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Abstract: The ability to translate Generative Adversarial Networks (GANs) and Variational Autoen-
coders (VAEs) into different modalities and data types is essential to improve Deep Learning (DL) for
predictive medicine. This work presents DACMVA, a novel framework to conduct data augmentation in
a cross-modal dataset by translating between modalities and oversampling imputations of missing
data. DACMVA was inspired by previous work on the alignment of latent spaces in Autoencoders.
DACMVA is a DL data augmentation pipeline that improves the performance in a downstream predic-
tion task. The unique DACMVA framework leverages a cross-modal loss to improve the imputation
quality and employs training strategies to enable regularized latent spaces. Oversampling of aug-
mented data is integrated into the prediction training. It is empirically demonstrated that the new
DACMVA framework is effective in the often-neglected scenario of DL training on tabular data with
continuous labels. Specifically, DACMVA is applied towards cancer survival prediction on tabular gene
expression data where there is a portion of missing data in a given modality. DACMVA significantly
(p << 0.001, one-sided Wilcoxon signed-rank test) outperformed the non-augmented baseline and
competing augmentation methods with varying percentages of missing data (4%, 90%, 95% missing).
As such, DACMVA provides significant performance improvements, even in very-low-data regimes,
over existing state-of-the-art methods, including TDImpute and oversampling alone.

Keywords: data augmentation; Variational Autoencoder; Generative Adversarial Network; cancer
survival prediction

1. Introduction

Deep Learning (DL) has proven to be fruitful for use in biomedical prediction tasks,
but the risk of overfitting remains due to the limited size of such datasets. To mitigate
overfitting in such low-data regimes, researchers often synthesize data using generative
DL algorithms, such as Generative Adversarial Networks (GANs) and Variational Au-
toencoders (VAEs) [1,2]. However, the majority of such applications are geared towards
classification tasks. For example, Chen et al. [3] reviews image synthesis for medical pre-
diction tasks and notes that most studies train a GAN for each class. Such methods are not
directly applicable to ML regression tasks, but nonetheless indicate the utility of GANs for
data augmentation.

Likewise, researchers have demonstrated success in biomedical tasks with VAEs.
For example, Doncevic and Herrmann [4] developed a VAE architecture with an inter-
pretable latent space and decoder for medical application. It enabled the perturbation
of input features to understand changes in the activation of hidden nodes. By doing so,
it simulates the effects of genetic changes on a resulting phenotype as well as the drug
response predictions of models [4]. Likewise, Papadopoulos and Karalis [5] employed
a VAE framework to synthesize clinical study patient samples. Their results showed
that including the synthetic data provides greater statistical power than using the
original dataset alone [5].
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Biomedical datasets often contain multiple modalities, such as genomics, imaging,
clinician notes, peripheral blood tests, audio recordings, and more. A major limitation of
current multi-modal models is that they often cannot make full use of missing data, namely,
missing modalities [6]. Historically, predictive medicine models would simply discard
records that did not have all of the desired modalities. Disregarding missing modalities or
records drastically reduces the available sample size, which decreases the quality of the
predictions and the generalizability of the model.

Novel DL methods for modality translation on medical datasets exist in the lit-
erature, but such methods are highly task-specific towards imaging modalities. As
discussed by Armanious et al. [7], most methods focus on translating between com-
puted tomography (CT), magnetic resonance imaging (MRI), and positron emission
tomography (PET). In addition to being limited to the types of imaging, they also
employ specialized architectures to account for the motion or jitter often seen in med-
ical imaging. CycleGAN is another popular method for image-to-image translation.
CycleGAN involves the training of two generators and two discriminators with a cycle
consistency loss [8]. Sandfort et al. [9] successfully applied CycleGAN to transform
contrast CT images into non-contrast CT images and used the augmented dataset to
improve the segmentation performance. However, CycleGAN is primarily beneficial
for color or texture type transformations. It was originally developed to translate
between two views of the same modality. Therefore, existing imaging-centric methods,
including MedGan [7] and CycleGAN [8], are not directly applicable to the important
case of tabular data modalities that carry distinct information.

Recently, Yang et al. [10] proposed a model that substantially surpasses CycleGAN
to align single cell RNA-seq and ATAC-seq data. They trained Autoencoders (AE) for
the modalities of interest, and they aligned the AE latent spaces through adversarial
training with an additional discriminator network. Then, they paired the modality
A encoder and modality B decoder to align single-cell data. Zhou et al. [11] trained
an encoder of modality A along with the decoder of modality B for imputation in the
cancer survival prediction task. However, these works did not consider stable training
methods to regularize the Autoencoder latent spaces or the integrated oversampling of
synthetic data.

The ability to translate GANs and VAEs into different modalities and data types is
essential to improve DL for predictive medicine. Here, we present data augmentation for
Cross-Modal Variational Autoencoders (DACMVA), which builds upon the aforementioned
related works by incorporating VAEs to translate between different data modalities, includ-
ing the critically important, but often neglected, tabular data types common in medicine.
Specifically, DACMVA takes advantage of modality A to impute samples of modality B and
vice versa. Such cross-modal imputations are particularly advantageous in the case of a
large imbalance in the sample counts between the two modalities. In addition, DACMVA
can carry over the outcome value associated with the modality A sample to the imputed
modality B sample to circumvent the issue of imputing a continuous label. DACMVA demon-
strates that regularized latent spaces in VAEs result in an improved imputation quality over
deterministic AEs. Additionally, prior related works have not integrated oversampling.
The inclusion of oversampling is another benefit of DACMVA.

In summary, this work presents DACMVA, a novel DL pipeline for data augmentation
with Cross-Modal Variational Autoencoders. DACMVA demonstrates a superior performance
in the task of cancer survival prediction using tabular gene expression data. The key
contributions of this study are the following:

• DACMVA proposes a pipeline for training Variational Autoencoders (VAEs) for modal-
ities A and B with aligned latent spaces. It incorporate strategies to improve the
stability during VAE training, thereby enabling regularized latent spaces.



Information 2024, 15, 7 3 of 14

• DACMVA oversamples the imputed samples with hyperparameters to control the im-
puted batch size; a loss threshold for selecting imputed samples; and a weight for the
loss on the imputed batches. This flexible and tunable framework integrates with the
cross-modal imputation method for simple, but effective, oversampling augmentation.

• The role of the adversarial training strategy proposed by Yang et al. [10] for aligning
the latent spaces is empirically investigated. In particular, we determine whether
the augmentations created by Autoencoders trained adversarially result in a signif-
icantly improved performance in the prediction task. Adversarial training comes
with an additional computational cost and training stability challenges which may be
infeasible for large, high-dimensional datasets. Thus, this analysis is informative for
many applications.

• The novel DACMVA framework was applied over multiple augmentation methods for
cancer survival prediction. To our knowledge, this study is the first to investigate the
roles of oversampling and adversarial loss in data augmentation in cancer survival
prediction. The results illustrate the ability of DACMVA to improve model predictions
on multi-modal tabular biomedical data with continuous labels. The results show
that the presented DACMVA framework generates high-quality imputations and pro-
vides a significantly improved task performance with both the full dataset and in
low-data regimes.

The presentation of DACMVA and its application to cancer survival predictions is orga-
nized as follows: Section 2 introduces an overview of the DACMVA framework and provides
the details of the methodology and the training procedure. Section 3 presents the results for
the imputation quality and the performance in the multi-modal cancer survival prediction
task using the original dataset and the low-data regime setting. Finally, the conclusions
and future directions for DACMVA are summarized in Section 4.

2. Materials and Methods

Here, the DACMVA framework is presented. The primary goal of DACMVA is to improve
the model’s predictive performance on multi-modal, tabular biomedical datasets, including
low-data regimes. DACMVA stands for data augmentation with Cross-Modal Variational Au-
toencoders. The DACMVA framework includes Cross-Modal Variational Autoencoders with
adversarial training (CM-VAE-Adv); Cross-Modal Variational Autoencoders with over-
sampling (CM-VAE-OV); and the combination of adversarial training and oversampling
(CM-VAE-Adv-OV).

2.1. Overview, Nomenclature, and Introductory Definitions

The DACMVA framework was constructed to enable data augmentation with Cross-
Modal Variational Autoencoders. Let us first define modalities A and B with their cor-
responding feature space inputs XA and XB. We experiment with multiple variations of
training, which are labeled CM-VAE-Adv, CM-VAE-OV, and CM-VAE-Adv-OV. Figure 1
depicts the CM-VAE-OV training, which excludes any adversarial training but includes
oversampling of the synthetic data. Figure 2 provides the CM-VAE-Adv-OV training proce-
dure, which includes both adversarial training and the oversampling of synthetic data. A
figure for the CM-VAE-Adv training is not shown because it is identical to Figure 2 with
the oversampling of X̂B in part C omitted. In all variations, we train the modality A VAE as
detailed in part A of the figures, and then we freeze this network for all subsequent steps.
Conceptually, this choice facilitates the alignment of the modality B latent space to the static
latent distribution provided by the modality A VAE. Additionally, reduced computational
demand for tuning hyperparameters (HPs) is acquired to optimize the modality B VAE
once we have a fixed VAE for modality A.



Information 2024, 15, 7 4 of 14

Figure 1. DACMVA training procedure for CM-VAE-OV. (A) Train the modality A VAE. (B) Train the
modality B VAE, aligned with the A latent space. (C) Impute X̂B and oversample for the training
prediction task.
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Figure 2. DACMVA training procedure for CM-VAE-Adv-OV. (A) Train the modality A VAE. (B) Train
the modality B VAE, aligned with the A latent space, and train the discriminator to encourage
alignment. (C) Impute X̂B and oversample for the training prediction task.
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2.2. CM-VAE-Adv

The work presented by Makhzani et al. [12] introduced the concept of the adver-
sarial AE to train an AE such that its latent space is matched to a prior distribution.
Training proceeds in a GAN analogous framework. That is, a discriminator is opti-
mized to distinguish between a sample from the prior and a sample from the latent
space of the AE. The encoder of the AE is optimized to deceive the discriminator, while
the AE also aims to minimize the reconstruction loss. Yang et al. [10] extends this
concept towards the training of Autoencoders of different modalities adversarially in
order to align their latent spaces.

Similarly, we construct AEs for modalities A and B as well as a discriminator
neural network to distinguish samples from the latent spaces of the two modalities. In
each epoch of training, we optimize the reconstruction loss, the Kullback–Leibler (KL)
divergence loss, the discriminator loss, and an adversarial loss. Although we could use
the traditional binary cross entropy losses for the discriminator and adversarial losses,
we found an improved training stability when we used the least squares losses. The
losses for this training framework are given by the following equations. The variables
zA and zB refer to the latent representations produced from EncA and EncB respectively.

Lrecon = ∑i=A,B|Xi − X̂i|

Ladv = |Disc(zA)− 1|2 + |Disc(zB)− 0|2

LDisc = |Disc(zA)− 0|2 + |Disc(zB)− 1|2
(1)

Yang et al. [10] trained their AEs as deterministic or as VAEs with very small
weights on the KL term, presumably due to the challenges of training high-dimensional
datasets of limited size as VAEs. In such scenarios, the KL loss can vanish to zero, even
with small but nonzero weights. We mitigate this vanishing loss by implementing a
cyclic KL annealing schedule [13]. For our application, we consider it important to
train the AEs as VAEs, because we aim to produce meaningful synthetic samples of one
modality based on the latent representation of the other modality. If the latent space
is not regularized, we can produce a non-meaningful imputation if a substantially
original input is presented.

Next, we include a cross-modal reconstruction loss similarly to Zhou et al. [11]. We
found that the inclusion of this loss improves the Pearson’s correlation coefficient between
a test set of original samples and imputed samples for modality B. Our stopping condition
for training the modality B VAE is to minimize this loss. We define the cross-modal loss,
Lcm, as follows:

LCM = ∑
i
|XB,i −DecB(EncA(XA,i))| (2)

Next, we iterate through all XA for which there is not a corresponding XB. For this
missing data, we compute X̂B as follows: X̂B = DecB(EncA(XA)). We then train the
prediction task on a shuffled dataset of XB and X̂B. We train the prediction task on modality
B, only as a simplifying assumption and to examine the effects of augmentation for a single
modality. As noted, we do not impute the continuous labels, but rather, carry them over
from the corresponding XA.

2.3. CM-VAE-OV

The training schematic is provided in Figure 1. We train the modality B VAE with
Lrecon, the KL divergence term, and the cross-modal loss (LCM). We do not have a discrimi-
nator nor the associated Ladv and LDisc losses. This method relies solely on LCM for latent
space alignment.
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Lastly, we train the prediction task with the original modality B training set and the
oversampled synthetic data from the trained EncA and DecB. In each epoch, we randomly
sample with replacements from the modality A dataset, and we compute we compute the
corresponding X̂B. We also compute the losses specific to the prediction task, Ltask, on these
synthetic samples. Similar to Haque [14], we keep only those X̂B with a task loss below
a HP threshold, t. We additionally introduce the HP bsOV regulating the batch size of
the X̂B set. The prediction NN loss function on the X̂B samples is weighted by a factor of
0 ≤ γ ≤ 1.

2.4. CM-VAE-Adv-Ov

This training variation uses all of the elements described in the previous subsections
as well as those depicted in Figure 2. As presented in Section 2.2, we train the modality B
VAE using Lrecon and LKL to produce high quality reconstructions and a regularized latent
space. We also employ the discriminator and train with Ladv and LDisc to encourage aligned
latent spaces. As in the other variations, we have LCM to additionally enforce alignment.

Training the prediction NN involves the oversampling procedure described in Section 2.3.
Specifically, we oversample with replacements from the modality A dataset to produce
synthetic modality B samples. We use the task specific loss threshold, t, to keep synthetic
samples. We also have the HPs bsOV and γ controlling for the batch size and the weight
on the task-specific loss for imputed samples.

2.5. Cancer Survival Prediction Training Details

The utility of the above-described new DACMVA framework is assessed in a real-world
biomedical domain application that includes multiple modalities, tabular data, and low-
data regimes. Specifically, DACMVA is used to conduct cancer survival predictions using the
publicly available dataset The Cancer Genome Atlas (TCGA) (https://www.cancer.gov/
tcga), accessed on 27 December 2022. TCGA includes clinical records, omics modalities,
and whole-slide imaging for over 11,000 cases comprising 33 cancer types [15]. The dataset
includes either time to death or time to the last follow up. Several works have trained DL
models on one or more of these modalities in order to provide robust pan-cancer predictions
of survival probabilities [16–18]. We use DNA methylation (DNAm) for modality A and
gene expression (mRNA) profiles for modality B.

Training a VAE to the full TCGA dataset would likely not effectively capture the
complex underlying distribution using the simple Gaussian prior of the VAE. Furthermore,
multiple cancers are lacking in death events, so it is not meaningful to apply the survival
prediction task. To address these issues, we follow Ching et al. [16] to filter the TCGA
dataset down to 10 cancers selected for having at least 50 death events, resulting in a
dataset of 5250 mRNA samples and 5464 DNAm samples. The 10 cancers included are
as follows: Bladder Urothelial Carcinoma (BLCA), Breast Invasive Carcinoma (BRCA),
Head and Neck Squamous Cell Carcinoma (HNSC), Kidney Renal Clear Cell Carcinoma
(KIRC), Brain Lower Grade Glioma (LLG), Liver Hepatocellular Carcinoma (LIHC), Lung
Adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC), Ovarian Serous Cys-
tadenocarcinoma (OV), and Stomach Adenocarcinoma (STAD).

In the present study, 10% of the dataset was used as a test set. The remaining dataset
was divided between training and validation using a 90%/10% split. There were approxi-
mately 4% fewer samples of gene expression data compared to DNA methylation in the
training set. Additionally, the models were evaluated in the low-data regimes of 90% and
95% missing mRNA data. The mRNA training and validation sets were reduced by these
proportions. However, we conducted our evaluation on the full test set (consisting of
521 samples) for all missing percentages. Table 1 provides the number of mRNA samples
in the training set for the three missing percentages.

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
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Table 1. Number of mRNA samples (modality B) in the training set at varying missing percentages.

Cancer Type Missing 4% Missing 90% Missing 95%

BLCA 322 32 17
BRCA 875 111 53
HNSC 413 47 24
KIRC 426 36 14
LLG 411 51 25

LIHC 294 35 16
LUAD 408 35 20
LUSC 396 52 26

OV 336 38 17
STAD 322 34 17

OVERALL 4203 471 229

2.6. Baselines

We compared the performance of the proposed DACMVA framework against the follow-
ing baselines for the task of cancer survival prediction.

• Multisurv: Vale-Silva and Rohr [17]’s Multisurv model is a DL survival prediction
model that demonstrates a superior performance against multiple traditional ML and
deep NN models. The work investigates the prediction performance using single
modalities as well as combinations of modalities. We employ their survival prediction
NN architectures for gene expression data in all of our experiments, including those
with augmentation. Here the non-augmented baseline is referred to as Multisurv.

• Oversampling: This method is simple oversampling with replacements from the set
of synthetic B samples. We use HPs for the batch size of the synthetic samples and a
weight on the loss arising from the synthetic samples.

• TDImpute: Zhou et al. [11] proposed a single AE to translate from DNA methylation to
gene expression data. Their loss function aims to minimize the root mean squared error
between predicted gene expression values and the true values that are paired with
the input DNA methylation data. They performed a cancer survival analysis under
varying percentages of missing data and outperformed traditional ML approaches.
Specifically, Zhou et al. [11] conducted a robust comparison of their TDImpute method
against several standard methods: synthesis using means of samples, trans-omics
block missing data imputation (TOBMI), singular value decomposition (SVD), and
the least absolute shrinkage and selection operator (LASSO). They evaluated both the
imputation quality and the concordance index on the cancer survival prediction task
using the same two modalities. Given the comprehensive analysis of baselines in the
publication of TDImpute, we use TDImpute as the key baseline with which to compare
DACMVA. Any performance gain of DACMVA over TDImpute would also outperform the
aforementioned baselines that their research previously assessed.

• TDImpute-OV: We integrate the TDImpute architecture into our training pipeline us-
ing oversampling. That is, we first train encoder A and decoder B as in Zhou et al. [11].
Then we train the cancer prediction task by oversampling, as described in the second
paragraph of Section 2.3.

2.7. Experiment Details

All pre-processing, data loading, and model training were conducted in Python version
3.9.7. We used the Multisurv pre-processing steps for the DNAm and mRNA modalities
found on their repository, https://github.com/luisvalesilva/multisurv (accessed on 4
January 2023)[17] . Accordingly, we reduced the feature dimensions to 5000 and 1000,
respectively, by filtering to the features accounting for most of the variance among the
samples. The NN models for the VAEs, discriminator, and prediction task were trained
using Pytorch version 1.12.0.

https://github.com/luisvalesilva/multisurv
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2.7.1. VAE Training

Each layer of the encoders and decoders of the VAEs consists of a fully connected
network followed by a ReLU activation. The number of neurons in each layer decreases
by a factor of two from the input layer to the final hidden layer. We picked the optimal
number of layers, the number of latent dimensions, and the weights on the KL loss terms
by evaluating the reconstruction loss and KL loss on the validation set. Specifically, we
chose HPs such that the reconstruction loss was minimized but the KL loss did not vanish.
As noted by Fu et al. [13], a zero KL loss suggests that either the posterior distribution
produced by the encoder is equivalent to the Gaussian prior or the decoder does not
produce outputs that depend on the latent variable fed into it. For each VAE, we tuned the
number of layers to be 2–7, the number of latent dimensions to be 8–512, and the weight
on the KL divergence term to be 10−5–1. We settled on three layers for the encoder, three
layers for the decoder, and a latent dimension of 32. We found that the optimal weight
on the KL term for the modality A VAE is 0.001 and the weight for the modality B VAE is
0.0001. As previously noted, we implemented the cyclic annealing schedule put forth by
Fu et al. [13] to stabilize the training.

The modality A VAE was trained first and was held fixed in subsequent steps. The
modality A encoder was used to evaluate LCM when training the modality B VAE. We had a
weight on the loss term for the cross-modal loss LCM, and we found that intermediate values
of 0.4–0.8 resulted in the best LCM on the validation set without substantially degrading
the modality B reconstruction loss.

2.7.2. Adversarial Training

The CM-VAE-Adv and CM-VAE-Adv-OV methods in the DACMVA framework involve
training a discriminator as well. We fixed the number of epochs to 400. We reserved
the first 100 epochs to train only the modality B VAE, so that the VAE was given the
chance to acquire good reconstructions before introducing adversarial training. We trained
the modality B VAE with Lrecon, LKL, and LCM. After the first 100 epochs, we iterated
through the following steps in each epoch. First, we trained the modality B VAE with the
aforementioned losses. Then, we freezed the VAE and trained the discriminator, consisting
of four fully connected layers with ReLU activations. The discriminator takes in the latent
representations produced by the VAEs, and its loss function is the Least Squares GAN
(LSGAN) loss [19]. To compute this loss, we assigned a label of 1 to latent representations
arising from the A encoder and 0 to the latent representations arising from the B encoder.
Lastly, we train the encoder of the modality B VAE, which is analogous to the generator
in the adversarial AE formalism [10]. We froze the discriminator and acquired its output
on the latent representations from the encoders again. We computed the LSGAN loss but
with the previous labels swapped, so as to encourage the modality B encoder to fool the
discriminator. Backpropagation on this loss occurred only through the modality B encoder
in this step. The learning rate for the modality B VAE and the encoder was 10−4, and the
learning rate for the discriminator was 5−5.

2.7.3. Prediction Task Training

As in Multisurv, our task predicts the conditional survival probability for 30 years.
We implemented Multisurv’s definition of Ltask equal to the the negative log likelihood of
survival in each time interval. We also borrowed Multisurv’s mRNA NN architecture for
the prediction task, and we followed suit by evaluating the performance with the time-
dependent concordance index (Ctd). This metric measures the model’s ability to correctly
discriminate event times between patients, but it is adjusted to account for the survival
function over the full prediction time window [20]. Note that Multisurv uses all 33 cancers.
In contrast, the implementation here reduced the dataset to the 10 cancers mentioned above.

All experiments were trained for 400 epochs, and the model maximizing Ctd on the
validation set was saved. The learning rate was fixed to 10−5 for the prediction task in all
experiments. Table 2 summarizes the experiments and the HPs associated with training the
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prediction task. All methods require specification of the batch size on XB (bs). Methods
using oversampling additionally include an HP for the batch size on X̂B (bsOV). A loss
threshold on Ltask for keeping synthetic samples is dictated by an HP labeled t. Lastly, γ is
the weight on Ltask for X̂B samples. Note that Table 2 pertains solely to the prediction NN
and does not include the HPs associated with training the VAEs.

Table 2. The methods and the associated HPs for training the prediction NN. Note that CM-VAE-Adv,
CM-VAE-OV, and CM-VAE-Adv-OV are part of the DACMVA framework.

Method Description Prediction NN HPs

Multisurv No augmentation bs

OV Oversample from XB with
replacement bs, bsOV, γ

TDImpute
Train EncA, DecB as in

Zhou et al. [11]; no
oversampling

bs

TDImpute-OV
Train EncA, DecB as in
Zhou et al. [11]; with

oversampling
bs, bsOV, γ, t

CM-VAE-Adv With adversarial training; no
oversampling (see Section 2.2) bs

CM-VAE-OV No adversarial training; with
oversampling (see Section 2.3) bs, bsOV, γ, t

CM-VAE-Adv-OV
With adversarial training;
with oversampling (see

Section 2.4)
bs, bsOV, γ, t

3. Results

The DACMVA framework of cross-modal variational eutoencoders (CM-VAE) with vari-
ous forms of data augmentation was assessed using a real-world cancer survival prediction
test using tabular data. First, the imputation quality of the DACMVA models was compared
to TDImpute [11] . Next, the effect of augmentations on the prediction task in low-data
regimes was assessed and compared between DACMVA models and TDImpute [11] .

The experiments considered three missing percentages: 4% (the unmodified dataset),
90%, and 95%. Intermediate missing percentages such as 60% resulted in a Multisurv Ctd of
0.683, therefore not substantially degrading the performance of the baseline. Zhou et al. [11],
likewise, noted that the concordance index is not highly sensitive to missing data. There-
fore, the experiments did not evaluate these intermediate missing percentages and instead
focused on the unmodified dataset and the very-low-data regimes. All results provided in
this section were evaluated on the full test set of 521 samples.

3.1. Imputation Quality

LCM was evaluated on the test set. The DACMVA framework (e.g., the CM-VAE methods
with and without adversarial training) performed better than TDImpute. The differences
were more pronounced with higher missing data percentages, as shown in Table 3.

Table 3. Test set cross-modal loss with 95 % confidence intervals. TDImpute is compared to the
DACMVA framework, namely the cross-modal variational auto-encoder (CM-VAE) and the CM-VAE
with adversarial training (CM-VAE-Adv).

Missing % TDImpute CM-VAE CM-VAE-Adv

4 0.0150 ± 0.0006 0.0144 ± 0.0007 0.0146 ± 0.0006
90 0.0165 ± 0.0007 0.0156 ± 0.0007 0.0158 ± 0.0007
95 0.0181 ± 0.0006 0.0164 ± 0.0007 0.0160 ± 0.0007



Information 2024, 15, 7 11 of 14

Differences in performance between models were assessed for statistical significance
using the one-sided Wilcoxon signed-rank test to compare the DACMVA CM-VAE mod-
els (with and without adversarial training) with the TDImpute values. This test is a
non-parametric evaluation of the ranked performances of two algorithms on matched
pairs [21,22]. The statistical test was performed on the LCM values resulting from the CM-
VAE against the LCM values resulting from TDImpute. The same test was conducted to
compare the CM-VAE-Adv model against the TDimpute model [11]. The statistical results
are shown in Table 4. All statistical comparisons resulted in p-values << 0.001. Thus, the
experimental results indicate that the imputations produced by the DACMVA framework’s
CM-VAE models (with and without adversarial training) result in LCM values that are
significantly better than the TDImpute model imputations.

Table 4. Statistical comparison of the test set’s cross-modal loss with the best DACMVA model compared
to TDImpute. The best DACMVA model is shown in Table 3.

Missing % Best DACMVA Models vs. TDImpute

4% p-value = 1.2 × 10−10

90% p-value = 6.8 × 10−27

95% p-value = 3.3 × 10−44

However, a low LCM does not exclude the possibility that the B decoder may have
learned to produce crude averages of the training set, rather than producing a meaningful
structure based on the latent input. To assess the ability of the DACMVA framework to repro-
duce the structure of the modality B data, Pearson’s correlation coefficient was computed
between the mean feature values over the test XB set and the mean feature values of the
imputed X̂B [23]. Let ρ(XB, X̂B) be the Pearson correlation coefficient function. Let n be the
size of the set XB, and let 1

n ∑i XB,i be vector produced by averaging the XB samples of the
XB along the feature dimension. The mean is analogously defined for X̂B as well. Then,
the quantity used to compare the mean feature values between the XB and X̂B is given
as follows:

ρXB ,X̂B
= ρ(

1
n ∑

i
XB,i,

1
n ∑

i
X̂B,i) (3)

Additionally, we sought to understand whether samples drawn from a normal distri-
bution and fed through the decoder maintain the structure of the XB test samples. Thus,
we also computed the following:

ρXB ,DecB(N (0,1)) = ρ(
1
n ∑

i
XB,i,

1
nN

∑
i

DecB(N (0, 1))) (4)

A large value of ρXB ,DecB(N (0,1)) indicates that the mean feature values produced by
decoding samples from a normal distribution correlate well with the mean feature values
of the original dataset. This quantity thereby provides insight into the ability of the DecB to
take an input from a regularized latent space and provide an output which is structurally
similar to the real samples.

Table 5 provides the Pearson correlation coefficient (PCC) for Equation (3), and Table 6
provides the PCC for Equation (4). It is shown that the DACMVA models, CM-VAE and CM-
VAE-Adv, perform better than TDImpute for ρXB ,X̂B

, and they are substantially higher in
ρXB ,DecB(N (0,1)). The p-values of the correlations are all p << 0.001. The results suggests that
the CM-VAE and CM-VAE-Adv models create imputations that provide better structural
similarities to the true dataset. The correlation improvement is particularly pronounced
when drawing randomly from a normal distribution, indicating that the VAE models
produce more structurally meaningful outputs when fed a sample that is very dissimilar
from the training samples.
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Table 5. The Pearson correlation coefficient between the test set’s modality B data and samples
imputed from modality A. TDImpute is compared to the DACMVA framework, namely the cross-modal
variational auto-encoder (CM-VAE) and CM-VAE with adversarial training (CM-VAE-Adv).

Missing % TDImpute CM-VAE CM-VAE-Adv

4 0.985 0.989 0.992
90 0.977 0.989 0.983
95 0.964 0.986 0.987

Table 6. The Pearson correlation coefficient (PCC) between the test set’s modality B data and
synthetic data created by decoding normal distribution samples. TDImpute is compared to the
DACMVA framework, namely the cross-modal variational auto-encoder (CM-VAE) and CM-VAE with
adversarial training (CM-VAE-Adv).

Missing % TDImpute CM-VAE CM-VAE-Adv

4 0.863 0.986 0.989
90 0.806 0.986 0.978
95 0.775 0.983 0.980

3.2. Effect of Augmentations in the Prediction Task

A key research question is to determine whether the data augmentations improve
the performance in the downstream task. Table 7 provides Ctd for the experiments. Due
to the substantial improvement provided by OV alone, we also extended TDImpute by
oversampling with replacement (TDImpute-OV). However, TDImpute-OV exhibited a
degraded performance relative to TDImpute [11]. We see that the DACMVA framework of the
CM-VAE variations outperforms the other experiments, and the best performing DACMVA
model varies with the missing data percentage. However, the 95% confidence intervals
computed from the 1000 bootstraps on the test set do overlap. As detailed in Section 3.1,
a one-sided Wilcoxon signed-rank test was performed to compare the best DACMVA VAE
method to TDImpute on the bootstrapped sets. The statistical results are shown in Table 8.
All comparisons were very significant with p-values << 0.001. Therefore, it is concluded
that the best DACMVA VAE method at each missing percentage (MP) significantly outperforms
the previous state-of-the-art baseline, TDImpute [11].

Table 7. Concordance Index with 95% confidence intervals from 1000 bootstraps on the test set. The
DACMVA framework for cross-modal variational auto-encoders with oversampling (CM-VAE-OV),
adversarial training (CM-VAE-Adv), or both (CM-VAE-Adv-OV) is compared to the other baselines
in varying data regimes.

Missing
Percent Multisurv OV TDImpute TDImpute-OV CM-VAE-OV CM-VAE-Adv CM-VAE-Adv-OV

4 0.681 ± 0.036 0.691 ± 0.034 0.688 ± 0.035 0.667 ± 0.033 0.700 ± 0.033 0.693 ± 0.032 0.703 ± 0.034
90 0.640 ± 0.036 0.666 ± 0.033 0.682 ± 0.033 0.675 ± 0.033 0.673 ± 0.036 0.685 ± 0.034 0.684 ± 0.033
95 0.598 ± 0.035 0.622 ± 0.038 0.630 ± 0.035 0.621 ± 0.035 0.639 ± 0.034 0.624 ± 0.036 0.636 ± 0.034

Table 8. Statistical comparison of the best DACMVA models against TDImpute on the test set with
varying missing percentages. The best DACMVA model refers to the model providing the best Ctd per
Table 7. Resultant p-values are shown for the one-sided Wilcoxon signed-rank test.

Missing % Best DACMVA Models vs. TDImpute

4% p-value = 3.6 × 10−155

90% p-value = 7.2 × 10−10

95% p-value = 1.8 × 10−82
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The results indicate that adversarial training enables a substantial improvement over
CM-VAE-OV in the regime of 90% fewer RNA samples than DNA samples. However, in
the cases of 4% and 95%, adversarial training offers marginal or no improvement over
CM-VAE-OV. We hypothesize that, in the very-low-data regime of 95%, there is insufficient
data to achieve an improved latent space alignment from adversarial training. Conversely,
it is possible that, at 4%, there is enough data for alignment to be achieved with LCM alone.
Therefore, the study results indicate that adversarial training may be beneficial for some
data regimes, but it does not consistently outperform the other augmentation models.

4. Discussion

As part of the construction and analysis of the DACMVA framework, we experimented
with multiple variations of augmentation. These variations included with or without
oversampling and with or without adversarial training. Compared to TDImpute [11], the
DACMVA method of training modality B as a VAE with a cross-modal loss provided an im-
proved imputation quality, as assessed by test set LCM and Pearson correlation coefficients.
DACMVA also achieved an improved performance in the downstream prediction task when
compared to TDImpute, oversampling alone, and the baseline without augmentation.

A noted limitation is that in the very-low-data regimes (90% and 95%), the improve-
ment in Ctd over TDImpute [11] was statistically significant based on a Wilcoxon signed-
rank test, but the performance gain was relatively small in magnitude. Additionally,
adversarial training did not consistently improve results relative to training modality B
without adversarial training. The performance of the algorithms relative to one another
was dependent on the percentage of missing modality B data. The performances were
also sensitive to HPs. Nonetheless, the developed DACMVA framework provides a means
to conduct data augmentation for the challenging scenario of tabular data modalities and
continuous labels.

Future efforts will include augmenting multiple modalities via the DACMVA framework
and using multi-modal inputs for the prediction task. Specifically, the inclusion of a
contrastive loss, as suggested by Radhakrishnan et al. [24], could improve latent space
alignment. Finally, here, the application of DACMVA focused on cancer survival prediction. It
is anticipated that the performance gains will generalize to other domains and applications.
Application of the DACMVA framework of models towards additional DL prediction tasks is
a rich area for future research.
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