Z-numbers using the overlap
functions and grouping functions. They further illustrated the defined operator in solving the
new energy investment selection problem under the group decision-making using Z-numbers.

In 2020, Abdullahi et al. [39] proved that the discrete and continuous Z-numbers can
be ordered by using a relation between the Z-numbers and any ordered subset of real num-
bers. The ordered structure of Z-numbers was further used to construct temporal discrete
Z-numbers. The supremacy of Z-numbers in describing human knowledge under uncertain
environments with limited and partially reliable information has attracted many researchers
to extend the knowledge. Sari and Kahraman [40] combined the intuitionistic fuzzy sets
with Z-numbers, in which both components of Z-numbers are represented by intuitionistic
fuzzy numbers. The inclusion of the membership and non-membership grades of the
restriction and reliability components in the intuitionistic Z-numbers (IZN) has improved
the ability of Z-numbers in handling uncertainty and partially reliable information. On the
other hand, Du et al. [41] combined the neutrosophic fuzzy sets with Z-numbers to produce
neutrosophic Z-numbers (NZN). They defined the score function and aggregation operators
of NZN and implemented the knowledge in developing a new MCDM method based on
NZN. The NZN can express the inconsistency and incompleteness of human judgements
since it is capable of describing the truth, falsity and indeterminacy of Z-numbers [42].

3. Decision-Making Methods and Approaches

Extensive work has been conducted to help decision-makers in obtaining the best
solution to multi-criteria and multi-alternatives problems. The decision-making models can
be divided into several groups, which are based on the comparison matrix, distance-based
solution, outranking methods, etc. Each of these methods has its strengths and advantages
in processing the decision information, as presented in Table 1.

Table 1. Prominent MCDM methods with their contributions.

Reference Method Contribution

[43] ELECTRE The ranking of alternatives is done by selecting the best one
in which the low-attractive alternatives are eliminated.

[44] DEMATEL Describes the interrelations among the attributes that can be
partitioned into a cause group and an effect group.

[45] AHP The evaluation of decision-makers is performed using a pairwise comparison matrix.

[46] TOPSIS The prioritization of alternatives is based on the
distance measure from the positive and negative ideal solutions.

[47] PROMETHEE An outranking method that allows the pairwise comparison of alternatives, in which they are
being evaluated according to different criteria, which have to be maximized or minimized.

[48] VIKOR The ranking and selection from a set of alternatives that allows
for the determining of the compromise solutions when there are conflicting criteria.

[49] TODIM The evaluation of alternatives is based on the dominance
degree of each alternative over other alternatives using the overall value.

[50] WASPAS The ranking of alternatives is determined based on the utility value
using the additive and multiplicative relative importance.

[51] CODAS The best alternative is determined based on the
maximum distances from the negative ideal solution.
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In conventional MCDM methods, crisp numbers were used to quantify the level of
importance of each criterion and alternative. However, the uncertainty of the decision
information was not well simulated using crisp numbers in the traditional MCDM methods.
In fact, decision-makers could not express their opinions on alternatives acceptably using
crisp numbers due to the complexity of the decision-making scenarios [36]. The implemen-
tation of fuzzy sets in decision-making methods was pioneered by Bellman and Zadeh [52].
Since Z-number was first introduced in 2011, the emergence of MCDM methods using
Z-numbers hence started to expand from 2012 onwards.

Kang et al. [53] developed a decision-making model using Z-numbers in which the
graded mean of triangular fuzzy numbers was used to transform both components of
Z-numbers into crisp values and obtain their product. The final priority weight was
calculated using the transformed Z-numbers. However, the decision information is not
preserved as Z-numbers, which finally leads to a significant loss of information.

The expected utility-based decision-making model using Z-numbers was developed
by Zeinalova [54]. The validity of the proposed model was applied to solve the economic
problem of investment. However, the proposed model was based on the conversion of
Z-numbers. Further, Aliev et al. [55] improved the expected-utility-based model that
allows direct calculation on Z-numbers. The Z-numbers were compared using the fuzzy
optimality approach.

A TOPSIS model based on Z-numbers was proposed by [56], in which they used the
conversion method from [18] to transform Z-numbers into regular fuzzy numbers. Since
the decision information was transformed into regular fuzzy numbers, then the distance
of each alternative from the ideal solutions was calculated using the distance of fuzzy
numbers. They considered the stock selection problem involving 25 companies in Malaysia
for the validation of the proposed Z-TOPSIS model.

Babanli and Huseynov [57] employed the arithmetic operations over discrete
Z-numbers defined in [58] to solve the optimal alloy selection problem. The fuzzy Pareto
optimality was used to make a comparison between Z-numbers, taking into account the
degree of pessimism of decision-makers.

Ku Khalif et al. [59] developed the CFPR-TOPSIS method using Z-numbers, in which
the criteria weights were evaluated using the CFPR while the TOPSIS was used to rank
the alternatives. The intuitive multiple centroid was used to transform Z-numbers into
regular fuzzy numbers, in which the reliability component, which is in trapezoidal shape,
was partitioned into three parts and the centroid of each sub-area was calculated. Then,
the sub-centroids were connected to form a triangle before its center could be located. The
x-ordinate of the triangle’s centroid was used as a weight, which was then added to the
restriction component to obtain the regular fuzzy numbers. They validated their proposed
model in the selection of the best candidate for staff recruitment in a legal company.

The TOPSIS method was extended into Z-TOPSIS, which was integrated with the
principal component analysis and mixed integer linear programming by [60]. However,
Kang et al.’s [18] methodology of converting Z-numbers into regular fuzzy numbers was
employed in the proposed Z-TOPSIS method. A numerical example of supplier selection in
the pharmaceutical industry was used to illustrate the proposed model.

Chatterjee and Kar [61] employed a similar approach to processing Z-numbers in
the COPRAS methodology, in which the Z-number was converted into a regular fuzzy
number based on Kang et al.’s [18] method to obtain the average subjective weighted
value of criteria. The regular fuzzy number was further defuzzified using the centroid
formula [62]. Meanwhile, the Shannon entropy, degree of divergence, and objective weight
were calculated for the objective part. The crisp values representing both the subjective and
objective parts were finally combined using a convex compound to obtain the total weight
of each criterion.

Zeinalova [63] developed a novel AHP method based on Z-numbers, in which direct
calculation over Z-numbers [58] was used. The fuzzy Pareto optimality was used to



Information 2023, 14, 400 8 of 24

compare between Z-numbers in order to obtain the ranking of alternatives. They applied
the proposed Z-AHP in solving the university selection problem.

The Z-VIKOR method was proposed by [19] as an extension of the fuzzy VIKOR
method. In the proposed method, the weighted distance measure was proposed, combining
the Hellinger distance and the distance of reliability measure. The Hellinger distance was
used to quantify the similarity between the underlying probability distributions of two
Z-numbers. A numerical example to select the regional circular economy development
plan in China was adopted to illustrate the validity of their proposed method.

Krohling et al. [64] developed the TODIM and TOPSIS models based on Z-numbers
and validated their models using two numerical examples: the vehicle selection and the
clothing evaluation. In both models, the transformation of Z-numbers using the fuzzy
expectation [18] was used, which leads to a significant loss of information.

Gardashova [20] presented a TOPSIS method based on the direct calculation of
Z-numbers. The arithmetic operations over discrete Z-numbers [58] were implemented
to normalize the decision matrix. She used the distance between Z-numbers defined
by [65] to calculate the distances between each alternative from the positive and negative
ideal solutions. The vehicle selection example [53] was adopted to illustrate the proposed
TOPSIS model.

Another TOPSIS model based on Z-number was also proposed by [33]. They defined
new Z-number-based arithmetic and geometric aggregation operators to aggregate the
decision matrices from multiple decision makers. A new distance measure of Z-numbers
was also defined based on the concept of cross-entropy. In their defined distance measure,
the first component of Z-numbers was considered to have a higher influence over the
reliability component in determining the distance. Supplier selection in the automobile
manufacturing industry was considered to validate their Z-TOPSIS model.

In 2020, Tüysüz and Kahraman [66] proposed an extended CODAS methodology
based on Z-numbers. The Z-numbers were transformed into regular fuzzy numbers by
converting the reliability components into weights using the center of gravity defuzzifica-
tion, which was then added to the restriction component. The proposed method has low
computational complexity involving Z-number calculation, but some information about
Z-numbers is dissipated during the transformation into regular fuzzy numbers.

Alternatively, Kang et al. [67] combined the Dempster–Shafer theory (DST) with
Z-numbers in estimating the risk of contaminant intrusion in water distribution networks
and incidence of infection in hospitals. In their method, they presented a new similarity
measure between Z-numbers, which was extended from the utility of fuzzy numbers. Based
on the similarities, they determined the basic probability assignment and finally combined
it with DST.

An outranking MCDM based on Z-numbers was proposed by [68], namely, the
Z-PROMETHEE. They first defined the possible degree of triangular fuzzy numbers. Fur-
ther, the possibility degrees of both components of Z-numbers, which were represented
by triangular fuzzy numbers, were constructed. They were further combined using an
adjustable risk preference variable in the convex compound. However, the variable was
allocated to take any values in the interval [0,1], which contradicts the fact that the restric-
tion component should be considered as a major factor of Z-number [69]. Their proposed
Z-PROMETHEE was successfully applied in solving the travel plan selection problem.

In another study by [70], the linguistic Z-numbers were applied to solve the portfo-
lio selection problem for the stock exchange market in Iran. In their model, the ordered
weighted averaging and hybrid weighted averaging aggregation operators were used to
aggregate the linguistic Z-numbers. Another approach by [71] used the dynamic program-
ming approach based on Z-numbers to solve the shortest path problem. The shortest path
problem is widely applied in transportation and economics [71]. Since no works on solving
the shortest path problem based on Z-information, their work was the first to consider the
degree of reliability under a fuzzy environment.
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Jabbarova and Alizadeh [72] proposed a VIKOR method based on direct computation
on discrete Z-numbers. The arithmetic operations from [21] were employed to perform the
calculation over Z-numbers in obtaining the regret measures, utility measures, and VIKOR
indices. The fuzzy Pareto optimality method was then used to compare between discrete
Z-numbers. The proposed VIKOR model was successfully applied in solving the personal
selection problem in the recruitment of an online manager in a company.

Aliev et al. [10] proposed an approach to constructing a pairwise comparison matrix
whose elements are Z-numbers in a consistency-driven way. They applied differential
evolution (DE) to solve the optimization problem with Z-numbers. The method was further
applied by [73] in solving the country selection problem.

Many decision-making methods that used the utility function to process Z-numbers
were also developed. Ahmadov [74] ranked Z-numbers representing the alternatives using
the expected utility function in solving the alternative selection in investment problems. A
similar approach was also used by [75] in ranking the alternatives to solve the personal
selection problems.

The AHP-WASPAS methodology based on Z-numbers was developed by [76], in which
they illustrated the proposed method to prioritize the public services for the implementation
of Industry 4.0 tools. In their method, the Z-numbers were transformed into regular fuzzy
numbers in both the AHP and WASPAS models. The AHP model was used to obtain the
criteria weights, while the WASPAS model was used for the prioritization of the alternatives.

Further, Liu et al. [77] developed the AHP-TOPSIS model based on Z-numbers, in
which the Z-AHP was used to obtain the criteria weights while the Z-TOPSIS was to rank
the alternatives. In both models, the Z-numbers were converted into regular fuzzy numbers
using the fuzzy expectation [18]. The hybrid model was then implemented in the concept
design evaluation to select the best waste container in the kitchen.

Another TOPSIS model was developed by [28] using the concept of the relative entropy
of Z-numbers. The relative entropy was used to find the separation of each alternative
from the ideal solutions, which was further used to obtain the closeness coefficient. They
applied the proposed Z-TOPSIS in solving the supplier selection problem. The defined
relative entropy measure of Z-numbers allows for direct calculation over Z-numbers; thus,
it is able to avoid information loss. However, it leads to high computational complex-
ity, especially for continuous Z-numbers [28]. The DEMATEL was also extended into a
Z-number-based methodology by [78]. The extended DEMATEL was then integrated with
the HEART method.

Hu and Lin [79] extended the ELECTRE-III into a Z-number-based methodology
and weighted Copeland method. In their methodology, the reliability component of the
Z-number was transformed into a crisp value using the center of gravity method. The
obtained crisp weight was then multiplied by the restriction component to obtain the
regular fuzzy number, and the fuzzy entropy method was employed to evaluate the criteria
weights. As an illustration, they validated their proposed method for assessing property
concealment risk in China.

Another ELECTRE-III method based on Z-numbers was proposed by [80]. They
defined the concordance and discordance indices of Z-numbers. Then, the dominance
relations of Z-numbers were defined, in which some of the properties were studied. The
proposed relations were further applied in the ELECTRE-III model to allow the processing
of Z-numbers fully using their bimodal uncertainty so that the nature of Z-numbers could
be preserved. Their proposed model was further validated using the renewable energy
selection problem [61].

A hybridized VIKOR method with Z-numbers was developed by [81], and they
employed supplier selection [60] to validate their proposed model. In their method, the
arithmetic mean operator was used to aggregate the preferences from multiple decision
makers, in which the restriction and reliability components of Z-numbers were separately
aggregated. Both components of Z-numbers were combined using the final rating function
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based on the concept of the convex compound, which defuzzified Z-numbers into crisp
values to determine the rank of alternatives.

Li et al. [82] defined a generalized distance of Z-numbers to allow for the decision-
maker’s preferences on different effects on the restriction and reliability parts of Z-numbers.
Then, they defined the Z-number gray relational degree for the application in decision-
making under the Z-number environment. The effectiveness of their proposed method was
illustrated using a Web service selection problem.

In another study by Nuriyev [14], he extended the TOPSIS and PROMETHEE methods
into a Z-number-based methodology using the direct calculation of Z-numbers. The proposed
models were then applied in the selection of the tourism development sites in Azerbaijan.

A new MCDM method based on Z-numbers and fuzzy Hausdorff distance was pro-
posed by [83] for the selection of the hydro-environmental system to revitalize a lake in Iran.
The fuzzy Hausdorff distance was used to avoid the aggregation of Z-numbers using a com-
plicated method and to preserve the initial decision information in the form of Z-numbers.

Jia and Herrera-Viedma [84] used the Pythagorean fuzzy set to solve decision-making
problems using Z-numbers. Both components of the Z-numbers were transformed into
Pythagorean fuzzy sets, and the Genetic Algorithm was further used to derive the potential
probability distribution. The proposed approach was integrated into the decision-making
model using linguistic Z-numbers. The model was further applied in solving the energy
investment selection problem. The above-mentioned MCDM methods can be further
compared and summarized as shown in Table 2.

The TOPSIS based on Z-numbers was observed to be the most developed method
among other MCDM models. The developed Z-TOPSIS methods vary in many ways, such
as the distance function used to measure each alternative from the ideal solutions, methods
of calculation with Z-numbers, and numerical examples as applications. Table 3 lists the
previously proposed Z-TOPSIS with their applications.
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Table 2. Comparative analysis of MCDM methods based on Z-numbers.

Reference Method Processing of Z-Numbers Ranking of Alternatives Application Advantage Disadvantage

[56] TOPSIS Conversion using fuzzy expectation Euclidean distance between fuzzy numbers Stock selection problem Simplified the calculation on Z-numbers Loss of information

[59] CFPR-TOPSIS Conversion using intuitive multiple centroid Euclidean distance from vertical
and horizontal centroids

Staff recruitment selection Improved the method of determining
the vertical and horizontal centroids

The reduction of Z-numbers into regular fuzzy numbers
does not keep the initial information

[60] PCA-TOPSIS-MILP Conversion using fuzzy expectation Distance between fuzzy numbers Supplier selection in the
pharmaceutical supply chain

The integration of PCA reduced the number of criteria The conversion of Z-numbers leads to a loss of information

[61] COPRAS Conversion using centroid of
triangular fuzzy number

Relative significance and utility degree Prioritization of renewable energy resources The combination of subjective weights from decision-makers
and objective weights using Shannon entropy

The conversion of reliability parts into centroid leads to the
dissipation of information

[63] AHP Direct calculation on discrete Z-numbers Pairwise comparison
and Pareto optimality principle

Selection of technical institutions The preservation of information of Z-numbers as no conversion
into regular fuzzy numbers was involved

The calculation of hidden probability is tedious

[19] VIKOR Direct computation of discrete Z-numbers Hellinger distance of Z-numbers Selection of regional circular economy
development plan

The inclusion of reliability measure and underlying probability
distribution in determining the weighted distance of Z-numbers

give a more precise measure

Complicated and tedious
calculation to solve simple problems

[64] TODIM Conversion using centroid
of trapezoidal fuzzy number

Dominance of alternative over each alternative Vehicle selection and clothing evaluation The dominance of alternative over other
alternatives is checked one by one

The consideration of centroid of reliability in the conversion
dissipates some information

[33] TOPSIS Paired calculation on restriction and reliability
components separately

Weighted paired distance of restriction and
reliability components

Supplier selection in an
automobile manufacturing company

The weight coefficients of decision makers are obtained via a
programming model and the implementation of power aggregation

operators in combining the decisions from all decision makers

The final relative closeness coefficient is in pairs of restriction
and reliability components, which requires a further

approach to combine them

[66] CODAS Conversion of Z-numbers using center of
gravity defuzzification

Euclidean and Taxicab distances of regular
fuzzy numbers

Supplier selection problem The calculation of relative assessment scores based on Euclidean
and Taxicab distances

The defuzzification of reliability parts via center of gravity
leads to a loss of information

[68] PROMETHEE Possibility degree of Z-numbers is calculated by
combining the restriction and reliability
components using a convex compound

Priority index and outgoing
and incoming flows

Travel plan selection The possibility degree of Z-numbers and outranking
relations do not involve the conversion

of Z-numbers into regular fuzzy numbers

Priority index matrix can only be obtained when the
possibility degrees of an alternative over each of the other

alternatives are obtained; this is not practical when there are
too many alternatives

[76] AHP-WASPAS Conversion of Z-numbers using center of
gravity defuzzification

Utility score combining the weighted sum and
product of fuzzy numbers

Prioritization of public services for digitalization The consideration of weighted sum and product of fuzzy numbers
in the utility score can determine the rank of alternatives effectively

The conversion of Z-numbers into regular fuzzy numbers
dissipates some information

[77] AHP-TOPSIS Conversion using fuzzy expectation Euclidean distance between fuzzy numbers Conceptual design evaluation
of kitchen waste containers

The simplification of the fuzzy TOPSIS method based on
Z-numbers based on conversion into regular fuzzy numbers

Loss of information

[28] TOPSIS The relative entropy of Z-numbers Relative entropy from the positive
and negative ideal solutions

Supplier selection problem The determination of the underlying probability distributions gives
a more precise measure of the reliability components

The consideration of the underlying probability distributions
in finding the entropy of Z-numbers made the calculation

more tedious

[79] ELECTRE-III Defuzzification of reliability components into
centroid of gravity

Credibility index of fuzzy outranking relation Property concealment risk ranking The expert-weight-determining method is introduced in this paper
based on group consistency and reliability

The dissipation of information occurs when the reliability
components of Z-numbers are defuzzified

[80] ELECTRE-III Bimodal uncertainty of Z-numbers without
conversion into regular fuzzy numbers

Dominance, support, and opposition relations
based on Z-numbers

Renewable energy selection problem The outranking relations based on bimodal uncertainty of
Z-numbers have a stronger role in ranking alternatives effectively

The tedious calculation involving the underlying
probability of the reliability components despite

solving simpler problems

[81] VIKOR The defuzzification of Z-numbers after
obtaining the fuzzy best and worst values

The separation measures from the fuzzy best
and worst values

Supplier selection in the
pharmaceutical supply chain

The ranking approach based on fuzzy best value and fuzzy worst
value can effectively prioritize the alternatives

The defuzzification of the separation measures of the
restriction and reliability components dissipates some

information before the final ratings are obtained
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Table 3. The previously developed Z-TOPSIS models with their applications.

References Type of Z-Numbers Approach Applications

[56] Continuous trapezoidal Conversion of Z-numbers
using fuzzy expectation

Selection of stock company

[85] Continuous triangular Pairwise closeness coefficients of restriction
and reliability components

Accident on a construction
site by a worker

[86] Continuous triangular Pairwise closeness coefficients of restriction
and reliability components

Selection of agreement from the MoU

[60] Continuous triangular Conversion of Z-numbers
using fuzzy expectation

Supplier selection in
a pharmaceutical company

[87] Continuous trapezoidal Conversion of Z-numbers using intuitive
vectorial centroid

Company performance assessment

[33] Continuous triangular Pairwise closeness coefficients of restriction
and reliability components

Supplier selection in the automobile
manufacturing industry

[64] Continuous triangular Conversion of Z-numbers
using fuzzy expectation

Vehicle selection [53] and clothing
evaluation by male customers [88]

[20] Continuous trapezoidal Direct calculation on Z-numbers Vehicle selection [53]

[89] Continuous triangular Conversion of Z-numbers
using fuzzy expectation

Supplier selection in the automobile
manufacturing industry

[90] Continuous triangular Pairwise closeness coefficients of restriction
and reliability components

Engineer selection in a software company

[91] Continuous triangular Choquet integral-based distance Supplier selection in an enterprise

Continuous triangular Conversion of Z-numbers
using fuzzy expectation

Evaluation of the conceptual design of
waste containers

[28] Discrete Underlying probability distributions and
relative entropy of Z-numbers

Supplier selection

4. Ranking Methods

The ranking of fuzzy numbers is a familiar concept to fuzzy MCDM since the final
alternatives are prioritized based on the final fuzzy values. In ranking Z-numbers, many
methods were developed by researchers in recent years.

The fuzzy Pareto optimality [7] was used by Aliev et al. [55] to rank between discrete
Z-numbers. The ranking method calculates three different functions that measure how
much a Z-number is better, equivalent, and worse than the other with respect to their
both components, which employs the concept of the probability measure. Further, Abu
Bakar and Gegov [92] used the vertical and horizontal centroids as well as the spread of
fuzzy numbers to rank Z-numbers. In their proposed ranking method, the Z-numbers
were first converted into regular fuzzy numbers using Kang et al.’s [18] method. Based
on the converted fuzzy numbers, the spreads were calculated, and both the horizontal
and vertical centroids were located. Using all these three values, the Z-numbers were
ranked. As discussed in the previous section, the conversion of Z-numbers into regular
fuzzy numbers leads to a significant loss of information [13,19,20].

Another ranking method was proposed by [93] to determine the ordering of Z-numbers.
Similar to [92], the Z-numbers were converted into regular fuzzy numbers before they were
standardized and defuzzified. Next, their ranking scores were evaluated, in which the
spread of fuzzy numbers was taken into consideration to define the ranking index. On the
other hand, Jiang et al. [69] stressed that the reliability component should not be converted
into a crisp value to retain as much as possible information contained in Z-numbers. Hence,
they proposed another ranking score of Z-numbers based on the centroid point, spread, and
Minkowski degree of fuzziness. The scores were separately calculated for both restriction
and reliability components. Then, they were combined to determine the final ranking index
of Z-numbers, in which the score for the restriction component was given more weight
in determining the final ranking index. The underlying support to this construction is



Information 2023, 14, 400 13 of 24

the fact that the restriction component is the main part of Z-numbers while the reliability
component is only the peripheral part.

Later in 2018, Kang et al. [94] proposed a utility-based ordering method for Z-numbers,
namely, the total utility of Z-numbers. The total utility was an estimation based on the α-cuts
of the restriction and reliability components of Z-numbers with respect to the interaction of
both of them. The derived total utility of Z-numbers was free from subjective membership
functions, which was a lacking feature of the defined utility of Z-numbers defined in [21].
Further, Ezadi and Allahviranloo [95] proposed a new method of ranking fuzzy numbers
using the hyperbolic tangent function. In their method, the fuzzy number should be
normalized before it could be defuzzified using a convex combination. Next, the spread of
the fuzzy number was evaluated using the convex combination and standard deviation.
The final score of the fuzzy number was defined using the hyperbolic tangent function.
The defined score was extended to rank Z-numbers, in which they were converted into
regular fuzzy numbers. Then, the similar procedure to rank fuzzy number was employed
to rank the converted Z-numbers. The similar approach was also exercised by [96] to rank
Z-numbers. The second component of Z-numbers was transformed into a crisp value to be
added to the restriction component to obtain regular fuzzy numbers. Then, the sigmoid
function and convex combination were employed to rank the fuzzy numbers which were
transformed from Z-numbers.

Chutia [97] further used the concept of value and ambiguity at levels of decision-
making [98,99] to rank Z-numbers. The value is described as the ill-defined quantities
present in a fuzzy number. On the other hand, ambiguity is the level of vagueness contained
in the ill-defined quantities [99]. In their proposed method, the values and ambiguities
were first calculated before their distances from the origin were found. Combining the
values and ambiguities with the evaluated distances, the final value and ambiguity indices
were defined. Based on the defined value and ambiguity indices, it can be noted that the
restriction component was given higher weightage over the reliability component similar
to [69]. For ranking Z-numbers, the value index was given priority. The ambiguity index
was only used when the Z-numbers have an equal value index.

The concept of the magnitude of fuzzy numbers was employed by [100] to define the
magnitude of Z-numbers in order to obtain their ranking. The magnitude of the restriction
and reliability components of Z-numbers was separately evaluated. The magnitude values
were then combined using a convex compound, which was used to rank Z-numbers. The
use of such a convex compound allowed for the restriction component of Z-numbers
to have a higher influence over the reliability component in determining the ranking of
Z-numbers. Table 4 summarizes the existing ranking methods based on Z-numbers.

Table 4. Summary of the ranking methods of Z-numbers.

Reference Method Limitation

[55] Fuzzy Pareto optimality -

[92] Spread, horizontal centroid, vertical centroid Conversion of Z-numbers into regular fuzzy numbers

[93] Mean, height, and spread Conversion of Z-numbers into regular fuzzy numbers

[69] Centroid, spread, and Minkowski degree of fuzziness -

[94] Total utility of Z-numbers Involves double conversion from Z-numbers to fuzzy
numbers and further converted into crisps

[95] Hyperbolic tangent function and convex combination Conversion of Z-numbers into regular fuzzy numbers

[96] Sigmoid function and convex combination Conversion of Z-numbers into regular fuzzy numbers

[97] Value and ambiguity The ignorance of the ambiguity index when the value index
is not unique

[100] Magnitude value The magnitude could not make a difference on Z-numbers
having similar central points

with different spreads
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Further, these ranking methods are compared for ranking Z-numbers under differ-
ent situations, as illustrated in Figure 4. Some ranking approaches are considered for
quantifying the Z-numbers.
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4.1. Multiplication of Graded Mean Integration

Kang et al. [53] suggested that the restriction and reliability components of Z-numbers
should be defuzzified into graded mean integration representation, as shown in (1) and (2),
respectively.

P(A) =
1
6
(a1 + 4a2 + a3) (1)

P(R) =
1
6
(r1 + 4r2 + r3) (2)

For ranking Z-numbers, the defuzzified values from (1) and (2) are multiplied together
to obtain the final ranking result, as shown in (3).

P(A⊗ R) = P(A)× P(R) =
1
6
(a1 + 4a2 + a3)×

1
6
(r1 + 4r2 + r3) (3)

4.2. Centroid Point and Spread

Abu Bakar and Gegov [92] applied the conversion of Z-numbers into regular fuzzy
numbers using the fuzzy expectation, in which the reliability component is converted into
a crisp value, as shown in (4).

α =

∫
xµR(x)dx∫
µR(x)dx

(4)

The crisp value is then added as a weight into the restriction component, which is
further transformed into regular fuzzy number, ZA = (a1, a2, a3, a4; hA). Then, the fuzzy
number is ranked based on the centroid point and spread, as shown in (5).

CPS(ZA) = x∗ZA
× y∗ZA

×
(
1− sZA

)
(5)

where

x∗ZA
=

∫
x f (x)dx∫
f (x)dx

, (6)

y∗ZA
=

∫
α|ZAα |dα∫
|ZAα |dα

, and (7)

sZA
= y∗ZA

× |a4 − a1|. (8)
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4.3. Centroid, Height, and Spread

Mohamad et al. [93] suggested converting the reliability component of Z-number into
a crisp value α using (4). The converted fuzzy number is firstly standardized by diving it
with κ = max

(∣∣aij
∣∣, 1
)
, as shown in (9).

Ã =
( a1

κ
,

a2

κ
,

a3

κ
; hÃ

)
=
(
ã1, ã2, ã3; hÃ

)
(9)

where hÃ = α. Then, the ranking of the Z-number is determined using (10).

Rank(Ã) =
x∗

Ã
× hÃ(

1− sÃ

) (10)

where

x∗
Ã
=

1
3

3

∑
i=1

ãi, and (11)

s
Ã
=

√√√√1
3

3

∑
i=1

(
ãi − x∗

Ã

)2
. (12)

4.4. Hyperbolic Tangent Function and Convex Combination

Ezadi and Allahviranloo [95] converted the Z-number into a regular fuzzy number
and further standardized it using (9). Then, the score of the Z-number was determined
using (13).

Score(Z) =
eβ − e−β

eβ + e−β
. (13)

where
β = x∗

Ã
× |α|+ sÃ (14)

in which

x∗
Ã
=

λ(ã2 + ã3) + (1− λ)(ã1 + ã4)

λδ1 + (1− λ)δ2
, δ1 = δ2 = 2, and (15)

s∗
Ã
=

√√√√√λ

((
ã2 − x∗

Ã

)2
+
(

ã3 − x∗
Ã

)2
)
+ (1− λ)

((
ã1 − x∗

Ã

)2
+
(

ã4 − x∗
Ã

)2
)

(λδ1 + (1− λ)δ2)− 1
. (16)

4.5. Sigmoid Function and Convex Combination

Ezadi et al. [96] used the conversion of Z-number into a regular fuzzy number and
further ranked it using the sigmoid function, as shown in (17).

Score(Z) =


1

1+e−β , β > 0

0 , β = 0

−1
1+e−β , β < 0

(17)

where β is defined as (14).

4.6. Value and Ambiguity

Chutia [97] used the value index to rank the Z-number in which Z-number with a
higher value index is ranked higher. The value index of the Z-number Z = (A, R) is defined
in (18).

Ival
α (Z) =

Vα(A) +
√

2dval
α

3
(18)
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where

Vα(A) =
1
2
(a1 + a4)

(
h2

A − α2
)
+

1
3hA

(a2 − a1 − a4 + a3)
(

h3
A − α3

)
, and (19)

dval
α =

√
Vα(A)2 + Vα(R)2. (20)

If the value index of two Z-numbers is the same, then the ambiguity index will be used
to rank the Z-numbers. The Z-numbers with a lower ambiguity index are more preferred,
which is defined as (21).

Iamb
α (Z) =

Aα(A) +
√

2damb
α

3
(21)

where

Vα(A) =
1
2
(a4 − a1)

(
h2

A − α2
)
− 1

3hA
(a2 − a1 + a4 − a3)

(
h3

A − α3
)

, and (22)

damb
α =

√
Aα(A)2 + Aα(R)2. (23)

4.7. Magnitude Value

Farzam et al. [100] defined the magnitude value of Z-numbers for the ranking purpose.
The magnitude of the trapezoidal fuzzy number A = (a1, a2, a3, a4; hA) was first defined as
shown in (24).

Mag(A) =

(
3h2

A + 2
)
(a2 + a3) + (3hA − 2)(a1 + a4)

12hA
(24)

Then, the ranking of the Z-number, Z = (A, R), was determined by the convex
combination of the magnitude of the restriction and reliability components, as shown
in (25).

Rank(Z) = λMag(A) + (1− λ)Mag(R) (25)

where λ ∈ [0.5, 1].

4.8. Momentum Ranking Function

The momentum ranking function was proposed by [101] to rank Z-numbers, in which
the first component is defuzzified into the center of gravity, as shown in (26), while the
second component is defuzzified into the median of fuzzy numbers, as shown in (27).

M(A) =
a2

3 + a2
4 + a3a4 − a2

1 − a2
2 − a1a2

3(a3 + a4 − a1 − a2)
(26)

M(R) =
a1 + a2 + a3 + a4

4
(27)

Hence, the final ranking of the Z-number is determined using the momentum ranking
function defined in (28).

Rank(Z) = M(A, R)(Z) = M(A)×M(R) (28)

4.9. Comparison of Ranking Methods

Comparing Z1 and Z2, all the ranking methods ranked Z2 higher than Z1, except
for [92]. In reference to Figure 4, Z2 should be ranked higher than Z1 since its reliability
component is much larger. When Z2 is compared to Z3, Z2 should be ranked higher
because its reliability component has a higher maximum membership value. However, all
methods could not validate this result, except for [97,100]. This is because both the ranking
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approaches considered the height of fuzzy numbers in determining the final ranking
of Z-numbers.

For comparing Z1 and Z4, both the restriction and reliability components are con-
sidered since they do not share the same fuzzy numbers at all. In this case, Z4 should
be ranked higher due to the fact that it has larger fuzzy numbers representing both the
restriction and reliability components. This situation is successfully validated using all the
ranking approaches without any exceptions.

Next, the effect of triangular and trapezoidal shapes of the reliability component
sharing the same spread were validated by comparing Z1 to Z5. All the ranking methods
ranked Z1 similar to Z5, except for [97]. Since the value indices of both Z1 and Z5 are the
same as presented in Table 5, Chutia [97] suggested using the ambiguity indices to compare
the Z-numbers. In this case, Iamb

α (Z1) = 0.0569 and Iamb
α (Z2) = 0.0670. Hence, Z1 is ranked

higher than Z2 since its ambiguity index is much smaller. Among all the ranking methods
observed, only the value and ambiguity approach could make a difference between the
triangular and trapezoidal fuzzy numbers representing the reliability component.

Next, Z5 and Z6 were compared to see the effect of different spreads of the triangular
fuzzy numbers representing the reliability components. Again, only Chutia [97] managed to
make a difference in the ranking of Z-numbers using the ambiguity index. For this situation,
Z6 has a lower ambiguity index, which is 0.0295, compared to Z5 with a 0.0670 value for
the ambiguity index. Hence, the rule by Chutia [97] concluded that Z6 is ranked higher.
This result is further supported by the fact that fuzzy number with smaller spread is more
preferred [102].

Next, a singleton representing the reliability component of Z-number was compared
to the triangular fuzzy number by the illustration of the comparison between Z6 and Z7, as
shown in Figure 4. Again, all ranking methods were unable to make a difference between
the ranking of Z6 and Z7, except for [97]. Since the value indices of both Z6 and Z7 share the
same value, the ambiguity index was hence used to make the comparison. Using (21), the
ambiguity indices of Z6 and Z7 were obtained as 0.0295 and 0.0236, respectively. Therefore,
it could be concluded that Z7 is ranked higher than Z6 since it has a smaller ambiguity
index. This result was due to the fact the singleton does not possess the fuzziness property.

Therefore, the ranking approach based on the value and ambiguity is most suitable
for ranking the Z-numbers. This is based on its ability in making comparisons on the
triangular and trapezoidal shapes, different spreads, and different maximum membership
values. However, other ranking approaches such as magnitude value [100] could also be
used with the improvement on the consideration of the spread in defining the magnitude
of Z-numbers.



Information 2023, 14, 400 18 of 24

Table 5. Ranking results of Z-numbers using various approaches.

Z-Number Ranking Approaches

Z A R [53] [92] [93] [95] [96] [97] [100] [101]

Z1 (0.3,0.4,0.5,0.6;1) (0.1,0.2,0.3,0.4;1) 0.1125 0.1641 0.1012 0.2642 0.5672 0.2945 0.3500 0.1125
Z2 (0.3,0.4,0.5,0.6;1) (0.7,0.8,0.9,1.0;1) 0.3825 0.1641 0.3440 0.4935 0.6320 0.4525 0.6500 0.3825
Z3 (0.3,0.4,0.5,0.6;1) (0.7,0.8,0.9,1.0;0.7) 0.3825 0.1641 0.3440 0.4935 0.6320 0.2984 0.5863 0.3825
Z4 (0.6,0.7,0.8,0.9;1) (0.7,0.8,0.9,1.0;1) 0.6375 0.2734 0.4829 0.6616 0.6890 0.5883 0.8000 0.6375
Z5 (0.3,0.4,0.5,0.6;1) (0.1,0.25,0.25,0.4;1) 0.1125 0.1641 0.1012 0.2642 0.5672 0.2945 0.3500 0.1125
Z6 (0.3,0.4,0.5,0.6;1) (0.2,0.25,0.25,0.3;1) 0.1125 0.1641 0.1012 0.2642 0.5672 0.2945 0.3500 0.1125
Z7 (0.3,0.4,0.5,0.6;1) (0.25,0.25,0.25,0.25;1) 0.1125 0.1641 0.1012 0.2642 0.5672 0.2945 0.3500 0.1125
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5. Evaluative Analysis

The SWOT in Figure 5 describes the strengths and weaknesses of Z-numbers, which
comes along with the opportunities and threats to Z-numbers. The discussed features of
Z-numbers in this section are more focused on their applications in decision making.
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Based on the SWOT analysis of the application of Z-numbers in decision making, some
key findings are mentioned as follows:

• The hybridization of more than one MCDM method using Z-numbers produced a
better result [59]. When applied to MCDM models, the selection of alternatives is
much better than the single MCDM model based on Z-numbers. In fact, the hybrid
MCDM methods are designed to cancel out the drawbacks of their respective methods
when used alone [103].

• The invention of software that can process decision information in the form of Z-numbers
is vital to simplify mathematical calculation [14]. The availability of such software helps
experts from other fields such as business, economy, finance, psychology, and education
solve their problems that involve various attributes and alternatives.

• When ranking Z-numbers, the first component should be given at least a higher
weightage than the second component [69,100]. This is supported by the fact that the
restriction component is the main part, while the reliability component is a subordinate
part to Z-numbers.

• It is important to note that Z-numbers are not only composed of the restriction and
reliability components, but the hidden probability distribution is another important
concept regarding Z-numbers since it connects the restriction component to the relia-
bility component [36].
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6. Conclusions

The theory of Z-numbers has been widely applied in developing various MCDM models,
which have become an interesting topic in fuzzy mathematics. Among all Z-number-based
MCDM methods, TOPSIS was found to be the method that was most developed with
various applications. The MCDM methods based on Z-numbers appeared to have two
major ways of processing Z-numbers: conversion into regular fuzzy numbers and direct
computation over Z-numbers. The first scenario seems to cause a significant loss of informa-
tion since the initial information in the form of bimodal uncertainty is damaged. However,
direct computation over Z-numbers leads to high computational complexity. Hence, more
references and innovative software should be made available for the public to understand
the information processing using Z-numbers such that the knowledge of this fuzzy set
theory could be appreciated. For the application of Z-numbers in MCDM, the hybridization
of more than one method has produced a more consistent result compared to the single
model. Hence, for developing MCDM models based on Z-numbers in the future, at least
two models should be considered. Each MCDM model should be critically analyzed as
each model has its strengths and advantages in computing the criteria weights as well as
producing consistent alternative ranking. The ranking function is also another important
concept related to the application of Z-numbers in decision making. It is important to
note that the first component of Z-numbers should be given a higher weightage when
developing any ranking method of Z-numbers. Hence, implementing the best ranking
function for Z-numbers promises a more consistent result in solving any decision-making
problems that are associated with information reliability.

However, this research is limited to the application of Z-numbers in decision mak-
ing. Z-numbers have been extended to intuitionistic Z-numbers, neutrosophic Z-numbers,
Pythagorean Z-numbers, Fermatean Z-numbers, and Q-rung orthopair Z-numbers. These
generalized Z-numbers are a better representation of the Z-numbers, which have advan-
tages worth studying. Hence, future research on the Z-numbers should expand the MCDM
models based on these generalized Z-numbers, and their strengths should be effectively
identified. In addition, a method of considering the bimodal uncertainty of the Z-numbers
by considering the underlying probability distributions contained in the Z-numbers should
be developed based on a simpler calculation approach. This is important in order to make
sure that the implementation of Z-numbers is practical in designing decision-making mod-
els. Hence, they can be widely used by people without fuzzy mathematics background
to solve real-world problems. This action will definitely be a huge contribution to the
worldwide community with the appreciation of fuzzy mathematics knowledge.
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Abbreviations

AHP Analytic hierarchy process
CFPR Consistent fuzzy preference relations
CODAS Combinative distance-based assessment
COPRAS Complex proportional assessment
CWW Computing With Words
DE Differential evolution
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DEMATEL Decision making trial and evaluation laboratory
DST Dempster–Shafer theory
ELECTRE Élimination et choix traduisant la realité
GA Genetic algorithm
HEART Human error assessment and reduction technique
IZN Intuitionistic Z-number
MCDM Multi-criteria decision making
MILP Mixed integer linear programming
NL Natural language
NZN Neutrosophic Z-number
OWA Ordered weighted averaging
PCA Principle component analysis
PROMETHEE Preference ranking for organization method for enrichment evaluation
SWOT Strength, weakness, opportunity, and threat
TODIM Tomada de decisao interativa multicriterio
TOPSIS Technique for order of preferences by similarity to ideal solutions
VIKOR Visekriterijumska optimizacija I kompromisno resenje
WASPAS Weighted aggregated sum product assessment
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