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Abstract: Diffusion magnetic resonance imaging (MRI) tractography is a powerful tool for non-
invasively studying brain architecture and structural integrity by inferring fiber tracts based on water
diffusion profiles. This study provided a thorough set of baseline data of structural connectomics
biomarkers for 809 healthy participants between the ages of 1 and 35 years. The data provided can help
to identify potential biomarkers that may be helpful in characterizing physiological and anatomical
neurodevelopmental changes linked with healthy brain maturation and can be used as a baseline
for comparing abnormal and pathological development in future studies. Our results demonstrate
statistically significant differences between the sexes, representing a potentially important baseline
from which to establish healthy growth trajectories. Biomarkers that correlated with age, potentially
representing useful methods for assessing brain development, are also presented. This baseline
information may facilitate studies that identify abnormal brain development associated with a
variety of pathological conditions as departures from healthy sex-specific age-dependent neural
development. Our findings are the result of combining the use of mainstream analytic methods with
in-house-developed open-source software to help facilitate reproducible analyses, inclusive of many
potential biomarkers that cannot be derived from existing software packages. Assessing relationships
between our identified regional tract measurements produced by our technology and participant
characteristics/phenotypic data in future analyses has tremendous potential for the study of human
neurodevelopment.

Keywords: diffusion MRI; tractography; brain development; multimodal imaging; biomarkers;
neurodevelopment; sex-specific neural development

1. Introduction

Diffusion MRI (dMRI) tractography is a powerful tool for studying white matter struc-
tures in the brain. It is the only non-invasive method that exists for modeling fiber tracts
throughout the brain, which is a process known as connectomics. Tractography imaging
has demonstrated itself to have considerable potential in neuroscientific analysis [1–3];
however, it has yet to become a gold standard analytic technique relied upon clinically.

Current tractography methods do not directly track axons but infer their presence by
mapping fiber bundles based on water diffusion profiles between adjacent voxels. This
technique offers clear potential value toward a better understanding of the structural
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organization of the brain [4,5]. These analytic technologies support neuroscientists in
testing hypotheses and understanding normative neurodevelopmental trajectories, as well
as deviations from them, such as whether individuals on the autistic spectrum exhibit
abnormally reduced or increased structural fiber tract connectivity between key brain
regions relative to neurotypical controls [6].

Imaging is typically performed on a voxel-by-voxel basis, with each voxel typically
measuring a few cubic millimeters. There can be approximately 50,000 neurons in a cubic
millimeter [7]. The scale disparity between our macroscale voxel-based measurements
and the number of axons involved in the MRI signals acquired results in assumptions
and approximations being made when researchers correlate structural connectivity and
function. Previous research has demonstrated reasonable agreement between structural,
functional, and microanatomy fiber-tracking results [8], suggesting that a simple model of
direct anatomical connectivity between regions of interest in the brain can explain much of
the observed correlations in neural activity [9]. Traditional diffusion-tensor-imaging-based
analyses have also been reported to be unreliable [10,11]. Given imaging and analytic
constraints, false positives and negatives are inevitable, especially in regions of heavy fiber
crossing or structural complexity.

Building on this foundation, the current study introduces a novel approach to conduct-
ing an exhaustive whole-brain tractography analysis. We established a comprehensive suite
of indirect measurements of anatomical white matter connections across all region pairs
as defined in the Desikan–Killiany–Tourville atlas [12], including capturing differences in
hemispheric asymmetry and variability of each measure collected. We integrated results
from a substantial Boston Children’s Hospital (BCH) clinical dataset of 642 participants
with an additional 167 participants from the Human Connectome Project (HCP), who were
scanned under different protocols. Using advanced multimodal imaging techniques ap-
plied to the BCH data, we identified variations in measurements across sex and age brackets
from the nascent stages of infancy through the formative school-age years, adolescence, and
into young adulthood to better understand the development of tractography biomarkers,
with a particular focus on identifying potential biomarkers of healthy development. This
work was then extended to an adult population through analysis of the HCP dataset.

Our findings suggest that while there are more similarities than differences between
sexes in most metrics, specific tracts do show notable variations. Furthermore, the variabil-
ity in fractional anisotropy measurements in particular appears to be a promising avenue
for understanding both age-related and sex-specific nuances in neural development. The
overarching goal of this investigation is to provide a thorough baseline of connectomics
biomarkers across a range of ages spanning two datasets in support of future work toward
characterizing abnormal brain development as a deviation from these expected growth
trajectories. These findings may assist in supporting a more detailed understanding of
structural variations in brain connectivity across the entire connectome.

2. Materials and Methods

All research conducted in this study was performed in accordance with the ethical
principles outlined in the Declaration of Helsinki and approved by the Boston Children’s
Hospital (BCH) Institutional Review Board (IRB) at BCH (IRB-P00032682). Ethics approval
was obtained from the Boston Children’s Hospital Ethics Committee/IRB for this retrospec-
tive analysis. Informed consent was waived due to the lack of risk to the study participants.
Examinations from 642 participants retrospectively assessed as healthy/neurotypical [12]
were imaged at Boston Children’s Hospital, and participants with a directional diffusion
MRI acquisition included as part of their examination were the subjects of a previous
analysis [13]. The participant population addressed in this analysis ranged in age from 0.7
to 23.5 years, thus spanning a comprehensive range of neurological development from a
pediatric population. The dataset was subject to exclusions based on examinations with
a high degree of motion or low-quality images; external artifacts (such as metal dental
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work); samples without a useful T1 structural MRI volume; and unhealthy participants as
assessed at BCH, as previously described [12,13].

An additional dataset was used for analysis based on subjects gathered as part of the
publicly available Human Connectome Project (HCP) dataset. A detailed description of
the recruitment of individuals for this data, as well as inclusion and exclusion criteria for
the dataset, is available in the literature [14]. A cohort of 167 subjects with a complete
3-tesla directional diffusion MRI acquisition was included. All participants were between
the ages of 22 and 35. The group consisted of 90 males (27.6 ± 3.41 years) and 69 females
(29.9 ± 3.54 years), with an aim to establish a pool that is representative of the ‘healthy’
young adult population at large.

BCH Participants were imaged with clinical 3-tesla MRI scanners (Skyra, Siemens
Medical Systems, Erlangen, Germany) at Boston Children’s Hospital, yielding T1 structural
volumetric images accessed through the Children’s Research and Integration System [15].
Any samples with substantial motion artifacts or failure of FreeSurfer [16] processing were
previously removed [12]. The diffusion MRI data was acquired using diffusion-weighted
spin-echo echo-planar imaging. Thirty directional diffusion-weighted measurements
(b = 1000 s/mm2) and five non-directional diffusion-weighted measurements (b = 0 s/mm2)
were acquired with TR = 10 s, TE = 88 ms, δ = 12.0 ms, ∆ = 24.2 ms, field of view = 22 × 22 cm2,
matrix size = 128 × 128, iPAT = 2, and spatial resolution 1.72 × 1.72 mm2. Commercial
head coils were used with both 32 and 64 channels.

The HCP participants were imaged using a modified Siemens 3T scanner (‘Connec-
tom Skyra’), yielding T1w acquisitions using a tightly fitting 32-channel head coil and
magnetization-prepared rapid gradient echo (MPRAGE) sequences. Structural scans were
carefully reviewed for quality, motion-related blurring, and ringing artifacts. The diffusion-
weighted imaging (DWI) data provided by HCP were publicly available with preprocessing
to reduce motion, susceptibility distortions, gradient-nonlinearity-induced geometric dis-
tortions, and eddy current artifacts [17]. These datasets had 288 diffusion volumes in
the acquisition, with 90 gradient directions acquired for each of the three b-value shells
(b = 1000, 2000, and 3000 s/mm2), with 18 b = 0 s/mm2 image volumes interspersed, and a
spatial resolution of 1.25 mm3.

Figure 1 exhibits the processing pipeline performed for each subject. Primary diffusion
data was registered to the T1 structural image using the Functional Magnetic Resonance
Imaging of the Brain (FMRIB) linear registration tool (FLIRT) [18]. The T1 structural im-
ages were segmented using an initial automatic segmentation with the native Freesurfer
Desikan–Killiany–Tourville (DKT) atlas [19]. The developed pipeline can leverage any
atlas for the definition of the regions of interest on the T1 exams or any alternative seg-
mentation software. Eddy current correction [20,21] was applied to the registered diffusion
data set to correct for current-induced distortions of the BCH population, whereas the
HCP cohort already had the eddy correction completed for the publicly available data.
Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) maps were generated
with dti_recon [22]. HARDI reconstruction was performed on the BCH data to reconstruct
the diffusion orientation distribution function (ODF) using odf_recon [22]. Fiber track-
ing from the reconstructed ODF data and maps from odf_recon was performed using
odf_tracker [22] and then transformed into the FreeSurfer output T1 space using the affine
transformations previously computed with FLIRT using tract_transform [22]. However, the
TrackVis software (version 0.6.1) that was used in our analysis was incapable of performing
HARDI reconstruction with the multi-shell datasets, like those found in the HCP data. As a
result, a DTI reconstruction was performed on the HCP data using dti_recon [22]. Fiber
tracking from the reconstructed DTI maps was performed with dti_tracker [22] and then
transformed into the Freesurfer output T1 space using the affine transformations previously
computed with FLIRT using tract_transform [22]. The diffusion-based measurements de-
fined below were derived using track_vis [22] by processing the tract file generated against
each combination of pairs of segmented ROIs.
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Figure 1. (A) Raw T1-weighted images. (B) Automatic segmentations are performed using Freesurfer.
(C) Raw diffusion-weighted images. (D) Reconstruction using Diffusion Toolkit varied depending
on whether DWI was single-shell or multi-shell. If multi-shell, DTI reconstruction was performed
using Diffusion Toolkit utilities dti_recon and dti_tracker; otherwise, ODF reconstruction was used
to establish the whole brain tractogram using a pipeline that leverages Diffusion Toolkit utilities
hardi_mat, odf_recon, and odf_tracter. (E) The tractogram was registered to T1w space using
tract_transform from Diffusion Toolkit. Subsequently, diffusion measurements between each region
pair were collected.

The research goal was to derive quantitative fiber characteristics for tracts connect-
ing any two regions of interest (ROIs). ROIs were identified as any region defined in
the native Freesurfer Desikan–Killiany–Tourville atlas [19]. Each ROI was paired against
every other ROI for the assessment of the possible existence of fiber tracts connecting
the two. Multiple diffusion measurements (identified below) were determined for any
segmented tracts identified connecting an ROI pair. Asymmetry indexes were derived for a
total of 14 measurements per segmented tract. The asymmetry index was defined as the
left hemisphere segmented fiber tract measurement of interest divided by the right hemi-
sphere segmented fiber tract measurement of interest. In total, 65,522 intersection points
(181 ROIs × 181 ROIs × 2 (origin/terminating and pass-through tracts) were derived across
14 region-to-region measurements. With pass-through tracts, we considered any tracts that
passed through the ROI. With origin/terminating tracts, we considered only those tracts
that began or ended in a specific ROI. A total of 912,241 measurements were produced per
MRI exam. ROIs corresponding to the ventricles and the choroid plexus were excluded
from the analysis.

Aggregate measurements were derived for each fiber tract connecting any two regions
(see Appendix A for a list of measurements collected). The connectomic measurements pro-
duced in this research generated 912,241 features per MRI exam, which enabled subsequent
whole-brain univariate statistical analyses to assess the characteristics of the connectomic
biomarkers extracted. This technique supports the extraction of data for multiple use cases
and provides mechanisms to integrate per-participant data into the results. Those measure-
ments that exhibited the largest effect sizes between gender/sex, as well as the biomarkers
most correlated with participant age, were specifically assessed. These summary statistics
may act as measures of neural development and may assist in the characterization of fiber
tract maturation.

The software implemented for this study is open-source and publicly available under
the Massachusetts Institute of Technology (MIT) License. Interested researchers can access
and download the source code from the corresponding GitHub repositories from https:
//github.com/dmattie/aircrush (accessed on 1 July 2021) and a compantion package
at https://github.com/dmattie/aircrush-core-operators (accessed on 1 July 2021). The
MIT License permits the use, modification, and distribution of the software, offering the

https://github.com/dmattie/aircrush
https://github.com/dmattie/aircrush
https://github.com/dmattie/aircrush-core-operators
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scientific community a legal framework to collaboratively improve and extend the utility
of the computational tools developed in this study.

3. Results

A summary of effect size, which compares sexes by measurement type in the BCH
cohort, is provided in Table 1. Overall, there were more similarities than differences, where
most measurements showed no effect or a small effect. The fractional anisotropy (FA)
variability was notable here; in the tracts with a significant difference among sexes, females
tended to demonstrate higher variability in fractional anisotropy. Figure 2 exhibits the mean
fractional anisotropy standard deviation (SD) for tracts connecting the left pallidum and
left insular cortex. The variability also increased with age for all the tracts with larger effect
sizes. The standard deviation of FA measures the variability in diffusion directionality along
the fiber tract being characterized. The standard deviation of the fractional anisotropy along
a fiber tract provides a highly localized measurement of microstructural architecture and
is addressed further in the discussion. A similar example of sex dimorphism of fractional
anisotropy between tracts connecting the left medial orbitofrontal white matter and left
middle temporal white matter regions can be found in Figure 3.

Table 1. Overall effect size comparing sexes by measurement type in the BCH cohort.

None
(<0.2)

Small
(0.2–0.5)

Medium
(0.5–0.8)

Large
(>0.8)

Average ADC 79.90% 20.10% 0.00% 0.00%
Average ADC asymmetry 97.30% 2.70% 0.00% 0.00%
Average FA 84.50% 15.50% 0.00% 0.00%
Average FA asymmetry 97.20% 2.80% 0.00% 0.00%
Number of tracts 100.00% 0.00% 0.00% 0.00%
Number of tracts asymmetry 100.00% 0.00% 0.00% 0.00%
Standard deviation ADC 92.30% 7.70% 0.00% 0.00%
Standard deviation ADC asymmetry 97.20% 2.80% 0.00% 0.00%
Standard deviation FA 68.70% 31.30% 0.00% 0.00%
Standard deviation FA asymmetry 96.20% 3.80% 0.00% 0.00%
Tracts to render 91.60% 8.20% 0.10% 0.00%
Tracts to render asymmetry 97.20% 2.80% 0.00% 0.00%

FA, fractional anisotropy; ADC, apparent diffusion coefficient.

Figure 4 illustrates the mean fractional anisotropy of tracts between the left paracentral
cortex and the left precuneus cortex. The tracts exhibited a pattern of initial growth followed
by a plateau phase. To model this relationship, we applied both second- and third-order
polynomial regression and locally estimated scatterplot smoothing (LOESS) to our data.
The LOESS model provided the best fit as determined by having the minimum residual
standard error. To identify the inflection points, we calculated the second derivative of
the fitted LOESS curve. Inflection points were identified as the ages at which the second
derivative of the mean FA with respect to age crossed the zero boundary, indicating a
change in the concavity of the fitted curve. These inflection points were determined to be
at ages 8.2, 9.1, and 13.3. This could imply that the participants reached a maturational
milestone detectable by tract-localized fractional anisotropy by late childhood and should
be investigated as part of future longitudinal analyses.

Regional differences were detected in our measurements when assessing the effect size
between the sexes. Table 2 highlights the leading measurements exhibiting the largest sex-
based effect sizes. In most cases where sex differences existed, a greater average fractional
anisotropy in females was observed. Females demonstrated the largest mean FA in tracts
extending from the left medial orbitofrontal region (Cohen’s d = −0.495) relative to males.
Overall, the majority of effect sizes between sexes were small or negligible.
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Figure 2. Differences in the standard deviation of mean fractional anisotropy within tracts connecting
left pallidum ↔ left insular cortex between male and female participants. (A) Exhibits similar
increasing trajectories with age between sexes. (B) The effect size, as measured by Cohen’s d, was
found to be −0.534, indicating a medium effect size. The 95% confidence interval for the effect size
ranged from −0.75 to −0.36, suggesting a statistically significant difference between the two groups.
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Figure 3. Differences in mean fractional anisotropy within tracts connecting Left medial orbitofrontal
WM ↔ left middle temporal WM between male and female participants. (A) Exhibits similar
increasing trajectories with age between sexes. (B) The effect size, as measured by Cohen’s d, was
found to be −0.51, indicating a medium effect size. The 95% confidence interval for the effect size
ranged from −0.69 to −0.33, suggesting a statistically significant difference between the two groups.
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precuneus cortex with a trend line (black) fitted using locally estimated scatterplot smoothing
(LOESS). A smoothing parameter was set at 0.65, which was a value determined iteratively to achieve
a balance between overfitting and underfitting the data.

Table 2. Leading whole-brain measurement effect sizes between males and females for identified
tracts connecting the two regions of interest listed. Results from BCH cohort.

Tract Male/Female Effect Size
Leading Average FA
L medial orbitofrontal WM ↔ L middle temporal WM −0.510
L medial orbitofrontal cortex ↔ L middle temporal WM −0.489
L rostral middle frontal cortex ↔ L middle temporal WM −0.397
L medial orbitofrontal cortex ↔ L insular WM −0.380
Leading Average ADC
L insular cortex ↔ L lateral occipital WM 0.419
L medial orbitofrontal cortex ↔ L insular cortex 0.414
L posterior cingulate cortex ↔ L rostral anterior cingulate WM 0.410
L lateral occipital WM ↔ L superior temporal WM 0.409
Leading Tracts to Render
L superior frontal cortex ↔ L superior frontal WM 0.673
R fusiform cortex ↔ R fusiform WM 0.645
L precuneus cortex ↔ L precuneus WM 0.625
L superior temporal cortex ↔ L superior temporal WM 0.624
Leading STD ADC
L transverse temporal cortex ↔ L insular cortex −0.411
L transverse temporal cortex ↔ L insular WM −0.388
R pars orbitalis cortex ↔ R pars triangularis cortex −0.378
R pars triangularis cortex ↔ R rostral middle frontal cortex −0.369
Leading STD FA
L pallidum ↔ L insular cortex −0.534
R rostral middle frontal cortex ↔ L lateral orbitofrontal WM −0.470
R inferior parietal white matter ↔ R lateral occipital WM −0.455
L caudate ↔ L insular WM −0.436

FA, fractional anisotropy; ADC, apparent diffusion coefficient; STD, standard deviation; L, left; R, right; WM,
white matter.
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The effect size of the standard deviation of the apparent diffusion coefficient (ADC)
represents the variability of the ADC between males and females along any specific tracts
connecting two brain regions. In most cases, there was a negligible difference between
genders, with a small overall average effect size of 0.09. The greatest difference was found
in higher female ADC variability between the left transverse temporal and left insular
regions. Some variation with age was observed in the right pars orbitalis. For the most
part, however, variability with age was not observed for those tracts with the largest effect
sizes between males and females.

Females demonstrated higher variability in fractional anisotropy in cases where there
was a significant difference between the sexes. The variability was also shown to increase
with age for all the tracts with larger effect sizes.

Notably, there were substantial differences between males and females in the asymme-
try of the variability of directional diffusion (SD FA) along hundreds of specific pathways.
Supplementary File S2 lists 51 tracts with an effect size greater than 0.5. Supplementary
File S3 presents a more comprehensive list of the largest effect sizes for each measure.

The correlations between participant age and each of the derived measurements
across all ages were calculated. Measurements with a high correlation with participant
age may represent developmental biomarkers that may have utility in the assessment of
neurological maturation.

3.1. BCH Biomarkers

Age-correlated data points where more than 80% of participants had measurable
data uncovered 139 fiber tracts within the BCH dataset with a Pearson correlation above
0.5. These tracts are identified in Supplementary File S1. Table 3 identifies the leading
correlations of connectomic measurements with age, with Figures 5 and 6 exhibiting scatter
plots of representative examples. Table 4 identifies the leading sex-based differences in
hemispheric asymmetry for each our connectomic measurements.

Table 3. Leading measurement correlations with age and BCH cohort.

ROI Start Measure r p df

Brain stem ↔ L insular WM Avg FA 0.67 0.00 533
L precentral cortex ↔ L precentral WM SD FA 0.67 0.00 535
R precentral cortex ↔ R precentral WM SD FA 0.66 0.00 541
Brain stem ↔ L superior frontal cortex Avg FA 0.66 0.00 583
Brain stem ↔ L superior frontal WM Avg FA 0.65 0.00 539
Brain stem ↔ L ventral DC Avg FA 0.65 0.00 540
L ventral DC ↔ L insular WM Avg FA 0.65 0.00 540
Brain stem ↔ L precentral WM Avg FA 0.65 0.00 540
L ventral DC ↔ L precentral WM Avg FA 0.65 0.00 540
Brain stem ↔ R pallidum Avg FA 0.65 0.00 540
L rostral middle frontal cortex ↔ L rostral middle
frontal WM SD FA 0.65 0.00 539

L thalamus proper ↔ brain stem Avg FA 0.65 0.00 538
L postcentral cortex ↔ L post central WM SD FA 0.64 0.00 540

R putamen ↔ R insular WM Avg FA 0.64 0.00 541
L, left; R, right; WM, white matter; FA, fractional anisotropy; SD, standard deviation.

3.2. HCP Biomarkers

The HCP biomarkers were extracted and assessed for their correlation with subject
age (Table 5). No biomarker measurements demonstrated a strong correlation with age,
potentially implying that the biomarker maturational measurements extracted had largely
stabilized by early adulthood. Measurement correlations were typically found to be weak
or not correlated with the leading r values from the HCP data presented in Table 5. The
differences in the strengths of correlations, when compared with the younger BCH datasets,
strengthened the literature evidence [12,23–25], suggesting that healthy individuals un-
dergo rapid brain maturation in earlier life stages and the brain largely matures as subjects
become young adults in terms of the biomarkers under consideration.
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Figure 5. (A) Correlation of mean fractional anisotropy with age in tracts connecting the brain
stem to the left insula WM. (B) Correlation of mean apparent diffusion coefficient with age in tracts
connecting the brainstem with the left insula WM.

Table 4. Leading sex-based differences in hemispheric asymmetry.

Tract Male/Female Effect Size
Leading Asymmetry Index (Left Divided by Right) for Average FA
Caudal anterior cingulate WM ↔ rostral anterior cingulate WM 0.306
Inferior temporal WM ↔ temporal pole WM −0.295
Entorhinal cortex ↔ inferior temporal WM −0.284
Cerebellum cortex ↔ lingual WM 0.282
Leading Asymmetry Index (Left Divided by Right)—Average ADC
Caudal anterior cingulate WM ↔ rostral anterior cingulate WM 0.345
Cerebellum cortex ↔ superior frontal WM 0.316
Caudal anterior cingulate WM ↔ rostral anterior cingulate WM −0.309
Cerebellum cortex ↔ superior frontal WM −0.308
Leading Asymmetry Index (Left Divided by Right)—Tracts to Render
Caudate ↔ lateral orbitofrontal WM 0.327
Banks of the superior temporal sulcus ↔ superior temporal cortex 0.323
Rostral middle frontal ↔ superior parietal WM 0.304
Lateral occipital cortex ↔ middle temporal cortex 0.297
Leading Asymmetry Index (Left Divided by Right)—SD ADC
Cerebellum cortex ↔ fusiform cortex 0.340
Pars opercularis cortex ↔ post-central WM 0.325
Cerebellum cortex ↔ fusiform cortex −0.319
Fusiform cortex ↔ lingual cortex 0.307
Leading Asymmetry Index (Left Divided by Right)—SD FA
Inferior parietal cortex ↔ precentral WM 1.080
Precentral cortex ↔ inferior parietal WM 0.910
Inferior parietal WM ↔ precentral WM 0.851
Inferior temporal cortex ↔ banks of the superior temporal sulcus 0.831

FA, fractional anisotropy; ADC, apparent diffusion coefficient; SD, standard deviation; WM, white matter.
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Figure 6. (A) Correlation of standard deviation of fractional anisotropy with age in tracts connecting
the left precentral cortex and left precentral white matter. (B) Correlation of standard deviation
of apparent diffusion coefficient with age in tracts connecting the left precentral cortex with left
precentral white matter.

Table 5. Leading biomarker correlations to age within HCP data.

Tract Measure r p df

L lateral orbitofrontal WM ↔ L superior frontal WM Avg tract len −0.34 0.00 155
R inferior parietal WM ↔ R insula WM Avg ADC −0.34 0.00 152
L superior frontal GM ↔ L rostral anterior cingulate WM Avg tract len −0.33 0.00 155
R posterior cingulate WM ↔ R precentral WM Avg tract len −0.33 0.00 155
Left parahippocampal GM ↔ R paracentral WM Avg tract len 0.32 0.00 155
L rostral middle frontal GM ↔ L lateral orbitofrontal WM SD ADC 0.32 0.00 155
L putamen ↔ L medial orbitofrontal WM Avg ADC −0.32 0.00 155
L caudal middle frontal WM ↔ left medial orbitofrontal WM SD Avg tract len −0.32 0.00 155
L putamen ↔ L unsegmented WM Avg ADC −0.31 0.00 155
L thalamus proper ↔ posterior corpus callosum SD ADC 0.31 0.00 155
R accumbens area ↔ L unsegmented WM SD ADC 0.31 0.00 155
L superior frontal WM ↔ L insula WM Avg ADC −0.31 0.00 154

ADC, apparent diffusion coefficient; SD, standard deviation; L, left; R, right; WM, white matter; GM, grey matter.

4. Discussion

This study analyzed two participant groups totaling 809 neurologically healthy partic-
ipants and provided detailed measurement results of diffusion characteristics of pathways
between all ROI pairs. We investigated tract development to understand the variation
in measurements and hemispheric asymmetry among subjects’ ages and sex. The data
derived from this study are both revealing and novel. We found patterns of differential
development between males and females and uncovered 170 fiber tracts that may be useful
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in assessing developmental maturation. Overall, the similarities between males and fe-
males far outweighed the differences; however, in some cases, we observed substantial sex
differences, representing a potentially important baseline from which to establish healthy
growth trajectories, facilitating studies that identify abnormal brain development asso-
ciated with a variety of pathological conditions as departures from healthy sex-specific
neural development. These findings are consistent with previous studies of sex differences
in white matter maturation [26,27].

We found a strong age correlation with the mean fractional anisotropy of the tract
connecting the right putamen and the right insula. Theoretically, increases in average FA
imply more directed diffusion along the fiber pathway identified, which is a phenomenon
that may be partially indicative of underlying pruning associated with healthy tract devel-
opment, whereby the removal of tissue through pruning may contribute to more directed
diffusion along the pathway. This is supported by research conducted by Gogtay et al. [28]
and Schmithorst and Yuan [29]. As the two example regions develop toward improved task
coordination, those pathways not helpful for regional coordination may be pruned away by
natural developmental processes, which may be reflected in the measurements acquired.

Prior research [30] highlighted the role of the insula and putamen-centered functional
connectivity in cognitive fatigue experienced by participants subjected to multitasking
conditions. Our study identified structural connections between the insula and putamen
and may suggest a possible anatomical basis for the functional connectivity findings
previously reported. Future studies could investigate whether the measurements we
acquired signify brain development correlated with enhanced motor control. Subsequent
studies could also explore diffusion metrics of pathways connecting other brain regions
to assess their potential association with a variety of developmental milestones, such as
coordination or language acquisition, as well as pathological conditions.

In some cases, we found statistically significant sex differences, representing an impor-
tant baseline from which to establish healthy growth trajectories and facilitating studies
that identify abnormal brain development associated with various pathological conditions
as departures from healthy sex-specific neural development. In the current study, we
observed sex differences in the microstructure of white matter by examining the variability
in fractional anisotropy. Specifically, our findings indicate an overall higher standard
deviation in FA among females. This observation is consistent with previous research that
demonstrated sexual dimorphism in white matter [31]; however, our study extended these
findings by also focusing on the variability of FA values in addition to mean FA levels. This
previous work [31] primarily reported on mean FA differences in targeted tracts, with a
higher FA observed in the corpus callosum in females and variations linked to the lingual
gyrus in males, for example. Our approach highlights the importance of considering the full
distribution of measured values when assessing sexual dimorphism in neural architecture.
While volumetric differences were suggested as potential confounders in the interpretation
of FA results, our study’s observations of FA variability provide a unique contribution
to the understanding of white matter variability. Though we did not consider volume, it
is acknowledged that volumetric differences may influence mean FA values [32], yet the
impact of these differences on the variability of FA has not been widely explored.

Measurements such as tract count and length depend on the directional diffusion
pulse sequence selected and analytic choices in fiber tracking, such as seeding. Each pulse
sequence has several parameters, such as the time to echo, field of view, and flip angle,
which when combined affect the tissue contrast and spatial resolution. We attempted
to control this technical variation in two ways. First, we employed a standardized set
of MRI diffusion pulse sequences and tractographic analytic approaches for each of our
cohorts. Second, we introduced the tract count and tract length (mean and variability)
asymmetry biomarkers, which have the potential to overcome some of the standardization
problems across diffusion acquisition and tractographic analytic techniques. The relia-
bility of this biomarker in assessing varying acquisition and analytic methods warrants
further investigation.
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Our study’s reliance on cross-sectional data presents certain limitations. While this
approach allows for the analysis of data from a wide range of participants at a single point
in time, it inherently restricts our ability to observe how neurodevelopmental measures
in individuals change over time. Future work will involve extending these findings to
longitudinal analyses.

We identified inflection points at ages 8.2, 9.1, and 13.3 of changes in mean fractional
anisotropy between tracts connecting the left paracentral cortex with the left precuneus cor-
tex. It is important to acknowledge the inherent variability and potential limitations within
our data. While the LOESS model provided an approach for identifying trends within the
data, the precision of the identified inflection points is subject to inherent variability and
noise. Specifically, fractional anisotropy can be influenced by factors such as individual
biological variability, measurement error, and the resolution of diffusion-weighted imaging.
We recommend viewing these findings as indicative rather than conclusive.

Specific details regarding the coil sizes used for different participants in our BCH
cohort data are not available. This limitation stems from constraints in data accessibility, as
the coil size information was not retained during the data collection phase. The absence of
this information presents a limitation to our study, as coil size can influence the signal-to-
noise ratio [33], thereby affecting the quality and comparability of the imaging data.

5. Conclusions

We used MRI to measure the diffusion-related properties of hydrogen protons in
motion throughout the white and gray matter of 642 MRI examinations of neurologically
healthy subjects between the ages of 0.7 and 23.5 years, as well as a young adult popula-
tion of 167 MRI examinations aged 22–36+ years. Several measurements (e.g., fractional
anisotropy and apparent diffusion coefficient) were used to model the streamlines of fiber
tracts localized to every combination of region pairs in the Desikan–Killiany–Tourville
(DKT) atlas. We found several instances where our measurements may be helpful in char-
acterizing physiological and anatomical changes that may be linked with healthy brain
maturation. In some cases, we observed statistically significant sex differences, represent-
ing a potentially important baseline from which to establish healthy growth trajectories,
facilitating studies that identify abnormal brain development associated with a variety of
pathological conditions as departures from healthy sex-specific neural development. Our
software packages https://github.com/dmattie/aircrush (accessed on 1 July 2021) and
https://github.com/dmattie/aircrush-core-operators (accessed on 1 July 2021) facilitate
the extraction of a wide variety of biomarkers, many of which are not available from
alternative software packages. Additionally, assessing correlations between these regional
fiber tract measurements and any participant characteristic included in analyses and com-
plementary datasets (e.g., intelligence quotient (IQ) and disease status) has tremendous
potential for the study of human neurodevelopment.

Supplementary Materials: The following supporting information can be downloaded from https:
//www.mdpi.com/article/10.3390/info15010066/s1, Supplementary File S1: Age correlation to tract
measurements captured between regions. Only those tracts detected in at least 80% of the subject
population were considered; Supplementary File S2: Effect size of the Asymmetry Index of STD FA;
Supplementary File S3: Leading effect sizes by measurement.
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Appendix A

Whole brain measurements:

1. Number of tracts detected within the connectome.

Derived measurements per tract:

1. Mean fractional anisotropy (FA) is a measure of diffusion directionality. It represents
an average of the fractional anisotropy measurement for a specific tract detected
between two regions of interest.

2. Mean apparent diffusion coefficient (ADC) is a measure of the average of the ADC.
3. Standard deviation of fractional anisotropy (SD FA) measures the variability of the

fractional anisotropy within the tract.
4. Standard deviation of the apparent diffusion coefficient (SD ADC) measures the

variability of ADC exhibited within the tract.
5. Tracts to render represents the number of distinguishable fiber tracts or streamlines

detected between two regions of interest.
6. Mean tract length represents the average length in millimeters for all tracts detected

between two regions of interest. The tract length was not computed for the complete
BCH data; consequently, it was excluded from those results.

7. Standard deviation of tract length measures the variability of tract lengths for tracts
detected between two regions of interest.

8. Asymmetry index of mean fractional anisotropy (FA).
9. Asymmetry index of mean apparent diffusion coefficient (ADC).
10. Asymmetry index of standard deviation of fractional anisotropy (SD FA).
11. Asymmetry index of standard deviation of apparent diffusion coefficient (SD ADC).
12. Asymmetry index of tracts to render.
13. Asymmetry index of mean tract length.
14. Asymmetry index of standard deviation of tract length.
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