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Abstract: As the feature dimension of data continues to expand, the task of selecting an optimal
subset of features from a pool of limited labeled data and extensive unlabeled data becomes more and
more challenging. In recent years, some semi-supervised feature selection methods (SSFS) have been
proposed to select a subset of features, but they still have some drawbacks limiting their performance,
for e.g., many SSFS methods underutilize the structural distribution information available within
labeled and unlabeled data. To address this issue, we proposed a semi-supervised feature selection
method based on an adaptive graph with global and local constraints (SFS-AGGL) in this paper.
Specifically, we first designed an adaptive graph learning mechanism that can consider both the global
and local information of samples to effectively learn and retain the geometric structural information
of the original dataset. Secondly, we constructed a label propagation technique integrated with the
adaptive graph learning in SFS-AGGL to fully utilize the structural distribution information of both
labeled and unlabeled data. The proposed SFS-AGGL method is validated through classification and
clustering tasks across various datasets. The experimental results demonstrate its superiority over
existing benchmark methods, particularly in terms of clustering performance.

Keywords: semi-supervised learning; feature selection; adaptive graph learning; sparse regularization;
label propagation

1. Introduction

High-dimensional data can describe real-world things more realistically and effectively.
However, these data might include vast redundant and irrelevant information. If we process
these data directly, it not only consumes a large amount of storage space and computational
resources but also leads to the performance degradation of existing models [1]. Therefore, it
is necessary to mine the potential relationships between the data to select and learn useful
feature information.

Feature representation learning (FRL) is one of the most effective methods of learning
useful feature information. Among the existing FRL methods, feature extraction (FE) [2] and
feature selection (FS) [3] are two representative methods. FE aims to map the original high-
dimensional feature space to a low-dimensional subspace according to some pre-defined
criteria [4]. FS selects an optimal feature subset from the original feature set based on
evaluation metrics [5]. In comparison, FS is more interpretable than FE since it can remove
irrelevant and redundant features from the original features and retain a small number of
relevant features. Therefore, FS is widely used in image classification, bioinformatics, face
recognition, medical image analysis, natural language processing, and other fields [6].

FS methods can be divided into unsupervised feature selection (UFS), supervised
feature selection (SFS), and semi-supervised feature selection (SSFS). UFS methods can
achieve feature selection by only using unlabeled data; they have received widespread
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attention since they do not require any labeled data. However, a lack of label-guided
learning in UFS methods will lead to poor performance on practical application tasks [7].
Thus, SFS methods have been devised to leverage the label information of the sample
to guide the process of FS, enhancing the distinctiveness and consequently of selected
features, improving the performance of the classification and clustering [8]. However,
obtaining ample labeled data is very challenging and time consuming in practical situations.
For this reason, many SSFS methods have been proposed in the past decades. SSFS
methods employ semi-supervised learning (SSL) to leverage the information of limited
labeled data and a substantial volume of unlabeled data, enhancing the feature selection
ability of the model [9]. The existing SSFS methods can be classified as filtered, wrapped,
and embedded methods [10]. Filtered methods first evaluate each feature based on the
principles of statistical or information theory and then perform the process of FS in terms
of the calculated weights. A major benefit of filtering methods is that they are more
applicable to large-scale datasets since they have high speed and computational efficiency.
However, filtered methods may ignore the amount of redundant information generated
by the combination of multiple features [11]. Thus, some wrapped approaches have
been proposed to exploit the interrelationship of features to mine the best combination of
features. However, these approaches have high computational complexity. This makes
them unsuitable for processing large-scale data [12]. In contrast to the above-mentioned
methods, embedded methods combine FS and model training together. That is, FS is
automatically executed during the process of model training, which makes embedded
methods improve the efficiency of FS by reducing runtime [13]. Therefore, they have
become mainstream and widely used in various scenarios.

In recent years, several semi-supervised embedded feature selection (SSEFS) methods
have emerged. For example, Zhao et al. [14] introduced an SSFS method using both labeled
and unlabeled data. Recognizing sparse regularization is an effective strategy for selecting
useful features and reducing feature representation dimensions [15]. Chen et al. [16] intro-
duced an efficient semi-supervised feature selection (ESFS) method. ESFS first combines
SSL and sparse regularization to obtain feature subsets. Then, it uses probability matrices
of unlabeled data to measure feature relevance to the class, aiming to identify the globally
optimal feature subset. Least squares regression (LSR) with complete statistical theory can
handle noisy data effectively and thus improve computational efficiency [17]. Therefore,
Chang et al. [18] proposed a convex sparse feature selection (CSFS) method based on LSR,
which employs the convex optimization theory to fit samples and predict labels to select
the most critical features using constraint terms. Chen et al. [19] contended that LSR-based
feature selection lacks interpretability and struggles to identify a global sparse solution.
Hence, they proposed an embedded SSFS method based on rescaled linear regression,
which exploits the L21 norm to obtain both global and sparse solutions. Moreover, they
also introduced a sparse regularization with an implicit L2p norm to obtain sparser and
more interpretable solutions [20]. Therefore, this approach effectively constrains regression
coefficients, achieving feature ranking. Besides, Liu et al. [21] combined sparse features
and considered the correlation of samples in the original high- and low-dimensional spaces
to improve the performance of feature learning. Despite the good results achieved by the
sparse model-based methods, there are still some problems.

The first problem is that most of the methods do not consider constructing graphs
to better preserve the geometric structural information of the data during the FS process.
Initially, KNN was adopted by some FS methods to construct graphs based on Euclidean
distances [22–25]. To minimize the influence of the redundant features and noise in the
original high-dimensional data on the constructing graph process, Chen et al. [26] em-
ployed local discriminant analysis (LDA) to map the data from high-dimensional space
to low-dimensional space. Subsequently, numerous graph construction methods based
on data correlation have been presented, including L1 graph [27], low-rank representa-
tion (LRR) [28], local structure learning [29], and sparse subspace clustering (SSC) [30],
to construct high-quality graphs. The above-mentioned graph construction methods are
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integrated into FS models, proposing a large number of improvements for feature se-
lection [31–37]. However, the processes of adaptive graph construction and FS in the
above-mentioned methods are independent of each other, so the influence of graph con-
struction on the FS process is limited. To this end, some methods have been constructed to
unify adaptive graph learning (AGL) and FS into a single framework [38–41].

The second problem is that the spatial distribution of the sample label information
is not sufficiently considered, resulting in the weak discriminative ability of the selected
features, which further leads to poor classification or clustering performance. To alleviate
this issue, label propagation (LP) has been incorporated into the FS methods [42–44].
However, since LP is also a graph-learning-based algorithm, the quality of the learned
graph affects the performance to some extent. Therefore, numerous methods have emerged
to merge AGL and LP [45–48]. However, these methods still have the following limitations:
(1) the process of AGL is based on the original data; (2) the process of adaptive graph
construction only considers the local structure or the global structure. Therefore, these
methods are inevitably affected by high-dimensional features or noisy data.

To address the above-mentioned issues, this study develops a novel SSFS framework,
SFS-AGGL, which integrates FS, AGL, and LP to capture both global and local data struc-
tural information for selecting an optimal feature subset with maximum discrimination and
minimum redundancy. In AGL, global and local constraints are imposed on the construc-
tion coefficient obtained by the self-representation of low-dimensionally selected features.
Meanwhile, the similarity matrix obtained by AGL is integrated into LP, enhancing label
prediction performance. To improve the discriminative ability of the selected features, the
predicted label matrix is introduced into the sparse feature selection (SFS) process. SFS
is performed through the mutual promotion of the three models. The framework of the
proposed SFS-AGGL is shown in Figure 1.
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Figure 1. The illustration of the SFS-AGGL framework.

The primary contributions of this paper are as follows:
(1) An efficient SSFS framework is proposed by combining the advantages of FS,

adaptive learning, and LP.
(2) An adaptive learning strategy based on low-dimensional features is designed to

counteract the influence of high-dimensional features or noise data. Moreover, global and
local constraints are introduced.

(3) An LP based on an adaptive similarity matrix is introduced to enhance label
prediction accuracy.

(4) Comprehensive experiments conducted on multiple real datasets demonstrate that
the proposed SFS-AGGL method surpasses existing representative methods in classification
and clustering tasks.
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The rest of this paper is organized as follows: Section 2 describes some related work;
Section 3 outlines the details of the proposed method and the iterative minimization strategy
employed to optimize the objective function; Section 4 introduces the experimental setup
and provides a comprehensive analysis of the obtained results, including comparisons with
eight state-of-the-art methods on five real datasets; and Section 5 provides a summary of
our work in this paper.

2. Related Work

In this section, we have first provided some commonly used notations. Then, sparse
representation and graph construction methods are introduced. Finally, some semi-
supervised feature selection methods are briefly reviewed.

2.1. Notations

Let X = [Xl , Xu] = [x1, · · ·, xl , xl+1, · · ·, xl+1+u] ∈ Rm×n denote the training samples,
where xi ∈ Rm denotes the i-th sample. Y = [Yl Yu]

T ∈ Rc×n is the label matrix, and Yl
denotes the true label of the labeled sample. If the sample xi belongs to the class j, then
its corresponding class label is Yij = 1; otherwise, Yij = 0. Yu denotes the true label of the
unlabeled sample. Since Yu is unknown during the training process, it is set as a 0 matrix
during training [49]. The main symbols in this paper are presented in Table 1.

Table 1. Definition of the main symbols in this paper.

Notation Description Notation Description

X ∈ Rd×n Sample matrix 0 ∈ Ru×c Zero matrix
Xl ∈ Rd×l Labeled sample matrix d Sample dimension

Xu ∈ Rd×(n−l) Unlabeled sample matrix n Sample size
Y ∈ Rn×c Label matrix k Number of selected features
F ∈ Rn×c Predictive labeling matrix c Number of categories
S ∈ Rn×n Weighting matrix l Number of label samples
E ∈ Rn×n Local adaptation matrix +∞ Infinitely large numbers
W ∈ Rd×c Weighting matrix ⊙ Matrix dot product
I ∈ Ru×u Unit matrix tr(·) Traces of matrix

Common matrix norms include L1, L2, F, and L21 norms. Their detailed definitions are
as follows:

||B∥1 =
m

∑
i=1

n

∑
j=1
|bij| (1)

||B∥2 =

√
m

∑
i=1

b2
i (2)

||B∥F =

√√√√ m

∑
i=1

n

∑
j=1

b2
ij (3)

||B∥2,1 =
m

∑
i=1
∥Bi||2 =

m

∑
i=1

√√√√ n

∑
j

b2
ij (4)

where Bi is the i-th row vector of the matrix B. According to the matrix computation theory,
||B∥2,1 = tr(BTUB), U ∈ Rm×m is a matrix consisting of diagonal elements uii = 1/∥Bi||2.

2.2. Sparse Representation

Sparse representation is a method that was first developed in signal processing. The
core idea of sparse representation is to find a target dictionary to describe the signal. To be
specific, the original signal can be decomposed into linear combinations of elements in the
dictionary. Only a few non-zero elements are used to represent signal information, while
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the rest can be ignored. Given a sample X ∈ Rn and a target dictionary D, it is desired to
find a coefficient vector a such that the signal X can be represented as a linear combination
of the basic elements of the target dictionary D.

min
α
∥α∥0

s.t. X = D× α.
(5)

where α ∈ Rd is a one-dimensional vector [50] and ||α∥0 is the L0 norm of α. Due to the
non-convexity and discontinuity of the L0 norm, the L1 norm is usually used to replace the
L0 norm to obtain an approximate solution, as shown in the following formula:

min
α
∥α∥1

s.t. X = D× α.
(6)

Compared with the L1 norm, the continuous derivability property of the L2 norm can
make the optimization algorithm more intuitive. Hence, the L2 norm is commonly used
to control overfitting, which can make the weight parameters of the model smoother and
avoid overly complex models, as shown in the following formula:

min
α
∥α∥2

s.t. X = D× α.
(7)

However, the disadvantage of the L2 norm is that the model parameters will be close
to 0, but most of them cannot be 0. Therefore, the L21 norm, which is between the L1 and L2
norms, is proposed as an effective scheme, as shown in Equation (8):

min
α
∥α∥21

s.t. X = D× α.
(8)

The advantage of L21 norm is that it can make the elements of the whole row 0, thus
achieving a similar sparse effect as L1 and more robustness.

2.3. Constructing Graph Methods

KNN graph is a widely used method for constructing a similarity matrix. Sij is the
similarity of the sample xi and xj, which is defined as:

Sij =

exp
(
− ||xi−xj ||22

δ2

)
if xi ∈ Nk(xj) or xj ∈ Nk(xi),

0. else.
(9)

where Nk(xj) is a set that contains k nearest neighbor samples of the sample xj and δ is
a parameter.

From Equation (9), it can be seen that as the samples get closer, their similarity also
increases. In addition, there are some similar methods, such as the ϵ-neighborhood
method [51] and the fully connected method [52], which can also be utilized to con-
struct graphs.

Unlike the KNN graph, the L1 graph is an adaptive graph learning mechanism method
that aims to reconstruct each sample by find the best sparse linear combination of other
samples. The objective function of the L1 graph can be described as follows:

min ∥αi∥1
s.t. xi = Xαi, αii = 0.

(10)

Then, the weight matrix formed by the L1 graph is expressed as S = [α1, α2, . . . , αN ].
Compared with KNN graphs, L1 graphs can adaptively select the nearest samples for
each sample.
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2.4. Label Propagation Algorithm

The label propagation (LP) algorithm is a graph-based semi-supervised classification
method that can effectively classify unknown samples using a small number of labeled
samples. In the LP algorithm, similar samples should have similar labels. Therefore, the
objective function of LP can be expressed as:

min
F≥0

N
∑

i=1

N
∑

j=1
|| fi − f j||22sij +

N
∑

i=1
∥ fi − yi||22uii

= tr(FT LF) + tr((F−Y)U(F−Y)T)

(11)

where sij can be computed by Equation (9) or Equation (10). U ∈ Rm×m is a diagonal
matrix that effectively utilizes category information from all samples in SSL. The diagonal
elements of this matrix are defined as follows:

uii =

{
∞ if xi is unlabeled,
0 otherwise.

(12)

where the symbol ∞ represents a relatively large constant. The first term in Equation (11) is
based on the similarity of the data, which assigns similar labels to the neighboring samples
to keep the graph as smooth as possible. The second term aims to minimize the difference
between the matrix F and the label Y, i.e., the sample labels predicted by the trained model
should be as consistent as possible with the true labels.

2.5. The Graph-Based Semi-Supervised Sparse Feature Selection

Sparse learning is widely used in machine learning due to its superior feature ex-
traction capabilities. In this context, sparse regularization terms are used to penalize the
projection matrix with the aim of selecting features with high sparsity and high discrimi-
native properties. The following equation is commonly used for sparse feature selection:

min
W

Loss(X, W, Y) + θR(W) (13)

where the Loss(X, W, Y) is defined as a regression term and R(W) is a sparse regularization
term, and θ ≥ 0 is a regularization weight to constrain both terms.

As we know, selecting features only using the information of the labeled sample is
inaccurate and unreliable since the labeled samples are insufficient in SSL. Therefore, it is
also necessary to make full use of the information of unlabeled samples to improve the
performance. The following model can achieve feature selection by introducing an LP
algorithm into the semi-supervised sparse model.

min
W,F

Loss1(X, W, F) + θR(W) + αLoss2(F, Y) (14)

where Loss2(F, Y) is the objective function of the LP algorithm shown in Equation (11).
It can be seen that when constructing the model above, the merits of the similarity

matrix construction directly determine the performance. To alleviate the issue, the following
graph-based semi-supervised sparse feature selection model has been developed.

min
W,F≥0,S≥0

Loss1(X, W, Y) + θR(W) + αLoss2(F, Y, S) + βLoss3(X, S) (15)

where α, β, θ ≥ 0 are model parameters. Loss3(X, S) is the objective function of the graph
learning. Some adaptively constructed graph methods have been designed [38–41,48,53].

3. The Proposed Method

In this part, a detailed introduction of the SFS model is first presented. Second, a new
AGL mechanism is introduced to make full use of the global and local information between
the samples, which can acquire the geometric structural information of the original data
well. Next, the similarity matrix learned by the AGL mechanism is integrated into the LP
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algorithm, which enhances label prediction performance and allows the model to classify
and cluster unlabeled samples more accurately. Finally, the SFS, AGL, and LP models
are fused in a unified framework to propose a novel SFS-AGGL method. Moreover, a
new iterative updated algorithm is introduced to optimize the proposed model, and its
convergence is confirmed through both theoretical and experimental testing.

3.1. Methodology Model
3.1.1. SFS Model

The L21 sparsity constraint is applied to achieve the process of FS. In combination with
LSR, a basic SFS model can be obtained as follows:

min
W
∥XTW −Y∥2

2 + θ∥W∥2,1

s.t. W ≥ 0.
(16)

where W ∈ Rd×c denotes the feature projection matrix and θ is a regularization parameter.

3.1.2. Global and Local Adaptive Graph Learning (AGGL) Model

Although the sparse model-based approach has achieved good results in FS, there
are still some problems, for e.g., the above-mentioned sparse model only focuses on the
sample–label relationship and ignores the geometric structural information among the
samples. To better preserve the original data’s geometric structural information, the method
of adaptively constructing the nearest neighbor graph is usually adopted. However, the
nearest neighbor information in the original feature space may be disturbed by redundant
and noisy features. Previous research has shown that feature projection can effectively
mitigate the negative impact of redundant and noisy features [54]. Therefore, when learning
the nearest neighbor graph, the similarity matrix should be constructed through adaptive
updates of sample similarities and their neighboring samples in the projected feature
space. Hence, in this paper, the similarity of samples in the original high-dimensional
space and the low-dimensional space is utilized to describe the local distribution structure
more accurately, thus enhancing the effectiveness of the graph learning task. Specifically,
we have used a coefficient reconstruction method to construct the graph, leading to the
subsequent model:

min
W,S
∥WTX−WTXS∥2

2

s.t. W ≥ 0,S ≥ 0.
(17)

where S ∈ Rn×n and si = [si1, si2, · · ·, sin] ∈ Rn×1 denotes the reconstructed coefficient
vector of the sample.

The maintenance of global and local sample information is crucial for sample recon-
struction. That is, the similarity between the sample that needs to be reconstructed and its
surrounding samples should be maintained in the process of sample reconstruction. To
achieve this goal, we have incorporated global and local constraints into the sample recon-
struction process. This ensures that the sample points are better reconstructed by the most
adjacent sample points, thereby improving the quality of the construction graph. Specifi-
cally, we have combined global and local constraints with sparse learning to reconstruct
samples, as shown in the following formula:

∥S⊙ E∥1 (18)

where E = [eij] ∈ Rn×n and each element eij in E is defined as:

eij = exp

(
∥xi − xj∥2

σ2

)
(19)

By combining Equations (17) and (18), the following adaptive graph construction
model with global and local constraints is obtained:
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min
W,S
∥WTX−WTXS∥2

2 + λ∥S⊙ E∥1

s.t. W ≥ 0,S ≥ 0.
(20)

where λ > 0 is the balance coefficient, which aims to balance the effects of the coefficient
reconstruction term and the global and local constraint terms. By constructing the above
model, we can effectively maintain the global and local information of the sample, thereby
enhancing the similarity matrix of the graph.

3.1.3. Objective Function

As can be seen in Equation (17), the SFS model only utilizes the labeling information of
the data. It ignores the spatial distribution of the labels, making it difficult to select the ideal
subset of features. It has been shown that the structural distribution information embedded
in unlabeled data is very important for FS when there is less labeling information [55]. For
this reason, we have introduced the LP algorithm. Meanwhile, to make the LP process
more efficient, we have introduced the adaptive graph coefficient matrix obtained by
Equation (20) into LP. Therefore, a new SFS-AGGL algorithm is proposed by integrating
SFS, AGGL, and LP into a unified learning framework. SFS-AGGL can account for both
global and local sample information, and it is robust for FS. The objective function of
SFS-AGGL is:

minε(W, F, S) = β∥WTX−WTXS||22 + λ∥S⊙ E||1
+α

n
∑

i,j=1
∥ fi − f j||22Sij +

n
∑

i=1
∥ fi − yi||22uii

+∥XTW − F||22 + θ∥W||2,1
s.t. W ≥ 0,F ≥ 0,S ≥ 0.

(21)

where α, β, θ, λ > 0 are the equilibrium control parameters to be adjusted in the experiment,
and ⊙ denotes the product of matrix elements in their corresponding positions.

As shown in Equation (21), we first efficiently obtained the constructive coefficients
by imposing global and local constraints while self-representing the low-dimensional
features. Therefore, it can avoid possible redundant information to affect the learning
performance due to predefined matrices not being introduced. Second, we introduced the
similarity matrix obtained by AGL into the LP process to improve the accuracy of label
prediction. In addition, to enhance the discriminative performance of the selected features,
we introduced a predictive labeling matrix into the SFS process and completed the FS by
mutual reinforcement of the three models: SFS, AGGL, and LP.

3.2. Model Optimization

The objective function of the SFS-AGGL method involves three variables, i.e., the
feature projection matrix W, the prediction label matrix F, and the similarity matrix S. Since
the objective functions of all three variables are non-convex, they cannot be optimized
directly. However, the objective function exhibits convexity with respect to a single variable.
Therefore, we can solve it step-by-step by performing convex optimization on each variable
separately. The specific process of solving the objective function is as follows:

(1) Fixed variables F and S update variable W
Simplifying Equation (21) by removing the terms unrelated to the variable W, the

following optimization function is obtained:

minε(W) = ∥XTW − F||22 + β∥WTX−WTXS||22 + θ∥W||2,1 (22)

From the definition of matrix trace, Equation (23) can be derived from Equation (22)
by using a simple algebraic transformation as follows:
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minε(W) = tr((XTW − F)(XTW − F)T
)

+βtr((WTX−WTXS)(WTX−WTXS)T
) + θtr(WT HW)

= tr(XTWWTX− 2FWTX + FFT)

+βtr
(

WTXXTW − 2WTXSTXTW
+WTXSSTXTW

)
+ θtr(WT HW)

(23)

To solve Equation (23), a Lagrange multiplier and the corresponding Lagrange func-
tions are introduced, which can be constructed as follows:

ε(W, ϑ) = tr
(

XTWWTX− 2FWTX + FFT + βWTXXTW
−2βWTXSTXTW + βWTXSSTXTW + θWT HW

)
+ tr(ϑW) (24)

Next, the partial derivative regarding the variable W is computed and then set to 0
as follows:

∂ε(W, ϑ)

∂W
=

(
2XXTW − 2XF + 2βXXTW − 4βXSTXTW
+2βXSSTXTW + 2θWT HW + ϑ

)
= 0 (25)

Meanwhile, by combining the Karush–Kuhn–Tucker (KKT) condition (ϑijWij = 0), we
can obtain Equation (26) as follows:(

2XXTW − 2XF + 2βXXTW − 4βXSTXTW
+2βXSSTXTW + 2θHW

)
ij

Wij = 0 (26)

Therefore, an updated rule for the variable W can be obtained:

Wij = Wij
[XF + 2βXSTXTW]ij

[XXTW + βXXTW + βXSSTXTW + θHW]ij
(27)

(2) Fixed variables W and S update variable F
We first remove the terms unrelated to the variable F from Equation (21), and the

optimization function on the variable F is acquired as:

minε(F) = ∥XTW − F∥2
2 + α

n

∑
i,j=1
∥ fi − f j||22Sij +

n

∑
i=1
∥ fi − yi||22uii (28)

According to the definition of matrix trace, we can use a simple algebraic transforma-
tion to obtain Equation (29) as follows:

minε(F)
= tr((XTW − F)(XTW − F)T

) + αtr(FT LF) + tr((F−Y)(F−Y)T)
= tr(XTWWTX− 2FWTX + FFT) + αtr(FT LF) + tr(FUFT − 2FUYT + YUYT)
= tr(XTWWTX− 2FWTX + FFT + αFT LF + FUFT − 2FUYT + YUYT)

(29)

Next, we have introduced a Lagrange multiplier to optimize Equation (29), and the
corresponding Lagrange function can be defined as follows:

ε(F, µ) = tr
(

XTWWTX− 2FWTX + FFT

+αFT LF + FUFT − 2FUYT + YUYT

)
+ tr(µF) (30)

Then, we have calculated the partial derivative with respect to the variable F and set it
to 0 as follows:

∂ε(F, µ)

∂F
= (−2XTW + 2F + 2αLF + 2FU − 2YUT + µ) = 0 (31)

Following the KKT condition (µijFij = 0), we can derive Equation (32) as shown:

(−2XTW + 2F + 2αLF + 2FU − 2YUT)ijFij = 0 (32)
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Finally, we have provided an iterative updated rule for the variable F as follows:

Fij = Fij
[XTW −YUT ]ij
[F + αLF + FU]ij

(33)

(3) Fixed variables W and F update variable S
Likewise, by removing the terms unrelated to the variable S, the optimization function

becomes the following form:

minε(S) = α
n

∑
i,j=1
∥ fi − f j∥2

2Sij + β∥WTX−WTXS∥2
2 + λ∥S⊙ E∥1 (34)

Equation (34) can be reduced to Equation (35) as follows:

minε(S) = αtr(FT LF) + βtr((WTX−WTXS)(WTX−WTXS)T
) + λS⊙ E

= αtr(FT LF) + βtr(WTXXTW − 2WTXSTXTW + WTXSSTXTW) + λSE
= tr(αFT DF− αFTSF + βWTXXTW − 2βWTXSTXTW + βWTXSSTXTW) + λSE

(35)

Here, a Lagrange multiplier is utilized to determine the optimal solution of Equa-
tion (35), and the related Lagrange function is formulated as:

ε(S, ξ) =

(
tr(αFT DF− αFTSF + βWTXXTW − 2βWTXSTXTW + βWTXSSTXTW)
+λSE + tr(ξS)

)
(36)

The partial derivative regarding the variable S is then set to 0 as follows:

∂ε(S, ξ)

∂S
= (−αFFT − 2βXTWWTX + 2βXTWWTXS + λE + ξ) = 0 (37)

Since the KKT condition (ξijSij = 0) exists, we can obtain Equation (38) as follows:

(−αFFT − 2βXTWWTX + 2βXTWWTXS + λE)ijSij = 0 (38)

Therefore, an expression of the following form for the variable S can be obtained:

Sij = Sij
[αFFT + 2βXTWWTX]ij

[2βXTWWTXS + λE]ij
(39)

3.3. Algorithm Description

Algorithm 1 describes the SFS-AGGL method in detail, while Figure 2 depicts its
flowchart. Moreover, the SFS-AGGL algorithm stops iterating when the alteration of
the objective function value between consecutive iterations is below a threshold or the
maximum number of iterations is reached.

3.4. Computational Complexity and Convergence Analysis
3.4.1. Computational Complexity Analysis

Based on Algorithm 1, the SFS-AGGL algorithm’s computational complexity com-
prises two parts. The first part is the computation of the diagonal auxiliary matrix U in
step 2, and the second part is the updating of three matrices (W, F, and S) during each
iteration and the computation of the local matrix E in step 7. The computational or up-
dating components of each matrix are defined in Table 2. Therefore, the total complexity
of the SFS-AGGL algorithm is O(max(kn2, cn2) + (iter×max(cmn, cn2)), where iter is the
iteration count. Furthermore, the computational complexities of other related FS methods
are also presented in Table 3.
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Algorithm 1: SFS-AGGL

Input: Sample Matrix:X = [XL, XU ] ∈ Rd×n

Label Matrix:Y = [Yl ; Yu]
T ∈ Rn×c

Parameters:α ≥ 0, β ≥ 0, θ ≥ 0, λ ≥ 0
Output: Feature Projection Matrix W

Predictive Labeling Matrix F
Similarity Matrix S

1: Initialization: the initial non-negative matrix W0, F0, S0, iter = 0;
2: Calculation of the matrix Uiter according to Equation (12);
3: Repeat
4: According to Equation (27) update Witer as

Witer ←
XF+2βXST XTW

XXTW+βXXTW+βXSST XTW+θHW ;

5: According to Equation (33) update Fiter as Fiter ← XTW−YUT

F+αLF+FU ;

6: According to Equation (39) update Siter as Siter ←
αFFT+2βXTWWT X
2βXTWWT XS+λE ;

7: According to Equation (19) update E;
8: Update iter = iter + 1;
9: Until converges
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Table 2. The time complexity of each matrix in our proposed algorithm.

Matrix Formula Time Complexity

U U = [uii] ∈ Rn×n O(n2)
E E = [eij] ∈ Rn×n O(kn2)

W Wij = Wij
[XF+2βXST XTW]ij

[XXTW+βXXTW+βXSST XTW+θHW]ij
O(cmn)

F Fij = Fij
[XTW−YUT ]ij
[F+αLF+FU]ij

O(cmn)

S Sij = Sij
[αFFT+2βXTWWT X]ij
[2βXTWWT XS+λE]ij

O(cn2)

Table 3. Computational complexity of each iteration for FS methods.

Method Number of Variables Algorithm Complexity

RLSR [19] 2 O(iter×max(ndc, n3))
FDEFS [49] 3 O(max(cmn, cn2))
GS3FS [43] 4 O(iter×max(d3, n3))
S2LFS [44] 3 O(cd2n + cd3 + cn2)

AGLRM [47] 4 O(iter×max(d3, n3))
ASLCGLFS [48] 4 O(iter×max(n3, d3))

SFS-AGGL 3 O(max(kn2, cn2) + iter×max(cmn, n2))

3.4.2. Proof of Convergence

Definition 1. If functions φ(q, q′) and ψ(q) meet these two conditions, as shown in Equation (40),
φ(q, q′) is an auxiliary function of ψ(q).

φ(q, q′) ≥ ψ(q),
φ(q, q) = ψ(q),

(40)

Lemma 1. If Definition 1 holds, ψ(q) is non-increasing in Equation (41).

q(iter+1) = argmin
q

φ(q, q(iter)) (41)

Proof.
ψ(q(iter+1)) ≤ φ(q(iter+1), q(tier)) ≤ φ(q(iter), q(iter)) = ψ(q(iter)) (42)

It is only necessary to show that the variables W, F, and S are non-decreasing under the
update rule as shown in Equation (42). For this purpose, we have computed and presented
the first- and second-order derivatives of each formula in Table 4. □

Lemma 2.

φ(Wij, W(iter)
ij ) = ψij(Wij, W(iter)

ij ) + ψ′ ij(Wij)(Wij −W(iter)
ij )

+
[XXTW+βXXTW+βXSST XTW+θHW]ij

W(iter)
ij

(Wij −W(iter)
ij )

2 (43)

φ(Fij, F(iter)
ij ) = ψij(Fij, F(iter)

ij ) + ψ′ ij(Fij)(Fij − F(iter)
ij )

+
[F+αLF +FU]ij

F(iter)
ij

(Fij − F(iter)
ij )

2 (44)

φ(Sij, S(iter)
ij ) = ψij(Sij, S(iter)

ij ) + ψ′ ij(Sij)(Sij − S(iter)
ij )

+
[2βXTWWT XS+λE]ij

S(iter)
ij

(Sij − S(iter)
ij )

2 (45)
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Equations (43)–(45) are both auxiliary functions of ψij.

Table 4. First- and second-order derivatives of each formula.

W

ψij(Wij)
ψij(Wij) = [XTWWT X− 2FWT X + βWT XXTW − 2βWT XST XTW

+βWT XSST XTW + θWT HW]ij

ψ′ ij(Wij)
ψ′ ij(Wij) = 2[XXTW − XF + βXXTW − 2βXST XTW

+βXSST XTW + θHW]ij
ψ′′ ij(Wij) ψ′′ ij(Wij) = 2[XXT + βXXT − 2βXSXT + βXSST XT + θHT ]ii

F
ψij(Fij) ψij(Fij) = [−2FWT X + FFT + αFT LF + FUFT − 2FUYT ]ij
ψ′ ij(Fij) ψ′ ij(Fij) = 2[XTW + F + αLF + FU −YUT ]ij
ψ′′ ij(Fij) ψ′′ ij(Fij) = 2[E + αLT + UT ]ii

S
ψij(Sij) ψij(Sij) = [−αFTSF− 2βWT XST XTW + βWT XSST XTW + λSE]ij
ψ′ ij(Sij) ψ′ ij(Sij) = [−αFFT − 2βXTWWT X + 2βXTWWT XS + λE]ij
ψ′′ ij(Sij) ψ′′ ij(Sij) = 2[2βXTWWT X]ii

Proof. Taylor series expansion of ψij(Wij, W(iter)
ij ):

ψij(Wij) = ψij(W
(iter)
ij ) + ψ′ ij(Wij)(Wij −W(iter)

ij ) + 1
2 ψ′′ ij(Wij)(Wij −W(iter)

ij )
2

= ψij(W
(iter)
ij ) + ψ′(Vij)(Wij −W(iter)

ij )

+
(
XXT + βXXT − 2βXSXT + βXSSTXT + θHT)

ii(Wij −W(iter)
ij )

2
(46)

φ(Wij, W(iter)
ij ) ≥ ψij(Wij) Equivalent to:

[XXTW+βXXTW+βXSST XTW+θHW]ij

W(iter)
ij

≥ (XXT + βXXT − 2βXSXT + βXSSTXT + θHT)ii

(47)

By comparing Equations (43) and (46), we get that φ(Wij, W(iter)
ij ) ≥ ψij(Wij) holds,

therefore, φ(Wij, W(iter)
ij ) = ψij(Wij) also holds.

[XXTW]ij =
r

∑
k=1

(XXT)ikW(iter)
kj

≥ (XXT)ijW
(iter)
ij

(48)

[XSSTXTW]ij =
r

∑
k=1

(XSSTXT)ikW(iter)
kj

≥ (XSSTXT)ijW
(iter)
ij

(49)

[HW]ij =
r

∑
k=1

HikW(iter)
kj

≥ HiiW(iter)
ij

(50)

□

Similarly, it is possible to prove Equations (44) and (45). Finally, based on Lemma 1,
the update schemes for the variables W, F, S are derived in this paper as shown in
Equations (51)–(53).

Theorem 1. W ≥ 0, F ≥ 0, and S ≥ 0, updating iterative Formulas (27), (33), and (39)
are non-increasing.
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Proof.
Bringing Equation (43) into Equation (41):

W(iter+1)
ij = argmin

Wij

φ(Wij, W(iter)
ij )

= W(iter)
ij −W(iter)

ij
ψ′′ (Wij)

[XXTW+βXXTW+βXSST XTW+θHW]ij

= W(iter)
ij

[XF+2βXST XTW]ij
[XXTW+βXXTW+βXSST XTW+θHW]ij

(51)

Bringing Equation (44) into Equation (41):

F(iter+1)
ij = argmin

Fij

φ(Fij, F(iter)
ij )

= F(iter)
ij − F(iter)

ij
ψ′′ (Fij)

[F+αLF+FU]ij
= F(iter)

ij
[XTW−YUT ]ij
[F+αLF+FU]ij

(52)

Bringing Equation (45) into Equation (41):

S(iter+1)
ij = argmin

Sij

φ(Sij, S(iter)
ij )

= S(iter)
ij − S(iter)

ij
ψ′′ (Sij)

[2βXTWWT XS+λE]ij
= S(iter)

ij
[αFFT+2βXTWWT X]ij
[2βXTWWT XS+λE]ij

(53)

It is obvious that Equations (51)–(53) are auxiliary functions of ψij, resulting in a
non-increasing ψij under their respective update rules.

Next, the upcoming focus will be on demonstrating the convergence of iteration-based
Algorithm 1.

For any non-zero vectors u ∈ Rm and v ∈ Rm, the following inequalities exist:

∥u∥2 −
∥u∥2

2
2∥v||2

≤ ∥u∥2 −
∥u||22

2∥u||2
(54)

The proof of Equation (54) can be found in the literature [55]. □

Theorem 2. Referring to Algorithm 1, Equation (21) decreases in each iteration until it converges.

Proof. Let Hiter denote the process of the iter-th iteration, then updating Witer+1, Fiter+1

and Siter+1 involves solving the given inequality:

ϕ(Witer+1, Fiter+1, Siter+1, Hiter) ≤ ϕ(Witer, Fiter, Siter, Hiter) (55)

□

According to Equation (55), we obtain:

tr
(
(XTW(iter+1) − F(iter+1))(XTW(iter+1) − F(iter+1))

T)
+ αtr

(
(F(iter+1))

T
LF(iter+1)

)
+tr

(
(F(iter+1) −Y)U(F(iter+1) −Y)

T)
+βtr

(
((W(iter+1))

T
X− (W(iter+1))

T
XS(iter+1))((W(iter+1))

T
X− (W(iter+1))

T
XS(iter+1))

T
)

+θtr
(
(W(iter+1))

T
H(iter)W(iter+1)

)
+ λS(iter+1)E

≤ tr
(
(XTW(iter) − F(iter))(XTW(iter) − F(iter))

T)
+ αtr

(
(F(iter))

T
LF(iter)

)
+tr

(
(F(iter) −Y)U(F(iter) −Y)

T)
+βtr

(
(W(iter))

T
X− (W(iter))

T
XS(iter))((W(iter))

T
X− (W(iter))

T
XS(iter))

T
)

+θtr
(
(W(iter))

T
H(iter)W(iter)

)
+ λS(iter)E

(56)
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Again, based on the definition of matrix Hiter, Equation (56) can be rewritten as:

tr
(
(XTW(iter+1) − F(iter+1))(XTW(iter+1) − F(iter+1))

T)
+ αtr

(
(F(iter+1))

T
LF(iter+1)

)
+tr

(
(F(iter+1) −Y)U(F(iter+1) −Y)

T)
+βtr

(
((W(iter+1))

T
X− (W(iter+1))

T
XS(iter+1))((W(iter+1))

T
X− (W(iter+1))

T
XS(iter+1))

T
)

+θ
m
∑

i=1

||(W(iter+1))
i ||22

2||(W(iter+1))
i ||2

+ λS(iter+1)E

≤ tr
(
(XTW(iter) − F(iter))(XTW(iter) − F(iter))

T)
+ αtr

(
(F(iter))

T
LF(iter)

)
+tr

(
(F(iter) −Y)U(F(iter) −Y)

T)
+βtr

(
((W(iter))

T
X− (W(iter))

T
XS(iter))((W(iter))

T
X− (W(iter))

T
XS(iter))

T
)

+θ
m
∑

i=1

||(W(iter))
i ||22

2||(W(iter))
i ||2

+ λS(iter)E

(57)

Thus, there is the following inequality:

tr
(
(XTW(iter+1) − F(iter+1))(XTW(iter+1) − F(iter+1))

T)
+ αtr

(
(F(iter+1))

T
LF(iter+1)

)
+tr

(
(F(iter+1) −Y)U(F(iter+1) −Y)

T)
+βtr

(
((W(iter+1))

T
X− (W(iter+1))

T
XS(iter+1))((W(iter+1))

T
X− (W(iter+1))

T
XS(iter+1))

T
)

+θ
m
∑

i=1
∥(W(iter+1))

i||2 − θ

(
m
∑

i=1
||(W(iter+1))

i||2 −
m
∑

i=1

||(W(iter+1))
i ||22

2||(W(iter+1))
i ||2

)
+ λS(iter+1)E

≤ tr
(
(XTW(iter) − F(iter))(XTW(iter) − F(iter))

T)
+ αtr

(
(F(iter))

T
LF(iter)

)
+tr

(
(F(iter) −Y)U(F(iter) −Y)

T)
+βtr

(
((W(iter))

T
X− (W(iter))

T
XS(iter))((W(iter))

T
X− (W(iter))

T
XS(iter))

T
)

+θ
m
∑

i=1
∥(W(iter))

i||2 − θ

(
m
∑

i=1
||(W(iter))

i||2 −
m
∑

i=1

||(W(iter))
i ||22

2||(W(iter))
i ||2

)
+ λS(iter)E

(58)

From Equation (58), we have:

m

∑
i=1
∥(W(iter+1))

i
||2 −

m

∑
i=1

∥(W(iter+1))
i||22

2∥(W(iter+1))
i||2
≤

m

∑
i=1
∥(W(iter))

i
||2 −

m

∑
i=1

∥(W(iter))
i||22

2∥(W(iter))
i||2

(59)

Considering Equations (55)–(59) together, the following results can be obtained:

tr
(
(XTW(iter+1) − F(iter+1))(XTW(iter+1) − F(iter+1))

T)
+ αtr

(
(F(iter+1))

T
LF(iter+1)

)
+tr

(
(F(iter+1) −Y)U(F(iter+1) −Y)

T)
+βtr

(
((W(iter+1))

T
X− (W(iter+1))

T
XS(iter+1))((W(iter+1))

T
X− (W(iter+1))

T
XS(iter+1))

T
)

+θ
m
∑

i=1
∥(W(iter+1))

i||2 + λS(iter+1)E

≤ tr
(
(XTW(iter) − F(iter))(XTW(iter) − F(iter))

T
) + αtr((F(iter))

T
LF(iter)

)
+tr

(
(F(iter) −Y)U(F(iter) −Y)

T)
+βtr

(
((W(iter))

T
X− (W(iter))

T
XS(iter))((W(iter))

T
X− (W(iter))

T
XS(iter))

T
)

+θ
m
∑

i=1
∥(W(iter))

i||2 + λS(iter)E

(60)

The inequality in Equation (60) shows the value of the objective function is decreased
per iteration, indicating the optimization algorithm’s progress toward a more optimal
solution at each step. In addition, since there is a lower bound on the objective function, our
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proposed optimization algorithm will converge. We also adopted numerical experiments to
further verify the effectiveness of the optimization algorithm, and the experimental result
demonstrates that the objective function value consistently decreases as the number of
iterations increases.

4. Experiment and Analysis

In this section, the effectiveness of the proposed method is validated on classification
and clustering tasks, respectively. We first used five image classification datasets to test
the classification performance of the proposed method and then employed two image
datasets and two subsets of UCI data to verify the clustering performance of the proposed
method. In the experiment, we compared our proposed method with some contemporary
UFS and SSFS methods, including two UFS methods (SPNFSR [56] and NNSAFS [57])
and six SSFS methods (RLSR [19], FDEFS [50], GS3FS [43], S2LFS [44], AGLRM [47], and
ASLCGLFS [48]).

4.1. Description of the Comparison Methods

In order to verify the effectiveness of our method and comprehensively evaluate the
strengths and weakness of our proposed method, we compared it with some classical and
novel benchmark methods for unsupervised and semi-supervised FS, which are similar
to our method. Compared to these existing methods, our method is an improvement and
innovation of them, which is with a general tendency toward continuous improvement.

(1) SPNFSR is a UFS algorithm that uses a low-rank representation graph for main-
taining feature structures, and it achieves FS by using the L21 norm and non-negative
constraints on the reconstruction coefficient matrix. The objective function of the SPNFSR
method can be defined as follows:

min∥X− XW||2,1 + αtr(WT MW) + β∥W||2,1
s.t. W ≥ 0.

(61)

where the matrix M is obtained by solving the low-rank representation. In the SPNFSR
method, the processes of graph construction and feature selection are performed indepen-
dently, so the quality of the matrix M will directly affect the performance of feature selection.

(2) NNSAFS is a UFS algorithm that employs adaptive rank constraints and non-
negative spectral feature learning. It employs sparse regression and feature mapping to
mine the local structural information of the feature space to improve the adaptability of
manifold learning. The objective function of NNSAFS can be defined as follows:

min∥XTW − F∥2
2 + α1∥W∥1 + α2Tr(WT LWW) + λTr(FT LSF) + β∑ij (sij log sij)

s.t. W ≥ 0, FT F = I,
n
∑

j=1
sij = 1, sij > 0. (62)

where ∑ij (sij log sij) is an entropy regularization term to estimate the uniformity of matrix
S. Compared with the SPNFSR method, NNSAFS integrates graph learning and feature
selection into a framework to overcome the shortcomings of the SPNFSR method. Moreover,
local structural information of learned feature is also considered. However, since NNSAFS
and SPNFSR are unsupervised methods and do not consider the label information of the
data, they cannot select the features with good discriminability.

(3) RLSR is an SSFS method, which identifies key features by learning the global and
sparse solutions of the feature projection matrix. It also redefines regression coefficients
with a deflation factor, as shown in Equation (63):

min∥XTW + 1bT −Y||2F + γ∥W||22,1
s.t. W, b, YU ≥ 0, YU1= 1.

(63)

Different from the SPNFSR and NNSAFS methods, RLSR is a semi-supervised selection
method that can use both labeled and unlabeled samples to improve the discriminability
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of features. Moreover, it also uses the L21 norm instead of the L1 norm to reduce the
redundancy of selected features.

(4) FDEFS is a supervised or semi-supervised FS method that combines margin discrim-
inant embedding, manifold embedding, and sparse regression to achieve feature selection.

minµ (∥W||2,1 + γ∥XTW + 1nbT − F||22) + tr(ZT L1Z)
s.t. L1 = L + λM̃l .

(64)

where M̃l is a square matrix, and the detailed calculation procedure is provided in [50].
FDEFS can be regarded as an extension of RLSR by combining discriminant embedding
terms and manifold embedding terms to enhance the discriminability of selected features.

(5) GS3FS is a robust graph-based SSFS method that selects relevant and sparse fea-
tures through manifold learning and the L2p norm imposed on the regularization and
loss functions.

mintr(FT LF) + tr((F−Y)U(F−Y)T) + ∥XTW + 1nbT − F||p2,p + λ∥W||p2,p
s.t. F ≥ 0, W, p ∈ (0, 1].

(65)

Compared with the FDEFS method, GS3FS first integrates the LP into FDEFS. More-
over, GS3FS uses the L2p norm instead of the L21 norm to highlight the robustness of the
selected features.

(6) S2LFS is a novel SSFS that can select different subsets for different categories rather
than selecting one subset for all categories.

min
c
∑

k=1
∥gk − XTwk||2 + λ

c
∑

k=1
wT

k diag(z−1
k )wk + β(tr(GT LG) + tr((G−Y)TU(G−Y))

s.t. G ≥ 0, GTG = Ic, zk ≥ 0, zT
k 1d = 1.

(66)

where zk is an indicator vector representing whether a feature is chosen or not for the k-th
class, and wk is the prediction function for the k-th class based on the selected features.

(7) AGLRM uses AGL techniques to enhance similarity matrix construction and
mitigate the adverse impact of redundant features by minimizing redundant terms.

min
{

γtr(FT LF) + tr((F−Y)U(F−Y)T) + α||S||2F + tr(WTXLWTX)
+θtr(WT AW) + ||XTW + 1nbT − F||2F + λ||W||2,1

s.t. 0 ≤ Sij ≤ 1, Si1n= 1.
(67)

where A is a matrix of correlation coefficients for evaluating feature correlations.
Although the performance of the AGLRM method is superior to other methods, it

still has shortcomings. First, the weight matrix of the graph is constrained by the L2 norm,
which results in the graph lacking a sparse structure. Second, global constraints are not
considered in the graph learning process, which leads to neglect of the distribution of
the data and failure to explore more effective feature similarity metrics, thus affecting the
performance of the method.

(8) ASLCGLFS improves similarity matrix quality by integrating label information
into AGL. Additionally, it considers both local and global structures of the samples, thereby
reducing redundancy in the selected features.

min

 ||X
TW − F||2F +

n
∑
ij
||WT(Xi − Xj)||22Sij + α||S− A||2F + tr(FT LF)

+tr((F−Y)U(F−Y)T) + ||WTX−WTXZ||2F + β||Z||2,1 + λ||W||2,1
s.t. 0 ≤ Sij ≤ 1, ST

i 1n= 1,α, β, λ ≥ 0.

(68)

As an improvement to AGLRM, ASLCGLFS considers global information. However,
the introduction of a predefined similarity matrix may bring in redundant information,
which affects the learning performance. Therefore, instead of introducing predefined
matrices, we will consider using the introduction of brand-new constraints to learn global
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and local information and reduce redundancy in order to improve the performance of
feature selection.

4.2. Classification Experiments
4.2.1. Classification Datasets

Five publicly available image datasets were used in the classification experiment,
which includes four face classification datasets (AR [58], CMU PIE [59], Extended YaleB [60],
ORL [61]) and one object classification dataset (COIL20 [62]). Table 5 presents the detailed
information of these datasets, in which P1 and P2 indicate training and test samples per
category, respectively.

Table 5. Details of the five image datasets.

Dataset Size of Image Size of Classes Size per Class P1 P2 Type

AR 32 × 32 100 14 7 7 Face
CMU PIE 32 × 32 68 24 12 12 Face

Extended YaleB 32 × 32 38 64 20 44 Face
ORL 32 × 32 40 10 7 3 Face

COIL20 32 × 32 20 72 20 52 Object

The AR dataset is a widely used standard database consisting of more than 4000 color
facial images. These images are from 126 faces, including 56 females and 70 males. The
images in this dataset have variable expressions, lighting changes, and external occlusions.
Figure 3a shows some images from this database.

The CMU PIE dataset consists of 41,368 grayscale facial images of 68 individuals. These
images cover subjects of different ages, genders, and skin tones with different postural
conditions, lighting environments, and expressions. Figure 3b shows some examples in
this dataset.

The Extended YaleB dataset was taken from 38 subjects, and each subject was selected
from 64 photos in different poses, different lighting environments, and 5 different shooting
angles. This dataset has a total of 2414 face images. Figure 3c shows some images from the
Extended YaleB dataset.

The ORL dataset contains 400 images of faces from 40 volunteers. Each volunteer
provided 10 images with different facial postures, facial expressions, and facial ornaments
obscured, such as serious or smiling, eyes up or squinting, and wearing or not wearing
accessories. Some of the examples from this dataset can be observed in Figure 3d.

The COIL20 dataset comprises 1440 images featuring 20 different subjects. A total
of 72 images were taken for each subject at 5-degree intervals. Some of the images from
COIL20 are shown in Figure 3e.

It should be mentioned that in most existing work, these face databases (AR, CMU
PIE, Extended YaleB, and ORL) are commonly used to evaluate the performance of the
method because of the following aspects: (1) each database has different numbers of
original data and categories; (2) each database contains different types of face variations;
(3) each database has different conditions and environments for image acquisition. By using
these classical facial datasets to evaluate our proposed method, we can ensure that our
experimental results are adequately comparable to previous findings, thus better assessing
the novelty and effectiveness of our proposed method in the field of face recognition.
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4.2.2. Evaluation Metric

The accuracy rate [63] is employed to measure the performance of SFS-AGGL on the
classification task, which is represented as:

ACC =
TP + TN

TP + FP + FN + TN
× 100% (69)

where TP and TN represent the numbers of correctly identified positive and negative sam-
ples. Additionally, false positive (FP) and false negative (FN) signify the misclassification
of negative samples as positive and positive samples as negative, respectively. A higher
accuracy rate value indicates improved classification performance.

4.2.3. Experimental Setup for Classification Task

In this experiment, P1 samples are randomly selected from each class for training,
and the remaining P2 samples are used for testing. Then, an FS model is used to select a
limited number of relevant features from the training data, and the model’s effectiveness is
assessed using KNN on the testing samples with only a subset of features. For the sake of
experiment fairness and reliability, each experiment is conducted 10 times using diverse
training data, and the final experimental results are represented as average classification
accuracy and standard deviation. In addition, to select the optimal parameters, we used
the grid search method to find the optimal values of parameters α, β, θ, and λ in the range
{0.001, 0.01, 0.1, 1, 10, 100, 1000} and the optimal number of iterations a in {100, 200, 300,
400, 500, 600}. The dimensions of selected features vary from 50 to 500 in increments of 50.
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4.2.4. Analysis of Classification Results

(1) Parameter sensitivity analysis of classification
The effects of feature dimension (d), number of iterations (iter), and four balance

parameters (α, β, θ, λ) on the performance of SFS-AGGL in the classification task are
investigated. To assess SFS-AGGL’s performance across varied experimental scenarios, the
number of feature dimensions, iteration times, and the values of four balancing parameters
were adjusted.

First, we have demonstrated the influence of different iteration times on the perfor-
mance of SFS-AGGL, with the remaining parameters set to their optimal values. As shown
in Figure 4, the classification accuracy varies with the iterations, showing an increasing
trend. However, the classification accuracy will decrease or remain stable with an increas-
ing iteration after reaching its peak. This demonstrates that SFS-AGGL can reduce the
impact of noise and redundant features and effectively overcome overfitting problems.
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Figure 4. Classification accuracy of SFS-AGGL under different iterations.

Second, the performance of different methods in different feature dimensions is shown
in Figure 5. From Figure 5, we can find that the accuracy obtained by all methods is
relatively lower when the feature dimensions are smaller. On the contrary, the performance
of all methods gradually improves as the number of selected features increases. In most
cases, the proposed SFS-AGGL outperforms the comparison methods, which indicates
the stronger discriminative ability of the features selected by SFS-AGGL. However, the
performance of some methods decreases as the number of selected features increases. This
may be due to the presence of redundant or noisy information features in higher dimensions.
Nevertheless, SFS-AGGL still surpasses the comparison methods in classification accuracy.
The experimental results further validate the enhanced robustness of the features chosen
by the SFS-AGGL method.
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Figure 5. Classification accuracy of different methods under different feature dimensions.

Third, the performance of the proposed SFS-AGGL with different values of the four
balancing parameters α, β, θ, and λ on different datasets is tested. The classification
results for each balance parameter are depicted in Figure 6. From Figure 6, the following
conclusions can be drawn:
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Figure 6. Classification results of SFS-AGGL under different parameter values.

(1) The parameter α is used to control LP. The performance of SFS-AGGL is very
sensitive to parameter α on different datasets.

(2) The parameter β affects the performance of AGL. SFS-AGGL achieves the best
performance when β is set to 0.01 for the AR dataset and β is set to 0.1 for other datasets.
In addition, the classification accuracy of SFS-AGGL on the ORL dataset is insensitive to
different values of β. In contrast, the classification performance is very sensitive to the
parameter β on other datasets. Therefore, β should be set to a smaller value to obtain better
classification results.

(3) The parameter θ determines the significance of the sparse feature projection terms.
The performance of SFS-AGGL is insensitive to parameter θ on the ORL, COIL20, and AR
datasets, but it is very sensitive on the Extended YaleB and CMU PIE datasets.

(4) The parameter λ determines the importance of global and local constraint terms.
SFS-AGGL achieves high accuracy on each dataset when the value of λ is small. However,
the performance of SFS-AGGL decreases with increasing λ for the CMU PIE, Extended
YaleB, and AR datasets. This indicates that there is significant variation among intraclass
samples in these datasets. Therefore, λ should be set to a smaller value in the case of large
differences between intraclass samples.
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In summary, different values of the balancing parameters will have different effects
on different datasets. The optimal parameter combinations for each dataset are listed in
Table 6.

Table 6. Optimal parameter combination for SFS-AGGL on the five datasets.

Dataset {d, t, α, β, θ, λ}

AR {400, 200, 1, 0.01, 0.01, 0.001}
CMU PIE {200, 200, 10, 0.1, 0.001, 0.001}

Extended YaleB {300, 100, 10, 0.1, 10, 0.001}
ORL {500, 100, 1000, 0.1, 0.001, 0.001}

COIL20 {150, 100, 0.1, 0.1, 10, 1}

(2) Comparative analysis of classification performance
First, this section validates the classification performance of SFS-AGGL compared to

other methods on the five image datasets. Table 7 presents the optimal average classification
accuracy and their corresponding standard deviations for the different methods. The results
in Table 7 show that: (1) SSFS methods outperform the UFS method, which indicates that
the guidance of a small number of labels is crucial to improving the performance; (2) the
joint FS algorithms achieve better performances than that of the RLSR method, which
indicates that the correlation information among features is important for improving the
FS performance; (3) the semi-supervised methods RLSR and FDEFS are inferior to other
semi-supervised methods, which demonstrates that introducing the LP algorithm into semi-
supervised methods is favorable for selecting discriminative features; (4) the proposed
SFS-AGGL method outperforms the ASLCGLF method, notably since it integrates global
and local constraints into AGL. Therefore, it is beneficial to fully consider LP and AGL in
the SSFS approach to improve performance.

Table 7. Best results of each method on five image datasets (ACC).

Method AR CMU PIE Extended YaleB ORL COIL20

NNSAFS 63.90 ± 2.12 (400) 85.29 ± 0.64 (500) 62.58 ± 1.39 (300) 92.17 ± 1.81 (500) 93.56 ± 1.32 (100)
SPNFSR 64.50 ± 0.91 (200) 86.22 ± 1.02 (300) 64.02 ± 1.95 (300) 92.83 ± 1.81 (500) 94.21 ± 1.42 (400)

RLSR 64.37 ± 1.58 (500) 84.66 ± 1.25 (500) 64.57 ± 0.87 (300) 95.67 ± 1.75 (500) 93.73 ± 1.25 (500)
FDEFS 63.51 ± 1.29 (500) 85.85 ± 1.06 (500) 65.01 ± 1.00 (500) 96.25 ± 1.37 (500) 94.35 ± 1.42 (450)
GS3FS 63.90 ± 1.37 (450) 85.83 ± 0.68 (500) 61.85 ± 1.18 (500) 96.25 ± 1.48 (450) 93.38 ± 1.35 (500)
S2LFS 64.20 ± 1.48 (500) 87.50 ± 0.85 (500) 64.67 ± 0.82 (500) 96.42 ± 1.62 (400) 94.95 ± 1.18 (500)

AGLRM 64.39 ± 1.58 (450) 86.90 ± 0.72 (450) 61.89 ± 1.13 (500) 96.08 ± 1.42 (500) 95.09 ± 1.48 (200)
ASLCGLFS 67.07 ± 1.62 (250) 87.71 ± 1.12 (150) 64.36 ± 1.19 (400) 96.25 ± 1.37 (500) 95.31 ± 1.13 (100)
SFS-AGGL 68.03 ± 1.58(400) 88.97 ± 1.11(200) 66.35 ± 1.22 (300) 96.42 ± 1.31(500) 95.80 ± 1.16(500)

Numbers in parentheses denote the feature dimensions yielding the optimal results.

Then, to demonstrate the superiority of SFS-AGGL, we employed one-tailed t-tests
to determine if SFS-AGGL significantly outperformed the comparison methods. Both
the null hypothesis and alternative hypotheses assumed that the results achieved by SFS-
AGGL were equal to or greater than the results obtained by the comparison methods. For
instance, in comparing SFS-AGGL with RLSR (SFS-AGGL vs. RLSR), the hypotheses are
defined as H0: SFS-AGGL = RLSR and H1: SFS-AGGL > RLSR, where SFS-AGGL and
RLSR represent average classification results obtained by SFS-AGGL and RLSR on different
datasets, respectively. The experiment sets a statistical significance level of 0.05, and Table 8
presents the p values of pairwise one-tailed t-tests on different datasets.

From Table 8, it can be seen that the performance of all methods is comparable on
ORL and COIL datasets since these two datasets are relatively simple compared with
other datasets, but the accuracy of our method is still slightly higher than that of other
methods. Moreover, for AR, CMU PIE, and Extended YaleB databases, our method was
able to significantly outperform the other comparative methods, indicating that our method
is more advantageous in dealing with complex datasets.
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Table 8. p values of the pairwise one-tailed t-tests on five image datasets.

Method AR CMU PIE Extended
YaleB ORL COIL20

RLSR vs. SFS-AGGL 3.14 × 10−5 4.40 × 10−8 6.97 × 10−4 7.03 × 10−1 6.24 × 10−4

FDEFS vs. SFS-AGGL 7.82 × 10−7 1.03 × 10−6 0.74 × 10−2 9.44 × 10−1 1.12 × 10−2

GS3FS vs. SFS-AGGL 3.36 × 10−6 6.90 × 10−8 5.95 × 10−8 9.36 × 10−1 2.14 × 10−4

S2LFS vs. SFS-AGGL 1.29 × 10−5 1.10 × 10−3 9.62 × 10−4 9.53 × 10−1 6.23 × 10−2

AGLRM vs. SFS-AGGL 1.55 × 10−5 1.96 × 10−5 5.10 × 10−8 8.84 × 10−1 1.23 × 10−1

ASLCGLFS vs. SFS-AGGL 9.87 × 10−2 7.50 × 10−3 8.17 × 10−4 9.44 × 10−1 1.76 × 10−1

4.3. Clustering Experiments

This section validates the effectiveness of the SFS-AGGL method for clustering tasks.
For this purpose, we used the face dataset ORL and the object dataset COIL20, as well as
two UCI datasets (Libras Movement and Landsat [64]) in the experiment.

4.3.1. Clustering Datasets

The Libras Movement dataset contains 15 gestures with a total of 360 samples and
89 attributes, while the Landsat dataset contains multispectral images of six different
geographic regions with a total of 296 samples and 36 attributes. The details of all clustering
datasets used are shown in Table 9.

Table 9. Details of four clustering datasets.

Dataset Number of Samples Dimension Category

ORL 400 1024 40
COIL20 1440 1024 20

Libras Movement 360 89 15
Landsat 296 36 6

4.3.2. Evaluation Metrics

Multiple metrics, such as ACC, NMI, purity, ARI, F-score, precision, and recall [65], are
applied to evaluate the clustering performance.

ACC represents clustering accuracy, which is defined as:

ACC =
∑n

i=1 δ(yi, map(yi))

n
(70)

where δ(x, y) =

{
1, i f x = y
0, otherwise

, n is the total number of samples, yi and yi denote the

ground truth label and clustering label of the i-th sample, respectively, and where map(·) is
a function that maps the learned clustering labels to align with the ground-truth labels.

NMI is the normalized mutual information for clustering, which is defined as:

NMI =
MI(H, V)√
H(U) · H(V)

(71)

where MI denotes the mutual information, i.e., the entropy of the two sets, U and V. MI
has been normalized to ensure fair comparisons between sets of different sizes.

ARI is the adjusted Rand index, which is defined as:

ARI =
RI − Expected_RI

max(RI_max)− Expected_RI
(72)

where RI (Rand index) denotes the number of sample pairs that are correctly clustered by
the clustering algorithm out of all sample pairs; Expected_RI denotes the expected Rand
index obtained through random clustering; and max(RI_max) indicates the maximum
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possible Rand index. The RI is adjusted to account for randomness, with values ranging
between −1 and 1, where a value closer to 1 indicates better clustering performance.

Purity measures the proportion of true categories that dominate each cluster.

Purity =
1
N ∑k maxj|Ck ∩ Gj| (73)

where Ck denotes the k-th cluster, Gj denotes the j-th true category, and N denotes total
number of samples.

Precision reflects the ratio of correctly clustered positive samples to all samples identi-
fied as positive.

Precision =
TP

TP + FP
(74)

Recall indicates the proportion of positive samples that were correctly clustered with
all actual positive samples.

Recall =
TP

TP + FN
(75)

F-score is the harmonic mean of precision and recall, providing a comprehensive
assessment of both performance metrics.

F− score =
2 · Precision · Recall
Precision + Recall

(76)

4.3.3. Experimental Setup for Clustering

In this experiment, we set the four parameters (α, β, θ, and λ) with range {0.001, 0.01,
0.1, 1, 10, 100, 1000} for all datasets and the dimensions (d) with range {50, 100, 150, 200,
250, 300, 350, 400, 450, 500}, {8, 16, 24, 32, 40, 48, 56, 64, 72, 80}, and {3, 6, 9, 12, 15, 18, 21, 24,
27, 30} for different datasets, respectively.

4.3.4. Analysis of Clustering Results

(1) Parameter sensitivity analysis of clustering
Figure 7 illustrates the clustering results of SFS-AGGL on four datasets with varying

parameters. When the selected feature dimension is unchanged, the parameter α first in-
creases, then decreases, and finally rises again. The performance of SFS-AGGL is sensitive
to different parameter values on different datasets, which underscores the importance
of adjusting these values to achieve optimal clustering performance. Smaller values of
regularization parameters β and λ can yield improved overall performance on diverse
datasets. This demonstrates that our proposed SFS-AGGL can not only acquire neighboring
information in the projected feature space but also capture the global and local sparse
structures in the original feature space, ultimately leading to good performance. The per-
formance of SFS-AGGL first improves and then decreases as the regularization parameter
λ increases on the COIL20 and Landsat datasets. This indicates that SFS-AGGL is more
sensitive to sparse learning in space. In summary, setting all balance parameters to smaller
values enhances the clustering results of SFS-AGGL. Furthermore, it is advisable to adjust
parameter values tailored to each dataset to achieve optimal outcomes.

Figure 8 shows the clustering results obtained by sequentially setting each balancing
parameter to different values while keeping all other conditions at optimal values. It can
be found that the performance of SFS-AGGL is insensitive to all parameters in most cases.
Notably, the clustering accuracy of SFS-AGGL on the ORL dataset is relatively sensitive to
an increase in the parameter β. Therefore, it is recommended to set β to a larger value for
optimizing clustering performance.
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(2) Comparative analysis of clustering performance
In this experiment, the k-means method is adopted to cluster the low-dimensional

features selected by each FS method. To minimize the impact of initialization on the k-
means method, we performed 10 clustering experiments with varied random initializations.
Tables 10–13 display the average values and standard deviations of ACC, NMI, purity, ARI,
F-score, precision, and recall for the RLSR, FDEFS, GS3FS, S2LFS, AGLRM, ASLCGLFS,
and SFS-AGGL methods on the ORL, COIL20, Libras Movement, and Landsat datasets.
These results further illustrate the superiority of the proposed SFS-AGGL compared to
other comparative methods.

4.4. Convergence and Runtime Analysis

In this section, experiments were performed on seven databases to assess the conver-
gence and runtime of the proposed SFS-AGGL method. Figure 9 shows the convergence
curve of SFS-AGGL. From Figure 9, we can see that the objective function values of the SFS-
AGGL methods only require less than 100 iterations to reach convergence, which validates
the efficiency of the proposed iterative optimization method. Table 14 displays the runtime
of SFS-AGGL when iteration is set to 100 and feature dimensions are set to 500. The results
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in Table 14 clearly indicate that the runtime of our proposed method is slightly higher than
that of AGLRM but lower than that of other methods. It is noteworthy that the runtime of
SFS-AGGL is lower than that of all comparative methods after GPU optimization.
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Table 10. The best clustering results of different methods on ORL dataset.

Method ACC NMI Purity ARI F-Score Precision Recall

RLSR 62.79 ± 2.89
(500)

81.04 ± 1.83
(500)

66.93 ± 2.19
(500)

49.88 ± 3.78
(100)

51.13 ± 3.64
(100)

44.28 ± 4.33
(100)

60.75 ± 2.65
(500)

FDEFS 62.82 ± 3.69
(200)

81.27 ± 1.59
(100)

67.25 ± 3.08
(100)

50.13 ± 3.71
(100)

51.37 ± 3.60
(100)

44.55 ± 3.85
(100)

60.88 ± 3.64
(50)

GS3FS
62.21 ± 1.55

(50)
80.99 ± 0.74

(50)
66.18 ± 1.33

(50)
49.86 ± 1.58

(50)
51.11 ± 1.53

(50)
44.17 ± 1.79

(50)
60.79 ± 2.32

(150)

S2LFS 61.93 ± 3.35
(350)

80.62 ± 1.45
(350)

66.82 ± 2.37
(350)

48.55 ± 3.61
(350)

49.82 ± 3.51
(350)

43.55 ± 3.60
(350)

58.74 ± 4.44
(400)

AGLRM 64.21 ± 3.70
(50)

81.84 ± 1.89
(50)

68.00 ± 3.14
(50)

51.16 ± 4.40
(50)

52.36 ± 4.26
(50)

45.80 ± 4.72
(50)

61.29 ± 4.00
(50)

ASLCGLFS 58.32 ± 3.68
(250)

78.56 ± 2.33
(250)

63.32 ± 3.10
(250)

44.22 ± 5.03
(250)

45.62 ± 4.85
(250)

39.37 ± 5.58
(300)

54.62 ± 3.95
(300)

SFS-AGGL 67.96 ± 2.30
(250)

84.17 ± 1.50
(400)

71.89 ± 1.94
(500)

56.89 ± 3.34
(400)

57.95 ± 3.25
(400)

50.69 ± 3.47
(400)

67.71 ± 3.11
(400)
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Table 11. The best clustering results of different methods on COIL20 dataset.

Method ACC NMI Purity ARI F-Score Precision Recall

RLSR 60.45 ± 3.98
(150)

72.19 ± 2.00
(250)

63.27 ± 3.19
(50)

50.84 ± 3.42
(300)

53.42 ± 3.19
(300)

48.67 ± 3.97
(300)

59.38 ± 2.56
(50)

FDEFS 58.52 ± 3.44
(50)

70.67 ± 2.62
(400)

61.55 ± 3.23
(50)

48.14 ± 4.12
(50)

50.93 ± 3.85
(50)

45.32 ± 4.36
(50)

58.42 ± 3.27
(150)

GS3FS
59.98 ± 2.85

(150)
72.31 ± 1.41

(250)
63.38 ± 2.52

(150)
50.23 ± 1.84

(250)
52.86 ± 1.70

(250)
47.65 ± 2.60

(250)
59.47 ± 1.61

(250)

S2LFS 58.42 ± 3.90
(250)

70.19 ± 3.15
(250)

61.58 ± 3.61
(250)

46.40 ± 5.23
(450)

49.41 ± 4.74
(450)

42.64 ± 6.35
(250)

59.72 ± 2.47
(450)

AGLRM 59.85 ± 4.34
(150)

72.17 ± 2.59
(150)

63.17 ± 4.12
(150)

50.03 ± 4.46
(150)

52.71 ± 4.15
(150)

47.16 ± 5.17
(150)

60.05 ± 3.18
(300)

ASLCGLFS 60.02 ± 3.59
(50)

71.52 ± 1.67
(50)

62.95 ± 3.35
(50)

50.05 ± 2.56
(50)

52.67 ± 2.34
(50)

48.11 ± 3.81
(100)

58.55 ± 1.90
(50)

SFS-AGGL 61.88 ± 3.70
(350)

73.30 ± 1.78
(500)

64.67 ± 3.62
(350)

52.37 ± 1.80
(500)

54.85 ± 1.69
(500)

50.36 ± 3.16
(200)

62.16 ± 2.28
(500)

Table 12. The best clustering results of different methods on Libras Movement dataset.

Method ACC NMI Purity ARI F-Score Precision Recall

RLSR 47.50 ± 2.21
(40)

60.07 ± 2.13
(56)

50.00 ± 1.85
(56)

30.04 ± 2.88
(56)

34.82 ± 2.69
(56)

31.38 ± 2.56
(56)

39.22 ± 3.70
(56)

FDEFS 46.33 ± 3.22
(32)

60.36 ± 2.88
(32)

50.22 ± 2.60
(24)

30.73 ± 3.77
(72)

35.58 ± 3.41
(72)

31.60 ± 3.65
(32)

41.28 ± 3.95
(72)

GS3FS
46.72 ± 3.24

(80)
60.57 ± 1.97

(56)
50.94 ± 2.24

(80)
31.20 ± 2.68

(56)
36.01 ± 2.53

(56)
31.79 ± 2.32

(80)
41.93 ± 3.79

(56)

S2LFS 46.56 ± 1.92
(80)

59.95 ± 1.12
(64)

50.72 ± 1.34
(64)

30.28 ± 1.80
(80)

35.13 ± 1.82
(80)

30.97 ± 1.17
(80)

40.82 ± 4.28
(80)

AGLRM 46.00 ± 2.89
(56)

60.35 ± 1.32
(56)

50.72 ± 1.87
(72)

30.80 ± 1.92
(56)

35.62 ± 1.88
(56)

31.42 ± 1.45
(56)

41.33 ± 4.05
(56)

ASLCGLFS 46.28 ± 3.41
(40)

59.72 ± 2.30
(40)

50.17 ± 2.33
(40)

29.93 ± 2.97
(40)

34.84 ± 2.77
(40)

30.60 ± 2.68
(40)

41.04 ± 4.67
(80)

SFS-AGGL 49.22 ± 2.88
(72)

62.33 ± 2.34
(72)

53.11 ± 2.70
(72)

33.04 ± 2.65
(56)

37.75 ± 2.46
(56)

33.57 ± 3.13
(72)

44.42 ± 4.83
(80)

Table 13. The best clustering results of different methods on Landsat dataset.

Method ACC NMI Purity ARI F-Score Precision Recall

RLSR 48.30 ± 2.10
(6)

45.97 ± 1.02
(18)

50.59 ± 1.88
(18)

33.94 ± 1.46
(27)

47.53 ± 1.91
(27)

38.53 ± 1.49
(3)

63.72 ± 8.11
(27)

FDEFS 47.89 ± 2.65
(30)

45.68 ± 1.59
(30)

50.60 ± 2.30
(30)

33.49 ± 1.83
(30)

47.10 ± 1.99
(24)

38.12 ± 1.25
(30)

63.03 ± 6.57
(18)

GS3FS
49.10 ± 1.88

(15)
46.34 ± 1.05

(30)
51.37 ± 1.82

(21)
34.02 ± 1.33

(21)
47.69 ± 1.56

(21)
38.23 ± 1.33

(30)
64.44 ± 6.57

(21)

S2LFS 47.81 ± 2.63
(15)

45.99 ± 1.27
(30)

49.86 ± 2.53
(15)

34.03 ± 0.82
(15)

47.46 ± 1.24
(15)

38.83 ± 1.60
(30)

62.37 ± 7.02
(15)

AGLRM 49.06 ± 3.14
(9)

45.83 ± 1.40
(15)

50.97 ± 3.01
(9)

34.03 ± 1.62
(27)

47.23 ± 2.13
(27)

39.39 ± 1.48
(15)

60.78 ± 8.67
(27)

ASLCGLFS 48.79 ± 1.78
(30)

46.51 ± 1.41
(18)

50.59 ± 2.03
(24)

34.77 ± 0.83
(21)

48.33 ± 0.99
(21)

38.67 ± 1.17
(30)

65.35 ± 4.89
(21)

SFS-AGGL 51.02 ± 1.99
(12)

47.21 ± 1.18
(18)

52.81 ± 1.76
(12)

35.49 ± 1.23
(27)

49.04 ± 1.23
(18)

40.17 ± 1.32
(30)

69.26 ± 4.51
(15)

The numbers in parentheses denote the feature dimensions that yield the optimal results.
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Table 14. Runtime(s) of different methods on different datasets.

Method AR Extended YaleB CMU PIE ORL COIL20

RLSR 28.3706 28.8286 27.0407 27.0545 23.2237
FDEFS 154.3282 190.8570 210.9357 55.6699 71.4754
GS3FS 41.5550 44.3966 49.7174 28.2427 27.0868
S2LFS 52.7492 52.1703 54.4472 50.3727 47.9846

AGLRM 11.7974 13.1744 15.9342 3.4292 4.5080
ASLCGLFS 2690.2222 2477.4907 3735.1528 126.7054 340.7762
SFS-AGGL 15.5277 13.7843 17.4384 5.5204 6.7449

SFS-AGGL(GPU) 10.2069 9.3128 11.0843 3.3713 3.9999

5. Conclusions and Discussion

This paper proposes the semi-supervised feature selection based on an adaptive graph
with global and local constraints (SFS-AGGL) algorithm. This algorithm considers the
sample neighborhood structure within the projected feature space, dynamically learns the
optimal nearest neighbor graph among samples, and maintains global and local sparse
structures within the selected feature subset. This ensures the preservation of the original
data’s geometric structural information. Moreover, it can effectively leverage structural
distribution information from labeled data to derive label information from unlabeled
samples. The incorporation of the L21 norm in the SFS model enhances its resilience to
noisy features. The iterative optimization approach employed to solve parameter optimal
solutions is validated, confirming the convergence of the SFS-AGGL algorithm. Extensive
experiments on real datasets validate the classification and clustering performance of the
proposed SFS-AGGL method. Although our method can achieve good performance, there
are still several issues that need to be pointed out, which are as follows:

1. Since the proposed method has considered the correlation and geometric structure
of the data, it is suitable for the features of data with significant correlation, meanwhile, the
distribution of data has a certain local structure.

2. Since our proposed method only considers the local and global structural informa-
tion of the data, its application will be limited in certain datasets.

3. The proposed method cannot effectively extract effective features from the data
with complex nonlinear structures because it is a linear feature selection method.

To overcome the above-mentioned shortcomings, we will try to do the following work
in the future:

1. We will introduce other constraints to comprehensively capture and represent the
structural information of the data.

2. We will integrate the idea of deep learning into the feature selection process to
extract effective features from highly unstructured data.
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