
Citation: Kumari, S.; Tulshyan, V.;

Tewari, H. Cyber Security on the Edge:

Efficient Enabling of Machine

Learning on IoT Devices. Information

2024, 15, 126. https://doi.org/

10.3390/info15030126

Academic Editors: Krzysztof

Szczypiorski and Daniel Paczesny

Received: 5 January 2024

Revised: 9 February 2024

Accepted: 19 February 2024

Published: 23 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Cyber Security on the Edge: Efficient Enabling of Machine
Learning on IoT Devices
Swati Kumari 1,2,† , Vatsal Tulshyan 1,† and Hitesh Tewari 1,*

1 School of Computer Science & Statistics, Trinity College Dublin, D02 PN40 Dublin, Ireland;
kumaris@tcd.ie or swati.kumari@thapar.edu (S.K.); tulshyav@tcd.ie (V.T.)

2 Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India
* Correspondence: hitesh.tewari@tcd.ie; Tel.: +353-872122008
† These authors contributed equally to this work.

Abstract: Due to rising cyber threats, IoT devices’ security vulnerabilities are expanding. How-
ever, these devices cannot run complicated security algorithms locally due to hardware restrictions.
Data must be transferred to cloud nodes for processing, giving attackers an entry point. This re-
search investigates distributed computing on the edge, using AI-enabled IoT devices and container
orchestration tools to process data in real time at the network edge. The purpose is to identify and
mitigate DDoS assaults while minimizing CPU usage to improve security. It compares typical IoT
devices with and without AI-enabled chips, container orchestration, and assesses their performance
in running machine learning models with different cluster settings. The proposed architecture aims
to empower IoT devices to process data locally, minimizing the reliance on cloud transmission and
bolstering security in IoT environments. The results correlate with the update in the architecture.
With the addition of AI-enabled IoT device and container orchestration, there is a difference of 60%
between the new architecture and traditional architecture where only Raspberry Pi were being used.

Keywords: IoT; cyber threats; distributed computing; AI-enabled chips; container orchestration;
DDoS attacks

1. Introduction
1.1. Background

Since cyber security threats are rising, securing the Internet of Things (IoT) is crucial
to daily life. Since IoT hardware cannot manage sophisticated workloads, they cannot
run complex security risk detection algorithms on themselves, making them vulnerable
to high-level security attacks. Instead, they must send data to cloud nodes to process
inputs, leaving a loophole for attackers to steal data midway. However, if they could
run those models, they could process their real-time packets or inputs. Security is still
important when embedded technology advances and becomes robust enough to create
apps on it to make life easier. Security adaptation cannot keep up with rapid technology
change. Growing IoT devices have caused exponential growth. Imagine its economic
impact on global markets. Distributed computing on the edge is desired to offload activities
and improve resource planning and IoT device use due to cloud reliability, latency, and
privacy problems [1].

Most workloads are in the cloud, making data transit vulnerable to hackers. Fitness
trackers broadcast important data like heart rate and blood pressure to the cloud, which
might be compromised during transmission [2,3]. To circumvent these issues, it is necessary
to compute close to IoT devices to scale edge computing and make them capable of
processing large amounts of data.

Container orchestration is essential for IoT application management and deployment.
Developers may automate container deployment, scaling, and administration to optimize
IoT device resources. The dynamic and resource-constrained nature of IoT settings requires

Information 2024, 15, 126. https://doi.org/10.3390/info15030126 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15030126
https://doi.org/10.3390/info15030126
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-6557-5935
https://orcid.org/0000-0003-1660-1620
https://orcid.org/0000-0003-1738-527X
https://doi.org/10.3390/info15030126
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15030126?type=check_update&version=1

Information 2024, 15, 126 2 of 28

load balancing, auto-scaling, and fault tolerance, which container orchestration provides.
IoT service dependability and availability are improved, updates and maintenance are
simplified, and developers can focus on developing creative, robust solutions that respond
to changing conditions in real time [4].

The methodology involves setting up IoT devices with static IP addresses, building a
machine learning model for DDoS detection, and setting up traditional devices (e.g., Rasp-
berry Pi) in a distributed computing environment with an AI-embedded chip IoT device
and a container orchestration tool. A Raspberry Pi-only distributed computing cluster with
and without container orchestration tools would be compared to this cluster. All clusters
will be evaluated by running ML models and comparing their performance and hardware
metrics (CPU and Memory). This research aims to find whether scaling up traditional
IoT devices with AI-enabled chips can help with running complex models and whether
lightweight orchestration tools could help the resource utilisation on IoT devices and help
them to run machine learning and apply them to cyber security improvement.

Figure 1 shows the proposed state-of-the-art architecture in this research. It combines
AI-enabled IoT devices with other IoT devices to form a cluster. This design would enable
near-edge computation by sending IoT packets to the AI IoT device for processing to detect
anomalies. The cloud would preserve these anomalies for future improvements. The
figure’s network cloud is any usable network interface such as WiFi or swap networks.
Due to the AI IoT device’s sole purpose of processing and communicating with the cloud,
it remains a secure route to transmit information. With the help of container orchestration
tools and AI IoT Devices in a networking architecture, the IoT devices will be able to run
machine learning models efficiently on the edge to tackle attacks like DDoS by reducing
CPU utilization.

Figure 1. General Architecture.

1.2. Research Contribution

This research aims to scale up the performance of IoT devices to support machine learn-
ing models and perform security risk detections on top of them with the help of AI-enabled
IoT device and container orchestration like Microk8s. This research accomplished its goals
by employing the following methods:

1. Use of AI-enabled architecture in the cluster;
2. Use of machine learning models for the detection of DDos and other attacks;

Information 2024, 15, 126 3 of 28

3. Use of container orchestration tool like Microk8s;
4. Use of different forms of architecture with AI-enabled IoT devices or simple IoT

devices like Raspberry Pi;
5. Use of Docker images for microservices;
6. An overall decrease of 60% in CPU utilisation from the traditional architecture of

Raspberry Pi to Microk8s architecture with Nvidia is achieved;
7. Container orchestration-as-a-solution: it provides a way to efficiently manage the

autoscaling of the resources if required and did a great job with job scheduling.

2. Related Work
2.1. Cyber Security as a Challenge to IoT Devices

IoT devices are being used in many fields. This covers manufacturing, logistical,
medical, military, etc. Research predicts 100 billion devices will be in use by 2025 [5].
Considering the predicted amount of devices [5], it is clear that attackers are targeting
the IoT. The attackers would compromise selected nodes in the architecture to access the
source code and infect the remainder of the deployments, including cloud resources. IoT
deployments have violated local laws in earlier studies. Current IoT security methods often
rely on manual intervention for maintenance and updates, leading to a lag in protection
and an inability to learn and adapt to evolving threats. The unity and integrity of IoT, which
spans terminals, networks, and service platforms, necessitate security solutions capable of
effectively handling massive amounts of complex data [6].

Traditional data transfer to central servers is still popular. The data are usually sent
over MQTT or HTTP. Previous research has shown transmission problems with MQTT and
HTTP protocols [7,8]. Attackers find transfer scenarios to be the entryway to their target
information. They would use man-in-the-middle attacks to infect routers that could sneak
malicious packets to the main servers. The attackers also turned IoT devices in the large-
scale infrastructure into botnets by planting malicious malware. After that, these devices
send simultaneous requests to primary servers, causing a Distributed Denial of Service on
cloud servers. If the main servers cannot receive data from legitimate IoT devices, incorrect
or timed-out responses during data transmission cause data overload. In such a scenario,
the data start collecting and rendering the legitimate devices to shut down operations [9].

2.2. Solutions Implemented to Solve Security Vulnerabilities

Malicious attacks have taken many forms. Attackers know that IoT security breaches
take time to detect. Due to hardware issues, botnet and malware detection in the IoT
environment might be difficult. However, edge computing with machine learning models
on IoT devices has yielded novel solutions. Edge computing is a computing method in
which the workload is divided amongst nodes to form a distributed architecture. It is
an important area in research for IoT as this minimises the bandwidth and response
time in an IoT environment. Moreover, it reduces the burden of a centralized server [10].
There have been detection methods which have been developed to be used in an edge
computing scenario.

Myneni et al. [11] suggest “SmartDefense”, a two-stage DDoS detection solution that
utilizes deep learning algorithms and operates on the provider edge (PE) and consumer
edge (CE). The PE and CE refer to the routers which are close to consumers and Internet
service providers (ISPs). Edge computing helps SmartDefense detect and stop DDoS attacks
near their source, reducing bandwidth waste and provider edge delay. The method also
uses a botnet detection engine to detect and halt bot traffic. SmartDefense improves DDoS
detection accuracy and reduces ISP overhead, according to the study. By detecting botnet
devices and mitigating over 90% of DDoS traffic coming from the consumer edge, it can
cut DDoS traffic by up to 51.95%.

Bhardwaj et al. [12] suggest a method called ShadowNet that makes use of computa-
tional capabilities at the network’s edge to speed up a defence against IoT-DDoS attacks.
The edge tier, which includes fog computing gateways and mobile edge computing (MEC)

Information 2024, 15, 126 4 of 28

access points, can manage IoT devices’ massive Internet traffic using edge services. As IoT
packets pass through gateways, edge functions build lightweight information profiles
that are quickly acquired and sent to ShadowNet web services. IoT-DDoS attacks are
initially prevented by ShadowNet’s analysis of edge node data. It detects IoT-DDoS at-
tacks 10 times faster than victim-based methods. It can also react to an attack proactively,
stopping up to 82% of the malicious traffic from getting to the target and harming the
Internet infrastructure.

Mirzai et al. [13] discovered the benefits of building a dynamic user-level scheduler
to perform real-time updates of machine learning models and analysed the performance
of the hardware of Nvidia Jetson Nano and Raspberry Pi. The scheduler allows local
parallel model retraining on the IoT device without stopping the IDS, eliminating cloud re-
sources. The Nvidia unit could retrain models while detecting anomalies, and the scheduler
outperformed the baseline almost often, even with retraining! The Raspberry Pi unit under-
performed due to its hardware’s architecture. The experiments showed that the dynamic
user-level scheduler improves the system’s throughput, which reduces the attack detection
time, and dynamically allocates resources based on attack suspicion. The results show that
the suggested technique improves IDS performance for lightweight and data-driven ML
algorithms for IoT.

2.3. Container Orchestration Applied to IoT Devices

Google’s Borg was turned into Kubernetes using Go programming for Docker and
Docker containers for orchestration. Kubernetes expanded on Google’s Borg, which in-
spired its development. Later, Kubernetes was viewed as a strong edge computing solution,
which led to the creation of lightweight container orchestration solutions like k3s, Microk8s,
and others because Kubernetes required intensive hardware specs that IoT platforms
lack. Performance of lightweight container orchestration technologies has been studied.
All research is from the last two to three years.

The researchers [14] established a Kubernetes cluster using readily available Raspberry
Pi devices. The cluster’s capacity to handle IoT components as gateways for sensors and
actuators was tested utilizing synchronous and asynchronous connection situations. Linux
containers like Docker can be used to quickly deploy microservices on near-end and far-end
devices. Container technologies isolate processes and hardware within an operating system.
Due to its fast deployment, communication management, high availability, and controlled
updates, Kubernetes may be a solution for IoT. The paper draws attention to the paucity of
research on deploying Kubernetes in the IoT setting and the need for additional research to
analyze its applicability and limitations. Performance testing, evaluating response times,
request rates, and cluster stability revealed the architecture’s pros and cons [15].

Lightweight solutions have been developed in recent years: Minikube, Microk8s,
k3s, k0s, KubeEdge, and Microshift. In several tests, the authors tested tiny clusters of
lightweight k8s distributions under high workloads. These insights can assist researchers
in locating the lightweight k8s distribution for their use case. The researchers have ba-
sically found the resource consumption on idle for different k8s distributions, finding
the resource consumption when the pods are being created, deleted, updated or being
read and when the pods are assigned intensive workloads. Azure VMs, not IoT devices,
powered the research. It would have been ideal to collaborate with IoT devices near to
production. The researchers acknowledge the above shortcoming and suggest replacing
artificial benchmark situations with production workloads and using black-box measures
instead of white-box techniques. If the controller node has at least 1–2 GB of RAM and
worker nodes have even less hardware, all lightweight k8s distributions perform well on
low-end single-board computers, according to the study.

2.4. Mitigation to DDoS Attacks on IoT Devices

While the detection work has been seen to be a work in progress, mitigation mech-
anisms after a DDoS attack happen are also being given due attention. Blockchain with

Information 2024, 15, 126 5 of 28

the help of smart contracts is one interesting way of implementing this. Although, the
solution at large is not localised to the IoT devices but seems to be making the solution
work through the cloud.

Hayat et al. [16] explore IoT DDoS defences, including smart contracts and blockchain-
based methods. Multiple-level DDoS (ML-DDoS) is being developed to protect IoT devices
and compute servers against DDoS attacks using blockchain. It prevents devices turning
into bots and increases security with gas restriction blockchain, device blacklisting, and
authentication. Blockchain technology is also called a public ledger with unchangeable
records. It facilitates peer agreements in asset management, finance, and other fields via
consensus methods. The decentralized and open-source Ethereum blockchain is promoted
for protocol-based transactional protocols between parties. Comparison of ML-DDoS
performance in the presence of bot-based scenarios shows that it outperforms other cutting-
edge methods including PUF, IoT-DDoS, IoT-botnet, collaborative-DDoS, and deep learning-
DDoS in terms of throughput, latency, and CPU use.

2.5. Research Gap

Table 1 highlights the issues of cyber security in IoT. Hardware complexity, linear cloud
complexity increase that does not match IoT’s exponential development, data manipulation
by attackers, infrastructure botnets, and DDoS or Man in the Middle attacks on servers were
mentioned. In the literature, deploying detection methods on routers for edge computing
still leaves devices vulnerable because they are not secured. Additionally, infected devices
are blocked from accessing the main servers. The detection model deployment should treat
the device instead of rendering it useless. An IoT device with AI capabilities, including
hardware configuration for machine learning algorithms, was proposed in [6]. In [13].
Nvidia Jetson Nano, an AI IoT Device, was shown to have significant potential above
Raspberry Pi. Even IoT research has advanced with container orchestration which is shown
in [14,15]. These studies suggest that edge computing, container orchestration, AI IoT
devices, and IoT devices in general can be combined to achieve more. This study combines
various concepts to work cohesively.

Table 1. Literature review.

Ref. Work Carried Out Challenges

[6]

Attribution analysis of IoT Security Threats
Security Threats in different layers of OSI model
Discussion of Feasibility Analysis of AI in IoT Security
AI solution for IoT security threats

Linear Growth of Cloud Computing does not match the
exponential growth of IoT Devices.
Computational Complexity for IoT Devices
Data Manipulation done by attackers

[11]
A two-stage DDoS detection solution that utilizes deep
learning algorithms and operates on the provider edge (PE)
and consumer edge (CE).

Solution is not based on IoT devices but rather on routers.

[17] ShadowNet deployed at the network’s edge to speed up
defence against IoT-DDoS attacks. Solution deployed on gateways

[14]
Exploring different Kubernetes distributions on rasp- berry
pi clusters.
Exploring pros and cons

Did not perform a load test on the cluster

[18]
Distributed platform over IoT devices so as to make them
support GAN as a solution to Intrusion.
Reduced dependency on Central cloud systems

The research
did not present the CPU utilisation and Memory utilisation
on the devices.

[15] Analysis of different lightweight k8s distributions Implemented it on Azure VMs.

[16] Ethereum based blockchain
Signature-based authenticity test of devices Eliminates the affected botnet devices

[12]
Kubernetes deployed on Raspberry Pi.
Test conducted using synchronous and asynchronous
scenarios to handle IoT components

The test could have also involved testing on machine
learning paradigm as well.

Information 2024, 15, 126 6 of 28

3. Methodology

The CICDDoSDataset2019 has been used for training the machine learning model.
The dataset is shown in Table 2. This dataset has 2 Million entries and 80 columns after
preprocessing. The preprocessing involved replacing spaces with no spaces in every col-
umn wherever applicable, dropping columns such as FlowID, SourceIP, DestinationIP,
Timestamp, SimillarHTTP, SourcePort, and DestinationPort. Since the numeric data were in
text format so those were converted into the numeric format. There are 2,180,000 samples
for DDoS packets and 1542 samples are benign samples. This indicates a heavy imbalance
between the classes [19].

Table 2. DDoS dataset.

S.No. Flow
Duration

TotalFwd
Packet .. Similar

HTTP Inbound Label

1 9141643 85894 .. 0 1 DrDoS_LDAP

2 1 2 .. 0 1 DrDoS_LDAP

3 2 2 .. 0 1 DrDoS_LDAP

4 1 2 .. 0 1 DrDoS_LDAP

5 2 2 .. 0 1 DrDoS_LDAP

6 2 2 .. 0 1 DrDoS_LDAP

7 2 2 .. 0 1 DrDoS_LDAP

..

2181536 1 2 .. 0 1 DrDoS_LDAP

2181537 50 2 .. 0 1 DrDoS_LDAP

2181538 1 2 .. 0 1 DrDoS_LDAP

2181539 1 2 .. 0 1 DrDoS_LDAP

2181540 1 2 .. 0 1 DrDoS_LDAP

2181541 1 2 .. 0 1 DrDoS_LDAP

2181542 2 2 .. 0 1 DrDoS_LDAP

3.1. DDoS Detection Model

Three Machine learning models were trained for the detection of DDoS.

1. Dummy Classifier: A dummy classifier is a simple and baseline machine learning
model used for comparison and benchmarking purposes. It is typically employed
when dealing with imbalanced datasets or as a reference to assess the performance
of more sophisticated models. The dummy classifier makes predictions based on
predefined rules and does not learn from the data. The dummy classifier with the
strategy of predicting the most frequent class is utilised for the baseline. The most
frequent class classifier always predicts the class that appears most frequently in the
training data. This is useful when dealing with imbalanced datasets where one class
is significantly more prevalent than others [20].

2. Logistic Regression: Logistic regression is a popular and widely used classification
algorithm in machine learning. Despite its name, it is used for binary classification
tasks, where the output variable has two classes (e.g., “Yes” or “No”, “True” or
“False”). The logistic regression model calculates the probability that an input data
point belongs to a particular class. It does this by transforming its output through
the logistic function (also known as the sigmoid function). The logistic function
maps any real-valued number to a value between 0 and 1, which can be interpreted
as a probability [21].

Information 2024, 15, 126 7 of 28

3. Deep Learning Model: The deep learning model has three layers to it. The first layer
is the input layer. It has got the input shape of 80 neurons which outputs a shape of
(None, 128). A dropout regularisation enables this layer to handle overfitting of the
data. This is followed by another dense layer which also has a dropout regularisation.
In the end, the model has an output layer with one neuron giving a probability as an
output due to the sigmoid function being used in the last layer.

Performance Metrics

1. F1 score: It combines the precision and recall scores of a model. It is usually more
useful than accuracy, especially if you have an uneven class distribution. The equation
is provided in Equation (1).

F1Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(1)

Precision =
TruePositives

TruePositives + FalsePositives
(2)

Recall =
TruePositives

TruePositives + FalseNegatives
(3)

3.2. Technology Used
3.2.1. Python

Python Programming Language has been used throughout the complete research.
There are some important frameworks used as part of this research.

1. Flask: This is a framework defined under the Python language for hosting REST APIs.
The programmer can define the business logic which interacts with the front end.
It provides an interface between the end user and databases.

2. Tensorflow (TF): This is a package built by Google for deep learning-based workloads.
This package comes along with Keras as shown in Figure 2. Keras is an Application
Programming Interface which allows the programmer to build layers for Artificial
Neural Networks [22].

Figure 2. Model definition of Keras model.

Information 2024, 15, 126 8 of 28

3.2.2. Microk8s

Microk8s has been developed by canonical and is being provided as a snap package as
part of Ubuntu. It controls containerized services at the edge [23]. The previous researches
have mentioned that the Microk8s requires atleast 4 GB of RAM usage. The Microk8s
initially ships with the basics of k8s for example the controller, API server, dqlite storage,
scheduler, and so on. Additionally, there are more add-ons that can be enabled by running
“microk8s enable service name”. The name of the service can be Prometheus, DNS, metallb,
helm, metrics-server, Kubernetes-dashboard, and so on [15].

3.3. Components

This study used four Raspberry Pis with 4 GB RAM each and one Nvidia Jetson Nano
with 4 GB RAM as part of the device infrastructure. A total of 4 MicroSD cards with
16 GB capacity were used for Raspberry Pi and a 64 GB MicroSD card was used for Nvidia
Jetson Nano. Ubuntu Server 18.04 was installed on the Raspberry and Nvidia jetpack on
the Nvidia Jetson Nano. The devices were connected with LAN wires and a switch as a
medium between them. A WiFi adapter was also used with Nvidia Jetson Nano because
Jetson does not come with an onboard WiFi module. The switch model is Netgear JGS524E
ProSafe Plus 24-Port Gigabit Ethernet Switch.

3.3.1. Nvidia Jetson Nano

A robust single-board computer made specifically for AI and robotics applications
is the Nvidia Jetson Nano. The Nvidia Tegra X1 processor, which houses a quad-core
ARM Cortex-A57 CPU and a 128-core Nvidia Maxwell GPU, powers the Jetson Nano [24].
This GPU is especially well suited for jobs requiring parallel processing, making it the best
choice for effectively executing deep learning models and AI workloads. There are other
variations of the Jetson Nano available, but the most typical model comes with 4 GB of
LPDDR4 RAM, a microSD card slot for storage, Gigabit Ethernet, and USB 3.0 ports for
fast data transfer. Its capabilities for robotics and computer vision are increased with the
addition of GPIO ports, a MIPI CSI camera connection, and Display Serial Interface (DSI)
for interacting with cameras and displays. The device is displayed in Figure 3.

Figure 3. Nvidia Jetson Nano.

3.3.2. Raspberry Pi

The fourth version of the successful and adaptable single-board computer created
by the Raspberry Pi Foundation is known as the Raspberry Pi 4. It became available in
June 2019. It has a quad-core ARM Cortex-A72 CPU that runs up to 1.5 GHz, giving it a
substantial performance advantage over earlier iterations. The RAM is 4 GB for the device
being used in this project. The device is displayed in Figure 4 [25].

Information 2024, 15, 126 9 of 28

Figure 4. Raspberry Pi.

3.3.3. Netgear Switch

Netgear JGS524E ProSafe Plus 24-Port Gigabit Ethernet Switch has got 24 ports on it.
A gigabit connection delivers up to 2000 Mbps of dedicated, non-blocking bandwidth per
port. It is a plug-and-play type of device. The device is shown in Figure 5.

Figure 5. Netgear switch.

3.4. Networking Architectures

The architecture figures that you would see below have a cloud named Network
Cloud. The network cloud in general means any sort of networking interface can be used,
which could be a switch, WiFi network, or maybe a private 5G network. For this study, a
switch and WiFi have been used to network the device together.

3.4.1. Traditional Architecture and Nvidia Architecture

Figure 6a shows an architecture which has been used widely. This kind of architecture
is used in a fashion to interact with the real world and collects data from the sensors
connected to the Raspberry Pi. The devices like Raspberry Pi transport the data to the cloud
for processing and running detection models. When this architecture is used, the computa-
tional workloads become a problem.

(a) Validation of Architecture (b) Nvidia Raspberry Pi Architecture

Figure 6. Traditional architecture and Nvidia architecture.

Information 2024, 15, 126 10 of 28

As introduced previously, in the general architecture utilise the AI-enabled IoT Device
and replace one of the nodes in the Raspberry Pi architecture with an AI-IoT device. In this
situation, the architecture is introduced with an Nvidia Jetson Nano which is responsible
for running various types of security breach detection models and transporting anomaly
data to the cloud for further inspection. This way the amount of data stored in the cloud
decreases by a major margin and goes light on storage as well. So, the only data which
are stored are the anomalies which allow better analysis and deploy recovery automation
solutions. The architecture is shown in Figure 6b.

3.4.2. Raspberry Pi Microk8s Archtitecture and Nvdida Raspberry Pi Microk8s Architecture

The architecture introduces Microk8s as a resource management and container orches-
tration tool. This architecture with Microk8s has been previously seen in various research.
Although, these researchers have not performed major load testing on the cluster for ex-
ample running a machine learning model on the architecture. This study finds the CPU
utilisation in the case of load testing related to running machine learning. The architecture
is shown in Figure 7a.

(a) Raspberry Pi Microk8s Archtitecture (b) Nvdida Raspberry Pi Microk8s Architecture

Figure 7. Raspberry Pi Microk8s archtitecture and Nvdida Raspberry Pi Microk8s architecture.

Nvdida Raspberry Pi Microk8s architecture is introduced as the state-of-the-art archi-
tecture which includes the capabilities provided by the GPU provided in the Nvidia Jetson
Nano as well as resource management tools like Microk8s. Together, these both provide
exceptional abilities of efficient scheduling of memory and keeping track of microservices
on the network as well as running the detection models with comparatively less CPU
utilisation as compared to other network elements. The architecture is shown in Figure 7b.

3.5. Validation of Hypothesis
3.5.1. Machine Learning Validation

When it comes to Machine Learning model performance, it is expected that the model
is able to predict classes distinctively without any major misclassification issue. In such
scenarios, the F1 score associated with the classes should be substantial enough to make
a feasible prediction to not fail when running on production systems. As we have seen
earlier, the F1 score is the weighted harmonic mean of Precision and Recall, the changes
in the F1 score indicate an overall improvement as compared to the previous model.
The Dummy classifier indicates the baseline performance that needs to be outperformed by
other models. This study explores the logistic regression model and the neural network for
the detection models. These models would be expected to perform better than the baseline,
and the state-of-the-art neural network to perform better than Logistic Regression.

3.5.2. Architecture Improvement Validation

For validation, it is expected that the traditional architecture will perform the poor-
est in terms of CPU utilisation and memory because of the hardware specifications of
Raspberry Pi being used in the architecture. Therefore, the performance obtained in this
architecture becomes the baseline which needs to be beaten by other architectures. Next,

Information 2024, 15, 126 11 of 28

the Nvidia-enabled architecture is expected to utilise 20% less CPU as compared to tradi-
tional architecture. The Raspberry Pi architecture with Microk8s is expected to perform
10% less than the Nvidia enabled architecture because it is running an efficient container
orchestration tool. In the end, the state-of-the-art architecture where the Nvidia device
and Microk8s are together is expected to perform at least 60% less than the traditional
architecture.This is demonstrated in Figure 8.

Figure 8. Validation of architecture.

4. Design and Implementation
4.1. Cluster Setup

Two network structures were used for this research.

Raspberry Pi Cluster and Nvidia-Raspberry Pi Cluster

In the cluster shown in Figure 9a, four Raspberry Pis were used and one of them was
made the master to handle operations in the Kubernetes environment. In a non-Kubernetes
environment, the device was used to host the message queue Flask server and run the
machine learning model.

(a) Raspberry Pi Cluster (b) Nvidia-Raspberry Pi Cluster
Figure 9. Raspberry Pi Cluster and Nvidia-Raspberry Pi Cluster.

Information 2024, 15, 126 12 of 28

In the cluster shown in Figure 9b, three Raspberry Pis and one Nvidia Jetson Nano
were used and one of the Raspberry Pis was made the master to handle operations in the
Kubernetes environment. In a non-Kubernetes environment, the Nvidia device was used
to host the message queue Flask server and run the machine learning model.

4.2. Docker

Docker [26] is a containerisation service which is used to build microservices. For all
the microservices, i.e., the Flask server for the message queue, the ML model, and the data
sending micro-services were converted into respective Docker images. These microservices
all have Docker files in their directory. These Docker files can build using “docker build
-t < name of the build >”. Once the build is complete, the Docker image needs to be
pushed to the Docker hub. An account on the Docker hub is required and three Docker
hub repositories are required. For every repository, the Docker image built previously
needs to be pushed. For doing so, first the image needs to be tagged against the path of
the repository location on the Docker hub. For example, “docker tag < name of user >/
< name of online repository >:< tag > < name of the build >”. Once this is completed, the
”docker push < name of user >/< name of online repository >:<tag>” command needs
to be executed. An example of building and pushing a Docker image of a Machine learning
microservice to the Docker hub is shown in Figure 10. Before pushing the Docker image to
the Docker hub, it is required to first authorize your push by login into your ID associated
with the Docker repository. One last step before pushing the image is to associate the name
of the Docker hub repository with the name of the local Docker build. This is achieved by
the “docker tag” command.

Figure 10. Docker tag and push.

4.3. Kubernetes Terminologies

Kubernetes is an open-source container orchestration platform used for automating
the deployment, scaling, and management of containerized applications. It was originally
developed by Google and is now maintained by the Cloud Native Computing Foundation
(CNCF). Kubernetes provides a powerful and flexible framework for managing container-
ized applications across a cluster of machines [27].

4.3.1. Pods

The smallest deployable compute units that Kubernetes allows you to construct and
control are called pods. A collection of one or more containers, with common storage and
network resources, and a specification for how to execute the containers, is referred to as
a “pod” (as in a pod of whales or peas). The components of a pod are always co-located,
co-scheduled, and executed in the same environment. A pod includes one or more closely
connected application containers and serves as a representation of an application-specific
“logical host”. Apps running on the same physical or virtual system are comparable to
cloud apps running on the same logical host in non-cloud scenarios [28].

Information 2024, 15, 126 13 of 28

4.3.2. Deployment

A deployment is a crucial object in Kubernetes that controls the scaling and deploy-
ment of a collection of identical pods. One of the higher-level abstractions offered by
Kubernetes to make managing containerized apps easier is this one. Using a deployment,
you may provide the container image, the number of replicas (identical pods), and the
update method to describe the intended state of your application [29].

4.3.3. Namespaces

A method for separating groupings of resources inside the same cluster is provided
by namespaces. Within a namespace, but not between namespaces, resource names must
be distinctive. Only namespace-based scoping is applicable to cluster-wide items, such as
Storage Class, Nodes, and Persistent Volumes, not namespace-based objects (such as
Deployments, Services, etc.) [30].

4.4. Design Flow

A visual representation of the workflow of the initial design is shown in Figure 11.
The idea initially for the workflow about traditional implementation was to implement a
complete DDoS happening environment where a real test on the devices could be done.
The design goes as the record of performance metrics would be commenced to be written
into a file followed by starting the Flask server on the master node. Once these steps are done,
the worker nodes would be administered a SYN Flood attack from the Kali virtual machine
running on the laptop. Simultaneously, a Docker container of cicflowmeter would be started.

CICFLowmeter 4.0 is a software which allows the network-related data stored in a
PCAP format to be transformed into the CSV format of the network logs based on the
physical interfaces of the device. This CSV data would be sent to the Message queue
running on the Flask server. Once these messages are received, the machine learning script
would be executed in a cronjob timed 1 min which would first check for availability of the
logs, if there are any, it will start fetching until the message queue is empty. This keeps on
looping until the Flask server is stopped or crashes due to some reason. Once the Flask
server is stopped, the logs can be stopped from recording and stored.

The design described above could not be followed because CICFlowmeter is an
archive library which has outdated dependencies. Even though those dependencies were
configured, the program was not able to function as needed. The other option available
was to use a Docker container but that did not work as well since the container would
get crashed due to Java dependencies issues. So, the only way to use CICFlowmeter was
to directly generate a PCAP file on a Windows computer and then utilise the CSV file
generated which was not feasible in this research’s use case because the cicflowmeter
workflow needs to be automated.

Message Queue Implementation

The intuition behind having a message queue is to store the logs for the machine
learning model to fetch from. For a message queue (MQ), a First In First Out (FIFO)
implementation is required. A normal queue has a fixed size for the array. But for this
use case of the message queue, the dynamic length of an array is required which can
extend based on logs being inserted from worker nodes. Therefore, the Doubly Linked List
becomes an eventually important choice as the list can be traversed bidirectionally and
insertions and deletions can be performed from both the ends. Due to initial design issues,
the CICFlowmeter was skipped. The dataset provided above sends data to the message
queue. The message queue Flask server is executed after hardware performance metrics
are recorded. After the Flask server gets requests, the script to send data is executed, and
the message queue stores the data until the ML model script demands it. The ML model
script checks if the message queue is active and then processes data from it. After using
message queue data, the ML model scripts stop and run on a 1-min cronjob time. The
above is presented in a visual form in the Figure 12.

Information 2024, 15, 126 14 of 28

Figure 11. Initial design flow.

Information 2024, 15, 126 15 of 28

Figure 12. Workflow without Kubernetes.

For the Kubernetes cluster, different devices need to be first formed into a cluster.
For that, one of the nodes is decided as a master node. The /etc/hosts file is updated with
the hostname of the other devices and their respective static IP addresses. It is necessary
that all the devices are connected to the internet and same access point. Once this is
completed, the “microk8s add-node" run on the master node, which provides a connection
string which needs to be executed on the other devices so that they know which is the
master node. After this, additional services need to be enabled on the cluster. The services
are as follows:

1. DNS (Domain Name Service): This is required for the pods to resolve the flask-app
service internally when the machine learning/data-sending script is executed.

2. Metallb (Metal Load Balancer): This load balancer is required to load balance if there
are multiple pods for flask service running.

3. Ingress.
4. GPU: This only applies to Nvidia-based hardware and given that the device should

have an Nvidia GPU. The Microk8s detect the GPU and execute the tasks which
require GPU if the deployment is launched.

5. Metrics-server: This is required for recording the performance metrics of the Kuber-
netes cluster. This service enquires about the utilisation of CPU and memory for every
pod running in a particular namespace.

After finishing the instructions, start the pods. Before Flask deployment, the perfor-
mance metrics recording script is run. Flask-app service must be checked after starting
the flask pod. To verify the status of the flask-app service, use “kubectl get services”.
Data-send deployment can begin after the pod is up. When data-send pods are active, Flask
receives data via internal domain name resolution. To verify requests, use “kubectl logs
< name of flask pod >”. The name of the Flask pod may be obtained with “kubectl get
pods | grep flask”. After seeing the requests, the deployment file’s cronjob option can
perform and clock the machine learning model deployment every minute. Requests appear
in Flask server logs after execution. This completes the flow shown in Figure 13. The
monitor script can be stopped and the performance metrics can be noted.

Information 2024, 15, 126 16 of 28

Figure 13. Kubernetes workflow diagram.

4.5. Implementation of Non-Microk8s Architecture
4.5.1. Performance Metrics

Figure 14 shows the execution of the command to start recording the performance
parameters of CPU and Memory. For this, ‘while true’ is used to execute a never-ending
loop until the script is stopped. echo “%CPU %MEM ARGS $(date)” is printed at the top of
every output which is printed into the file.

Figure 14. Performance metrics collection.

The provided Linux shell command is a pipeline that extracts and logs information
about processes on the system with CPU usage. It begins by executing the ps command
with the -e flag, which selects all processes running on the system. The -o pcpu,pmem,args
flag customizes the output format, displaying CPU usage percentage, memory usage
percentage, and the command with its arguments. The results are then sorted based on
CPU usage using the –sort=pcpu flag. The cut command is used with the -d flag to extract
the first five columns (CPU usage, memory usage, and command) from each line. The ‘tail’
command displays the last few lines of the sorted output, representing processes with the
highest CPU usage. Finally, the » ps.log command appends the selected output to a file
named “ps.log”, providing users with a log of processes’ CPU usage for analysis and future
reference. And sleep 5 is used for recording entries every 5 s. This script can be stopped
once the Flask server is killed or stopped. In the Flask framework, Figure 15 displays the
transfer of information to the REST API server. The “Success” print presents the successful
request to the REST API server.

Figure 15. Data sent execution in Flask framework.

4.5.2. Machine Learning Execution

Figure 16 displays the execution of the Machine Learning model on the Raspberry
Pi platform. At the end of the verbose, the prediction is displayed. The implementation

Information 2024, 15, 126 17 of 28

of the Nvidia enabled architecture remains the same as mentioned for the Raspberry Pi.
The machine learning model and the Flask script runs on the Nvidia device. In Figure 17,
the Nvidia Tegra X1 is detected as a GPU because Tegra X1 contains the CPU and GPU
inside it. The CPU’s clock speed is displayed as 0.91 GHz. The memory of the device is
displayed as 3.86 GB.

Figure 16. Machine learning script execution.

Figure 17. Nvidia machine learning script execution.

4.5.3. Reading Performance File

In Figure 18, ‘cat’ is used for reading the file of performance metrics. The output of
this command is piped together with a word selection command called “grep”. Grep is
used to select those lines where the word occurs. For example, it shows the line where the
word dl_new.py occurs.

Figure 18. Viewing the performance metrics.

4.6. Implementation of Microk8s Architecture

In Figure 19, the nodes running in a cluster are enlisted. The image displays all the
Raspberry Pis online at the moment when the command “kubectl get no” is executed.
Figure 20 presents the execution of the deployment file called “flask-app-dep.yml”.

Information 2024, 15, 126 18 of 28

Figure 19. “kubectl get no” command.

Figure 20. Flask app deployment.

Performance Metrics

For performance metrics to be recorded, the metrics-server add-on needs to be enabled
on Microk8s. With this enabled, a shell script is used to get the output of the command
“microk8s kubectl top pods” to receive the information of CPU and Memory utilisation
into a file. This information gets recorded every 10 s while the script is running. Figure 21
shows the output of the command. In the output, the pulling image signifies the cluster is
telling the Docker hub to fetch the Docker image while the statement above it resembles
the successful image pull and the master node assigning the job to a node automatically if
not specified otherwise.

Figure 21. Output of “kubectl describe po” command.

Figure 22 displays the output of the command “kubectl get pods”. This command is
followed by a “-o” flag with the keyword “wide” which displays additional information
such as the node, IP address, Nominated Node and Readiness Gate. The image signifies
the Flask pod in the creation stage and the pod is running on the raspberrypi1 node.

Figure 23 displays the IP addresses on which the Flask app can be accessed. Kubernetes
allows domain name resolution which could be used by other pods to resolve “flask-app-
service” into the corresponding internal cluster IP addresses.

Figure 22. “kubectl get pods” command.

Information 2024, 15, 126 19 of 28

Figure 23. “kubectl get services” command.

Therefore, no hard coding is required for the IP addresses in the scripts of the data-
sending and machine-learning model. The external IP address is the IP address which is
not the IP address of any node inside the cluster but a different address altogether which
allows the "flask-service" to be accessed from the external world. Since this address does
not correspond to any node, it provides extensive security to the nodes as they are hidden
from the external world and thus remain protected from attacks. Also, the external IP
address is provided by a load balancer called “metallb”. This load balances the requests
across the pods running the Flask app deployment.

Figure 24 displays the container logs of the pod running the Flask API microservice.
It shows the Flask server is up and running. The 127.0.0.1:5001 is the local host API
deployment which can be accessed from the pod itself while the 10.1.245.3:5001 is the IP
address for the internal resolution to the other pods for accessing the service if required.
Figure 25 shows the execution of the “csv-data-dep.yml”. This YML file holds the name
of the Docker image which needs to be sourced from the Docker hub. This deployment is
responsible for sending the information to the Flask deployment.

Figure 24. Flask logs after pod deployment.

Figure 25. CSV data send deployment.

Figure 26 shows the logs of the Flask pod after the csv data-sending pods use the Flask
server’s endpoint to send the data. Once the request is served by the Flask, it logs into
the output shown. Figure 27 shows the execution of the “ml-model-dep.yml”. This YML
file holds the name of the Docker image which needs to be sourced from the Docker hub.
This deployment is responsible for retrieving the data from the Flask server for running the
machine learning model.

Figure 26. Insertion of logs after CSV pod deployment.

Information 2024, 15, 126 20 of 28

Figure 27. Machine learning pod deployment.

Figure 28a shows the fetch_data API endpoint used in the logs of Flask pod. It signifies
that the Machine learning pod made requests to fetch the data. The implementation of the
Nvidia Microk8s remains the same as mentioned above in the Raspberry Pi implementation
of Microk8s but the only thing that changes is the static allocation of the machine learning
pod on the Nvidia device. Therefore, this pod cannot be scheduled on any other node other
than Nvidia. So, any number of pods which are scheduled will be handled by the Nvidia
device. Figure 28b shows the Nvidia as a node in the Kubernetes cluster.

(a) Fetchdata API after ML pod deployment (b) “kubectl get no” for Nvidia

Figure 28. Pod deployment.

Figure 29 shows the different pods running different micro-service but if observed
for the machine learning pod, the pod is scheduled to run the Nvidia device, thereby
utilizing the power of the GPU. The Nvidia deployment is different from the one used for
Raspberry Pi. It includes the node Selector in the deployment script which points to the
Nvidia hostname. So, the master node will look for the node with the hostname “nvidia”
and launch the pod over that node.

Figure 29. kubectl get pods (Nvidia machine learning).

4.7. Challenges

1. Microk8sSnap package manager has many Microk8s variants. This requires choosing
the proper version for the use case. Initial use of the current version caused issues
with the Kubelet API server and connecting devices through Microk8s. These flaws
were also in the lower version. The author consulted the Microk8s community to
locate a version that supported Prometheus, Grafana, and GPU add-ons. Despite
version difficulties, all versions allowed the addition of devices and capabilities of
Kubernetes provided through the Microk8s. The version suggested by them was 1.22.

2. Nvidia Jetson Nano Setup Finding the appropriate operating system was initially
difficult due to the variety of versions and their features, some of which were outdated
and unsupported by hardware. Operating system images were available for prior
Nvidia chipsets. Nvidia forums and community helped choose the correct image.
Nvidia crashed when a 16 GB Micro SD card was used because the image size was
14 GB after installation. Nvidia could no longer use the SD card for utility software.
This was carried out later with a 64 GB card.

3. TFLite Model on Nvidia Jetson The TFLite model dependencies could not run on Nvidia
Jetson due to the Tensorflow version being very different from other IoT device versions.
This is because of the hardware architecture of Nvidia. Therefore, the H5 model is used
because it is able to run on both platforms and allows a fair comparison between the
traditional Raspberry Pi and Nvidia-enabled architecture.

4. Prometheus and Grafana These services are offered as add-ons to the Microk8s (version
1.22+). They are responsible for capturing resource utilisation of every pod in each
namespace or node in the cluster. Prometheus and Grafana were initially tested on the

Information 2024, 15, 126 21 of 28

cluster. Still, the resource utilisation by the Prometheus namespace was high which was
crashing the Microk8s service on the nodes when the other deployments were being
initiated. Therefore, it is suggested to have at least 8 GB of RAM on the node’s hardware.

5. Evaluation
5.1. Machine Learning

The classes which are classified as 0 are the DDoS Packets while 1 indicates the
normal packets.

5.1.1. Dummy Classifier Performance

In Figure 30a, The F1 score for class 0 (DDoS) is predicted as 1.00 because it has
samples with the highest frequency. This is supported by the reason that the strategy for
the dummy classifier was set as the most frequent. The F1 score of class 1 is 0 because it has
fewer samples as compared to class 0.

5.1.2. Logistic Regression Performance

In Figure 30b, The F1 score for the benign class improves more than when it was
previously 0 in the baseline model. There is an improvement over there.

(a) Dummy Classifier Performance (b) Logistic Regression Performance

Figure 30. Dummy Classifier and Logistic Regression Performance.

5.1.3. Neural Network Performance

In Neural Network, a regularized architecture has been defined as shown in Figure 31. There
is a 3% improvement as compared to the F1 score of class 1 in Logistic Regression Performance.

Figure 31. Neural Network Performance.

Given all of this above architecture, the prediction for class 0 is an absolute 100 because
of the biased samples in the dataset. Even if the undersampling is carried out, the relative
samples for class 1 would still be undermined. Therefore, an improvement in such scenarios
is difficult in this kind of unbalanced situation. Although, the model can be improved when
the real data come into the IoT devices by retraining the network in real-time. Apart from
the DDoS attacks, the proposed architecture can also run detections for example, the Man
in the Middle attacks and anomaly detection. Abdelkader et al. [31] have conducted MITM
detection on the IoT devices. Using the same methodology, the models can be launched in
the proposed architecture as well. Ibrahim et al. [32] show that the Anomaly detection can be
done on the network traffic and associated fog layers. Therefore, these examples explain that
the machine learning models are classification problems mostly and the DDoS model used in
the current study is similar to that. Therefore, the resilience noticed with the current results
should be similar whenever other cyber threat detection runs on the proposed architecture.

Information 2024, 15, 126 22 of 28

5.2. Architecture

In Table 3, the CPU and memory utilisation is displayed for all the architectures
obtained from the experiments. The data in the table are sourced from the experiments
conducted and the evidence has been provided below in the figures. Looking at the table, it
is observable that the Non-Microk8s architecture has the highest CPU utilisation compared
to the others. The CPU utilisation drops down to 73% when the Nvidia-enabled architecture
is brought in. There is definitely an improvement over there which showcases one of the
reasons where the GPU assists the CPU in running the machine learning models in an
efficient manner. Having looked at the memory utilisation, it is increasing because Nvidia
uses a Graphic-based User Interface of Ubuntu which also runs other System operations
as well whereas the memory utilisation is less because of the server image of Ubuntu
being used.

Discussing the Microk8s architectures, the Raspberry Pi architecture performs better in
terms of both CPU and Memory utilisation as compared to non-microk8s architecture and,
interestingly, 10% less than the Nvidia Non-Microk8s architecture. Microk8s does a good
job of managing the resources. While looking at the state-of-the-art architecture where the
Nvidia and Microk8s have been used, a CPU utilisation of 31.5% is noticed which is 60% of
the traditional architecture.

Table 3. CPU and memory usage comparison.

Non-Microk8s (H5 Model) Microk8s (TFLite Model)

Rpi (Traditional) Nvidia-Rpi Rpi Nvidia-Rpi

CPU (%) 93.5 73.4 64.2 31.5

Memory (%) 10.5 (420 MB) 28.6 (1120 MB) 0.0007 (3 MB) 0.01 (73 MB)

Figure 32a, displays the CPU utilisation in the leftmost column while the column
beside it displays the memory utilisation of the Raspberry Pi traditional architecture.
The ‘dl_new.py’ is the file which holds the logic to fetch the data from the message queue
and run the machine learning model once the data are available in the memory. The image,
therefore, shows the continuous CPU consumed with time and a constant rate of increase.

(a) Raspberry Pi traditional architecture performance (b) Nvidia Enabled Architecture Performance

Figure 32. Raspberry Pi Traditional & Nvidia Enabled Architecture Performance.

Figure 32b presents the CPU utilisation in the leftmost column while the column beside
it displays the memory utilisation of the Nvidia-enabled architecture. The Nvidia-enabled

Information 2024, 15, 126 23 of 28

architecture starts with a similar amount of CPU utilisation when the script initiates but
over time the difference between traditional and this architecture grows larger. In the end,
the final CPU utilisation is observed to be 73.4%.

Figures 33 and 34 presents the name of the pods, the CPU utilisation and memory
utilisation for the Raspberry Pi Microk8s architecture & Nvidia-Raspberry Pi Microk8s
Architecture respectively. In the red box, the machine learning pod can be seen with the CPU
utilisation and Memory utilisation beside it. The CPU utilisation is 64% & 31.5% respectively.

Figure 33. Raspberry Pi Microk8s performance.

Figure 34. Nvidia Raspberry Pi Microk8s performance.

5.2.1. Energy Consumption

Going by the energy formula, Energy (Wh) = Power (W) * Time (h), the energy
consumed by the Nvidia Jetson Nano can be calculated. For three raspberry Pis sending
the logs to the machine learning model running on Nvidia Jetson Nano, having the Jetson
nano configured to use the maximum available power and also considering the Kubernetes
running on the Jetson, the maximum power taken by the Jetson at any particular time is
10 W. We only considered the window when the machine learning model is executing. The
time taken was approximately 1 min for all the device’s logs to be transferred and processed.
In that particular case, the energy consumed is 0.016 h * 10 W = 0.16 Wh. Therefore, on
increasing the devices in the edge network, the number of logs transferred to the Nvidia
Jetson Nano also increases. As said before, the maximum power is 10 W for operating the
nvidia Jetson nano. The energy consumed would be proportional to the total time taken by
the machine learning model to be executed. The total power consumed by any one of the
Raspberry Pis in the network depends on the role of the Pi device along with transferring
the logs. The power consumption can vary in a real world scenario. In our particular case,
it was designed to transfer network logs to the Nvidia Jetson Nano which involved running
a python script and Kubernetes running on the device. The execution time of the python

Information 2024, 15, 126 24 of 28

script was 15 s (0.25 min). The power consumed at any particular instant was reported
to be 6 W. Therefore, the energy consumed by the device during this particular operation
was 6 * (0.25/60) = 0.025 Wh and for 3 devices, it is 0.075 Wh. Thus, the total the energy
consumed during the machine learning model execution was approximately 0.235 Wh.

5.2.2. Scalability and Latency

The scalability is measured based on the number of IoT devices (non-AI) which can
be added to the network without having the Nvidia Jetson Nano (AI IoT Device) being
overwhelmed in terms of CPU utilization. In the current architecture where there were
3 raspberry pi devices, 31.5% of utilization is reported. When we increase the number
of devices, the operation of the Nvidia Jetson Nano is not affected much. It can run
multiple neural networks together and is able to handle concurrent requests from different
nodes. The CPU utilization increases to 40% when the number of devices are more than
10. Whereas latency is between 10ms to 15ms on varying loads and with an increasing
number of devices. Latency involved in this particular experiment would be ideal to be
observed for the logs being transferred between the raspberry Pi and the Nvidia Jetson
Nano. Theoretically speaking, the latency is said to be the time difference of when the data
packet leaves the source device and at the time when the data packet was received at the
destination device. In this experiment, the devices were connected through LAN cables
over a Gigabit switch. Given this kind of network setup between the devices, the latency
between the devices would be low as compared to a wide area network setup. For example,
the latency in transporting the logs between the Raspberry Pi and cloud would definitely
be higher than the setup in this experiment. While looking at the metrics of the experiment,
the latency at any particular time when the packets were transferred were close to 10 ms.
This is in the case of three devices transferring the logs to the flask server. This would be
more or less the same on increasing the devices since the physical memory is utilized on
the Nvidia Jetson Nano to store the incoming logs into a message queue. A comparative
analysis of latency with the existing state-of-the-art is given in Table 4.

Table 4. Comparative analysis of latency.

Ref [33] [34] [35] [36] [37] [38] Proposed

Latency 18 ms 400 ms 2 s 2 s 2 s–5 s 25–50 ms 10–15 ms

5.2.3. Efficiency, Security and Cost Effectiveness

A comparative analysis of efficiency, security and cost effectiveness of the proposed
model with the existing state-of-the-art is given in Table 5.

Table 5. Efficiency, security, and cost effectiveness.

Ref. Efficiency Security Cost Effective

[17]

The study in this research evolved around
raspberry Pis and how different light
versions of Kubernetes perform on the
cluster of raspberry Pis. There was no load
test to understand the efficiency of
the architecture.

Kubernetes is being used in the
architecture of this paper but it is
not leveraging any security benefits
from the Kubernetes.

It’s just using Raspberry Pis with
Kubernetes running on them but
20 of them for the research makes
the experiment expensive.

[15]

This research aimed to test the lightweight
Kubernetes solutions for IoT devices. The
idea was to perform a formal comparison
between them. Efficiency was looked at the
best distribution which can be used.

The study utilized Azure VMs to
test their architecture. The security
associated with the cloud resources
is better than doing so on the
IoT devices.

Although cloud resources are better
than IoT devices, they come along
with costs. They prove to be
way more costly if not
configured properly.

Information 2024, 15, 126 25 of 28

Table 5. Cont.

Ref. Efficiency Security Cost Effective

Our

When it comes to efficiency, the Kubernetes
deployment mechanism and distribution of
workloads is state-of-the-art. It distributes
the workloads efficiently with the
distribution of processing between
different pods. While considering use of AI
IoT devices, the performance of hardware
given its GPU provides
enhanced efficiency.

In terms of security, all of the data
processing is performed on the
AI-IoT device, which is not exposed
to the external world. They function
in their own private subnet of the
edge network. Kubernetes ensures
the segregation of the network
packets are maintained between the
devices from the external world.

The AI-IoT device such as the
Nvidia Jetson Nano are a bit
expensive as compared to the costs
of the Raspberry pi but the abilities
they provide as seen in this
particular research showcases their
effectiveness for the price. Google’s
Coral device can also be an
alternative which can be used along
with raspberry Pis.

5.3. Real-World Applications

There are potential applications of such research in the industry as well. For example,
when smart cities are considered, there are traffic lights being used at every traffic junction
and their functioning is being scaled up using CCTV cameras and computer vision. To keep
their functionality working properly without any security breaches to avoid traffic jams, the
general architecture shown before is where computer vision can run directly at the junction
without transferring the data to the nearby data centre. Meghana et al. [39] developed a
method in which aRaspberry Pi along with a Pi Camera is used to capture events at a traffic
junction and image processing of the data happens on the device. This research showcases
that these kind of jobs are viable but the problem comes down to the overwhelming of the
Pi devices. With the proposed architecture in this research, it would be a game changer
since the job of image processing would be done by AI IoT devices which are capable of
running multiple neural network operations at once. All the image streams from these
Raspberry Pis can be provided to AI IoT devices and hence more operations can be done
at once. The practical challenges associated with using the architecture is that the devices
would be used outside on the junction which comes along with weather challenges and
devices are supposed to operate within a desired temperature range. Especially using
Nvidia devices, they are fragile to varying temperatures and would affect its performance.
Regular maintenance is a minor one but it has to be carried out regularly given the device’s
physical condition.

Another example is the application in the field of medical industry, where hospitals
in Ireland for instance are providing wearable devices to patients to record their health
metrics while they are being transferred to another location in the hospital or a situation
where they cannot be monitored with specialized equipment. The protection of data that
the wearable stores should be prioritized. In such cases, a local deployment of a general
architecture could be useful. There can be much more instances where the use of such an
architecture will be of great utility. In this particular research [40], the idea seems similar to
what is being discussed here. The paper presents the idea of the wearable IoT devices in
the sphere of hospitals and how their communications are modelled to transmit data to the
cloud. This paper does not discuss any cyber challenges associated with this transmission
but what seems obvious is that there are multiple layers of communications involved
until it reaches the central servers. The proposed architecture overcomes the challenge of
going through multiple layers of communication until it reaches the cloud servers. All the
processing is offloaded on the AI IoT device while storage of data can be carried out locally
at the hospitals. Practical Challenges associated with this model would be implementing
redundancy and failover mechanisms that become essential to prevent data loss or system
downtime. In case, let us say, the hospital decides to keep data in the cloud, outages may
disrupt the communication between wearable devices and central systems. The major
challenge of all would be to ensure that systems remain robust even when hospital is
dealing with large volume of patients.

Information 2024, 15, 126 26 of 28

6. Conclusions

This research investigates distributed computing on the edge, using AI-enabled IoT
devices and container orchestration tools to handle data in real time. Security is improved
by identifying and mitigating threats like DDoS attacks while minimizing CPU usage.
It compares typical IoT devices with and without AI-enabled chips, container orchestration,
and machine learning model performance in different cluster settings. By enabling IoT
devices to process data locally, the suggested design seeks to reduce reliance on cloud
transmission and improve IoT environment security. Results align with architecture update.
The following statements are concluded after looking at the results:

1. Comparison Of Raspberry Pi to Microk8s Raspberry Pi: Reduction of almost 30%
(CPU) and 99% (Memory).

2. Comparison Of Nvidia—Raspberry Pi to Microk8s Nvidia—Raspberry Pi: Reduction
of almost 42% (CPU) and 98% (Memory).

3. Comparison of Raspberry Pi and Nvidia-Raspberry Pi: Reduction of almost 21%
(CPU) and Increase of 62.5% (Memory).

4. Comparison of Microk8s Architecture—Raspberry Pi vs. Nvidia-Raspberry Pi: Reduc-
tion of almost 32.5% (CPU) & Increase of 95% (Memory).

5. An overall decrease of 60% in CPU utilisation from the traditional architecture of Rasp
berry Pi to Microk8s architecture with Nvidia.

6. Container Orchestration-as-a-solution: It managed resources efficiently, auto-scaled
when needed, and scheduled jobs well. Since the solutions are not directly distributed
to the host, malware implantation can be stopped by restarting another pod for that
deployment, making it security-reliable.

Future Work

1. Use of Google Coral Device: The Google gadget has a Tensor Processing Unit. Even-
tually, this gadget and Raspberry Pi can be compared to Nvidia Jetson Nano for
performance analysis. This can be clustered or standalone.

2. Realtime updating of Machine Learning Model: When data become available on the
platform, cloud updating of the machine learning model affects the model’s real-time
performance reliability. If this could be conducted on the edge with CPU optimization
in mind, imagine what IoT devices could achieve with merely data coming in and the
model being updated in real time without sending it to the cloud.

3. Adversarial AI for Malware Detection: Attackers must escape IoT devices after plant-
ing botnets to avoid leaving cyber fingerprints. Adversarial AI that predicts evasion
and avoids malware plants. This would preserve the attackers’ fingerprints and make
tracking malware to its source easier. Generative Adversarial Network implementa-
tion in malware detection is also receiving interest.

Looking at the above results and future work, there is tremendous potential which
can be unlocked with the introduction of Kubernetes and AI-enabled IoT devices to the
existing network of IoT devices. This will yield better product line-ups for industries in
this business. With the scale at which IoT devices grow, these solutions will be able to keep
security growing as well.

Author Contributions: Conceptualization, S.K. and H.T.; methodology, S.K.; software, V.T.; validation,
S.K., H.T. and V.T.; formal analysis, S.K.; investigation, H.T.; resources, S.K.; data curation, V.T.;
writing—original draft preparation, S.K.; writing—review and editing, S.K and H.T.; visualization,
V.T.; supervision, H.T.; project administration, H.T.; funding acquisition, H.T. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was conducted with the financial support of Ripple.com under their Univer-
sity Blockchain Research Initiative (UBRI) and the Science Foundation Ireland at ADAPT, the SFI Re-
search Centre for AI-Driven Digital Content Technology at Trinity College Dublin [13/RC/2106_P2].

Institutional Review Board Statement: Not applicable.

Information 2024, 15, 126 27 of 28

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Merenda, M.; Porcaro, C.; Iero, D. Edge machine learning for ai-enabled iot devices: A review. Sensors 2020, 20, 2533. [CrossRef]

[PubMed]
2. Ghosh, A.; Chakraborty, D.; Law, A. Artificial intelligence in Internet of things. CAAI Trans. Intell. Technol. 2018, 3, 208–218.

[CrossRef]
3. Covi, E.; Donati, E.; Liang, X.; Kappel, D.; Heidari, H.; Payvand, M.; Wang, W. Adaptive extreme edge computing for wearable

devices. Front. Neurosci. 2021, 15, 611300. [CrossRef] [PubMed]
4. Fayos-Jordan, R.; Felici-Castell, S.; Segura-Garcia, J.; Lopez-Ballester, J.; Cobos, M. Performance comparison of container

orchestration platforms with low cost devices in the fog, assisting Internet of Things applications. J. Netw. Comput. Appl. 2020,
169, 102788. [CrossRef]

5. Taylor, R.; Baron, D.; Schmidt, D. The world in 2025-predictions for the next ten years. In Proceedings of the 2015 10th International
Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, Taiwan, 21–23 October 2015;
IEEE: Piscataway, NJ, USA , 2015; pp. 192–195.

6. Wu, H.; Han, H.; Wang, X.; Sun, S. Research on artificial intelligence enhancing internet of things security: A survey. IEEE Access
2020, 8, 153826–153848. [CrossRef]

7. Shakdher, A.; Agrawal, S.; Yang, B. Security vulnerabilities in consumer iot applications. In Proceedings of the 2019 IEEE
5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart
Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), Washington, DC, USA, 27–29 May 2019;
IEEE: Piscataway, NJ, USA, 2019; pp. 1–6.

8. Dinculeană, D.; Cheng, X. Vulnerabilities and limitations of MQTT protocol used between IoT devices. Appl. Sci. 2019, 9, 848.
[CrossRef]

9. Pokhrel, S.; Abbas, R.; Aryal, B. IoT security: Botnet detection in IoT using machine learning. arXiv 2021, arXiv:2104.02231.
10. Alrowaily, M.; Lu, Z. Secure edge computing in IoT systems: Review and case studies. In Proceedings of the 2018 IEEE/ACM

Symposium on Edge Computing (SEC), Seattle, WA, USA, 25–27 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 440–444.
11. SmartDefense: A distributed deep defense against DDoS attacks with edge computing. Comput. Netw. 2022, 209, 108874.

[CrossRef]
12. Bhardwaj, K.; Miranda, J.C.; Gavrilovska, A. Towards {IoT-DDoS} Prevention Using Edge Computing. In Proceedings of the

USENIX Workshop on Hot Topics in Edge Computing (HotEdge 18), Boston, MA, USA, 11–13 July 2018.
13. Mirzai, A.; Coban, A.Z.; Almgren, M.; Aoudi, W.; Bertilsson, T. Scheduling to the Rescue; Improving ML-Based Intrusion

Detection for IoT. In Proceedings of the 16th European Workshop on System Security, Rome, Italy, 8 May 2023; pp. 44–50.
14. Beltrão, A.C.; de França, B.B.N.; Travassos, G.H. Performance Evaluation of Kubernetes as Deployment Platform for IoT Devices.

In Proceedings of the Ibero-American Conference on Software Engineering, Curitiba, Brazil, 4–8 May 2020.
15. Koziolek, H.; Eskandani, N. Lightweight Kubernetes Distributions: A Performance Comparison of MicroK8s, k3s, k0s, and

Microshift. In Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering, Coimbra, Portugal,
15–19 April 2023; pp. 17–29.

16. Hayat, R.F.; Aurangzeb, S.; Aleem, M.; Srivastava, G.; Lin, J.C.W. ML-DDoS: A blockchain-based multilevel DDoS mitigation
mechanism for IoT environments. IEEE Trans. Eng. Manag. 2022, 1–14. [CrossRef]

17. Todorov, M.H. Deploying Different Lightweight Kubernetes on Raspberry Pi Cluster. In Proceedings of the 2022 30th National
Conference with International Participation (TELECOM), Sofia, Bulgaria, 27–28 October 2022; IEEE: Piscataway, NJ, USA, 2022;
pp. 1–4.

18. Ferdowsi, A.; Saad, W. Generative adversarial networks for distributed intrusion detection in the internet of things. In Proceedings
of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; IEEE: Piscataway,
NJ, USA, 2019; pp. 1–6.

19. Elsayed, M.S.; Le-Khac, N.A.; Dev, S.; Jurcut, A.D. Ddosnet: A deep-learning model for detecting network attacks. In Proceedings
of the 2020 IEEE 21st International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Cork,
Ireland, 31 August–3 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 391–396.

20. Kannavara, R.; Gressel, G.; Fagbemi, D.; Chow, R. A Machine Learning Approach to SDL. In Proceedings of the 2017 IEEE
Cybersecurity Development (SecDev), Cambridge, MA, USA, 24–26 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 10–15.

21. Bapat, R.; Mandya, A.; Liu, X.; Abraham, B.; Brown, D.E.; Kang, H.; Veeraraghavan, M. Identifying malicious botnet traffic using
logistic regression. In Proceedings of the 2018 Systems and Information Engineering Design Symposium (SIEDS), Charlottesville,
VA, USA, 27 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 266–271.

22. Ma, L.; Chai, Y.; Cui, L.; Ma, D.; Fu, Y.; Xiao, A. A deep learning-based DDoS detection framework for Internet of Things. In
Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020;
IEEE: Piscataway, NJ, USA, 2020; pp. 1–6.

http://doi.org/10.3390/s20092533
http://www.ncbi.nlm.nih.gov/pubmed/32365645
http://dx.doi.org/10.1049/trit.2018.1008
http://dx.doi.org/10.3389/fnins.2021.611300
http://www.ncbi.nlm.nih.gov/pubmed/34045939
http://dx.doi.org/10.1016/j.jnca.2020.102788
http://dx.doi.org/10.1109/ACCESS.2020.3018170
http://dx.doi.org/10.3390/app9050848
http://dx.doi.org/10.1016/j.comnet.2022.108874
http://dx.doi.org/10.1109/TEM.2022.3170519

Information 2024, 15, 126 28 of 28

23. Debauche, O.; Mahmoudi, S.; Guttadauria, A. A new edge computing architecture for IoT and multimedia data management.
Information 2022, 13, 89. [CrossRef]

24. Süzen, A.A.; Duman, B.; Şen, B. Benchmark analysis of jetson tx2, jetson nano and raspberry pi using deep-cnn. In Proceedings
of the 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara,
Turkey, 26–28 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5.

25. Gizinski, T.; Cao, X. Design, Implementation and Performance of an Edge Computing Prototype Using Raspberry Pis. In Proceed-
ings of the 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA,
26–29 January 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 0592–0601.

26. Docker Docs. Docker Overview. 2023. Available online: https://docs.docker.com/get-started/overview/ (accessed on 25 July 2023).
27. Redhat. “What is kuberentes?”. 2023. Available online: https://www.redhat.com/en/topics/containers/what-is-kubernetes

(accessed on 25 July 2023).
28. Kubernetes. “Pods”. 2023. Available online: https://kubernetes.io/docs/concepts/workloads/pods/ (accessed on 25 July 2023).
29. Kubernetes. “Deployment”. 2023. Available online: https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

(accessed on 25 July 2023).
30. Kubernetes. “Namespaces”. 2023. Available online: https://kubernetes.io/docs/concepts/overview/working-with-objects/

namespaces/ (accessed on 25 July 2023).
31. Lahmadi, A.; Duque, A.; Heraief, N.; Francq, J. MitM attack detection in BLE networks using reconstruction and classification

machine learning techniques. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, Bilbao, Spain, 14–18 September 2020; Springer: Cham, Switzerland, 2020; pp. 149–164.

32. Alrashdi, I.; Alqazzaz, A.; Aloufi, E.; Alharthi, R.; Zohdy, M.; Ming, H. Ad-iot: Anomaly detection of iot cyberattacks in smart city
using machine learning. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference
(CCWC), Las Vegas, NV, USA, 7–9 January 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 0305–0310.

33. Atutxa, A.; Franco, D.; Sasiain, J.; Astorga, J.; Jacob, E. Achieving low latency communications in smart industrial networks with
programmable data planes. Sensors 2021, 21, 5199. [CrossRef] [PubMed]

34. Ferrari, P.; Sisinni, E.; Brandão, D.; Rocha, M. Evaluation of communication latency in industrial IoT applications. In Proceedings
of the 2017 IEEE International Workshop on Measurement and Networking (M&N), Naples, Italy, 27–29 September 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 1–6.

35. Cui, L.; Xu, C.; Yang, S.; Huang, J.Z.; Li, J.; Wang, X.; Ming, Z.; Lu, N. Joint optimization of energy consumption and latency in
mobile edge computing for Internet of Things. IEEE Internet Things J. 2018, 6, 4791–4803. [CrossRef]

36. Azari, A.; Stefanović, Č.; Popovski, P.; Cavdar, C. On the latency-energy performance of NB-IoT systems in providing wide-area
IoT connectivity. IEEE Trans. Green Commun. Netw. 2019, 4, 57–68. [CrossRef]

37. Javed, A.; Malhi, A.; Kinnunen, T.; Främling, K. Scalable IoT platform for heterogeneous devices in smart environments. IEEE
Access 2020, 8, 211973–211985. [CrossRef]

38. Badiger, S.; Baheti, S.; Simmhan, Y. Violet: A large-scale virtual environment for internet of things. In Proceedings of the Euro-Par
2018: Parallel Processing: 24th International Conference on Parallel and Distributed Computing, Turin, Italy, 27–31 August 2018;
Proceedings 24; Springer: Cham, Switzerland, 2018; pp. 309–324.

39. Meghana, V.; Anisha, B.; Kumar, P.R. IOT based Smart Traffic Signal Violation Monitoring System using Edge Computing. In
Proceedings of the 2021 2nd Global Conference for Advancement in Technology (GCAT), Bangalore, India, 1–3 October 2021;
IEEE: Piscataway, NJ, USA, 2021; pp. 1–5.

40. Surantha, N.; Atmaja, P.; Wicaksono, M. A review of wearable internet-of-things device for healthcare. Procedia Comput. Sci. 2021,
179, 936–943. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/info13020089
https://docs.docker.com/get-started/overview/
https://www.redhat.com/en/topics/containers/what-is-kubernetes
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/ docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/ docs/concepts/overview/working-with-objects/namespaces/
http://dx.doi.org/10.3390/s21155199
http://www.ncbi.nlm.nih.gov/pubmed/34372438
http://dx.doi.org/10.1109/JIOT.2018.2869226
http://dx.doi.org/10.1109/TGCN.2019.2948591
http://dx.doi.org/10.1109/ACCESS.2020.3039368
http://dx.doi.org/10.1016/j.procs.2021.01.083

	Introduction
	Background
	Research Contribution

	 Related Work
	Cyber Security as a Challenge to IoT Devices
	Solutions Implemented to Solve Security Vulnerabilities
	Container Orchestration Applied to IoT Devices
	Mitigation to DDoS Attacks on IoT Devices
	Research Gap

	 Methodology
	DDoS Detection Model
	Technology Used
	Python
	Microk8s

	Components
	Nvidia Jetson Nano
	Raspberry Pi
	Netgear Switch

	Networking Architectures
	Traditional Architecture and Nvidia Architecture
	Raspberry Pi Microk8s Archtitecture and Nvdida Raspberry Pi Microk8s Architecture

	Validation of Hypothesis
	Machine Learning Validation
	Architecture Improvement Validation

	Design and Implementation
	Cluster Setup
	Docker
	Kubernetes Terminologies
	Pods
	Deployment
	Namespaces

	Design Flow
	Implementation of Non-Microk8s Architecture
	Performance Metrics
	Machine Learning Execution
	Reading Performance File

	Implementation of Microk8s Architecture
	Challenges

	 Evaluation
	Machine Learning
	Dummy Classifier Performance
	Logistic Regression Performance
	Neural Network Performance

	Architecture
	Energy Consumption
	Scalability and Latency
	Efficiency, Security and Cost Effectiveness

	Real-World Applications

	Conclusions
	References

