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Abstract: Advancements in navigation and tracking technologies have resulted in a significant
increase in movement data within road networks. Analyzing the trajectories of network-constrained
moving objects makes a profound contribution to transportation and urban planning. In this context,
the trajectory similarity measure enables the discovery of inherent patterns in moving object data.
Existing methods for measuring trajectory similarity in network space are relatively slow and neglect
the temporal characteristics of trajectories. Moreover, these methods focus on relatively small volumes
of data. This study proposes a method that maps trajectories onto a network-based space to overcome
these limitations. This mapping considers geographical coordinates, travel time, and the temporal
order of trajectory segments in the similarity measure. Spatial similarity is measured using the Jaccard
coefficient, quantifying the overlap between trajectory segments in space. Temporal similarity, on the
other hand, incorporates time differences, including common trajectory segments, start time variation
and trajectory duration. The method is evaluated using real-world taxi trajectory data. The processing
time is one-quarter of that required by existing methods in the literature. This improvement allows
for spatio-temporal analyses of a large number of trajectories, revealing the underlying behavior of
moving objects in network space.
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1. Introduction

Movement, an essential aspect of human civilization, has become increasingly signifi-
cant as societies advance. Various forms of movement impact people’s lives, necessitating
comprehensive investigation and analysis. The advent of science and technology, particu-
larly the proliferation of data-gathering instruments like GPS, has resulted in a substantial
accumulation of movement-related information [1]. Within this context, trajectories provide
valuable insights into the movement of point objects, such as vehicles and bicycles, over
time. Each trajectory comprises a series of coordinates representing subsequent locations
and timestamps, enabling critical information about object movement [2].

Raw trajectory data pose inherent challenges, including issues related to storage,
computational complexity, and the presence of undesirable errors. As a result, the need
arises to assess and extract meaningful information from moving object trajectories. One
crucial criterion for such analysis is the notion of similarity, which refers to the existence
of comparable patterns and characteristics within movement data [3]. It is important to
note that similarity is not confined solely to the spatial dimension, but also extends to the
temporal, semantic, and contextual dimensions [4].

Measuring the similarity of trajectories holds paramount importance across diverse
domains. This analysis enables us to gain deeper insights into the movement patterns of ob-
jects or individuals, offering valuable applications. In transportation and urban planning, it
contributes by optimizing routes, reducing traffic congestion, and informing infrastructure

Information 2024, 15, 51. https://doi.org/10.3390/info15010051 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15010051
https://doi.org/10.3390/info15010051
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-9537-9401
https://orcid.org/0000-0002-1241-007X
https://doi.org/10.3390/info15010051
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15010051?type=check_update&version=1


Information 2024, 15, 51 2 of 13

development. Ecologists rely on trajectory similarity to track animal migrations and habitat
preferences [5]. Criminal investigations benefit from tracking suspects’ movements [6],
while healthcare providers improve patient care by studying mobility within healthcare
facilities [7]. Additionally measuring trajectory similarity supports recommendation sys-
tems, anomaly detection, predictive modeling [8], and environmental conservation. It aids
decision making, pattern recognition, data visualization, model training, and emergency
response, enabling more efficient and informed actions in various fields.

Examining and calculating similarity in a unidimensional manner is impractical due
to the inherent interplay between the spatial and temporal dimensions of moving objects.
The spatial and temporal dimensions of trajectory similarity are intricately linked, exerting
mutual influence on each other. Spatial factors, such as geographic distances, significantly
impact the temporal aspect by determining travel time. Longer spatial distances often
correspond to lengthier temporal durations, making spatial information crucial for accurate
temporal assessments. Conversely, temporal details, like the time of day or the duration
spent at specific locations, can influence the spatial dimension. Temporal variations, such
as rush hours, can lead to spatial congestion or divergence in trajectory patterns. The
integration of both dimensions in the analysis is vital, as it enables the detection of patterns
in time and space, offering a more comprehensive understanding of movement behavior.
Therefore, a comprehensive approach is necessary to account for the combined influence of
both dimensions on trajectory similarity [2,8,9].

Traditional similarity measure functions often calculate spatial similarity within the
Euclidean space, involving x and y coordinates [10]. Euclidean space’s oversimplifica-
tion, assuming straight-line distances, can lead to inaccuracies when assessing similarity,
especially in network space. Measuring trajectory similarity in network space presents
distinct advantages over using Euclidean space due to its capacity to account for real-world
constraints, complex structures, and semantic information. Network-based approaches
reflect the actual connectivity between locations, making them more suitable for tasks like
route planning and traffic analysis. Moreover, network-based methods offer computational
efficiency and adaptability, allowing for tailored solutions in various domains, from trans-
portation to urban planning, where understanding movement within intricate networks is
essential for more precise and context-aware analyses. Consequently, the need arises for a
more efficient technique that can assess the spatio-temporal similarity of trajectories with
reduced computational requirements [11].

The temporal dimension of trajectory similarity is of paramount importance because
it holds the key to understanding how objects or individuals move and behave over time.
It provides crucial insights into patterns, trends, and irregularities within trajectories,
helping in the identification of both regular behaviors and anomalies. Temporal data
also plays a pivotal role in predictive modeling, event detection, and resource allocation,
influencing decisions in fields like transportation, healthcare, and security. It enhances
contextual understanding by revealing the timing of events, enabling efficient resource
management, and supporting the detection of deviations from expected patterns. In essence,
the temporal dimension enriches our ability to interpret and harness trajectory data, making
it a fundamental aspect of analysis across diverse domains [10].

In this research, we introduce a spatio-temporal similarity measurement method that
addresses multiple challenges in trajectory analysis including computation cost, consid-
ering temporal parameters, and efficiency improvement. Our method involves mapping
trajectory datasets onto the network space as a graph. The contributions of this research
include: (1) By incorporating network constraints and employing more parameters for
temporal similarity (i.e., duration of common segments, occurrence time, and duration
of entire trajectories), our method not only measures the spatio-temporal similarity of
network-constrained trajectories but also provides a more realistic representation of move-
ment behavior in real-world road networks. (2) Overcoming the computational challenges
associated with traditional spatial similarity calculations, our method offers faster and more
scalable calculations. Through empirical evaluations and case studies, we demonstrate
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the effectiveness and applicability of our method in calculating spatio-temporal similarity
for network-constrained of several taxi trajectories. The findings of this research can be
used in data-driven applications such as traffic prediction, recommender systems, and
resource allocation.

2. Review of Literature

Measuring the similarity of trajectories is normally conducted in Euclidean space [3,12]
or network space [13]. When it comes to network space, a variety of distance functions
have been used including the Euclidean and network distance functions [14,15]. Given the
differences in the definition of distance in those spaces, similarity measurement should be
network-centric and cannot depend on metrics distance.

Calculating similarity based on network parameters (nodes and edges) has led to the
use of set theory-based methods like Jaccard [16] and the longest common subsequence
(LCS) [17]. These methods primarily focus on assessing the spatial dimension of similarity
by identifying common segments between trajectories. However, the existing methods
based on set theory still have room for improvement, particularly in addressing the chal-
lenge of accurately measuring similarity in scenarios involving intricate network structures.
The complexity of real-world networks, such as those with non-linear patterns or uncertain
information, poses a significant limitation to the effectiveness of current set theory-based
measurement approaches [18].

Addressing the spatio-temporal dimension of similarity within the network space is
a critical consideration. While some previous research efforts have attempted to quantify
spatio-temporal similarity, they have often focused on limited criteria, such as differences in
the timing of trajectory beginnings or ends, without fully exploring the wealth of available
temporal parameters. Additionally, the lack of a comprehensive examination of diverse
temporal aspects may hinder the ability of existing methods to capture the nuanced patterns
present in real-world spatio-temporal networks [16,19]. This highlights the need for a more
comprehensive approach to temporal similarity measurement considering more temporal
metrics in the context of network-constrained trajectories.

Previous research has illuminated the challenges associated with calculating trajectory
similarity in network space, emphasizing the need for data preprocessing such as noise
removal, mapping positional data onto the network, and dealing with outlier data. These
pre-processing steps are necessary to align the raw trajectory data with network criteria,
so that, if noise remains in the data, in the methods that use distance metrics to measure
similarity, the validity of the similarity values is questioned. On the other hand, the presence
of noise causes the trajectory data to be incorrectly mapped on the network and the accuracy
of the results obtained for similarity to be questioned, especially in methods based on a set
theory, which depend on the results of mapping lines on the network space [20]. Regarding
the outlier data, it should be mentioned that, if these data remain in the similarity calculation
process, it will cause heterogeneous changes in the similarity results and will make errors
in the distance metrics used to determine the similarity [21]. However, they also contribute
to the computational complexity and processing time, underscoring the demand for more
efficient methods that can alleviate these challenges [17].

In conclusion, the quest to calculate trajectory similarity within network spaces ne-
cessitates the development of a robust method that excels in both spatial and temporal
dimensions. Such a method should, while maintaining efficiency, include the complexities
of the network space in the real world and manage the pre-processing needs in such a
way that the errors resulting from the inaccuracy of pre-processing are not reflected in the
similarity results. This is necessary to ensure that it can efficiently and quickly compare
large amounts of trajectory data in various applications, from transportation planning
to urban development and beyond. It is clear that addressing these complexities is piv-
otal for advancing our understanding of movement patterns within network-constrained
environments. According to the cases mentioned this research, a method for measuring
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similarity has been presented that can answer the complexities of the network space and
pre-processing and the efficiency and high speed of measuring similarity.

3. Methodology

This section proposes the network-constraint spatio-temporal similarity measure
procedure. The methodology of the study consists of three main stages, shown graphically
in Figure 1: (i) data pre-processing, (ii) similarity measure, and (iii) performance evaluation.
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3.1. Trajectory Pre-Processing
3.1.1. Noise Detection

Noise is typically present in the raw movement data collected by tracking devices.
In this study, the raw trajectories including noises (outliers) are identified based on the
average speed of moving objects and eliminated from the dataset [22,23]. The moving
object travels a certain distance based on an average speed recorded by GPS receivers based
on a constant sampling rate (e.g., 15 s). If the distance between two consecutive points
in a trajectory exceeds three times the particular distance estimated for each trajectory, it
is concluded that the coordinates of some points in this trajectory include noise, and the
trajectory is considered an outlier and is removed from the dataset [24].

3.1.2. Map Matching

The process of matching a series of point coordinates to a logical representation of the
real world, such as a road network, is known as map matching. This section aims to assign
unique ID numbers belonging to each part of the road network to the points in every route.
In this regard, a method based on the Hidden Markov model (HMM) is used for matching
trajectory data to the road network [24]. HMM determines the most likely path taken by
a moving object, such as a vehicle or person, based on a sequence of observed GPS data
points [25,26]. The basic idea behind HMM map matching is to find the path through the
HMM states (segments of the road network) that maximizes the likelihood of the observed
GPS data. In this study, the result of matching for each point of a trajectory on a piece of
the road network is represented by a unique id of that piece of the road network [27,28].
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3.1.3. Filtering

The filtering process reduces the volume of data, leading to significant savings in
processing costs in similarity measurement. In the first step, we eliminate distant and
irrelevant trajectories that do not intersect with the selected target trajectory space, which
is integral for measuring the similarity of other trajectories. Initially, a 150 m buffer zone
around the target trajectory (the trajectory where the similarity of the rest of the trajectories
compared to that trajectory is calculated) is established. The distance is chosen based on the
complexity and density of road networks obtained through network analysis. This buffer
zone effectively represents a reasonable range within which we expect moving objects to
generate their trajectories through the given network. By excluding any trajectories that fail
to intersect with this buffer zone, we ensure that irrelevant data are omitted. This strategic
filtering allows us to focus more on trajectories that are more likely to reflect actual travel
patterns similar to the target trajectory. This leads to diminishing the data involved in the
similarity measurement and consequently reducing computational costs [29].

A trajectory may have an intersection with the 150 m range of the target trajectory
without any common parts (e.g., perpendicular lines) [30]. To overcome this issue, the
second filtering step focuses on the average azimuth of the first and last five segments
of each trajectory, serving to exclude trajectories that exhibit a substantially divergent
direction of movement compared to the target trajectory. This involves calculating and
comparing the average azimuth of these segments in each trajectory against the target
trajectory. Any trajectory with an azimuth difference exceeding 0.2 radians is systematically
excluded from the similarity calculation process. The selection of this 0.2 radians threshold
is meticulously based on data complexity and network density [31]. By applying this
filter, our approach streamlines similarity calculations to focus on trajectories which are
more likely to align with similar travel patterns, ultimately enhancing the precision of our
similarity measurements [32].

3.2. Spatial Similarity Measure

After performing map matching to align the trajectories with the network space, each
trajectory is divided into a number of segments, which are the links between consecutive
intersections within the network. To measure spatial similarity between each pair of
trajectories, we use the Jaccard Similarity coefficient, which calculates the similarity between
two trajectories A and B by dividing the size of their intersected segments by the size of their
union (Equation (1)) [33]. This measure is sensitive to both the number and distribution of
segments in the trajectories and can be used to compare the similarity of different travel
patterns. For example, for two sample trajectories A and B in Figure 2, the spatial similarity
is equal to 2/(5 + 5 − 2) = 0.25.

J(A, B) =
|A ∩ B|
|A ∪ B| =

| A ∩ B |
| A |+ | B | − | A ∩ B | (1)

3.3. Temporal Similarity Measure

To calculate temporal similarity, a multivariate equation is defined that considers
three factors: (1) the difference in travel time between the common segments of the two
trajectories, (2) the start time of each trajectory, and (3) the total duration of each trajectory.
These variables are combined together as shown in Equation (2).

TS = 1 − [∑m
i=1|∆Tti − ∆Tqi|] ∗ e(TST−TSQ )

max(∆TT, ∆TQ)
(2)

where m represents the number of common segments between the two trajectories, TS(T)
and TS(Q) represent the start time of the first and second trajectories, respectively, calculated
from time 00:00 every day. ∆Tt(i) and ∆Tq(i) represent the duration of the ith common
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segment of the first and second trajectories, respectively. ∆TT and ∆TQ represent the total
duration of the first and second trajectories, respectively.
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In this regard, due to the fact that the result of the fraction is reduced from the number
1, the larger the form of the fraction becomes, it reduces the amount of temporal similarity.
In the first term of the fraction, if the travel time difference for the same sections is greater,
the value of this term increases and causes the fraction to become larger, so the temporal
similarity between the two trajectories becomes less. In the second term of the fraction, if
the starting times of the trajectories are further apart, the power of the number e becomes
larger and the value of this term increases and the temporal similarity decreases. In the
sentence used in the denominator of the fraction, the result of the fraction is reduced by
considering the maximum amount of the total travel time of both trajectories, and the
longer the two trajectories are, the more normal the value of the fraction becomes. The
maximum time taken for the two trajectories normalizes the fraction and reduces the effect
of large temporal differences of common segments in cases where the number of common
segments is large. This ensures that longer trajectories are not necessarily less temporally
similar because they have more segments or longer shared segments. For two sample
trajectories A and B in Figure 2, the temporal similarity is equal to:

1 − ((10 − 10) + (10 − 10)) ∗ e(0−0)

max(50, 50)
= 1.

3.4. Spatio-Temporal Similarity Measure

To calculate the final similarity between two trajectories, a weighted average of the
calculated spatial and temporal similarities is used. The weights assigned to each similarity
metric have been obtained through experimental iterations. By using a weighted average,
we are able to take into account the relative importance of each similarity metric in deter-
mining the overall similarity between two trajectories [16,19]. After evaluating different
weight values and taking into account that, in applications such as path prediction [5], the
influence of the spatial term of similarity is slightly greater than that of the temporal term,
and also, according to previous researches, the coefficients of 0.6 and 0.4 are considered
for spatial and temporal similarity results. By using these coefficients, we have tried to
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consider the effect of spatial similarity a little more than temporal similarity. Equation (3)
shows the weighted spatio-temporal similarity measure. According to the example in
Figure 2, the spatio-temporal similarity between trajectories A and B is equal to (0.6 × 0.25)
+ (0.4 × 1) = 0.55

Spatio-temporal similarity = (0.6 × Spatial similarity) + (0.4 × Temporal similarity) (3)

Finally, to make the final similarity score more interpretable and comparable, it is
normalized to the range of 0 to 1. This normalization ensures that the final similarity score
can be easily interpreted as a percentage, where a score of 1 indicates a perfect match and a
score of 0 indicates no similarity between the two trajectories. The integrated results are
stored as a similarity matrix, where element ij represents the similarity between trajectory
number i and trajectory number j.

4. Implementation
4.1. Data

The dataset used in this study consists of over 13 million taxi trajectories in Porto City
from 1 October 2013 to 30 September 2014 (Figure 3) [34]. The trajectories were collected
using GPS tracking devices installed in the taxis, which recorded the latitude and longitude
of the taxis at 15 s intervals. Moreover, the dataset includes the start and end time of each
trajectory and other information such as the fare and the distance traveled. Due to the large
size of the dataset, a sample of 15,000 trajectories are considered for the experiments from
central area of Porto city; after noise reduction, 13,309 trajectories remained.
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In addition, the shapefile of the Porto city roads provided by the OpenStreetMap
(OSM) database is considered as the road network, and the trajectories are matched to this
network based on the unique OSMid of each road segment. In this dataset, the ID of the
outgoing route and the return route of two-way roads are considered to be different; thus
the network graph created from this dataset is a directed graph.
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4.2. Results

Based on the noise reduction approach, 1691 out of 15,000 trajectories (reduced by 11%)
were detected as outliers. Among the remaining 13,309 trajectories, the spatio-temporal
similarity calculation process was repeated 177,129,481 times. After distance filtering, the
number of repetitions of the process was reduced to 48,636,646 times (reduced by 72%).
After filtering based on azimuth, the number of repetitions in the similarity calculation
process was reduced to 11,753,469 (reduced by 94%). Finally, by using both of the filters,
the repeating similarity measure was reduced to 4,191,878 (reduced by 98%). Most of the
iterations removed from the process have a value of zero for calculated similarity.

The spatial similarity values obtained for the trajectories are normalized between 0
and 1. The closer this value is to 1, the greater the similarity between the two trajectories
is. The distribution of spatial similarity values is shown in Figure 4. As can be seen, the
distribution of non-zero values for spatial similarity in all different filtering modes and the
no-filter mode are equal to each other.
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The weighted average spatio-temporal similarity results, which are between 0 and 1,
are shown in Figure 5. Due to the equal non-zero similarity values in multiple methods
with filtering and without filtering, the shapes of the four plots overlap and cannot be
distinguished from each other.

Moreover, our methodology incorporates the use of network space and input data
filtering to optimize the computation cost of similarity calculations by reducing the number
of iterations in the process. The significant reduction in execution time when employing
these filters underscores the efficiency of our method. As shown in Table 1, without any
filtering, our method required 310 min to process completely, but with the application of
a distance filter, this time was reduced to 180 min. Further, the azimuth filter achieved a
remarkable reduction to just 12 min. The combined usage of both filtering modes resulted
in an impressive execution time of only 2 min and 10 s. The experiments were conducted on
a system equipped with an Intel Core i9 12900k processor with 64 GB of RAM, Santa Clara,
CA, USA. Due to the limitations of the shared system, only one core out of the 24 available
processor cores and 16 GB of the total 64 GB system RAM was utilized in the calculation
process. It is evident that, with access to a system boasting enhanced specifications, even
more remarkable results could be achieved.
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Table 1. Comparing process time and iteration of process in each method of filtering.

Filtering Method Algorithm Iteration Reduction Percentage Process Time

Without filter 177,129,481 0 310′

Distance 48,636,646 72.5 180′

Azimuth 11,753,469 93.3 12′

Distance and azimuth 4,191,878 97.6 2′10”

5. Discussion

In this research, we introduced a fast, non-metric, and multi-characteristic approach to
calculate spatio-temporal similarity between trajectories. The Jaccard method, which is used
to calculate spatial similarity, is able to calculate the commonalities between the trajectories
as a set of segments from the road network graph quickly and without restrictions on the
size and equality of the number of road segments. At the same time, this method is very
strict and the calculated spatial similarity values are mostly between 0 and 0.2. In addition,
it is limited to trajectories that have a segment in common with each other.

Similarity is a relative criterion and the more realistic the criteria involved in the
similarity calculation process are, the closer the similarity values will be to reality. Our
temporal similarity method (Equation (2)), which uses three key temporal criteria to
calculate similarity in the time dimension, calculates similarity values which more closely
match what happened in reality. The use of temporal similarity and its combination with
spatial similarity has been able to distribute the final results of spatio-temporal similarity in
a wider range and with a more normal distribution. This wider range for the distribution
of similarity values indicates a higher resolution of the calculated similarity values.

The taxis in the city of Porto have different patterns of behavior. The filtering methods
ensure that taxi trajectories that have no similarity are prevented from entering the similarity
calculation process before the start of the similarity calculation process. As is clear from
the results given in Table 1, this increases the speed of the similarity calculation process
significantly. Considering that the plots of the results of the similarities calculated using
different filtering methods overlap in Figures 4 and 5, it is clear that the filtering methods
exclude only those trajectories that are not similar to the target trajectory from the similarity
calculation process

To compare the performance of the developed spatio-temporal trajectory similarity
measurement method with the methods available in the literature, we conducted a com-
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parative analysis with the LCS method [17], MSM method [35], and the Convolutional
neural network (CNN) method [36]. The results of this analysis, as shown in Figure 6, show
that the similarity values obtained through the LCS method have a biased distribution
between 0 and 0.2, while the similarity values obtained by our method have a more normal
distribution around the value of 0.4. This demonstrates the effectiveness and reliability
of our approach in capturing similarity in trajectory data. Unlike the LCS method, in the
MSM method, the calculated similarity values for the trajectories have been distributed
between 0.4 and 1, which indicates that this method exhibits lower stringency. The results
of the CNN method also show a biased distribution around a value of 1, signifying the
comparatively lower stringency of this method compared to others.
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The MSM method uses the average Euclidean distance of the corresponding points of
two trajectories with a threshold for maximum distance to calculate the spatial similarity.
In addition, the use of Euclidean distance to calculate the similarity means that, when the
threshold value of the distance is considered large, a non-zero similarity value is calculated
for all the trajectories located at that distance from the base trajectory, and practically all of
the characteristics of the network space are not affected in calculating the similarity. For
this reason, as can be seen in Table 2, this method has a very high computational cost and
execution time.

Table 2. Iteration, processing time, mean value and standard deviation of results of the developed
spatio-temporal similarity measure method comparing with LCS, MSM and CNN method (mean
value and standard deviation is calculated for non-zero values as the same as Figure 6).

Method Processing Time Algorithm Iteration Mean ± SD

Developed method
without filtering 310′ 177,129,481 0.384 ± 0.056

Developed method
with filtering 2′10′′ 4,191,878 0.384 ± 0.056

LCS method 660′ 177,129,481 0.067 ± 0.072
MSM method 1100′ 177,129,481 0.705 ± 0.210
CNN method 1650′ 177,129,481 0.935 ± 0.085

To calculate the similarity between trajectories, the CNN method first divides them
into smaller sub-trajectories using temporal features and depicts them in pixel space. Then,
according to the main network graph, it trains a CNN model for each trajectory and finally
calculates their similarity by comparing pairs of trajectories models. Considering the
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number of trajectories in the dataset and the fact that in this method a model is trained for
each trajectory, as shown in Table 2, this method has a very high computational cost.

In terms of execution time, when using the developed method without applying
filtering, the similarity calculation for the used data set takes 310 min; however, when
using filtering methods, this time is reduced to 2 min and 10 s. The executions of the LCS,
MSM, and CNN methods for the same data set takes 660, 1100, and 1650 min, respectively
(Table 2).

The standard deviation and mean similarity values calculated using the stated methods
show that the developed method has the lowest standard deviation value among other
methods. This shows that the calculated similarity values have a more normal distribution
around their mean and are more consistent than the results of other methods, which, while
being rigorous, can be more suitable for applications such as trajectory prediction and
clustering of trajectories.

The practical implications of spatio-temporal similarity in trajectory are significant,
including applications in path prediction, route optimization, and data-driven decision-
making. By significantly reducing computation time while maintaining accuracy, our
method holds great promise in advancing the field of trajectory analysis and enhancing the
efficiency of various transportation and spatial data-related tasks.

6. Conclusions

This study aims to provide an efficient and fast method for calculating the spatio-
temporal similarity of trajectories in the network space. For this purpose, a spatio-temporal
method has been developed based on the network characteristics and time parameters of
trajectories. Spatial similarity is calculated based on the terms of the sets and the Jaccard
relation. Temporal similarity is proposed based on the relationships among the time
parameters affecting the trajectory. This includes the time difference in occurrence, the time
difference in the total course, and the length of the time difference in common segments
to present a more realistic expression of similarity. The final spatio-temporal similarity
is obtained from the linear combination of these two similarity values. The measured
similarity results have a wider distribution than previous methods, indicating the high
resolution of the method due to the use of more parameters in the similarity measurement.
Additionally, the innovative pre-processing framework applied to the data, along with
the low complexity of the proposed method, has resulted in a high speed of the similarity
measurement process. The execution time of the process has been reduced from 310 min to
2 min and 10 s by saving the abundance of non-zero values. Due to the high resolution of
the calculated similarities, these similarity values can be used in applications such as route
prediction and data clustering to measure the efficiency of the measured similarities.
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