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Abstract: Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD) are frequently associated
with working memory (WM) dysfunction, which is also observed in various neural psychiatric
disorders, including depression, schizophrenia, and ADHD. Early detection of WM dysfunction
is essential to predict the onset of MCI and AD. Artificial Intelligence (AI)-based algorithms are
increasingly used to identify biomarkers for detecting subtle changes in loaded WM. This paper
presents an approach using electroencephalograms (EEG), time-frequency signal processing, and
a Deep Neural Network (DNN) to predict WM load in normal and MCI-diagnosed subjects. EEG
signals were recorded using an EEG cap during working memory tasks, including block tapping
and N-back visuospatial interfaces. The data were bandpass-filtered, and independent components
analysis was used to select the best electrode channels. The Ensemble Empirical Mode Decomposition
(EEMD) algorithm was then applied to the EEG signals to obtain the time-frequency Intrinsic Mode
Functions (IMFs). The EEMD and DNN methods perform better than traditional machine learning
methods as well as Convolutional Neural Networks (CNN) for the prediction of WM load. Prediction
accuracies were consistently higher for both normal and MCI subjects, averaging 97.62%. The average
Kappa score for normal subjects was 94.98% and 92.49% for subjects with MCI. Subjects with MCI
showed higher values for beta and alpha oscillations in the frontal region than normal subjects. The
average power spectral density of the IMFs showed that the IMFs (p = 0.0469 for normal subjects and
p = 0.0145 for subjects with MCI) are robust and reliable features for WM load prediction.

Keywords: working memory load; electroencephalogram; time frequency analysis; ensemble empirical
mode decomposition; deep neural network

1. Introduction

Neurodegenerative diseases, including Mild Cognitive Impairment (MCI) and Alzheimer’s
Disease (AD), as well as neural psychiatric disorders such as depression, schizophrenia,
and ADHD, have been consistently linked with dysfunction in the cognitive system known
as Working Memory (WM) [1]. Working memory load refers to the amount of information
temporarily stored in WM at a given instance [2]. The role WM is critical, particularly
during the initial phases of MCI. This WM decline is initially mild and unnoticeable and
later develops into AD. The use of AI-based biomarkers to detect subtle changes in memory
at an early stage is becoming increasingly important in identifying the onset of MCI and
AD [3,4]. The decline in working memory performance, particularly at lower cognitive
loads, has been found to predict the onset of MCI, which is an early stage of AD [5,6].
Early identification of AD or dementia is critical for timely interventions and treatments.
Providing subjects with an application tool for assessing WM can aid in identifying the
initial stages of these conditions. However, existing EEG-based methods for predicting
WM load in normal subjects and subjects with MCI have been limited by low accuracies [7].
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Therefore, developing more accurate methods for predicting WM load in these subjects
remains an important challenge. EEG signals provide valuable information about the
time-varying dynamics of neural activity [8]. Time-frequency decomposition methods,
such as Ensemble Empirical Mode Decomposition (EEMD), are frequently employed
for extracting time-frequency features from EEG signals. EEMD is an adaptive signal-
processing technique that separates the EEG signal into a set of Intrinsic Mode Functions
(IMFs), each representing a different time-scale of activity in the signal [9,10]. By analyzing
the IMFs, it is possible to identify neural activity patterns linked to specific cognitive
processes, such as WM.

Non-invasive EEG is a low-cost method for acquiring brain signals from a subject’s
scalp, making it suitable for assessing WM [7,11,12]. EEG recordings can provide valuable
insights into the neural processes underlying WM dysfunction. Numerous studies have
been conducted on EEG-based biomarkers for WM, but few have developed a patient-
specific application tool that accurately predicts the WM load using a reduced number
of EEG electrodes [13,14]. Independent Components Analysis (ICA) is a well-established
technique for transforming EEG data [15,16]. Addressing these gaps is of utmost impor-
tance for the development of accurate and efficient tools for identifying early stages of
cognitive impairments.

The present study aims to develop a state-of-the-art Deep Neural Network (DNN)
architecture trained on time-frequency features computed from EEG responses. These
responses are elicited while subjects engage in visuospatial WM tasks to accurately classify
the WM load in normal subjects and those with MCI. Secondly, we seek to employ the
ICA method to select a reduced number of independent EEG electrode channels from the
original set of 16 channels. By developing a DNN architecture that is trained on time-
frequency features, we aim to overcome the current limitations of low accuracies associated
with EEG-based WM load prediction methods. This innovation holds the promise to
transcend the current limitations of accuracy associated with EEG-based working memory
(WM) load-prediction methods. By reducing the number of channels used in the analysis,
the study aims to streamline the analysis process, reduce complexity, and enhance the
overall accuracy of the WM load classification. The following contributions emphasize the
accuracy of the WM load prediction:

(1) The reduction in the number of EEG channels used for time-frequency feature extraction.
(2) A novel workflow for WM load prediction that combines two powerful tools: a time

frequency analysis method of EEMD and an AI method of DNN for WM load prediction.
(3) A robust approach utilizing a subset of scalp EEG electrodes for predicting WM load.

We organize the remaining sections of this work as follows. Section 2 provides
related work on working memory. In Section 3, we present the materials and methodology.
Section 4 provides results, and Section 5 the discussion. Finally, conclusions are given in
Section 6.

2. Literature Review

The concept of memory was initially defined by Herman Ebbinghaus in 1885 [17] and
later classified as primary and secondary memory. There are two categories of memory:
long-term memory (LTM) and short-term memory (STM) [18]. WM is similar to STM,
involving cognitive processes such as attention, reasoning, decision-making, and language
comprehension. In WM, only relevant information necessary for performing the task is
stored, while other irrelevant information is discarded. Figure 1 illustrates a model for
information processing in the brain [19], showing how WM acts as an intermediary between
sensory and long-term memory. The WM cognitive system acts as a channel for storing and
transferring information to long-term memory. However, only the information relevant
to the task at hand is held in the WM, while other irrelevant information is discarded.
For instance, while performing an arithmetic operation, distracting information such as
background noises or body temperature is ignored, and only the numbers used for the
operation are stored in the WM. However, this information is not permanently stored, and
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after some time, it is forgotten. The sensory memory filters out distracting information and
either stores it in long-term memory or discards it through WM. This process is crucial for
efficient cognitive functioning [1].
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Furthermore, the brain’s resources for storing information are limited during cognitive
tasks. The memory load that the WM experiences while performing a cognitive task is
referred to as cognitive load or WM load [20]. Cognitive Load Theory (CLT) helps to
understand what happens when subjects perform cognitive functions with increasing WM
load [21]. According to CLT, reducing cognitive overload in an individual is crucial for
optimal learning. The three types of cognitive loads are intrinsic load, germane load, and
extraneous load [22]. Intrinsic load encapsulates the intricacy of new information, germane
load links new data with the current knowledge, and extraneous load is the distracting
information while performing a cognitive task.

A recent study by Puszta et al. [23] analyzed EEG datasets to understand the effect
of stimulus modality on EEG patterns during associative WM load. The support vector
machine algorithm was used to predict WM load and stimulus modality using power, phase
connectivity, and cross-frequency coupling values. Under a low WM load, alpha and theta
frontal–parietal connectivity were highest, and the prediction accuracy for WM load was
≥75%. The study validated findings from earlier studies and highlighted the importance
of frontal–parietal connectivity in the WM load. In an fMRI experiment, Collins et al. [24]
studied how working memory and reinforcement learning processes interact. They found
that learning is best explained as a mixture of a fast, delay-sensitive WM process and slower
reinforcement learning. The neural interaction between the two systems was related to
individual differences in using WM for learning. Eryilmaz et al. [25] identified connectivity
fingerprints that differentiate task states representing different levels of WM load. The most
critical connectivity pairs for classifying high and low WM loads were discovered using
support vector machines. Network connectivity profiles derived from tasks with high WM
load revealed that ventral attention and default-mode networks were the most predictive
of load-related increases in response times.

The author in [26] proposed a new approach to predict WM tasks from EEG signals
using data-driven functional linear regression. The proposed method uses a B-spline
approximation of functional principal components and LASSO feature selection to extract
critical features from frontal electrodes. The results show a strong linear association between
actual observations and out-of-sample predictions with an R-square of 0.72. This study
represents the first attempt to predict WM proficiency from N-back task tests using EEG
signals. Ben-Artzi et al. [27] studied how WM capacity and load manipulation affect the
assignment of credit to irrelevant features of the environment. Individual differences in
visual WM capacity were found to predict outcome-irrelevant learning. However, it is
noted that further research is needed in different modules to determine whether these
differences are applicable in other contexts. Mirjalili et al. [28] proposed a comprehensive
process to address challenges in single-trial EEG classification, including temporal overlap,
feature selection stability, and classification accuracy significance. The model identified 4 to
10 brain regions and oscillations where ERD and ERS predict an individual’s performance.
The mean prediction accuracy for 50 participants was 69.51%, with a standard deviation of
8.41. Accuracy was significantly above chance in 34 participants.
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3. Materials and Methods

The EEG signal processing and DNN-based WM load prediction model comprises
five stages. Figure 2 illustrates the steps in processing the EEG signal to predict WM load.
During the N-back and block-tapping task sessions, subjects were instructed to wear an EEG
cap connected to a 16-channel OpenBCI EEG data collection board, as shown in Figure 3a.
The N-back is the most versatile cognitive assessment, which requires information retention,
continual updating, and interference resolution. As a result of its comprehensive nature,
the N-back task has found extensive application in WM evaluation in human subjects [29].
It keeps the participant’s WM system continuously engaged at its limit, thereby stimulating
an increase in WM function, hence its widespread use for WM load prediction [30]. In
addition to N-back, we created the block-tapping task in which the subject was required to
remember the sequence of appearance of blocks in a spatial grid. These two visuospatial
WM tasks were a comprehensive set of tasks used in this work for WM load prediction. The
EEG cap was adjusted to fit the subject’s head and ensure proper electrode placement. The
task consisted of tapping a block in response to visual cues displayed on a computer screen.
During the task, EEG signals were recorded and saved for offline analysis. Figure 3b shows
a subject wearing the EEG cap during the task, and Figure 3c shows the subject performing
the block-tapping task.
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Figure 2. The proposed model for predicting WM load, outlining the various stages for achieving
accurate working memory load predictions.
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Figure 3. (a) A 16-channel OpenBCI EEG data collection board, (b) EEG cap worn by subject, and
(c) subject performing block tapping task.

The raw EEG data were bandpass-filtered, and ICA was used to select the most
significant electrode channels. By applying ICA to the EEG data, we efficiently reduced
the number of electrodes while preserving signal quality. The methodology involves
formulating the problem as X = AS, whitening the mixed EEG signals (X), estimating the
unmixing matrix (W), obtaining independent components (S_est = W X_w), selecting a
relevant subset of ICs, and reconstructing reduced EEG signals (X_red = A_red S_red).

From the reduced-electrode EEG data, we extracted IMFs to identify relevant features
for predicting WM load. Figure 4 shows an example of the raw EEG data (in red) and the
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corresponding IMFs (in green). The IMFs were obtained using EEMD, a time-frequency
technique that decomposes nonstationary signals into a finite number of IMFs and a
residual component. The IMFs represent the underlying oscillatory modes in the EEG
signal and provides valuable information about the dynamic changes in brain activity
related to cognitive processes. The EEMD methodology includes the following steps:

i. Add white noise, n(t), to the original signal, x(t), forming x_n(t) = x(t) + n(t)
ii. Perform EMD on x_n(t) to obtain intrinsic mode functions (IMFs), EMD(x_n(t)) = {c_1(t),

c_2(t), . . ., c_N(t)}.
iii. Repeat steps 1 and 2 for M realizations of white noise, n_i(t), and compute ensemble

mean for each IMF, C_j(t) = (1/M) ∑ C_iˆj(t).
iv. Calculate residual, r(t) = x(t) − ∑ C_j(t), and determine stopping criteria.
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In this study, a DNN architecture was developed to predict WM load using EEG
signals. Figure 5 shows the architecture of the DNN model used in this study. The model
consisted of six hidden layers, a Relu activation input layer, and a Sigmoid activation
output layer. The model was trained using the backpropagation algorithm with the Adam
optimizer and a categorical cross-entropy loss function. The model’s performance was
evaluated using Overall Accuracy (OA), specificity, sensitivity, F1 score, and Kappa metrics.
In this study, the IMFs were used as features for predicting WM load using a DNN model.

A total of 18 subjects participated in the experiment. Each subject filled out the
participant consent form before the commencement of the session. Each subject’s response
on the block tapping and N-back WM tasks were recorded to calculate low and high WM
load for the three trials, while the 16-channel EEG data were also recorded. The EEG data
were preprocessed as per the workflow in Figure 2. The IMF features were divided into
training, testing, and validation sets before training the DNN. For each trial, a confusion
matrix was computed to discern between two classes: Low WM load and high WM load.
The format of the confusion matrix is shown in Figure 6. The performance metrics were
calculated using the formulas given in Table 1, where TH is True High WM load, TL is True
Low WM load, FH is False High WM load, and FL is False Low WM load.
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Table 1. Performance measures.

Performance Metrics Formula

Sensitivity TH
TH+FL

Specificity TL
TL+FH

F1-Score 2 ∗ sensitivity∗speci f icity
sensitivity+speci f icity

Overall Accuracy (OA) TH+TL
TH+FH+TL+FL

Kappa (K) Po−Pe
1−Pe

The Kappa score tests the inter-reliability of the results, i.e., how much of the accuracy
is obtained by chance. Po is the proportion of observed agreement, and Pe is the proportion
of agreement expected by chance. The specificity score measures the proportion of true
negative samples among all samples that have been predicted as negative by the DNN.
Sensitivity is the proportion of true positive samples among all actual positive samples in
the dataset.

4. Results

The performance of the proposed workflow for the WM load prediction method was
evaluated in normal subjects from different age groups, as well as from subjects diagnosed
with MCI. This study evaluates the performance of a proposed workflow for predicting
WM load using a combination of ICA, EEMD, and DNN in normal subjects across different
age groups and those diagnosed with MCI. The Overall Accuracy, Kappa scores, Sensitivity,
Specificity, and F1-scores are summarized in Table 2, while Table 3 offers a comprehensive
overview of the method’s generalizability across various population segments. The results
of the Analysis of Variance (ANOVA) conducted on the overall prediction accuracy for
each tested group are presented in Table 4.
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Table 2. Subject-specific WM load prediction performance of the ICA + EEMD + DNN method.

Group Tested Subject OA
(%)

Kappa
(%)

Sensitivity
(%)

Specificity
(%)

F1-Score
(%)

S01 100 100 97.24 93.87 100.00
S02 100 100 100 100 100.00

20 to 40 years S03 98.39 96.78 97.48 99.32 97.58
S04 99.86 99.72 99.75 99.97 99.79
S05 93.73 87.14 96.02 92.14 90.31
S06 98.82 97.65 98.28 99.34 98.23

S07 100 100 100 100 100.00
S08 91.88 83.5 87.24 95.71 87.49

40 to 60 years S09 99 98.01 98.74 99.29 98.50
S10 90.52 80.85 91.1 91.67 85.41

S11 99.81 99.61 100 99.61 99.71
S12 97.75 95.49 97.71 97.79 96.61

>60 years S13 98.03 96.01 97.75 98.37 97.01

S14 93.61 87.12 90.92 97.13 90.25
S15 98.36 96.67 98.04 98.23 97.51

Subjects with MCI S16 99.66 87.14 99.53 99.76 99.64
S17 99.68 99.32 99.43 99.83 99.63
S18 96.23 92.21 97.88 95.74 96.8

Table 3. Statistics on WM load prediction performance of the ICA + EEMD + DNN method for each
tested group.

20 to 40 Years 40 to 60 Years Above 60 Years Subjects with MCI

100.00 100.00 99.81 93.61
100.00 91.88 97.75 98.36
98.39 99.00 98.03 99.66
99.86 90.52 99.68
93.73 96.23
98.82

Average 98.47 95.35 98.53 97.51

Std. dev. 2.42 4.84 1.12 2.59

Table 4. Results of analysis of variance (ANOVA) conducted on the overall prediction accuracy for
each tested group.

Group Tested p-Value F-Critical Value F-Value

20–40 years 1.26 × 10−11 4.96 1134.56
40–60 years 1.04 × 10−05 5.99 181.40

above 60 years 0.01929 7.71 14.35
Subjects with MCI 5.08 × 10−05 5.32 61.37

Figures 7–13 further illustrate the method’s performance, highlighting its accuracy,
sensitivity, and specificity in predicting WM load, as well as providing insights into the
intrinsic mode functions, signal decomposition, and spatial EEG signal distributions across
different age groups and cognitive conditions. These findings demonstrate the efficacy of
the ICA + EEMD + DNN method in predicting WM load, with potential applications in
monitoring cognitive performance and aiding in the early diagnosis and intervention of
cognitive disorders such as MCI.
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Figure 8. Average power spectral density of intrinsic model functions per subject for resting state.
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Figure 9. Coefficient of variance of intrinsic model functions per subject for resting state.
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Figure 10. Average power spectral density of intrinsic model functions per subject for low WM load.
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Figure 11. Coefficient of variance of intrinsic mode functions per subject for low WM load.
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Figure 12. Average power spectral density of intrinsic model functions per subject for high WM load.
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Figure 13. Coefficient of variance of intrinsic model functions per subject for high WM load.

5. Discussion

Working memory is the most important function affected in neurodegenerative dis-
eases such as MCI/AD and dementia, and in psychiatric disorders such as schizophrenia
and ADHD. Time-frequency analysis and deep learning methods are powerful tools that
can be used for developing technology to be used by clinicians and physicians to predict
WM load. The IMFs computed using EEMD from EEG brain responses and a DNN was
utilized to predict low WM and high WM load. This methodology was employed in a pilot
study comprised of healthy subjects of varying age and subjects with MCI, to determine
its ability to distinguish between instances of low and high WM loads. The performance
metrics of OA, Kappa, sensitivity or recall, specificity or precision, and F1-score were used
to evaluate the method. The effectiveness of the time-frequency IMFs in discriminating
between low and high WM loads in healthy subjects, as well as subjects with MCI was
evaluated. The ICA was useful for selecting the fewer best EEG electrodes for each subject
without compromising the performance of the DNN in the prediction accuracy.

5.1. Prediction Performance of the ICA + EEMD + DNN Method

Table 1 lists the OA, Kappa, sensitivity, specificity, and F1-score calculated for each of
the 18 subjects. The OA was between 90.52% and 100% for normal subjects, and between
93.61% and 99.68% for subjects, with MCI showing a good prediction performance of
the DNN. It obtained 97.52% overall accuracy for all subjects compared to 83.94%, the
highest among the other methods. The Kappa score for the age group 20–40 years was
between 87.14% and 100%, which shows that the results were almost in perfect agreement
with the datasets. For age group 40 to 60 years, the Kappa score varied between 83.5% to
100%, indicating strong agreement of the results with the data. Subject S10 had an 80.85%
Kappa score. This subject had difficulty using the computer mouse in block tapping and
1-back tasks. For the age group above 60 years, the Kappa scores were between 96.01% and
99.61%, indicating perfect agreement of the prediction results with the datasets. For the
subjects with MCI, the Kappa score ranged between 87.12% and 99.32%, indicating strong
agreement of the prediction results with the data. One subject with MCI had a Kappa
score of 87.12%, which is understandable, as the subject had a recent eye surgery and had
recovered from that and showed difficulty locating the blocks. The other subject with MCI
having a Kappa score of 87.14% presented the need for more practice performing the WM
tasks. Based on the confusion matrices for each subject, the sensitivity rate and specificity
rate were calculated. The sensitivity scores were above 90% for all the subjects except one
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who scored 87.24%, indicating a high prediction accuracy for the true labels of high WM
and low WM load. The specificity scores were above 98.87% for all subjects, meaning that
the DNN had the least false predictions, affirming the reliability of the DNN in WM load
predictions. The F1-scores were presented in the last column of Table 1, with an average
F1-score of 97.34%. This underscores the good levels of sensitivity and precision, which
indicates the prototype was robust and performed well in WM load prediction. Figure 7
summarizes the WM load prediction performance in a bar chart.

Table 3 provides the average and standard deviation of the OA for each age group
tested. For age group of 20 to 40 years, the average was 98.47%; for 40 to 60 years, the
average was 95.35%; for above 60 years, it was 98.53%; and for subjects with MCI, the
average was 97.51%, respectively. The standard deviation was between 2.4 and 4.84, which
shows the reliability of the prototype for prediction of WM load in all the age groups tested.
Table 4 gives the results of the ANOVA conducted on the overall prediction accuracy for
each tested group. For each age group, the p-value was <0.05, so the null hypothesis of
the results being random was rejected. ANOVA analysis also shows that the F-values
were greater than the F-critical values, indicating that the results are significant. The
implemented prototype performed much better than the current state-of-the-art methods
in WM load prediction, as can be seen in Tables 2 and 5.

Table 5. Comparison of proposed method with state of the art (SOA) on WM load prediction.

Year Publication Conference/Journal Algorithm Patient Specific
Channels

Number of EEG
Electrodes

Overall
Accuracy

2012 P. Zarjam, J. Epps, F. Chen,
and N. H. Lovell [31]

19th Intl. conf. neural
information processing

Wavelet
features + Artificial

neural network
No 17 83.94%

2016 A. Abrantes, E. Comitz, P.
Mosaly, and L. Mazur [26]

Advances in intelligent
systems and computing

Lasso regression
and SVM No - 69.7%

2019 Y. Kwak, W.J. Song, and
S.E. Kim [32]

7th Intl. conference
on BCI

Power ratio
feature + DNN No 30 61%

2020 Y. Wu, H. Qian et al. [33]

13th Intl. congress
image and signal

processing,
biomedical engineering

EMD features + SVM,
kNN, RF classifiers No 128 73.6%

2020 Y. Zhang et al. [26] Journal of
neuroscience methods

Functional
linear regression No 32 73%

2022 J. Zygierewicż et al. [34] Journal of
neural engineering

Convolutional
neural network No 19 66.05%

2020 A. Puszta et al. [23] Frontiers in
Human neuroscience

Theta and alpha
phase connectivity for
WM load prediction

No 64 75%

2022 V. Changoluisa et al. [34] BioRxiv Spatiotemporal fea-
tures yes 128 -

2023 G. Yoo et al. [35] Bioengineering
Cognitive load

prediction
using LSTM

No 2 to 10 87.1%

5.2. Analysis of IMFs of Subjects above 60 Years and Subjects with MCI during Rest State

The EEMD was used for extracting time-frequency features called IMFs from the EEG
signals. The efficacy of the IMFs in distinguishing between low WM load and high WM
load was analyzed by calculating the average of the Power Spectral Density (PSD) of the
IMF3, IMF4, and IMF5 for the frontal Fp2 electrode EEG signal. The Fp2 was selected as
this was one of the best channels selected by the ICA method for 17 of the 18 subjects tested.
The brain processes memory information in the frontal region of the brain. The average
PSD of the IMFs 3, 4, and 5 during the rest state (the subject was seated with eyes closed) for
subjects above 60 years and subjects with MCI are depicted in Figure 8, and the coefficient
of variance in Figure 9, respectively. According to Figure 8, the AVG PSD of IMF is high for
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subjects S16 and S17 with MCI. In the case of subjects of age above 60 years, only the AVG
PSD of IMF5 has higher values which are the lower frequencies of the ensemble empirical
mode decomposition, while the MCI subjects have higher values of the AVG PSD for IMF4
that are of higher frequencies of beta waves. Figure 9 depicts a graphical representation of
the coefficient of variance, showing a high value for subject S12 for IMF4, indicating a high
oscillatory behavior.

5.3. Analysis of IMFs of Normal Subjects and Subjects with MCI for Low and High WM Load

Figures 10 and 12 summarize the AVG PSD of IMFs for low WM and high WM loads
in normal and subjects with MCI, respectively. Figures 11 and 13 present the coefficient of
variance for AVG PSD of IMFs for low WM and high WM loads, respectively. According to
the plots for the AVG PSD of IMFs in Figure 10, the subjects with MCI had higher values for
IMF4 and IMF5 beta and alpha oscillations during low WM load activity. Subjects S09, S11,
and S12, who are above 60 years of age, showed higher values of the IMF5. According to
Figure 11, the coefficient of variance was higher for IMF4 for most of the subjects, indicating
variability in the values of IMF4. Similarly, analyzing the AVG PSD of IMFs for high WM
in Figure 12, we can see that the subjects with MCI have high values for IMF5, which are
alpha waves. Figure 13 shows the variability in the IMF3 and IMF4; hence, the coefficient
of variance for these IMFs had higher values. In general, the IMFs 4 and 5 corresponding to
beta and alpha waves are predominantly present in the frontal region or prefrontal cortex
of subjects with MCI while performing WM tasks. The EEMD extracted the beta (IMF1,
IMF2, IMF3, and IMF4), alpha (IMF5, IMF6, and IMF7), and theta bands (IMF8, IMF9, and
IMF10). The beta bands IMF3, IMF4, and alpha band IMF5 were the most informative
features used to train the DNN.

The ANOVA results in Table 6 for the two groups of AVG PSD of IMFs for low WM
load and high WM load in normal subjects had a p-value of 0.0469 and F-value (4.14)
surpassing the F-critical value (4.03), confirming that the IMFs are reliable features for
discriminating between low and high WM load in normal subjects. Also, for the group
with MCI, the AVG PSD of IMFs for low WM load and high WM load had a p-value of
0.0145, and the F-value (9.65) was above the F-critical value (5.32), indicating that the IMFs
are robust features for discriminating between low and high WM load in subjects with MCI.
The analysis was conducted across various age groups, considering the decline in WM
function with age. There were equal number of males and females in the tested groups.
The proposed ICA + EEMD + DNN method predicts WM load equally well in male and
female subjects.

Table 6. Results of analysis of variance (ANOVA) conducted on the relationship between average
power spectral density of intrinsic mode functions for low and high WM load in normal subjects and
in subjects with MCI.

AVG PSD of IMFs between Low
WM and High WM Load p-Value F-Critical Value F-Value

Normal subjects 0.0469 4.03 4.14
Subjects with MCI 0.0145 5.32 9.65

5.4. Efficacy of ICA in Selecting Fewer Scalp Electrodes Specific to Each Subject

ICA was used to identify the most independent EEG channel electrodes based on
orthogonal rotation of prewhitened EEG 16 channel data, through a fixed-point iteration
scheme, that maximizes a measure of non-Gaussianity of the rotated components. The
number of channels identified were from 2 to 10 out of the total 16 channels. Figure 14
gives the name of the electrodes selected for each subject and the brain region they pertain
to. It can be seen that the frontal region is the most involved in WM tasks for all the
subjects where the channel electrodes Fp1 and Fp2 are located. In two normal subjects,
channels F3, F4, F7, and F8 in the frontal region were also selected. Following the frontal
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region electrodes, the electrodes in the cerebral cortex region C3 and C4, and the temporal
electrodes T5 and T6 were the most selected. Hence, the frontal, cerebral cortex, and
temporal electrodes were selected for all subjects. In addition, the parietal electrodes P3
and P4 were selected for some normal subjects, while the occipital electrodes O1 and O2
were selected instead of the parietal electrodes in three subjects with MCI. Figures 15 and 16
show the brain topological plot for a subject from each tested group during a rest state
and during a WM task state. As seen in the left panel of Figure 16, the subjects with MCI
exhibited mostly zero values in the brain topoplot during the rest state.
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methods such as [23,35], where theta and alpha phase connectivity were computed, the 

use of a less potent classifier resulted in unreliable accuracies for WM load prediction. The 

features used in the SOA are either spatial or spatiotemporal features, and do not exploit 
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5.5. Comparison with Other Methods

Table 6 presents methods used for WM load prediction using wavelet features [28],
Lasso [23], power ratio features [29], and EMD features [30]. These methodologies are
built on redundant feature-extraction methods that do not result in optimal features for
training a classifier model. The models utilized for classification, such as the SVM, cannot
be used for individualized WM load prediction. A DNN classifier is used in [29], but the
lack of robust features results in poorer WM load prediction accuracies. Conversely, in
other methods such as [23,35], where theta and alpha phase connectivity were computed,
the use of a less potent classifier resulted in unreliable accuracies for WM load prediction.
The features used in the SOA are either spatial or spatiotemporal features, and do not
exploit the time-frequency content of the EEG signals. A more recent advancement, EEMD,
serves as an enhanced time-frequency feature extraction technique capable of decomposing
an EEG signal into time widows of varying frequencies. As a result, the proposed ICA +
EEMD + DNN method outperforms alternative methods in WM load prediction.

5.6. Limitations

One limitation of this study is its focus on one cognitive ability in comparison to WM,
while individual differences may vary in relation to other cognitive abilities such as learning
and attention. For future work, we will design experiments to evaluate a set of related
cognitive abilities for each neurodegenerative or psychiatric disorder. The other limitation
is regarding EEG data which were inherently non-stationary and noisy, and required setup
time for application of the electrodes on the subject’s scalp to ensure noise-free good-quality
signals. The current DNN model was trained for each subject, and the training data should
encompass a wide range of variability for generalizing the system. Also, the DNN requires
large datasets for training: currently, it utilizes 67% of data for training. For future work,
we propose to use Model Agnostic Meta Learning (MAML) networks that require much
less data for training, and hold promise for achieving enhanced generalizable performance.

6. Conclusions

The deep learning method demonstrated proficiency in predicting WM load in both
normal subjects from different age groups, and subjects with MCI through ICA best
electrode selection and EEMD time-frequency analysis of brain EEG signals recorded
while the subject performed WM tasks. The average overall accuracy obtained using
the ICA + EEMD + DNN method was 97.62%, performing better than EMD- and SVM-
or CNN- based methods. This method selects the best independent electrodes using the
fast ICA algorithm, and it uses EEMD based IMF features, which is better than using
EMD, which ensures the best WM load prediction accuracies. This method is subject- or
patient-specific and selects the best electrodes for the subject’s working memory function
capability. This ICA + EEMD + DNN WM load prediction method can also be used by
individual subjects, as it is low cost and non-invasive, to monitor their WM function. The
analysis of the IMFs using average PSD show that the IMFs calculated for the subjects with



Information 2023, 14, 473 15 of 17

MCI had higher values of beta and alpha oscillations (IMF3, IMF4, and IMF5) compared
to normal subjects and presented predominantly in the frontal region of the brain during
the performance of WM tasks. All of the subjects used the frontal region and the cerebral
cortex regions for performing WM tasks. MCI subjects also used the occipital region, while
some normal subjects used the parietal region.

We focused on evaluating our WM load prediction method on subjects with MCI
because they had significant WM dysfunction, which may lead to AD. Since AD is the most
common neurodegenerative disorder affecting a large population, we focused on WM load
prediction in subjects diagnosed with MCI. For future work, we will extend our testing
WM load prediction approach to other neural psychiatric disorders, which will require the
refinement and modification of the current approach as well as testing other ML paradigms
such as MAML deep learning networks.

WM plays a crucial role in many cognitive tasks. The proposed method has poten-
tial use in Brain Computer Interface (BCIs) where it can improve the adaptability and
responsiveness of BCIs when patients have movement disorders, personalized learning ex-
periences for patients and students according to their cognitive load, monitoring the safety
of workers, wherein this system could be used to determine if workers are overloaded to
provide breaks and shifts accordingly. The other potential use will be in neurofeedback,
cognitive rehabilitation for patients recovering from brain injury, and adapting Virtual
Reality (VR) and Augmented Reality (AR) based on the user’s cognitive load to make
VR/AR interactions more intuitive and user-friendly.
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