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Abstract: The development of autonomous driving models through reinforcement learning has
gained significant traction. However, developing obstacle avoidance systems remains a challenge.
Specifically, optimising path completion times while navigating obstacles is an underexplored re-
search area. Amazon Web Services (AWS) DeepRacer emerges as a powerful infrastructure for
engineering and analysing autonomous models, providing a robust foundation for addressing these
complexities. This research investigates the feasibility of training end-to-end self-driving models
focused on obstacle avoidance using reinforcement learning on the AWS DeepRacer autonomous race
car platform. A comprehensive literature review of autonomous driving methodologies and machine
learning model architectures is conducted, with a particular focus on object avoidance, followed by
hands-on experimentation and the analysis of training data. Furthermore, the impact of sensor choice,
reward function, action spaces, and training time on the autonomous obstacle avoidance task are
compared. The results of the best configuration experiment demonstrate a significant improvement
in obstacle avoidance performance compared to the baseline configuration, with a 95.8% decrease in
collision rate, while taking about 79% less time to complete the trial circuit.

Keywords: reinforcement learning; autonomous driving; simulation; object avoidance; AWS DeepRacer

1. Introduction

The topic of self-driving vehicles has been the focus of the automobile industry in
recent years, with numerous technological advances paving the way for its realisation. How-
ever, despite significant progress, the path to achieving fully autonomous self-driving cars
remains fraught with challenges. Developing sophisticated object detection and avoidance
algorithms and safeguarding the security and reliability of these systems are paramount
hurdles that must be overcome. Nevertheless, and while still facing many challenges to
overcome before full-scale adoption, the ongoing breakthroughs in artificial intelligence
and related fields are propelling us towards full vehicle autonomy, offering a tantalising
glimpse into a future where transportation is safer, more efficient, and revolutionised. One
of the most compelling benefits of self-driving cars is the potential to significantly reduce
traffic accidents. More than 90% of road accidents are attributed to some degree of human
error, including distractions, impairment, and flawed decision making. As autonomous
driving technology matures, we can expect a dramatic decline in accidents [1]. The end goal
of autonomous driving research is to create an automated driving system (ADS) that oper-
ates independently, increasing passenger safety and driver efficiency while simultaneously
reducing accidents caused by human error. The widespread adoption of ADSs is projected
to generate annual social benefits of nearly USD800 billion by 2050 in the USA alone,
resulting from reduced congestion, decreased road casualties, lower energy consumption,
and increased productivity from reclaimed driving time [2]. Automobile manufacturers are
increasingly recognising self-driving software as a crucial competitive advantage, validat-
ing the feasibility of vehicle autonomy with current or near-term technologies. Although
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researchers and manufacturers can use different approaches to address the problem of
self-driving, common practices have emerged. Traditionally, ADSs have divided the task of
autonomous driving, addressing each subcomponent individually. However, more recently,
end-to-end methods have emerged as an alternative to modular approaches, leveraging
artificial intelligence to create holistic solutions [3].

The purpose of this paper is to explore the capabilities of the Amazon Web Services
(AWS) DeepRacer autonomous race car platform. This platform serves as a testing ground
for investigating the viability of training end-to-end self-driving models with reinforcement
learning (RL), with a specific emphasis on obstacle detection and avoidance. The insights
gained from hardware and software configurations, as well as fine-tuning processes, con-
tribute to the broader goal of transitioning self-driving technology from simulations to
real-life scenarios. And, while DeepRacer provides robust support for deploying trained
models to physical cars for evaluation and testing purposes, successful deployment in real-
world environments often necessitates a multifaceted approach. Researchers commonly
employ calibration techniques [4,5] to ensure integration between sensors and actuators,
domain randomisation [6–8] to simulate a diverse range of real-world conditions and
challenges, fine-tune using real-world data [9], and learn features through a mixture of
simulation and real data [10].

The paper contributes to the field by conducting hands-on experimentation and
comparing the performance of several hardware and software configurations in training the
AWS DeepRacer autonomous car to navigate an obstacle course in a simulated environment.
On the hardware side, the paper proposes the use of a full sensor suite, consisting of a
single-lens camera with a light detection and ranging (LiDAR) sensor mounted atop the
DeepRacer car, in combination with an optimised action space, software-wise, to provide a
wider range of control options. Additionally, a continuous reward function is presented
that allows for a more fine-grained feedback mechanism and enables the agent to make
more precise adjustments to its behaviour in response to its environment.

2. State of the Art Review

In the rapidly progressing domain of artificial intelligence and autonomous driving,
the field of RL has emerged with multiple techniques that were validated in simulated
environments. Furthermore, during recent years, there have been accomplishments in
the delivery of simulators for training an autonomous car agent [11,12] in a simulated
environment such as Unity [13] or AWS DeepRacer [14]. This chapter delves into and
reviews existing methodologies and pays attention to approaches, merits, and limitations
in simulated autonomous driving scenarios.

Path planning is one of the main areas of applying RL in autonomous driving. The
main goal is to ensure safe and smooth navigation, avoiding collisions with parts of
the environment. To handle path planning issues, conventional approaches are A-star
search [15], Rapidly Exploring Random Trees, and D-star algorithms [16].

However, these algorithms face limitations in terms of speed, when applied to large-
scale environments, making them unsuitable for real-time usage. Therefore, many studies
are based on alternative approaches, such as deep learning. Most recent solutions use deep
RL, as using deep neural networks in combination with RL algorithms allows us to create
more robust solutions that can learn complex tasks. For example, a double Deep Q-Network
(DQN) was applied, to perform dynamic path planning for unknown environments [17],
and then another researcher enhanced the previous solution and proposed a novel motion
planning algorithm based on the double DQN, which demonstrated excellent generalisation
abilities in the simulated environment [18]. Then, a combined approach was introduced, in
which the DQN was merged with a Long Short-Term Memory (LSTM) network. In this
way, the LSTM network can learn and store state information at moments before and after
specific time points [19].

In addition to the above, there is an increasing rate of RL applications made not only for
motion planning but also for the domain of autonomous racing agents training to navigate
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in simulated environments [20,21]. These methods often utilise Soft Actor Critic (SAC)
algorithms that are designed to train a model for assessing the value of specific actions in a
given situation. This knowledge is then used to guide the choice of actions. Another group
of authors proposed a novel approach that was built on top of distributional RL, with its
policy optimisation maximising stochastic outcomes [22]. Consequently, they obtained
significantly better motion planning behaviour compared to traditional RL algorithms.
Another team of researchers used ResNet-34 [23] as an actor and critic network architecture
in the SAC algorithm, to increase the sustainability of the implemented policy [24].

In addition to planning routes, autonomous driving agents also face the complex
challenge of avoiding stationary or dynamically placed obstacles in their way. The re-
search team introduced a Convolutional Deep Deterministic Policy Gradient (CDD-PG)
approach [25], which employs a network composed of depth-wise separable convolutional
layers. This method is designed to efficiently process images for obstacle avoidance tasks,
that utilise an actor–critic network structure. Another article [26] proposed Coordinated
Convolution Multi-Reward Proximal Policy Optimisation (CCMR-PPO), which decreases
the dimension of the bird’s eye view data within the convolution network and then feeds
the processed data to the algorithm input to optimise the state space. Experiments show
that the designed approach suggested a notable gain in performance; compared to the
Proximal Policy Optimisation (PPO) algorithm, the number of tasks completed increased by
54%. The research [27] conducted experiments to evaluate the PPO and SAC algorithms in
terms of success rate, performance, and training speed; the experiments conducted showed
that the algorithms are comparable and performed similarly with a 91% success rate.

Another popular avenue for the application of RL in autonomous driving is navigating
the agent in dynamic traffic highway environments. Notably, one approach proposed an
LSTM-based framework to predict the potential paths of several nearby vehicles within
a specific proximity of the agent [28]. Experiment results indicated the effectiveness of
the proposed model in predicting the forthcoming trajectories around the agent, accu-
rately generating the corresponding spatio-temporal map across various dynamic scenarios.
Another noteworthy solution addressed agent navigation in densely simulated traffic
environments with various driver behaviours [29]. The authors presented a simulation
approach that enriches existing traffic simulators by integrating trajectories enhanced with
diverse behaviours, generated through a driver behaviour modelling algorithm. Utilising
this enhanced simulator, they trained a deep RL policy, allowing the ego-vehicle to navi-
gate through dense traffic. Other researchers developed the decision-making approach for
autonomous vehicles operating in a multilane environment [30]. This method establishes
a high-level policy for safe tactical decision-making, addressing challenges related to col-
lision prevention and the consideration of unobservable states caused by unpredictable
behaviours of other agents. Furthermore, it is worth mentioning another set of authors
proposed the ReinforcementDriving method [31], which involves the exploration of navi-
gation skills and trajectories of a simulator for comprehensive road maintenance. Given
that traffic navigation is relatively new, the group of researchers introduced the framework
that incorporates Recurrent Neural Networks (RNN) for effective information integration,
enabling the vehicle to navigate partially observable scenarios [32]. Another promising ap-
proach to consider is imitation learning. It allowed the enhancement of trajectory tracking
precision in autonomous driving, by teaching effective driving skills to an intelligent agent
and then adopting RL to optimize the agent’s driving policy [33].

In continuation with the remarkable findings discussed earlier, another salient topic
of investigation centres around mixed traffic scenarios where human-driven vehicles and
autonomous vehicles (AVs) coexist. To contribute to the described field, the authors aim to
improve travel efficiency and minimize congestion at intersections, ultimately reducing
the total travel time for AVs. As a result, the novel hierarchical multi-agent RL framework
was proposed to simultaneously regulate traffic signals and rerouting directions of AVs in
a dynamic manner [34].
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The high amount of research in simulated environments can also be explained by the
fact that training RL policies in the real world is difficult due to the high complexity of
sampling and safety issues. Simulation mitigates these problems and serves as a testing
ground for evaluating software and experimenting with algorithms.

However, the gap between simulation and reality, or the Sim-to-Real gap, downgrades
the effectiveness of RL policies when they are applied to actual robots. A common method
to bridge this Sim-to-Real transfer gap is domain randomisation. In domain randomi-
sation, simulation parameters are varied during the training phase. This technique has
been effectively used in Sim-to-Real transfers for numerous robotic tasks. In general, ap-
proaches involve introducing noise into dynamics [6] and imagery [35], employing model
ensembles [36], incorporating adversarial noise [37], and evaluating simulation bias [38].

Another way to handle the Sim-to-Real transfer gap is domain adaptation, which is
also widely used to mitigate the visual domain gap [39,40].

With the constant growth of the area of autonomous driving, it has become essential
to have platforms where these Sim-to-Real techniques can be tested and refined. Several
simulation platforms, including CARLA [41], AirSim [42], TORCS [43], and SUMO [44],
significantly contribute to the development and evaluation of deep RL autonomous systems
by offering diverse environments and features to simulate real-world scenarios.

CARLA focusses on the testing of autonomous vehicles in realistic city settings. For
example, a team of researchers applied the DQN method and used the CARLA platform
to emulate the motion of a self-driving vehicle within a simulation environment, which
includes an obstacle vehicle [45]. Other authors also used the given simulator and collected
extensive data on human drivers’ responses to road obstacles to apply behaviour-cloning
network architecture with the modified loss [46]. In that paper, they confirmed that the end-
to-end model that incorporates imitation learning successfully navigates through an urban
environment simulation. In addition to that, a motion planning strategy for autonomous
vehicles grounded in motion prediction and vehicle-to-vehicle (V2V) communication was
designed, and its robustness was guaranteed using the CARLA simulator [47].

AirSim offers physically and visually realistic simulations for the development and
testing of algorithms for autonomous vehicles. With their help, the authors validated the
effectiveness of an online federated RL transfer process for real-time knowledge extraction
to address the problem of the complex and time-consuming process of knowledge localisa-
tion [48]. Another group of researchers enhanced cloud computing technology to reduce
the training time of deep RL models for autonomous driving by allocating the training
process among a pool of virtual machines [49] using AirSim environments.

TORCS and SUMO are demonstrated to be prominent tools for developing and testing
short-term trajectory planning approaches [50], solutions that handle complex state and ac-
tion spaces in a continuous domain [51], multi-agent deep reinforcement learning methods
for self-driving vehicles capable of navigating through traffic networks with uncontrolled
intersections [52], and many other advances or methodologies.

Building upon this diverse landscape of simulation platforms, AWS DeepRacer emerges
as a decent tool in this domain, offering a practical and versatile environment for experimen-
tation. DeepRacer provides a basis for replicating and experimenting with Sim-to-Real tech-
niques. Using the DeepRacer car, navigation varies from basic, slow-speed lane-following
to more intricate activities like high-speed racing or navigating through traffic. It utilises
nonrecurrent network architectures for RL policy, allowing to obtain real-world robustness
to various cars, tracks, and environmental changes.

Despite growing interest in DeepRacer, the amount of research on the platform is
relatively limited. Most ideas and findings are often found in the form of tutorials, blog
posts, and open-source projects, rather than in peer-reviewed scientific papers. However,
some notable contributions were observed and reviewed in the rest of this chapter.

Most of the articles focused on creating solutions with the DeepRacer agent for obstacle-
free environments [53]. Another paper presented a novel system framework for the Vehicle
Network Autonomous Racing Model (VNARM) [54]. The vehicle’s ability to complete a



Information 2024, 15, 113 5 of 24

lap improved drastically, reducing the time by up to three times compared to the baseline
solutions [14], while still achieving a high completion rate.

There was also research oriented on multi-agent autonomous navigation on the Deep-
Racer platform [55,56]. This article focusses on vehicle platoon state control strategy and
scheduling, using Gazebo simulations [57], and introduces novel algorithms for seamless
state switching, including strategies for convoy formation, disbandment, and reordering,
ensuring accurate navigation in varied scenarios such as overpass transits.

Another group of authors even conducted experiments to introduce a cost-effective
DeepRacer simulation on an EC2 instance [58], bypassing the need for hardware and
reducing costs compared to the DeepRacer Console.

However, there is almost no research aimed at handling obstacle avoidance using
DeepRacer. Only one research study was found [59], where the authors integrated two
pathfinding algorithms, A-Star and Line-of-Sight, into the paradigm of autonomous driving
and showed that the models developed using these methods exceeded the default AWS
DeepRacer approach in terms of both learning speed and overall race performance.

The review conducted of existing solutions indicates a significant focus on applying
deep RL to autonomous driving solutions in simulated environments, with a growing trend
of applying RL to autonomous racing agents and notable advancements in obstacle avoid-
ance techniques. While DeepRacer serves as a perspective platform for experimentation,
there is a notable lack of research in obstacle avoidance using the mentioned environment,
pointing to potential areas for future exploration.

3. Materials and Methods

This chapter describes the proposed methods for implementing a machine learning
model for autonomous driving in a simulated environment. The underlying optimization
algorithms, hardware and software systems, and reward functions are going to be defined
in this chapter as well.

3.1. Policy Network

The policy network is a deep neural network model, responsible for the actions taken
by the agent [60]. The model takes environment data as the input and generates actions as
the output. In this case, the agent is a self-driving car, the environment is the racing track,
the input data are the video frames from the cameras, and the point cloud forms the LiDAR.
The actions the model can output are combinations of velocity and steering angle that are
defined by the action space before training.

The model architecture (Figure 1) is defined by the AWS DeepRacer service and
consists of multiple 2D convolutional neural network (CNN) image embedders for video
frames processing, a 1D LiDAR input embedder, and a dense layer responsible for selecting
actions based on the features extracted from the environment.

The first step is the input processing. The goal of this step is to extract features from
the input sensor signals. The 2D CNNs are responsible for feature extraction from the front-
facing cameras. The inputs from each camera are processed separately. The one-dimensional
input of the LiDAR is processed by a 1D CNN.

The second step in the processing pipeline is to choose an action based on the features
extracted from the inputs captured by the sensors. A neural network of fully connected lay-
ers is responsible for this. The network takes the combined output of the feature extraction
networks as input and produces an action as output. The size of the output layer is defined
by the action space size and type (discrete or continuous). In the case of a discrete action
space, the output layer will have the same number of nodes as the number of actions in the
action space. In the case of a continuous action space, the output layer will have two nodes
producing continuous values: one for the velocity and one for the steering angle.
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3.2. Hardware and Sensors

The physical car AWS DeepRacer Evo can be equipped with different combinations of
sensors: a single camera, a single camera with a LiDAR, a stereo camera, or a stereo camera
with a LiDAR [61].

A forward-pointing monocular camera provides the agent with visual information on
what is in front of the car. This information should be enough for the car to race without
going off track. An agent with a single camera requires the least training time, since the
policy network has the smallest input size. On the other hand, this configuration is known
for demonstrating suboptimal results in obstacle avoidance and head-to-head racing modes,
since it lacks information about the distances to the detected objects on track.

A forward-pointing stereo camera provides the agent with two images taken from
slightly different perspectives. This enables the policy network to estimate the distances to
the visible objects and show better results in obstacle avoidance and head-to-head racing.
With this configuration, the model takes significantly more time to converge, but has the
potential to achieve higher performance.

Both single and stereo camera configurations are limited to providing the agent with
the information from the forward direction. A LiDAR can be added to increase the agent’s
awareness of the situation in other directions. This helps the car to perform manoeuvres
such as lane changes or turns without crashing into an obstacle or another car that might
be to the side and not visible to the front-facing cameras. The layout of the sensors on a
Deep Racer model can be seen in Figure 2.

The AWS DeepRacer simulation environment was designed to closely emulate the
specifications of a physical DeepRacer EVO car and minimise the Sim-to-Real perfor-
mance gap.
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3.3. Policy Optimization Algorithms

The AWS DeepRacer simulation platform provides tools and implements the rein-
forcement learning pipeline to train the policy network.

This section describes two policy optimisation algorithms available in the AWS Deep-
Racer simulation environment: PPO and SAC. The algorithms are used to optimise the
policy network described earlier to perform actions with the highest possible reward
according to the reward function, which is going to be defined later.

3.3.1. Proximal Policy Optimisation Algorithm

PPO is a policy-based algorithm capable of optimising policies with discrete and
continuous action spaces [62]. The algorithm strives to make the optimisation of the pol-
icy stable. It is considered a successor to the Trust Region Policy Optimisation (TRPO)
algorithm [63], which pursues the same goal, but is much more complex. The PPO algo-
rithm has been proven to perform at least as well as TRPO, while being much simpler
to implement.

At each optimisation step, the PPO algorithm tries to take the largest possible optimi-
sation step without stepping too far to avoid causing optimisation collapse. The optimized
policy parameters θk+1 can be defined as follows:

θk+1 = arg max
θ

E
s,a∼πθk

[L(s, a, θk, θ)] (1)

where πθk is the policy at the previous step and k, s, and a are the states and actions defined
in the state and action spaces of the environment. The optimized policy is a policy that
maximizes the expected value of L(s, a, θk, θ) which is defined as follows [56]:

L(s, a, θk, θ) = min
(

πθ(a | s)
πθk (a | s)

Aπθk (s, a), clip
(

πθ(a | s)
πθk (a | s)

, 1 − ϵ, 1 + ϵ

)
Aπθk (s, a)

)
(2)

where πθ(a | s) is the probability of taking an action a in state s according to policy θ,
Aπθk (s, a) is a quantitatively expressed advantage of taking an action a in state s comparing
to a baseline, and ϵ is a hyper parameter of the algorithm responsible for clipping the
optimization step in the range from 1 − ϵ to 1 + ϵ.
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3.3.2. Soft Actor Critic Algorithm

SAC is an advanced off-policy algorithm designed to work with continuous action
spaces [64]. The off-policy model makes the algorithm more data-efficient and improves
sample efficiency. The algorithm incorporates an actor–critic architecture and an entropy regu-
larisation technique that improves the stability of the training and the exploration capabilities.

SAC uses multiple value critics to estimate the state-action value function. This helps
to reduce the variance in value estimates and contributes to more stable and accurate value
function updates. The end value estimate Q(s, a) is then given by an ensemble of critics,
as follows:

Q(s, a) =
1
n

n

∑
i=1

Qϕi (s, a) (3)

The algorithm incorporates a regularisation of the entropy into the policy optimisation
process. This improves the exploration abilities of the training process, preventing early
convergence to suboptimal solutions. The entropy term is included in the training objective,
which balances the trade-off between exploration and exploitation. The policy should, in
each state, act to maximise the expected future return plus the expected future entropy [58],
as follows:

θk+1 = arg max
θ

E
τ∼πθk

[
∞

∑
t=0

γt(R(st, at, st+1) + αH
(
πθk (· | st)

))]
(4)

where πθk is the policy at the previous step k, α > 0 is the trade-off coefficient, H
(
πθk (· | st)

)
is the entropy of the policy given the current state st, τ is the trajectory the agent experienced,
γt is the discount factor at time t, and R(st, at, st+1) is the reward obtained by taking an
action at in state st and transitioning to state st+1.

3.4. Reward Functions

In reinforcement learning, the reward function is responsible for providing quantitative
feedback to the agent based on the actions performed. The reward function is at the core
of the training process, as it defines the desired behaviour of the agent. In the case of a
self-driving car in an obstacle avoidance scenario, the function must evaluate the following
key behaviours of the agent: progressing through the racing track, staying inside the track,
and staying away from the obstacles. This section describes the reward functions evaluated
and analysed in this article.

3.4.1. Baseline Reward Function

The baseline reward function was taken from the AWS example collection [65]. This
reward function rewards the agent for staying inside the track’s borders and penalises it
for getting too close to objects in front of it. The agent can move from lane to lane to avoid
accidents. The total reward is a weighted sum of the reward and penalty. The function
gives more weight to the penalty in an effort to avoid crashes. The function’s pseudocode
can be seen in Algorithm 1:

Algorithm 1: Baseline reward function

1: Input: reward function parameters
2: Result: reward
3: Initialize: reward = 1 × 10−3 reward lane = 1 reward avoid = 1
4: if car distance to the edge of the road < 0.05 m
5: reward lane = 1
6: else
7: reward lane = 1 × 10−3

8: end if
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Algorithm 1: Cont.

9: if obstacle on the same lane as car
10: if 0.5 ≤ distance to obstacle < 0.8
11: reward avoid × = 0.5
12: else if 0.3 ≤ distance to obstacle < 0.5
13: reward avoid × = 0.2
14: else if distance to obstacle < 0.3
15: reward avoid = 1 × 10−3

16: end if
17: end if
18: reward = reward lane × 1 + reward avoid × 4

3.4.2. Extended Baseline Reward Function

After analysing the training and evaluation results (see Section 4.2) of the previous
reward function, it can be concluded that the trained agent manages to stay on track well.
It also avoids obstacles that are in front and on the same lane. Most crashes happen when
the car needs to take a sharp turn and crashes into an obstacle from the side.

The results can be explained by the fact that the baseline reward function only handles
the case where the car approaches an obstacle on the same lane and ignores the case where
the car moves straight into an obstacle from a different lane.

This version of the reward function is based on the baseline version, but it punishes
the agent not only when it approaches an obstacle on the same lane, but it also discourages
it from being too close to an object on a different lane. According to the dimensions of an
obstacle and the track published by AWS in the DeepRacer documentation [66], a circle
with 0.4 m in radius around the centre of the box should be declared as a no-go zone for
the agent. Entering an additional concentric circle with a radius of 0.5 m will be punished
with a smaller decrease in reward so that the car can enter it when it is needed to make a
turn on the track. The pseudocode of this function can be seen in Algorithm 2.

Algorithm 2: Extended baseline reward function

1: Input: reward function parameters
2: Result: reward
3: Initialize: reward = 1 × 10−3 reward lane = 1 reward avoid = 1
4: if car distance to the edge of the road < 0.05 m
5: reward lane = 1
6: else
7: reward lane = 1 × 10−3

8: end if
9: if obstacle on the same lane as car
10: if 0.5 ≤ distance to obstacle < 0.8
11: reward avoid × = 0.5
12: else if 0.3 ≤ distance to obstacle < 0.5
13: reward avoid × = 0.2
14: else if distance to obstacle < 0.3
15: reward avoid = 1 × 10−3

16: end if
17: else
18: if 0.4 ≤ distance to obstacle < 0.5
19: reward avoid × = 0.5
20: else if distance to obstacle < 0.4
21: reward avoid = 1 × 10−3

22: end if
23: end if
24: reward = reward lane × 1 + reward avoid × 4
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3.4.3. Continuous Reward Function

Another observation that can be captured from the experiments with the baseline and
the extended baseline reward functions (see Sections 4.2 and 4.4) is that, when approaching
an obstacle and entering a punishment zone, the agent does not do anything to exit the zone.

It can be assumed that such results are caused by the discrete nature of the baseline
reward function. As the rewards returned by the function do not change gradually, the
agent receives no guidance on what actions to take to immediately decrease the punishment.
The PPO algorithm, which is used for policy optimisation, is based on gradient descent,
which requires the rewards to be differentiable.

A possible solution to this problem could be to re-implement the reward function
to return continuous reward values in the punishment zones. As the reward gradually
decreases as the agent approaches an obstacle or an edge of the track, there will always be
an action to take to stop being punished.

In this version of the reward function, it was also decided to remove the separation by
lanes to simplify the solution and introduce less confusion during training. Each obstacle
will have three concentric zones around it: a crash zone, a close zone, and a safe zone.
In the crash zone, the minimal constant reward will be returned as the agent does not
have an option to recover from entering this zone. In the close zone, a continuously
decreasing reward will be returned as the agent gets closer to the centre. In the safe zone,
no punishment will be applied, and the agent will receive the full reward. This will ensure
that the agent receives guidance to leave the close zone and its behaviour is not affected by
far-away obstacles. The pseudocode can be seen in Algorithm 3.

Algorithm 3: Continuous reward function

1: Input: reward function parameters
2: Result: reward
3: Initialize: reward = 1 × 10−3 reward lane = 1 reward avoid = 1
4: if distance from center is <0.35 × track width
5: reward lane = 1
6: else if distance from center is <0.5 × track width
7: reward lane = 3.33 × track width − 6.66 × track width × distance from center
8: else
9: reward lane = 1 × 10−3

10: end if
11: if distance to closest obstacle < 0.25
12: reward avoid = 1 × 10−3

13: else if 0.25 ≤ distance to obstacle < 0.5
14: reward avoid = (distance to obstacle − 0.25) × 4 + 1 × 10−3

15: else
16: reward avoid = 1
17: end if
18: reward = reward lane × 1 + reward avoid × 2

4. Results
4.1. Experimentation Settings

The evaluation of the experiments conducted was undertaken by comparing the
DeepRacer agent simulation evaluation output. Given the limited existing research on
obstacle avoidance, it was decided to focus the experiments on that area to better generalise
to real-world tasks.

As there are two reinforcement learning algorithms available in the DeepRacer envi-
ronment (PPO and SAC), the experiments were carried out using the default algorithms.
Emphasis was placed on producing multiple reward functions by handling the limitations
of the default ones. In addition, available sensors, environment configurations, training
time, and hyperparameters were considered.
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The research conducted can be divided into two groups, delineated by experiments
involving reward functions and experiments with sensors (Table 1).

Table 1. Experiments plan.

Experiment No. Reward Function Sensors Algorithm

1 Baseline Stereo camera PPO
2 Baseline Stereo camera SAC
3 Extended baseline Stereo camera PPO
4 Extended baseline Single camera, LiDAR PPO
5 Continuous reward function Stereo camera PPO
6 Continuous reward function Single camera, LiDAR PPO

7 Continuous reward function Single camera, LiDAR PPO, Reduced
Action Space

All models were trained using the obstacle avoidance race type. In this race type, a
vehicle races on a two-lane track, where three objects are randomly distributed across two
lanes along the track at the beginning of each episode (Figure 3). All models were trained
for an equal time period of three hours.

Then, the resulting models were evaluated on the same virtual track with three fixed
obstacles located at 25%, 50%, and 75% of the track length (Figure 3).
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4.2. Baseline Model

To start the experimentation, the AWS DeepRacer baseline reward function was
selected. The setup involved the function itself, the PPO algorithm, stereo camera sensors,
and used a discrete action space (Table 2). The model was trained for three hours.

The PPO algorithm was configured with the default set of hyperparameters (Table 3).
The results obtained were satisfactory to a certain degree, considering the training

time and selected sensors. The reward graph depicted several extreme values during track
completion in the evaluation (Figure 4). However, the evaluation data highlighted that
the model stopped showing gradual improvement through the iterations, as the average
percentage of completion in the training process stopped progressing after the 17th iteration.
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Table 2. Baseline action space.

Action No. Steering Angle (◦) Speed (m/s)

1 −30.0 0.50
2 −30.0 1.00
3 −15.0 0.50
4 −15.0 1.00
5 0.0 0.50
6 0.0 1.00
7 15.0 0.50
8 15.0 1.00
9 30.0 0.50
10 30.0 1.00

Table 3. Baseline PPO hyperparameters.

Hyperparameter Value

Gradient descent batch size 64
Entropy 0.01

Discount factor 0.999
Loss type Huber

Learning rate 0.0003
Number of experience episodes between each policy-updating iteration 20

Number of epochs 10
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Figure 4. Baseline model reward graph.

The evaluation results were suboptimal, primarily due to the use of the baseline
function of the environment, as it only addressed the scenarios when the agent faced an
obstacle in the same lane and ignored the case when the car moved directly into an obstacle
from the other lane. The agent completed the race with a total of 48 crashes and a race time
of approximately 6:30 min (Table 4).

Table 4. Baseline model evaluation results.

Trial Time
(MM:SS.mmm) Trial Results Off-Track Off-Track

Penalty Crashes Crash
Penalty

1 03:17.583 100% 0 -- 26 130 s
2 02:09.535 100% 0 -- 16 80 s
3 01:04.011 100% 0 -- 6 30 s

Based on the evaluation analysis, the direction for the improvement of the reward
function was defined. The agent failed to avoid obstacles in the opposite lane, turning
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right into obstructions instead of avoiding them. These problems were addressed in the
following experiments, to encourage the agent to complete the track without crashing
into obstacles.

4.3. Baseline Model with Soft Actor Critic

Before continuing the experiments to improve the reward function, an experiment
with the SAC algorithm was conducted to check the agent’s behaviour with another RL
algorithm using the baseline reward function. The default set of hyperparameters was used
(Table 5) for the given experiment. The model was trained for three hours. The action space
was continuous, as the SAC algorithm can support only such.

Table 5. Baseline SAC hyper parameters.

Hyperparameter Value

Gradient descent batch size 64
Learning rate 0.0003

SAC alpha (α) value 0.2
Discount factor 0.999

Loss type Mean squared error
Number of experience episodes between each

policy-updating iteration 1

Judging from the reward graph (Figure 5), the trained model was unstable, and
iterations contained a lot of extreme values for both training and evaluation. As a result,
the agent was unable to complete the race in the maximum allotted time. The reason may
be due to the fact that the SAC algorithm requires much more time to converge as it uses a
continuous action space. After this experiment, the PPO algorithm and a discrete action
space were used to focus more on the improvements of the reward function, to achieve
meaningful results while keeping the training time constant.
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4.4. Extended Baseline Model

Based on the revealed drawbacks and limitations of the baseline solution, the default
reward function was reworked, to address the cases where the agent turned right into an
obstacle located in the adjacent track lane. The improved function encourages the agent
to avoid the obstacle in the mentioned case by penalising it not just for approaching an
obstacle on the same lane, but also for approaching an object in the other lane. The model
was trained for three hours with stereo camera sensors, using the same discrete action space
(Table 2) and set of hyperparameters (Table 3) as in the baseline experiment.
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Judging from the reward graph (Figure 6), the model demonstrated stabilisation after
the 10th iteration, characterised by a decrease in extreme values compared to the evaluation
of the previous experiment.
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The extended reward function led to a notable gain in accuracy while running the
evaluation, resulting in 15 crashes, one off-track penalty, and 2:40 min of race time (Table 6).
However, while watching the simulation stream, some failure cases were still detected,
particularly when the agent turned directly into the obstacle and crashed.

Table 6. Evaluation results of the extended baseline model.

Trial Time
(MM:SS.mmm) Trial Results Off-Track Off-Track

Penalty Crashes Crash
Penalty

1 00:46.98 100% 0 -- 4 20 s
2 01:02.74 100% 1 2 s 6 30 s
3 00:52.74 100% 0 -- 5 25 s

Moreover, most crashes were in scenarios where the obstacle was outside the view
area of the camera. On the basis of the conducted experiment, it was concluded that the
model might experience a lack of data from sensors to navigate the environment effectively.

4.5. Extended Baseline with Light Detection and Ranging (LiDAR) Model

The experiments carried out previously showed that the trained agent kept colliding
with obstacles when they were not captured by the front-facing camera. To address this
issue, a LiDAR sensor was added, which should be capable of detecting obstacles even if
they are located on the side of the agent, as it uses light in the form of a pulsed laser to
measure ranges.

Training the model with LiDAR yielded better results, based on the reward graph
(Figure 7). The average percentage completion series contained several outliers, but certain
gradual result improvements were observed.

The evaluation analysis also noted a slight improvement compared to the results of
the previous experiment; the total number of crashes decreased, and the race was finished
in 2:25 min with 10 crashes and one off-track penalty (Table 7).
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Table 7. Evaluation results of the extended baseline model with LiDAR.

Trial Time
(MM:SS.mmm) Trial Results Off-Track Off-Track

Penalty Crashes Crash
Penalty

1 00:51.988 100% 0 -- 4 20 s
2 00:29.824 100% 0 -- 1 5 s
3 01:04.653 100% 1 2 s 5 25 s

Despite these improvements, the model still underperformed and resulted in a signifi-
cant number of crashes. This could be due to several factors: suboptimal hyperparameter
settings, limitations in the PPO algorithm and reward function, or the increased number of
sensors, which may lead to slower convergence.

4.6. Continuous Reward Function

All previous experiments had one common drawback in the reward function. They
were designed to output discrete reward values. The function assigns the rewards based
on the agent’s proximity to obstacles, with the distance divided into three discrete ranges.
Therefore, the agent will receive the same reward, regardless of its precise location within
the region. Such a designed reward function can confuse the agent and lead to suboptimal
learning outcomes, as the agent cannot distinguish subtle changes in the environment and
adjust its behaviour accordingly.

In the following experiment, it was decided to handle the problem described above by
designing a continuous reward function that outputs a smoothly varying reward value,
directly proportional to the exact distance from the obstacle and the edge of the track. This
approach allows for a more fine-grained feedback mechanism that allows the agent to
make more precise adjustments to its behaviour in response to the continuously changing
environment. In this way, the agent can better learn the intricacies of navigating around
obstacles and the track, leading to more efficient and effective learning.

The reward graph during the training phase looked similar to the extended baseline
experiment but did not seem optimal; it contained a lot of values far from the mean
that were fluctuating from minimum to maximum extremes after almost each iteration
(Figure 8).

The evaluation results were almost identical to those of the extended baseline experi-
ment. The agent encountered the same problems that caused crashes in scenarios where
the obstacle was outside the view area of the camera. The results included 16 crashes, one
off-track penalty, and a race time of 2:45 min (Table 8).
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Table 8. Evaluation results of the continuous reward function model.

Trial Time
(MM:SS.mmm) Trial Results Off-Track Off-Track

Penalty Crashes Crash
Penalty

1 01:12.190 100% 0 -- 8 40 s
2 00:46.606 100% 0 -- 4 20 s
3 00:47.126 100% 1 2 s 4 20 s

The experiment carried out did not give the desired result, suggesting that the agent
likely faced a lack of data from sensors to define its behaviour.

4.7. Continuous Reward Function with Light Detection and Ranging (LiDAR)

Previously carried out experiments indicated that the data from the front-facing camera
may not have been enough for the agent to navigate the environment properly. Therefore,
a LiDAR sensor was added to the previously designed setup of the continuous reward
function model.

The training reward graph appeared stable and depicted the gradual improvement of
the model (Figure 9). The average percentage of track completion metric reached a decent
level during the 16th to 20th iterations.
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The evaluation process yielded a significant gain in accuracy, outperforming all pre-
viously trained models. The evaluation was carried out on the standard track (Figure 3),
and the agent managed to finish the first lap without hitting any obstacles, resulting in two
crashes, no off-track penalties, and a race time of 1:22 min (Table 9).
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Table 9. Evaluation results of the continuous reward function with LiDAR model.

Trial Time
(MM:SS.mmm) Trial Results Off-Track Off-Track

Penalty Crashes Crash
Penalty

1 00:22.857 100% 0 -- 0 --
2 00:29.673 100% 0 -- 1 5 s
3 00:30.285 100% 0 -- 1 5 s

In addition, the agent was deployed on a previously unseen track (Figure 10) to
evaluate the generalisation of the model. The environment contained four obstacles on
the circuit, placed at 20%, 40%, 60%, and 80% of the track length. The agent had to finish
three laps.
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The results were reasonably good for an unknown environment. The agent successfully
completed two out of three laps without hitting any obstacles; however, it gained a few
off-track penalties. The final results included three crashes, five penalties for not being on
the track, and a total time of 1:59 min (Table 10).

Table 10. Evaluation results of the continuous reward function with LiDAR model in an unknown
environment.

Trial Time
(MM:SS.mmm) Trial Results Off-Track Off-Track

Penalty Crashes Crash
Penalty

1 00:53.292 100% 1 2 s 3 15 s
2 00:27.494 100% 2 4 s 0 --
3 00:39.144 100% 2 4 s 0 --

4.8. Continuous Reward Function with Reduced Action Space

The results obtained in the previously conducted experiment were satisfactory. As
a next step, it was decided to make the model more lightweight to achieve a faster con-
vergence while keeping the accuracy at the desired level. An approach was to reduce the
action space of the PPO algorithm (Table 11).
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Table 11. Reduced action space.

Action No. Steering Angle (◦) Speed (m/s)

1 −30.0 0.75
2 −15.0 0.75
3 0.0 0.75
4 15.0 0.75
5 30.0 0.75

The initial steering angles were retained, and a constant speed of 0.75 m/s was used.
Such a speed value was used as it is a mean of the maximum (1.00 m/s) and minimum
(0.50 m/s) speed values from the default action space (Table 2). The resulting model
(Figure 11) had a low average percentage of track completion across all iterations.
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The model failed to converge, and as a result, did not finish the evaluation in the
allotted time. One of the potential failure reasons may be the smaller value of the maximum
speed of the agent compared to the previous experiments (0.75 m/s vs. 1.00 m/s), resulting
in a shorter distance covered and a slower convergence during training.

Another hypothesis is that various speed values are important for proper model
training. The model may benefit from lower speed values when bending the track and
higher speed values in straight sections. However, the current agent had only one relatively
high speed value, which it was trying to maintain, leading to a significant number of
crashes and a failed evaluation as a result.

The resulting metrics from all the experiments carried out are summarised in Table 12.

Table 12. Comparative results of the experiments.

Experiment Name Total
Crashes

Total
Off-Track

Total Race
Time

Laps without
Crashes

Baseline 48 0 06:31.129 0
SAC baseline N/A * N/A * N/A * N/A *

Extended baseline 15 1 02:40.256 0
Extended baseline with LiDAR 10 1 02:26.465 0

Continuous reward 16 1 02:45.922 0
Continuous reward with LiDAR 2 0 01:22.815 1
Continuous reward with LiDAR,

unknown environment 3 5 01:59.930 2

Continuous reward, reduced space N/A * N/A * N/A * N/A *
(*): Experiment failed.
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5. Discussion and Future Research
5.1. Evaluation of Findings

The results of the experiments confirm the effectiveness of end-to-end reinforcement
learning methods for training autonomous driving agents, particularly for obstacle avoid-
ance tasks in simulated environments. In the context of this paper, it involves training
the AWS DeepRacer car by using a three-layer convolutional neural network architecture
coupled with a multi-sensor setup, comprising a camera and LiDAR mounted on top of
the vehicle. The addition of LiDAR enhances the environmental awareness of the agent,
enabling the model not only to extract both relevant visual and depth information about
its environment, but also to accurately correlate the input from the environment with the
reward it receives.

In addition to the sensor suite, this research also established that several other factors
need to be considered when designing these self-driving systems, as follows:

1. The reward function: Using a continuous reward function that outputs smoothly
varying reward values that are directly proportional to the agent’s distance from
the obstacle and the edge of the track, rather than one that rewards discrete values
based on the agent’s proximity to obstacles, provided a more effective guidance to
the model. As a result, the agent could make much more precise adjustments to its
driving behaviour and react quickly to the environment.

2. The RL algorithm: SAC and PPO are both model-free reinforcement learning algo-
rithms commonly used in DeepRacer to train agents to complete tasks. SAC is a
model-free algorithm that can learn from past experiences generated by any policy,
while PPO is also a model-free algorithm but is more sample-efficient, meaning that it
can learn a good policy with fewer training examples. Judging from the reward graph
(Figure 5), the trained SAC model was unstable, exhibiting extreme values in both
training and evaluation. This instability led to the agent not completing the race in the
allotted time. This could be explained by the fact that SAC uses a continuous action
space, which requires more data to accurately represent the agent’s actions. In contrast,
PPO uses a discrete action space, making it less susceptible to overfitting and allowing
for faster convergence. It is possible that training SAC for a longer time would have
yielded better results in this particular case, but it is not guaranteed. The reason for
the instability of the SAC model is likely due to the large number of parameters
and the complex nature of the DeepRacer environment. Additionally, the continuous
action space requires a large amount of data to learn a good policy. Increasing the
training time would give SAC more opportunities to explore the environment and try
different actions. This could lead to the discovery of better policies and a reduction in
instability. However, it is also possible that longer training would simply reinforce
the existing instability.

5.2. Possible Applications

The use of AWS DeepRacer to train intelligent agents to navigate simulated tracks
using reinforcement learning algorithms holds great potential for real-world applications.
One promising area of application lies in the development of autonomous vehicles, where
RL algorithms can be used to train agents to navigate complex environments and avoid
obstacles. The use of a simulated environment enables the safe and efficient testing of
autonomous vehicle systems prior to their deployment on actual roads.

Another potential application is in the development of robotics, where RL algorithms
can be utilised to train robots to perform complex tasks in diverse environments. Robots
could be trained to traverse cluttered settings, such as warehouses or factories, to perform
tasks such as picking up and packing items.

The use of RL algorithms to train intelligent self-driving vehicles can also extend to
the gaming industry. Game developers can use these algorithms to create more intelligent
and lifelike non-playable characters (NPCs) [67], which can interact with players in more
engaging ways.
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5.3. Future Research

The research presented in this article has opened several promising avenues for further
investigation. One such avenue of exploration is to modify the simulation environment to
reproduce more complex driving scenarios that were not investigated in this work. It is
important to note that designing these scenarios should only be carried out in controlled
and predefined environments where the agent can learn from repeated trials and adapt
to specific patterns and obstacles. Introducing dynamism and unpredictability to the
environment, such as varying traffic patterns, pedestrian movements, traffic signals, and
diverse environmental conditions, pose significant challenges that extend well beyond
what RL models like AWS DeepRacer are designed for. For applications requiring robust
performances in highly dynamic environments, other specialised reinforcement learning
approaches or platforms, such as CARLA or AirSim, may be more suitable.

Additionally, while the chosen best-performing reward function effectively incen-
tivises the agent to move to the opposite lane in case it encounters an obstacle in its path,
by implementing a circular ‘Danger Zone’ around the obstacle that is proportional to the
agent’s distance from the obstacle, this could lead, in some edge cases where the object is
placed behind a blind corner, for example, to unpredictable behaviour. Future research
could implement a more intricate zone geometry around the obstacle to penalise such
behaviour. Furthermore, in some cases, the trained model exhibited a tendency to fall off
track while avoiding obstacles. A possible point of investigation could look at the trade-off
between encouraging the agent to stay on track and avoiding obstacles. This could involve
adjusting the weights in the reward function to prioritize track adherence. Generalisation
is also an important property that should be evaluated, specifically how well the trained
models can adapt when faced with completely new and unknown environments. Models
that fail to perform well on unseen data are often the result of overfitting [68].

6. Conclusions

This research explores the use of AWS DeepRacer as a viable solution to train end-
to-end RL autonomous driving models to instruct car agents to navigate a simulated
environment. Through experimentation, the performance of various RL algorithms and
configurations is assessed, specifically focussing on training agents to manoeuvre a track
efficiently while avoiding obstacles. Different models were trained with different con-
figurations and the results were recorded. The best experiment used a combination of a
single-lens camera for visual information, and a LiDAR mounted on top of the DeepRacer
vehicle to collect depth information and generate accurate 3D maps of the environment. In
addition, the model used the PPO algorithm with the default action space and a custom
function that rewarded continuous values in the punishment zones. This setup resulted
in a significant gain in accuracy, particularly when compared to the baseline approach
provided by the AWS documentation, with a total of two crashes over the entire eval-
uation track distance, compared to 48 for the baseline (a 95.8% improvement), whilst
reducing both the individual lap times and the total race time, i.e., a total of 1:22 min
compared to 6:30 min (a 78.9% decrease). The reproducibility of these results is ensured
through the public availability of the source code and detailed instructions for training
the obstacle avoidance algorithm using the AWS DeepRacer web console. For the full
implementation details, code, and results obtained, refer to the public GitHub reposi-
tory at https://github.com/ktu-samurai-team/aws-deepracer-research (accessed on 2
January 2024).

Overall, the presented discoveries are of importance in shaping intelligent agents in
autonomous driving simulations. By shedding light on the strengths and limitations of
different RL algorithms, sensor configurations, action spaces, and reward functions, the
results offer valuable insights. These findings can guide the development of more potent
and streamlined approaches for training intelligent agents and applying them to real world
environments. The analysis and conclusions are drawn from a diverse range of sources to
enrich the depth of exploration.

https://github.com/ktu-samurai-team/aws-deepracer-research
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