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Abstract: To authenticate a controller area network (CAN) data frame, a message authentication
code (MAC) must be sent along with the CAN frame, but there is no space reserved for the MAC
in the CAN frame. Recently, difference-based compression (DBC) algorithms have been used to
create a space inside the frame. DBC has the advantage of being very efficient, but its drawback is
that, if an error occurs in one frame, the effects of that error propagate to subsequent frames. In this
paper, a CAN data compression algorithm is proposed that compresses the current frame without
relying on previous frames. Therefore, an error generated in one frame cannot be propagated to
subsequent frames. In addition, a CAN signal grouping technique is proposed based on entropy
analysis. To efficiently authenticate CAN frames, the length of the compressed data must be 4 bytes
or less (4BL). Simulation shows that the 4BL-compression ratio of a Kia Sorento vehicle is 99.36% in
the DBC method, but 100% in the proposed method. In an LS Mtron tractor, the 4BL-compression
ratio is 98.58% in the DBC method, but 100% in the proposed method. In addition, the execution
time of the proposed compression algorithm is only 27.39% of that of the DBC algorithm. The results
show that the proposed algorithm has better compression characteristics for CAN security than the
DBC algorithms.

Keywords: CAN; data reduction; entropy; security; signal grouping

1. Introduction

Although the controller area network (CAN) system has established itself as the
most widely used automotive network, CAN does not ensure the confidentiality and
authentication of the CAN data frame, opening the way for easy data eavesdropping or
the launching of replay attacks [1,2]. The CAN attack surfaces can be categorized into
physical-access-based attacks [3–5] and wireless-access-based attacks [6–9]. Wireless-access-
based attacks are further classified into two types: (1) attacks that require initial physical
access [6,7], and (2) attacks without physical access, exploiting Bluetooth, Wi-Fi, or cellular
channels [8,9].

Jo et al. [1] categorize the countermeasures against CAN attacks into four types:
(1) authentication of data frames [10–15], (2) preventative protection [16–18], (3) intrusion
detection [19,20], and (4) post-protection [21,22]. Authentication of data frames can be an
efficient way to improve CAN security, but there is no room for message authentication
codes (MACs) in CAN frames. Moreover, the size of the data field of one CAN frame is
limited to 8 bytes.

In [10], a truncated 32-bit MAC is inserted inside the data fields in the CAN frames.
If the data payload is used to transmit a truncated 32-bit MAC, the total amount of CAN
data frame transmission increases at least twice. Therefore, due to the increased data frame
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overhead, an increase in the bus load follows. In [11], if an electronic control unit (ECU)
uses a data field of less than five bytes, the truncated Mini-MAC data can be inserted
inside the data field. However, if an ECU uses a data field of five or more bytes, sufficient
Mini-MAC data cannot be transmitted.

Data compression techniques for CAN have been developed to reduce the increased
bus load caused by the growing number of ECUs. As an application example, Oh et al.
propose a CAN/Ethernet gateway system for seamless communication with CAN data
compression techniques [23].

Recently, data compression algorithms have been used to create a space to include a
MAC inside a data field. In one work, a CAN data compression algorithm is used to reduce
the size of the data so that there is space for a 32-bit or larger MAC within the data field.
Therefore, all CAN frames are authenticated without changing the original CAN protocol.

In [24], a selective message authentication (SMA) method is proposed specifically for
safety-critical CAN frames. SMA can reduce the communication overhead on the CAN bus,
but the delay due to the transmission of additional data packets is an unavoidable drawback.

The MAuth-CAN algorithm is resistant to masquerading attacks [25]. The MAuth-
CAN algorithm neither uses the full capacity of the CAN network nor requires hard-
ware modifications to the CAN controller. However, the increase in latency still needs to
be considered.

A data field in a CAN data frame can hold information about vehicle parameters such
as speed and frictional torque. Most CAN data compression algorithms use the difference
between the current and previous CAN parameters with the same message ID [26–31].
The reason for this is that the difference in successive CAN parameters is usually very
small since the CAN signal generation rate is much higher than the change in the driving
environment. The CAN data compression algorithms can be classified into two types:
(1) predefined maximum difference value (PMDV)-based algorithms and (2) compression
area selection (CAS) map-based algorithms.

In PMDV-based compression algorithms, if the difference between the current and
previous frames does not exceed a predefined threshold value (i.e., PMDV), it is used for
transmission. If the difference value exceeds the PMDV, the original uncompressed message
is sent. Therefore, the choice of PMDV greatly affects the compression efficiency. If the
PMDV is too small, many frames are transmitted uncompressed. If it is too large, more bits
are needed to represent the compressed data. The adaptive data reduction (ADR) algorithm
introduces delta compression (the difference between the current value and the previous
value of a parameter). In the ADR algorithm [27], two message IDs are used to distinguish
between the compressed data ID and the uncompressed data ID. On the other hand, the
improved adaptive data reduction (IADR) algorithm uses a single ID [28]. The first bit of the
data field in a CAN message, the data reduction code (DRC), determines if data reduction
is used or not. The IADR algorithm allocates two bits per parameter for indicating full
compression (zero difference), delta compression, or no compression. The enhanced data
reduction (EDR) algorithm [29] uses a method for managing signals of shorter lengths
(i.e., <5 bits) by combining them into groups that are handled as single signals. The EDR
algorithm uses the first byte of the data field to indicate the compression statuses of the
parameters. In the boundary of fifteen compression (BFC) algorithm [30], a CAN signal can
be compressed if the absolute value of the difference is within the maximum compression
range of fifteen. The BFC algorithm efficiently places one or two compression status bits
preceding each parameter. Thus, the BFC algorithm is less computationally intensive than
the EDR because it does not use the first byte of the data field to indicate the compression
statuses of all the parameters. A performance comparison of PMDV-based algorithms is
presented in [31].

In CAS map-based algorithms such as multi-level data arrangement (MLDA) and
vehicle MLDA (VMLDA), a CAS map is used to eliminate the need to predict a PMDV, as
described in Section 3. In PMDV-based algorithms, the PMDV remains fixed once a PMDV
is established during the system design phase. However, in CAS map-based algorithms,
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the size of the CAS map is adjusted for each CAN frame according to changes in driving
conditions. Thus, CAS map-based algorithms achieve higher compression efficiencies than
PMDV-based algorithms.

In CAN data compression algorithms, a high compression ratio is obtained by utilizing
the difference between two consecutive CAN data frames. However, if a data error, frame
loss, replay attack, or ECU reset occurs during the communication process, there is a
possibility that all compressed messages after the error may not be properly recovered
because the differences between successive frames cannot be correctly calculated. Therefore,
it is necessary to develop a compression method that does not propagate the effects of
errors to subsequent frames.

In this paper, a new CAN data compression algorithm is proposed that compresses
the current frame without calculating the difference between the current message and the
previous message. Therefore, the effect of the error does not propagate to the next frame
because the difference value is not calculated. In addition, an entropy-based signal grouping
method is proposed to easily create space for MAC data in the data field. The proposed
entropy-based signal grouping method can be used as a new technique for allocating CAN
parameters for each ID to increase the security of the CAN system. Combining the proposed
compression method with entropy analysis, it is shown that the proposed algorithm can be
used efficiently for data authentication.

The main contributions of this work are as follows:

- By proposing a CAN data compression method using only a single frame, unlike other
compression methods, it is possible to prevent the propagation of errors in the CAN
system to subsequent frames.

- An entropy-based signal grouping method is proposed to easily create space for
MAC data in the CAN data field. Using the proposed entropy-based signal grouping
method, the latency for data authentication can be significantly reduced.

- The proposed entropy-based signal grouping method can be used as a new technique
for allocating CAN parameters for each ID to increase the security of the CAN system.

- The mapping table of the proposed algorithm is created only once during system
design. When driving a car, compression is performed using the prepared mapping
table. However, in difference-based compression (DBC) methods, a CAS map must
be created every time a frame is sent. Therefore, the actual execution time of the
proposed algorithm during online operation is only about 27.39% of that of the CAS
map-based algorithm.

In Section 2, hacking and security solutions for In-Vehicle CAN are reviewed. In
Section 3, CAS map-based compression algorithms are briefly reviewed. In Section 4, a
single-frame (SF)-based compression algorithm and an entropy-based signal grouping
method are proposed. Section 5 presents the simulation results using actual CAN data.
Section 6 describes the security analysis of the proposed solution. Finally, the conclusions
are summarized in Section 7.

2. Related Work
2.1. Research on Vehicular Hacking

With the development of automotive ICT convergence, instances of hacking into an
automotive electrical/electronic (E/E) system have increased. This section presents the
analysis results of the existing research on automotive E/E system hacking. Vehicular
hacking research may be classified into three fields:

(a) Hacking into a vehicle’s E/E system (ECU forced actuation attack);
(b) Hacking into a vehicle’s smart key (smart key copy);
(c) Hacking into a vehicle’s sensor (sensor malfunction).

The research field of (a) introduces techniques for hacking vehicles using the vulner-
abilities of In-Vehicle CAN. This section describes the characteristics of research area (a).
Based on this, the attack surfaces of In-Vehicle CAN are defined.
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In 2010, K. Koscher et al. presented the results of hacking experiments using a real
vehicle [13]. Based on their work, various vehicular hacking studies have been conducted,
the most representative of which are listed in Table 1.

Table 1. Representative hacker research.

No. Publication Wired/Wireless Research Content Vulnerability

1 K. Koscher
et al. [13] Wired

Conducted the first hacking experiment using a
real car; first published an analysis of

vulnerabilities of In-Vehicle CAN
In-Vehicle CAN

2 S. Checkoway
et al. [4] Wireless

Proposed a wireless attack model targeting a
vehicle; conducted a wireless attack experiment

using a real car
In-Vehicle CAN

3 C. Valasek
et al. [3] Wired Researched based on Study 1; disclosed In-Vehicle

CAN hacking methods in detail Wireless interface

4 C. Valasek
et al. [9] Wireless

Succeeded in wireless attack targeting a Jeep
Cherokee; introduced the most practical

hacking technique
In-Vehicle CAN

5 S. Woo
et al. [15] Wireless Research based on Study 1; succeeded in wireless

attack using the driver’s smartphone In-Vehicle CAN

Every study specified in Table 1 conducted vehicular hacking using the vulnerability
of In-Vehicle CAN. In the present study, the attack surfaces of In-Vehicle CAN based on
previous studies are classified into three types. Figure 1 shows the attack surfaces that can
be caused by the vulnerability of CAN:
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- Firmware modification of a certain device composing the automotive E/E system [3,9,13];
- Fabrication and installation of a malicious third-party ECU [3,13];
- Wired/wireless access via OBD2 terminal [3,4,13,15].

2.2. Research on Security Solutions for In-Vehicle CAN

While research related to vehicle hacking is being actively conducted, so are studies on
CAN security in vehicles. The existing studies published in the last 10 years have research
themes as follows:

- Message authentication code (MAC);
- Intrusion detection system (IDS);
- Moving target defense (MTD).
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IDS, MTD, and MAC have different purposes and functions. This subsection presents
previous studies related to MAC. Section 6 describes the results of the comparative evalua-
tion between the studies in this subsection and the proposed method:

- Truncated MAC [15]: Woo et al. proposed a method using a 32-bit truncated MAC
for CAN data frame authentication. They used an Extended ID field and a CRC
field to transmit the 32-bit truncated MAC. Their proposed data frame authentication
method does not generate an additional data frame, so the bus load does not increase.
However, the CAN standard must be modified to use their proposed method.

- Mini-MAC [11]: Jackson et al. proposed a method for CAN data frame authentication
using a truncated MAC. Their proposed data frame authentication method uses a
portion of the data field for MAC transmission. They suggested a method where the
unused portion of the 8-byte data field is employed for MAC transmission. They
analyzed CAN data frames generated during the driving of a Toyota Prius. Their
analytic findings showed that approximately 40% of the total data frames in the
analysis used a greater-than-4-byte data field. Hence, their proposed method increases
the amount of data transmitted and can increase the bus load.

- SecOC [14]: In AUTOSAR (Automotive Open System Architecture), SecOC (Secure
Onboard Communication) was suggested for the security of the In-Vehicle Network.
In SecOC, a truncated MAC and counter are used to construct a secure communication
environment. SecOC has the same problem as Mini-MAC.

A CAN data frame can only transmit 8 bytes of data at a time. The precedent studies
on CAN data frame authentication recommend using a MAC of 32 bits or more for data
frame authentication in In-Vehicle CAN [11,15]. They use an additional data frame or
modify the CAN standard to transmit the MAC of 32 bits or more. Using an additional data
frame is not easy in an automotive environment due to the increased latency. Modification
of the CAN standard cannot be applied to existing vehicles. In addition, the data frame
authentication methods for In-Vehicle CAN must support real-time authentication.

3. CAS-Map-Based Compression Algorithm and Data Authentication

Since CAS map-based compression algorithms outperform PMDV-based algorithms,
only CAS map-based algorithms are reviewed in this section. In addition, CAN data
authentication techniques are briefly reviewed.

3.1. ICANDR Algorithm

In the ICANDR algorithm, the 8-byte CAN data field is randomly divided into three
signals: Sig A (3-byte), Sig B (3-byte), and Sig C (2-byte). Figure 2 is an example of a signal
arrangement. The signal arrangement is determined before the installation of the CAN
system and remains the same during system operation.
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Then, bitwise XOR (Exclusive-OR) values between the current and previous signals are
computed for Sig A, Sig B, and Sig C, as shown in the example in Table 2. If the computed
XOR value of a signal is nonzero, the corresponding header bit is set to one. Otherwise, the
corresponding header bit is set to zero.

Table 2. Example of bitwise XOR and header bit determination.

Signal Sig A Sig B Sig C

Previous frame (Fi−1) 1A 2B CA16 9A EC 9616 74 E316
Current frame (Fi) 1A 2B A116 9A EC 9216 74 E316
XOR (Fi−1 ⊕ Fi) 00 00 6B16 00 00 0416 00 0016

Header bit 1 1 0

After the determined header bits are placed in the last column beginning in the first
row in the CAS map shown in Table 3, the XORed values are placed in bits 23 through 0
for Sig A and Sig B, and bits 15 through 0 for Sig C. If the header bit corresponding to a
signal is zero, the row corresponding to the header bit is emptied. Then, starting from the
leftmost column of Table 3, if all elements of a column are zero, that column is deleted. This
process repeats until the first occurrence of a column with a nonzero element. Then, the
remaining data in the shaded area in Table 3 are arranged in the order shown in Table 4.
Thus, in this example, 8 bytes of data are compressed into 3 bytes.

Table 3. CAS map for the data in Table 2 (shaded area: selected area).

Signal Bit23–Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
Header (HA) 1

Header (HB) 1

Header (HC) 0

SA (SigAi
⊕

SigAi−1) 0 · · · 0 1 1 0 1 0 1 1

SB (SigBi
⊕

SigBi−1) 0 · · · 0 0 0 0 0 1 0 0

SC (SigCi
⊕

SigCi−1) - - - - - - - -

Table 4. Memory map for the CAS map in Table 3.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Byte 0 SA
[2]

SB
[1]

SA
[1]

SB
[0]

SA
[0] HC HB HA

Byte 1 SA
[6]

SB
[5]

SA
[5]

SB
[4]

SA
[4]

SB
[3]

SA
[3]

SB
[2]

Byte 2 0 0 0 0 0 0 0 SB
[6]

The amount of compressed data is determined by the size of the selected area. If all
three header bits are 0, maximum compression efficiency (100%) is achieved.

3.2. MLDA Algorithm

In addition to the byte-level arrangement in the ICANDR algorithm, the MLDA
algorithm presents four-bit-level, two-bit-level, and one-bit-level arrangements. The com-
pression ratio increases gradually as the arrangement bit-level decreases from eight to one.
The MLDA algorithm also provides a systematic procedure to place the CAN data bits using
multi-level arrangement maps to obtain the highest achievable compression efficiency.

As an example of the byte-level arrangement with three consecutive CAN frames,
eight bytes of each data field are denoted as B(n)(0 ≤ n ≤ 7), as shown in Table 5. The
bitwise XORed values between two successive frames are called magnitude values (MVs).
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If an MV is nonzero, the corresponding frequency value (FV) is defined as one. Otherwise,
it is defined as zero.

Table 5. Example of byte-level arrangement.

Frame B(0) B(1) B(2) B(3) B(4) B(5) B(6) B(7)

F0 AF FF BF CF FF FF 3F FF
F1 AD FD BC CB FA F9 3E FF
F2 AC FF BF CF FF FF 3E FF

F0 ⊕ F1
MV
(FV)

02
(1)

02
(1)

03
(1)

04
(1)

05
(1)

06
(1)

01
(1)

00
(0)

F1 ⊕ F2
MV
(FV)

01
(1)

02
(1)

03
(1)

04
(1)

05
(1)

06
(1)

00
(0)

00
(0)

Sm(n) 3 4 6 8 10 12 1 0
Sf(n) 2 2 2 2 2 2 1 0

S f m(n) 8 10 14 18 22 26 3 0

For each B(n), Sm(n) is the sum of the MVs and S f (n) is the sum of the FVs. Then,
S f m(n) is defined as follows:

S f m(n) = S f (n) + α × Sm(n) (1)

where α is a weighting factor. The optimal value of α is selected through simulation using
actual CAN signals. Typical α values are between 0 and 3.

To reduce the selected area in the CAS map, it is necessary to place slowly changing
data in the most significant part of the three signals and frequently changing data in
the least significant part. Therefore, since the value of S f m(n) indicates the degree of
change in data, S f m(n) can be used to determine the position of each data byte in the
arrangement map. Figure 2 shows the byte-level arrangement according to Table 5. The
arrangement procedure for smaller bit-levels can be obtained easily by extending the
byte-level procedure.

3.3. VMLDA Algorithm

In the MLDA algorithm, the sender ECU does not transmit CAN frames when the
difference values between consecutive frames are zero. This procedure reduces the bus
load. However, when the difference values between consecutive frames are zero for some
time, the receiver ECU cannot be sure whether the transmitter ECU is disconnected or not.

To overcome this problem, if the CAN data is compressed to 0 bytes, the VMLDA
algorithm transmits 1 byte of zero data in the data field. This allows the receiver ECU to
verify that the transmitter ECU is not disconnected while minimizing the increase in the
bus load.

3.4. Error Propagation by Difference-Based Compression

Most CAN data compression algorithms exploit the difference between two consecu-
tive CAN data frames to achieve high compression ratios. However, if a data error, frame
loss, replay attack, or ECU reset occurs during the communication process, there is a
possibility that all subsequent compressed messages may not be properly recovered.

Figure 3 shows the error propagation process by a replay attack, where the error
affects all data received after the replay attack of ∆3. Therefore, it is necessary to develop a
compression method that does not propagate the effects of errors to subsequent frames.
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3.5. CAN Data Authentication

Among the CAN data authentication methods introduced in Section 1, only the triple
ID flexible MAC (TIFM) approach using VMLDA is reviewed in this subsection. This is
because the VMLDA algorithm frees up more space for the MAC compared with other
compression methods.

When the CAN data are compressed to less than five bytes, both the compressed
data and truncated MAC are transmitted in the same data field using IDi. Otherwise, the
compressed data (or original data) are transmitted using IDi+1 and the MAC data are
transmitted separately using IDi+2. Therefore, the performance of the data compression is
very important in order to reduce the CAN transmission latency and bus load.

When Hk(·) denotes a keyed-hash function using the authentication key k, the trun-
cated MAC tag is computed as follows:

Truncated MAC = Trunc[s, Hk(Cn ∥ CTRECUs ∥ Cn−1 ∥ · · · ∥ Cn−λ)] (2)

where the Trunc[s, ·] function extracts the s most significant bits of its input, Cn is the
current encrypted compressed message, {Cn−1, · · · , Cn−λ} are the previously transmitted
λ messages, CTRECUs is the message counter value of the sender ECU, and ∥ denotes a
concatenation operation.

4. SF-Based Compression and Entropy-Based Signal Grouping

In this section, an SF-based CAN data compression algorithm and an entropy-based
signal grouping technique are proposed.

4.1. Basic Concept of the Proposed Algorithm

Figure 4 shows the basic concept of the proposed CAN data compression algorithm.
When an 8-byte data field in a CAN frame is expressed in the form of an 8 × 8 matrix, as
shown in Figure 4, if all bits in Bytes 4, 5, 6, and 7 are 0, these four bytes can be removed
and the data length code (DLC) indicating the length of the data field of a CAN frame is
changed from 8 to 4. Thus, the size of the transmitted data is reduced by half.

Based on this observation, the proposed algorithm focuses on the following two points
to improve the compression ratio:

- The occurrence of bit 1 should be suppressed if possible.
- Bit 1 should be placed as far as possible from the bottom of the 8 × 8-bit arrange-

ment matrix.
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4.2. Mapping and Inverse Mapping Rules

Mapping and inverse mapping rules need only be determined once during the system
design phase. Once the CAN system is put into actual operation, data compression
continues according to the determined mapping rule. The determination of the proposed
mapping rule consists of the following five steps:

Step 1: Conversion of CAN data field to matrix form
The 8-byte CAN data field can be expressed in the form of an 8 × 8 matrix, as shown

in Figure 5. In the matrix, each row number (i) represents a byte number and each column
number (j) represents a bit number (0 ≤ i, j ≤ 7). If the number of CAN frames to be
transmitted is N, N matrices are obtained.
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Step 2: Calculation of the probability of 1 for each bit position
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For a sufficient number of CAN frames obtained from actual operation, the probability
of the occurrence of 1 for each bit position is calculated. Table 6 is an example showing
the probability of the occurrence of 1 for each bit position as a percentage (%). The shaded
portions indicate bit positions where the probability of the occurrence of 1 is 50% or more.

Table 6. Probability of occurrence of 1 for each bit position (%).

b7 b6 b5 b4 b3 b2 b1 b0

B0 0 0 0 0 0 0 0 0

B1 0 0 0 0 0 0 0 0
B2 0 23.55 42.09 44.16 41.84 31.99 32.16 95.50

B3 0 0 0 0 0 0 0 100

B4 99.98 99.98 99.99 99.99 99.99 99.99 100 100

B5 0 24.94 36.58 42.10 45.27 47.43 48.06 96.08

B6 0 0 3.86 43.34 44.18 38.08 53.74 96.53

B7 0 0 0 0 0 0 0 0

Step 3: Inversion of bits with a bit 1 probability of 50% or more
To increase the compression ratio, the probability of the occurrence of 1 should be

small. To this end, in Table 6, the input bits at the bit positions where the probability of
the occurrence of 1 is greater than 50% are inverted. In the decompression process, the
inverted bits are inverted again to restore the original data. Table 7 shows the occurrence
probability of 1 and the bit inversion position after the bit inversion step. In Table 7, the
highest probability of occurrence of 1 is 48.06% at (5,1).

Table 7. Probability of occurrence of 1 for each bit position after inversion step (%) (circled number is
the highest probability; shaded area: bit inversion).

b7 b6 b5 b4 b3 b2 b1 b0

B0 0 0 0 0 0 0 0 0

B1 0 0 0 0 0 0 0 0
B2 0 23.55 42.09 44.16 41.84 31.99 32.16 4.50

B3 0 0 0 0 0 0 0 0

B4 0.02 0.02 0.01 0.01 0.01 0.01 0 0

B5 0 24.94 36.58 42.10 45.27 47.43
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Step 4: Data sorting according to the modified probability
The input bits are rearranged in descending order of the modified probability obtained

in Step 3. That is, the bit with the highest probability is mapped to (0,0), the bit with the
next highest probability is mapped to (0,1), and so on. When the bit mapping to the first
row is completed, the mapping to the next row is performed. In the same way, the mapping
proceeds to the last row. Bits with the same probability are mapped randomly.

Table 8 shows the occurrence probability of 1 of the rearranged bits. It has a maximum
value of 48.06% at the bit position (0,0) and gradually decreases thereafter, showing that all
probability values are 0 after the bit position (3,1).

Step 5: Mapping rule determination
The mapping rule summarizes steps 1 to 4 and indicates the new bit position for each

input bit and whether the bit is inverted or not. Table 9 shows the mapping rule determined
for the probability distribution shown in Table 6.
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Table 8. Probability of occurrence of 1 for each bit position after data sorting (%) (circled number is
the highest probability; shaded area: bit inversion).

b7 b6 b5 b4 b3 b2 b1 b0

B0 42.10 43.34 44.16 44.18 45.27 46.26 47.43
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B1 23.55 24.94 31.99 32.16 36.58 38.08 41.84 42.09

B2 0.01 0.01 0.02 0.02 3.47 3.86 3.92 4.50

B3 0 0 0 0 0 0 0.01 0.01

B4 0 0 0 0 0 0 0 0

B5 0 0 0 0 0 0 0 0

B6 0 0 0 0 0 0 0 0

B7 0 0 0 0 0 0 0 0

Table 9. Mapping rule for Table 6.

b7 b6 b5 b4 b3 b2 b1 b0
B0 (5,4) (6,4) (2,4) (6,3) (5,3) (6,1) (5,2) (5,1)

B1 (2,6) (5,6) (2,2) (2,1) (5,5) (6,2) (2,3) (2,5)

B2 (4,3) (4,2) (4,6) (4,7) (6,0) (6,5) (5,0) (2,0)

B3 (0,4) (0,3) (0,2) (0,1) (0,0) (4,1) (4,5) (4,4)

B4 (1,4) (1,3) (1,2) (1,1) (1,0) (0,7) (0,6) (0,5)

B5 (3,3) (3,2) (3,1) (3,0) (2,7) (1,7) (1,6) (1,5)

B6 (6,7) (6,6) (5,7) (4,0) (3,7) (3,6) (3,5) (3,4)

B7 (7,7) (7,6) (7,5) (7,4) (7,3) (7,2) (7,1) (7,0)

As an example of the mapping rule determination, consider the probability distribution
in Table 6. After inversion, the bit with the highest probability in Table 7 is located at (5,1).
Therefore, the input bit located at (5,1) is mapped to the position (0,0) in Table 9. Next,
the bit with the second highest probability in Table 7 is located at (5,2). Therefore, the bit
located at (5,2) is mapped to the position (0,1) in Table 9. The bit with the third highest
probability is located at (6,1), which is mapped to the position (0,2) in Table 9 with a shaded
area. By the same principle, the mapping rule in Table 9 can be obtained. Algorithm 1
shows the pseudocode expression of the proposed mapping rule determination procedure.

The inverse mapping rule can be created by simply reversing the mapping order. For
example, the compressed bit located at (0,0) is mapped to the original position (5,1). The
compressed bit at (0,2) is mapped to (6,1) with inversion. Notice that inverted bits must be
inverted again at the receiver.

The mapping rule in Table 9 can also be used for inverse mapping by reversing the
mapping order. Unlike other compression algorithms, the proposed method is advanta-
geous in increasing the compression ratio by not using header bits.

As mentioned in Step 2, a sufficient number of CAN frames are needed to calculate the
probability of the occurrence of 1 for each bit position. For a sufficient number of frames for
probability calculation, the moments of normal driving, high-speed driving, low-speed driv-
ing, sudden acceleration, and sudden stop of the vehicle must be appropriately included.

Considering these points, more than 30 min of driving data were collected from a
vehicle and a tractor, respectively, for the simulation in Section 5. Since the mapping rule
is determined at the time of system design, the number of frames used for probability
calculation does not affect the real-time performance of the vehicle.
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Algorithm 1 CAN data frame mapping algorithm (0x43F: Frame ID)

No.

1
T = Threshold (T)
[Sufficient number of CAN frames obtained from actual operation]

2 CTR = CAN data frame receive counter
3 0x43F = CAN data frame ID used by the sender ECU
4 procedure
5 initialize Conversion of CAN data field to matrix form as in Figure 5
6 while(CTR0x43F < T)

7
receives CAN Data Frame

if(ID = 0x43F) then increments CTR0x43F (CTR0x43F + 1)
8 end while
9 calculation of the probability of 1 for each bit position as in Table 6
10 inversion of bits with a bit 1 probability of 50% or more as in Table 7)
11 data sorting according to the modified probability as in Table 8
12 mapping rule determination as in Table 9
13 End

4.3. Operation of the Proposed Compression Algorithm

Once the mapping rule is obtained offline, data compression can be performed in
online operation. Figure 6 shows an example of applying the proposed compression
algorithm based on the mapping rule in Table 9. Notice that most bits in the shaded area
are 1s since the occurrence probabilities of 1 at these locations are very high. It can be seen
that the proposed method compresses 8 bytes of input data into 2 bytes.
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To send a truncated MAC of 4 bytes in the space obtained by compression, a 4-byte
MAC can be added after the 2-byte compressed data, as shown in Figure 7. At this time,
the DLC is changed to 6. The receiving side regards the last 4 bytes of the received data as
MAC and uses them for authentication. The remaining 2 bytes are treated as compressed
data and restored according to the inverse mapping rule.
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4.4. Entropy-Based Signal Grouping

In [10], it is shown that a four-byte MAC provides sufficient security in a vehicular
environment. Thus, in the proposed method, a four-byte truncated MAC is transmitted in
the space secured by the SF-based compression method.

Assume that the 64-bit data field of a CAN frame is represented as follows:

M = b0b1 · · · b63 (3)

If pi is the probability of bi = 1, the entropy of bi can be calculated as follows [32]:

H(bi) = −pilog2 pi − (1 − pi)log2(1 − pi), i = 0, · · · 63 (4)

If pi = 0.5, then H(b i) = 1, which means one bit is required to represent bi. For
simplicity, it is assumed that each bit bi is independent of each other. Then, the message
entropy H(M) of 64-bit CAN messages with a specific ID can be calculated as follows:

H(M) = ∑63
i=0 H(bi) (5)

The maximum entropy of a 64-bit CAN message is 64 bits when pi is 0.5 for i = 0, · · · 63.
As pi approaches 0 or 1, the entropy value decreases.

For CAN frames with a specific ID, the probability pi for each bit can be calculated
from the collected CAN signals. The length of the compressed data is closely related to
the entropy of the message. As shown in Section 5, the compressed data length L(M C) in
bytes can be estimated as follows:

L(M C) = ⌈Entropy/8⌉ (6)
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where ⌈t⌉ means the smallest integer greater than or equal to t. From (6), it can be seen
that the expected length of the compressed data is greater than 4 bytes when the entropy is
greater than 32.

To efficiently authenticate a CAN frame, it is desirable to limit the message entropy
of an ID to less than 32. Moreover, if possible, it is desirable to equally distribute the total
entropy among IDs as shown in Figure 8a. An analysis of automotive CAN signals shows
that most CAN messages have an entropy of less than 32. Otherwise, the ID needs to be
split into two IDs so that the entropy of each split ID is less than 32, as shown in Figure 8b.
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By the TIFM approach, two frames are transmitted if the compressed data length is
greater than four bytes, as shown in Figure 9a. The first frame is not authenticated until the
second frame arrives. However, although the proposed ID split method also transmits two
frames when the entropy of an ID is greater than 32, the proposed method has a significant
advantage. That is, since each frame contains MAC data, it is authenticated directly without
waiting for an additional frame, as explained by Figure 9b.

Information 2024, 15, x FOR PEER REVIEW 14 of 23 
 

 

If 𝑝 = 0.5, then 𝐻(𝑏 ) = 1, which means one bit is required to represent 𝑏 . For sim-
plicity, it is assumed that each bit 𝑏  is independent of each other. Then, the message en-
tropy 𝐻(𝑀) of 64-bit CAN messages with a specific ID can be calculated as follows: 𝐻(𝑀) = ∑ 𝐻(𝑏 )  (5)

The maximum entropy of a 64-bit CAN message is 64 bits when 𝑝   is 0.5 for 𝑖 =0, ⋯ 63. As 𝑝  approaches 0 or 1, the entropy value decreases. 
For CAN frames with a specific ID, the probability 𝑝  for each bit can be calculated 

from the collected CAN signals. The length of the compressed data is closely related to 
the entropy of the message. As shown in Section 5, the compressed data length 𝐿(𝑀 ) in 
bytes can be estimated as follows: 𝐿(𝑀 ) =  ⌈𝐸𝑛𝑡𝑟𝑜𝑝𝑦/8⌉ (6)

where ⌈𝑡⌉ means the smallest integer greater than or equal to t. From (6), it can be seen 
that the expected length of the compressed data is greater than 4 bytes when the entropy 
is greater than 32.  

To efficiently authenticate a CAN frame, it is desirable to limit the message entropy 
of an ID to less than 32. Moreover, if possible, it is desirable to equally distribute the total 
entropy among IDs as shown in Figure 8a. An analysis of automotive CAN signals shows 
that most CAN messages have an entropy of less than 32. Otherwise, the ID needs to be 
split into two IDs so that the entropy of each split ID is less than 32, as shown in Figure 
8b. 

  
(a) (b) 

Figure 8. Application examples of signal grouping techniques: (a) distribution of the total entropy 
between IDs; and (b) ID split. 

By the TIFM approach, two frames are transmitted if the compressed data length is 
greater than four bytes, as shown in Figure 9a. The first frame is not authenticated until 
the second frame arrives. However, although the proposed ID split method also transmits 
two frames when the entropy of an ID is greater than 32, the proposed method has a sig-
nificant advantage. That is, since each frame contains MAC data, it is authenticated di-
rectly without waiting for an additional frame, as explained by Figure 9b. 

 
Figure 9. (a) TIFM for the case of compressed data length greater than four bytes; and (b) proposed 
method for the case of split ID. 

Figure 9. (a) TIFM for the case of compressed data length greater than four bytes; and (b) proposed
method for the case of split ID.

ID split is determined during the system design phase. During system operation,
the transmitted data type is determined based on the compressed data length, as shown
in Table 10. If entropy-based signal grouping is used, the compressed data length rarely
exceeds 4 bytes. However, when this happens, IDi+1 and IDi+2 are used to transmit the
original data and 4-byte MAC, respectively. When the compressed data length is zero, only
4-byte MAC is transmitted in the data field, as opposed to the TIFM method.

If the probability of the occurrence of 1 in a specific bit is close to 50%, the number of
occurrences of 1 in that bit increases even through the bit inversion process. Therefore, the
compression efficiency of the proposed method is reduced in an environment with many
such bits.
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Table 10. Transmitted data type according to the compressed data length: L(MC).

Compressed Length (Byte) ID Transmitted Data Type

L(MC) ≤ 4 i Compressed data and 4-byte MAC
transmitted in the same data field

4 < L(MC)
i + 1 Original data transmitted

i + 2 4-byte MAC transmitted

5. Simulation Using Automobile and Tractor CAN Signals

In this section, simulation results using actual CAN signals are presented. The com-
pression ratio is defined as follows:

Comp.ratio =

(
1 − # of bytes of compressed data

# of bytes of original data

)
× 100 (7)

Table 11 shows the data compression results of a CAN system with eight IDs in a Kia
Sorento by the proposed method. To show the relationship between compression ratio and
entropy, the entropy values for each ID are also shown in the table.

Table 11. Number of occurrences by the length of compressed data in a KIA Sorento by the pro-
posed method.

ID
Number of Occurrences

by Compressed Length (Byte) Entropy Comp.
Ratio (%)

1 2 3 4 5 or More

0x260 163,078
(100%)

0
(0.00%)

0
(0.00%)

0
(0.00%)

0
(0.00%) 7.44 87.50%

0x2A0 163,078
(100%)

0
(0.00%)

0
(0.00%)

0
(0.00%)

0
(0.00%) 5.04 87.50%

0x316 0
(0.00%)

0
(0.00%)

0
(0.00%)

4313
(2.64%)

158,765
(97.36%) 46.25 27.60%

0x329 7553
(4.63%)

18,959
(11.63%)

135,917
(83.34%)

649
(0.40%)

0
(0.00%) 19.15 65.06%

0x43F 6086
(3.05%)

61,990
(31.07%)

131,141
(65.72%)

314
(0.16%)

0
(0.00%) 19.76 67.13%

0x440 0
(0.00%)

55,508
(27.82%)

143,950
(72.14%)

73
(0.04%)

0
(0.00%) 20.74 65.97%

0x545 636
(3.70%)

157,042
(96.30%)

0
(0.00%)

0
(0.00%)

0
(0.00%) 13.31 75.46%

0x580 3112
(3.82%)

1444
(1.77%)

5197
(6.38%)

37,535
(46.07%)

34,180
(41.96%) 34.65 47.43%

Total
(Avg.)

348,943
(26.93%)

294,944
(22.76%)

416,205
(32.12%)

42,884
(3.30%)

192,945
(14.89%) 19.89 66.65%

As an example of using entropy to estimate the compressed data length, consider
ID 0x2A0 with an entropy of 5.04. By (6), the compressed data length is estimated as 1
byte. Notice that the simulated compression ratio of ID 0x2A0 is 87.50% in Table 11, which
corresponds to the compressed data length of 1.0 bytes (8 × 12.5% = 1). For ID 0x316,
the entropy is 46.25. Then, the estimated length of the compressed data is 6 bytes by (6).
The simulated compression ratio of ID 0x316 is 27.60% in Table 11, which corresponds to
the compressed data length of 5.79 bytes (8 × 72.4%). Therefore, it can be concluded that
the compression results by the proposed SF-based compression method closely follow the
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estimated results by (6). In addition, Table 11 shows that a signal with low entropy has a
high compression ratio, while a signal with high entropy has a low compression ratio.

For six IDs (0x260, 0x2A0, 0x329, 0x43F, 0x440, and 0x545) in Table 11, the length of
each piece of compressed data is less than 5 bytes, so compressed CAN data and MAC
can be transmitted in the same CAN frame. For IDs 0x316 and 0x580, the entropy values
are greater than 32. Thus, 32-bit MAC cannot be transmitted in the same CAN frame. If
efficient frame authentication is desired, an ID split is required for IDs 0x316 and 0x580.
As an example of an ID split, ID 0x316 can be divided into IDs 0x317 and 0x319. Then,
IDs 0x317 and 0x319 cut the entropy of ID 0x316 in half. Notice that, if the total entropy
is equally divided among 8 IDs, the average entropy is 19.89. Therefore, if entropy-based
signal grouping was performed properly for each ID in the system design phase, an ID
split would not be necessary. Table 12 shows the occurrences based on a compressed data
length of four bytes for a Kia Sorento by the proposed method. Notice that the ID split was
applied to IDs 0x316 and 0x580. The length of each piece of compressed data is less than 5
bytes for all IDs due to ID split.

Table 12. Number of occurrences based on a compressed data length of four bytes for KIA Sorento by
the proposed method.

ID Less than 5 Bytes 5 or More Bytes Total Frames

0x260
163,078 0

163,078(100.00%) (0.00%)

0x2A0
163,078 0

163,078(100.00%) (0.00%)

0x316 321,843 0
321,843(ID split) (100.00%) (0.00%)

0x329
163,078 0

163,078(100.00%) (0.00%)

0x43F
199,531 0

199,531(100.00%) (0.00%)

0x440
199,531 0

199,531(99.98%) (0.00%)

0x545
163,078 0

163,078(100.00%) (0.00%)

0x580 115,648 0
115,648(ID split) (100.00%) (0.00%)

Total
1,488,865 0

1,488,865(100.00%) (0.00%)

Table 13 shows the occurrences based on a compressed data length of four bytes for
a Kia Sorento by VMLDA. Of a total of 1,287,683 frames, 8237 frames (0.64%) cannot be
compressed to less than 5 bytes, so additional frames are required to transmit the MAC data.

Table 14 compares the occurrences based on a compressed data length of four bytes. By
the proposed method with ID split, all transmitted frames can be authenticated with a 32-bit
MAC without waiting for additional frames. If ID split is not used, VMLDA performs better
than the proposed method in terms of the number of occurrences based on a compressed
data length of 4 bytes. This is because ID 0x316 and ID 0x580 each have an entropy value
greater than 32. In difference-based methods such as VMLDA, the difference in consecutive
frames is calculated and compressed, so the compression performance is not significantly
reduced even for signals with an entropy value greater than 32. However, difference-based
methods have a fundamental problem in that errors in the previous frame are propagated
to the next frame during the compression process of calculating the difference, as shown in
Figure 3.
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Table 13. Number of occurrences based on a compressed data length of four bytes for KIA Sorento by
VMLDA algorithm.

ID Less than 5 Bytes 5 or More Bytes Total Frames

0x260
163,078 0

163,078(100.00%) (0.00%)

0x2A0
163,078 0

163,078(100.00%) (0.00%)

0x316
156,250 6828

163,078(95.81%) (4.19%)

0x329
163,074 4

163,078(100.00%) (0.00%)

0x43F
199,507 24

199,531(99.99%) (0.01%)

0x440
199,489 42

199,531(99.98%) (0.02%)

0x545
163,078 0

163,078(100.00%) (0.00%)

0x580
80,129 1339

81,468(98.36%) (1.64%)

Total
1,287,683 8237

1,295,920(99.36%) (0.64%)

Table 14. Comparison results of the number of occurrences based on a compressed data length of
four bytes of KIA Sorento between the proposed method and VMLDA.

Less than 5 Bytes More than 4 Bytes

VMLDA 99.36% 0.64%

Proposed (w/o ID split) 85.11% 14.89%

Proposed (w/ ID split) 100.00% 0.00%

A simulation using a tractor was performed to show that the proposed algorithm can
be applied to various industrial machines. Table 15 shows the data compression results of
a CAN system with thirteen IDs in an LS Mtron tractor. The entropy values for each ID
are also shown in the table. As with the KIA Sorento, we can conclude from Table 15 that
signals with low entropy have high compression ratios, and signals with high entropy have
low compression ratios. Compared to the KIA Sorento, the CAN signals of the LS Mtron
tractor have lower entropy as they operate in a more restricted environment. Therefore, as
shown in Table 15, the average compression ratio of LS Mtron (75.77%) is higher than that
of Kia Sorento (66.65%).

Table 16 shows the comparison of occurrences based on a compressed data length
of four bytes. In the case of the LS Mtron, the proposed compression method without
ID split shows slightly better (0.22% higher) performance than VMLDA. This is due to
the low average entropy of 12.77 of the LS Mtron tractor. Notice that ID 0xCF00400 is
the only ID with entropy close to 32 bits. Therefore, if the ID split method is applied
to ID 0xCF00400, as shown in Table 17, all frames can be authenticated directly without
transmitting two frames in the proposed method. If VMLDA is used, CAN signals of
four IDs (0xCF00300, 0xCF00400, 0x18FEDF00, and 0x18FF2100) may need to transmit two
frames for authentication. This simulation shows that the proposed method can be used
very efficiently to improve the security of CAN systems with low entropy values.
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Table 15. Number of occurrences by the length of compressed data in an LS Mtron tractor by the
proposed method.

ID
Number of Occurrences by Compressed Length (Byte)

Entropy Compression
Ratio (%)1 2 3 4 >4

0xC000027
0 33,064 7847 0 0

15.64 72.60%(0.00%) (80.82%) (19.18%) (0.00%) (0.00%)

0xC000127
40,900 0 0 0 0

5.86 87.50%(100.00%) (0.00%) (0.00%) (0.00%) (0.00%)

0xCF00300
0 610 3329 4295 0

27.22 56.91%(0.00%) (7.41%) (40.43%) (52.16%) (0.00%)

0xCF00400
0 0 103 18,295 2190

31.63 48.73%(0.00%) (0.00%) (0.50%) (88.86%) (10.64%)

0xCFF0027
8182 0 0 0 0

0.01 87.50%(100.00%) (0.00%) (0.00%) (0.00%) (0.00%)

0x18F02300
1571 5917 746 0 0

14.31 76.25%(19.08%) (71.86%) (9.06%) (0.00%) (0.00%)

0x18FEDF00
0 46 8182 6 0

22.65 62.56%(0.00%) (0.56%) (99.37%) (0.07%) (0.00%)

0x18FF2100
8234 0 0 0 0

0.23 87.50%(100.00%) (0.00%) (0.00%) (0.00%) (0.00%)

0x18FF6121
8181 0 0 0 0

0.01 87.50%(100.00%) (0.00%) (0.00%) (0.00%) (0.00%)

0x18FF9521
4090 0 0 0 0

0.01 87.50%(100.00%) (0.00%) (0.00%) (0.00%) (0.00%)

0x18FF9E21
7967 215 0 0 0

4.66 87.17%(97.37%) (2.63%) (0.00%) (0.00%) (0.00%)

0x19FFA000
65 6351 3817 0 0

18.43 70.42%(0.64%) (62.06%) (37.30%) (0.00%) (0.00%)

0x19FFA010
7853 353 0 0 0

4.41 86.96%(95.70%) (4.30%) (0.00%) (0.00%) (0.00%)

Total 87,043 46,557 24,024 22,596 2190
12.77 75.77%(Average) (47.72%) (25.52%) (13.17%) (12.39%) (1.20%)

Table 16. Comparison results of the number of occurrences based on a compressed data length of
four bytes of LS Mtron between the proposed method and VMLDA.

ID Entropy
Less than 5 Bytes Total

FramesVMLDA Proposed (w/o ID Split)

0xC000027 15.64
40,911 40,911

40,911(100%) (100%)

0xC000127 5.86
40,900 40,900

40,900(100%) (100%)

0xCF00300 27.22
7227 8234

8234(87.77) (100%)

0xCF00400 31.63
19,119 18,397

20,588(92.87%) (89.36%)

0xCFF0027 0.01
8182 8182

8182(100%) (100%)
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Table 16. Cont.

ID Entropy
Less than 5 Bytes Total

FramesVMLDA Proposed (w/o ID Split)

0x18F02300 14.31
8234 8234

8234(100%) (100%)

0x18FEDF00 22.65
8127 8234

8234(98.70%) (100%)

0x18FF2100 0.23
8234 8234

8234(99.99%) (100%)

0x18FF6121 0.01
8181 8181

8181(100%) (100%)

0x18FF9521 0.01
4090 4090

4090(100%) (100%)

0x18FF9E21 4.66
8182 8182

8182(100%) (100%)

0x19FFA000 18.43
10,233 10,233

10,233(100%) (100%)

0x19FFA010 4.41
8206 8206

8206(100%) (100%)

Total
(Average) 12.77

179,826 180,218
182,409(98.58%) (98.80%)

Table 17. Comparison results of the number of occurrences based on a compressed data length of
four bytes of LS Mtron tractor between the proposed method and VMLDA.

Less than 5 Bytes 5 or More Bytes

VMLDA 98.58% 1.42%

Proposed
(w/o ID split) 98.80% 1.20%

Proposed
(w/ ID split) 100% 0%

The peak load of the CAN bus was calculated using CANoe. The simulation results
are obtained from Kia Sorento CAN data at 500 kbps used for the simulation in Table 11.
The bus load is defined as follows:

Busload(%) =
# bits sent

speed
(8)

The peak load is defined as the maximum bus load. In Figure 10, VN1630 (Vector
CAN/CANFD IP Core) is used as TX HW, and VH6501 (Vector CAN/CANFD IP Core) is
used as RX HW. A Pico Scope 5444D is used for CAN wave monitoring.

The simulation results in Table 18 show that the peak load of the original CAN system
is reduced by 7.58% by using the proposed compression algorithm without MAC. This
means that the peak load of the compressed system is only 60.8% of that of the original
system. For the simulation, 795 frames are transmitted per second, and the total number of
transmitted frames is 1,295,928 (frames transmitted in approximately 27 min).

To authenticate a CAN frame, the ID split method is used. In this case, as can be
inferred from Table 12, the number of IDs increases from 8 to 10. Thus, the number of
transmitted frames is increased from 795 to 914. Nevertheless, the peak load of the proposed
system is almost the same as that of the original system without MAC, mainly due to the
data length reduction by the compression algorithm.
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Table 18. Peak load comparison.

Peak Load Frames/s Total Frames

Original 19.38% 795 1,295,928
without MAC (1) (1) (1)

Proposed 11.80% 795 1,295,928
without MAC (0.608) (1) (1)

Proposed 19.45% 914 1,488,875
with MAC (ID split) (1.004) (1.14) (1.14)

Table 19 compares the execution time (required number of clock cycles) for the data
compression of KIA Sorento using a 32-bit MCU (TMS320F28335PGFA) operating at
100 MHz. In the proposed algorithm, IDs with higher entropy values require more clock
cycles for data compression. The proposed algorithm requires an average of 190.75 clock
cycles (1.9075 µs) for the data compression of one frame, whereas the VMLDA algorithm re-
quires 696.5 clock cycles (6.965 µs). Therefore, the execution time of the proposed algorithm
is only 27.39% of that of the VMLDA algorithm, indicating that the proposed algorithm is
easier to process in real time.

Table 19. Comparison of execution time (required number of clock cycles) for data compression of
KIA Sorento using 32-bit MCU (TMS320F28335PGFA) operating at 100 MHz.

ID
(Entropy)

Proposed VMLDA

Average Clock
Cycles

Compression
Time (µs)

Average Clock
Cycles

Compression
Time (µs)

0x260
105 1.05 555 5.55(7.44)

0x2A0
119 1.19 536 5.36(5.04)
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Table 19. Cont.

ID
(Entropy)

Proposed VMLDA

Average Clock
Cycles

Compression
Time (µs)

Average Clock
Cycles

Compression
Time (µs)

0x316
299 2.99 752 7.52(46.25)

0x329
172 1.72 683 6.83(19.15)

0x43F
213 2.13 628 6.28(19.76)

0x440
220 2.20 726 7.26(20.74)

0x545
158 1.58 1063 10.63(13.31)

0x580
240 2.40 629 6.29(34.65)

Average 190.75 1.9075 696.5 6.965

6. Security Analysis

In this section, the proposed method is compared to the security solutions proposed in
Truncated-MAC, Mini-MAC, and SecOC. Table 20 shows the results of a comparative eval-
uation. All four methods provide data frame authentication and can block impersonation
attacks and replay attacks.

Table 20. Comparison of security solutions. (Y: Yes. N: No).

Proposed Truncated-MAC Mini-MAC SecOC

No standard change Y N Y Y

No communication
overhead Y Y Y N

Prevent
impersonation attack Y Y Y Y

Prevent replay attack Y Y Y Y

The three studies described in Section 2.2 use ID, Data, and CRC fields for MAC
transmission. While the use of the data field, as shown in Mini-MAC and SecOC, is
common, it is not recommended due to the data frame overhead. The CAN standard must
be modified to repurpose the CRC field. Accordingly, similar to Truncated-MAC, a method
to use the CRC field cannot be applied to a real automotive environment.

The proposed compression-based data authentication is a practical method that guar-
antees real-time data processing. Since MAC is delivered using the extra space generated
by the compression of data frames, data frame overhead does not occur. Furthermore, the
proposed method can be used without modification of the CAN standard since it can be
implemented only with modification of the software.

7. Conclusions

In this paper, an SF-based CAN data compression algorithm was proposed that com-
presses the current frame without relying on previous frames. Therefore, the proposed
compression method does not propagate the effects of errors caused by data errors, frame
loss, replay attacks, or ECU resets to subsequent frames, unlike difference-based compres-
sion methods. To authenticate CAN data with 4-byte MAC, a signal grouping technique
was also proposed based on entropy analysis.
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Simulation using actual CAN signals showed that the proposed compression algorithm
can guarantee a compression ratio of more than 50% (32 bits). Real-time CAN authentication
is easily achievable, unlike other compression methods. Simulation results using CANoe
show that the proposed method can achieve data authentication in the CAN system
with almost the same peak load as the original CAN system without authentication. In
addition, the execution time of the proposed algorithm is only 27.39% of that of the VMLDA,
indicating that the proposed algorithm is easier to process in real time. In addition, taking a
tractor as an example, it was shown that the proposed method can be successfully applied
to other industrial machines.

The compression performance of the proposed method depends on the data used
to create the mapping table. Therefore, the data should be collected carefully through
several test runs to represent typical characteristics of the vehicle during driving. If the
probability of occurrence of 1 in a specific bit of the data is close to 50%, the number of
occurrences of 1 in that bit increases even through the bit inversion process. Therefore, the
compression efficiency of the proposed method is reduced in an environment with many
such high-entropy bits.

Countermeasures for CAN attacks such as authentication, preventative protection,
intrusion detection, and post-detection impose large overhead on the availability of the
existing resources of automobiles. Therefore, it is necessary to develop CAN security en-
hancement methods that do not require heavy computational power. The co-development
of hardware and software to eliminate the need for extremely high-speed ECUs would
be a good research topic. No single countermeasure can provide complete security. The
development of algorithms that efficiently combine two or more countermeasures is also a
promising future topic.
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