
Citation: Panduman, Y.Y.F.; Funabiki,

N.; Fajrianti, E.D.; Fang, S.;

Sukaridhoto, S. A Survey of AI

Techniques in IoT Applications with

Use Case Investigations in the Smart

Environmental Monitoring and

Analytics in Real-Time IoT Platform.

Information 2024, 15, 153. https://

doi.org/10.3390/info15030153

Academic Editors: Vasco N. G. J.

Soares, João M. L. P. Caldeira, Bruno

Bogaz Zarpelão and Jaime

Galán-Jiménez

Received: 23 February 2024

Accepted: 7 March 2024

Published: 9 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Article

A Survey of AI Techniques in IoT Applications with Use Case
Investigations in the Smart Environmental Monitoring and
Analytics in Real-Time IoT Platform
Yohanes Yohanie Fridelin Panduman 1 , Nobuo Funabiki 1,*, Evianita Dewi Fajrianti 1 , Shihao Fang 1

and Sritrusta Sukaridhoto 2

1 Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan;
p8f01q6f@s.okayama-u.ac.jp (Y.Y.F.P.); p2mu1tom@s.okayama-u.ac.jp (E.D.F.);
pkpb8c9q@s.okayama-u.ac.jp (S.F.)

2 Department of Informatic and Computer, Politeknik Elektronika Negeri Surabaya, Surabaya 60111, Indonesia;
dhoto@pens.ac.id

* Correspondence: funabiki@okayama-u.ac.jp

Abstract: In this paper, we have developed the SEMAR (Smart Environmental Monitoring and Analytics
in Real-Time) IoT application server platform for fast deployments of IoT application systems. It
provides various integration capabilities for the collection, display, and analysis of sensor data on
a single platform. Recently, Artificial Intelligence (AI) has become very popular and widely used in
various applications including IoT. To support this growth, the integration of AI into SEMAR is
essential to enhance its capabilities after identifying the current trends of applicable AI technologies
in IoT applications. In this paper, we first provide a comprehensive review of IoT applications using
AI techniques in the literature. They cover predictive analytics, image classification, object detection,
text spotting, auditory perception, Natural Language Processing (NLP), and collaborative AI. Next, we
identify the characteristics of each technique by considering the key parameters, such as software
requirements, input/output (I/O) data types, processing methods, and computations. Third, we
design the integration of AI techniques into SEMAR based on the findings. Finally, we discuss use
cases of SEMAR for IoT applications with AI techniques. The implementation of the proposed design
in SEMAR and its use to IoT applications will be in future works.

Keywords: Internet of Things; AI; integration; survey; application server platform; SEMAR

1. Introduction

Nowadays, the Internet of Things (IoT) has attracted significant interest from both
industrial and academic communities as an emerging technology designed to connect
cyberspace with physical devices using Internet infrastructure [1]. As IoT infrastructures
become common, an IoT application system can consist of various sensor devices and
network connections across multiple domains [2]. In this context, developers need to
efficiently design and implement the system adopting standards for heterogeneous device
management and interoperability with other systems [3].

In this paper, we have developed the IoT application server platform called SEMAR
(Smart Environmental Monitoring and Analytics in Real-Time). It can serve as a cloud server
for integrating various IoT application systems. It offers various integration capabilities for
the collection, display, and analysis of sensor data on a single platform [4], by providing
built-in functions for data communications, aggregations, synchronizations, and classi-
fications using machine learning algorithms in Big Data environments. It also supports
the implementation of plug-in functions by allowing other systems to access data through
the Representational State Transfer Application Programming Interface (REST API). Although

Information 2024, 15, 153. https://doi.org/10.3390/info15030153 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15030153
https://doi.org/10.3390/info15030153
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-6208-8472
https://orcid.org/0000-0002-9019-9775
https://doi.org/10.3390/info15030153
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15030153?type=check_update&version=2


Information 2024, 15, 153 2 of 30

SEMAR has been efficiently used in several IoT applications, improvements to the plat-
form will be expected to address the demands of IoT applications that may require more
advanced data processing algorithms.

Recently, Artificial Intelligence (AI) has become very popular as a data processing algo-
rithm. AI has been inspired by the thinking of the human brain [5]. It can create intelligent
systems that may learn, operate, and respond intelligently like human behaviors [6,7]. In
fact, AI is a field of intelligence systems that covers not only algorithms for data processing
but also offers a wide range of tools and techniques that help computers perform specific
tasks [8]. Machine learning, Natural Language Processing (NLP), deep learning, pattern
recognition, optimization, robotics, and computer vision can be included as subfields of
AI. Due to its ability to solve a lot of complex problems, AI is now widely used in various
applications including IoT.

The integration of AI plays a critical role in the evolution of IoT technology. It enables
advanced sensor data analysis by identifying data patterns, extracting valuable information,
and making rapid decisions based on it [9]. Furthermore, the utilization of Big Data
technologies enhances this integration by providing huge data sets for training AI models.
This significantly increases the potential of AI implementations in various IoT applications.
To support this growth, the integration of AI into SEMAR becomes essential to enhance its
capabilities as an effective IoT application server platform.

The current AI studies are concerned with selecting appropriate techniques for specific
cases of IoT applications. Each technique has its own characteristics and requirements.
For instance, deep learning models require more computational resources, which increase
with the computational complexity of the model. Therefore, it is important to identify the
current trends of applicable AI techniques and their characteristics for effective integration.

In this paper, we present an overview of current AI techniques and their use cases
in IoT applications. Our methodology explores the potential of AI integrations and how
they can be implemented in IoT applications. First, we provide a comprehensive review of
current studies on IoT applications using AI techniques. They include predictive analytics,
image classification, object recognition, text spotting, auditory perception, NLP, and col-
laborative AI. Then, we identify the characteristics of each technique by considering the
key parameters that play a critical role in integrations. These parameters include software
requirements, input/output (I/O) data types, processing methods, and computations. Based
on our findings, we design the seamless integration of AI capabilities into the SEMAR
platform. Finally, we discuss use cases of IoT applications with AI techniques to illustrate
how SEMAR can be used to support their developments.

This study contributes to the field of AI integration in the IoT domain. First, we
present a comprehensive review of recent studies on AI technologies applied in various IoT
application use cases. Second, we provide a detailed analysis of an AI algorithm with key
parameters that are critical for effective AI integrations in IoT application developments.
Third, we present the design of an IoT platform service with seamlessly integrated AI-
driven capabilities that include both cloud and edge components. Through three IoT
application use cases, we illustrate how our designed platform supports and enhances IoT
application development with AI processes.

The rest of the paper is organized as follows: Section 2 briefly reviews our previous
development of SEMAR. Section 3 presents the comprehensive literature review of AI
techniques in IoT applications and highlights their use cases. Section 4 presents the design
of AI techniques integrations in SEMAR. Section 5 describes the use cases of SEMAR in IoT
applications. Finally, Section 6 concludes this paper with future works.

2. Review of SEMAR IoT Application Server Platform

In this section, we review the SEMAR IoT application server platform to facilitate the
development of IoT applications in the cloud. In our previous studies [4], we presented
the design and implementation of SEMAR with several IoT application systems. Currently,
SEMAR provides integrated capabilities functions to collect, display, process, and analyze



Information 2024, 15, 153 3 of 30

sensor data. It provides built-in functions for data communication, aggregation, synchro-
nization, and classification using machine learning algorithms that can be used without
implementation or modification of the original source code. It also allows users to add
plug-in functions by providing data access through the REST API. Furthermore, it was
integrated with the edge device framework [10] that allows users to seamlessly create,
update, and delete the edge configuration file for edge devices through the user interface
of SEMAR. Figure 1 shows the system overview of SEMAR.

Figure 1. Design overview of SEMAR IoT application server platform.

The built-in functions can be divided into several components for data input, data
processing, and data output. All the components are managed by the management system.

Collecting data from various IoT devices using network interfaces and communication
protocols in SEMAR is handled by the data input components. They include the IoT cloud
gateway, which provides services for data communications through MQTT, HTTP POST and
KAFKA communication protocols, and the data aggregator, which collects raw sensor data
and converts them to the consumable form according to the sensor format defined in the
device management data. The data aggregator transmits the sensor data to the data processing
components and stores them in the data storage. MongoDB [11] is implemented for the data
storage service. The SEMAR platform allows for receiving various types of sensor data
from devices in JavaScript Object Notation (JSON) format, as illustrated in Figure 1. They
include image frames and common data types such as integer, float, string, boolean, date,
and time.

The data processing components provide the functions for processing and analyzing
the obtained data. The data filter allows to use several digital filtering techniques to reduce
noise and inaccuracies in the data. The data synchronization allows the data from different
resources to be synchronized into a single data record. It stores the result data in the
schema data storage. The machine learning techniques can be used to provide real-time data
classification services in the data analytics component. The current implementation covers
the decision tree and Support Vector Machines (SVM) classification techniques.

According to the current trend of IoT applications, it is necessary to use several AI
techniques in the data analytics component. In this paper, we first conducted a study of AI
integration in IoT applications to identify the characteristics of each AI technique. Then,



Information 2024, 15, 153 4 of 30

based on the findings, we design the integration of AI techniques in SEMAR. In future
works, we will implement the proposed design to improve the data analytics component.

The data output components provide the functions to visualize the obtained data and
allow users to access them. A web-based user interface is prepared to visualize the data.
The data export function is implemented in the user interface to allow the user to download
the data at a specific time in a TEXT, Excel, JSON, or CSV format. The notification function
sends the message when the sensor value matches the user-defined threshold. The last
component utilizes the REST API service for data sharing and integrations with the plug-in
functions or other systems through HTTP POST communications in the JSON format.

In terms of the user model, the SEMAR platform is designed to support multi-user
usage. In order to manage devices, user authorizations, communication protocols, and data
in SEMAR, the management service is implemented. This service facilitates data sharing and
access control among users through the user interface. First, the user is required to register
a device on the platform, specifying the types of sensor data to be collected. Then, the user
can send invitations to other registered users to grant them permission to access the sensor
data. Once the invitation is accepted by the target user, access to the shared device data is
granted. Finally, the user is able to view and download the data from the user interface
of SEMAR.

In Ref. [10], we designed and built the edge device framework to optimize device utiliza-
tions by configuring it remotely through the SEMAR as the feature for device management.
It allows users to create, update, and delete the edge configuration file by accessing the
functions through the user interface.

The real-time system in the SEMAR platform processes data collected from devices and
generates responses within a specified timeframe. This implies that the system is expected
to meet deadlines to ensure time for data processing and response. For this purpose, the
soft deadline approach has been implemented as the deadline constraint in our system.
The soft deadline implies that completing a task within a certain time frame is preferable,
but not mandatory. If a data processing task misses its soft deadline, it will trigger the
timeout mechanism to avoid waiting indefinitely. However, this may result in data loss. To
address this issue, we have implemented the data log function to store all the data sent by
IoT devices as it is received by the IoT gateway. In addition, we have utilized the Network
Time Protocol (NTP) to synchronize clocks between functions in the SEMAR platform.

3. Literature Review on Use Cases of AI Techniques in IoT Applications

In this section, we present a review of use cases of AI techniques in IoT applications as
comprehensively as possible.

3.1. Methodology

The main purpose of this literature review section is to identify AI techniques that
have been frequently used in IoT applications, including algorithms, characteristics, and
how they can be implemented in IoT application use cases. For this purpose, we followed a
structured research methodology. It consists of identifying the trends of applied AI tech-
niques, finding the related literature, investigating characteristics, and analyzing necessary
requirements for seamless integrations.

First, we identify the trends of applied AI techniques in the development of IoT
application systems. For this purpose, we explored the surveyed papers that discuss
applied AI techniques in IoT application systems with their potential. According to the
findings in several studies [12–16], we selected predictive analytics, image classification,
object detection, text spotting, auditory perception, NLP, and collaborative AI as the typical
AI techniques to be explored in this paper.

In the next step, we systematically selected relevant papers for reviews from popular
scientific databases, including Scopus, Elsevier, and IEEE. To capture the current state of each
AI technique, we limited our literature review to publications that have been published
between 2019 and 2023. Our literature selection was based on a combination of keywords



Information 2024, 15, 153 5 of 30

representing each AI technique identified in the previous step, as well as the domains of
IoT application use cases. They included smart environments, smart manufacturing, smart
cities, smart homes, smart buildings, smart healthcare, smart agriculture, smart farming,
and smart laboratories.

For investigating the characteristics of each technique and its application use cases,
we considered critical features such as software requirements, I/O data types, processing
methods, and computations. Finally, we analyzed the unique strengths and requirements of
each AI technique with the specific purpose of designing seamless integration. Following
this insight, we designed the AI integration into the SEMAR platform.

3.2. Predictive Analytics

This subsection provides an overview of the current state of the art for integrating
predictive analytics into IoT systems by reviewing papers with considering application
use cases.

3.2.1. Overview

The integration of AI into an IoT application has changed the way how data is collected,
processed, and visualized. As an IoT application requires the ability to rapidly extract
meaningful information from data, a function or a system that enables the identification of
data patterns and trends in a real-time manner becomes a critical issue. Predictive analytics
is one of the AI techniques often used to solve this issue. It finds knowledge in current and
past data to generate predictions of future events by using machine learning, statistics, and
data mining techniques [17].

In the context of IoT, predictive analytics analyzes historical sensor data saved in
the database to predict future events or data trends. It is often used to perform anomaly
detection, predictive maintenance, optimization, and decision-making in a real-time or
near-real-time manner.

3.2.2. Use Cases in IoT Applications and Characteristics Overview

Several papers discussed use cases that provide the potential for using predictive
analytics techniques to improve IoT application systems. They include applications in smart
environments [18–22], smart manufacturing [23,24], smart home [25], smart building [26],
smart healthcare [27,28], smart farming [29], and smart agriculture [30].

Forecasting future environmental conditions based on historical data that were col-
lected by sensors is one of the goals of smart environments. As a direction toward this goal,
in [18], Imran et al. proposed an IoT-based simulation system that predicts fire spread and
burned areas in mountainous areas. In Ref. [19], Hussain et al. used predictive analytics
techniques to forecast the level of carbon monoxide (CO) concentration in the area around a
garbage bin. Mumtaz et al. in [20] provided a system that can predict the concentration
level of air pollutants in an indoor environment. Barthwal et al. in [21] proposed an IoT
application to predict the air quality index (AQI) based on collected mobile sensor data.
Jin et al. in [22] proposed a novel approach for predicting particulate matter (PM) 2.5 con-
centrations using a Bayesian network. This study introduced a Bayesian-based algorithm
that provides a potential robust prediction for time-series data.

In Ref. [23], Bampoula et al. developed a system for predicting the remaining useful
life of machinery in the steel industry. Teoh et al. in [24] developed an application focused
on the predictive maintenance of manufacturing equipment. These use cases illustrate the
effectiveness of integrating predictive analytics into IoT application systems to improve
industrial asset management by accurately estimating machine or equipment conditions.

Predictive analytics techniques have also been applied to predict energy consumption
in smart homes and smart building applications. In Ref. [25], Shorfuzzaman et al. presented
the practical implementation for minimizing energy consumption of home appliances in a
smart home context using predictive analytics. Then, Guo et al. in [26] provided a system



Information 2024, 15, 153 6 of 30

for predicting building electricity consumption based on a small-scale data set collected
by sensors.

In Ref. [27], Nancy et al. offered the application of predictive analytics techniques into
IoT cloud-based systems to forecast the risk of heart disease based on the medical history
data of patients in the context of smart healthcare. Subahi et al. in [28] introduced a self-
adaptive Bayesian algorithm for predicting heart disease based on medical data collected
from patients. The medical data include several parameters related to the patient’s vital
signs, such as blood pressure and heart rate.

In Ref. [29], Patrizi et al. demonstrated the implementation of a virtual-based soil
moisture sensor in the context of smart farming applications. This can be achieved by
estimating soil moisture using collected sensor data using predictive analytics techniques.
Kocian et al. in [30] introduced an IoT system for smart agriculture. This system facilitated
crop coefficient modeling and crop evapotranspiration (ET) prediction in a soilless substrate
using a dynamic Bayesian approach. It utilized data collected from multiple sensors,
including crop weight, global radiation, and temperature, to predict crop ET.

Table 1 summarizes the characteristics of predictive analytics techniques that were
adopted in the papers discussed in this subsection. Long Short-Term Memory (LSTM)
is the widely used algorithm for predicting future events. It belongs to the variant of
Recurrent Neural Network (RNN) architecture, which effectively learns and retains infor-
mation over a long period using cell states [31]. The works by Barthwal et al. in [21],
Shorfuzzaman et al. in [25], and Guo et al. in [26] utilized the capabilities of the Autoregres-
sive Integrated Moving Average (ARIMA) algorithm [32] to construct robust data models for
predicting future values in time series data. Taking it one step further, Guoh et al. in [26]
combined Support Vector Regression (SVR) with ARIMA to predict energy consumption.
Then, Imran et al. in [18] integrated Principal Component Regression (PCR) and Artificial
Neural Network (ANN) for an effective predictive model in their application system.

Table 1. Key characteristics of predictive analytics technique in current studies.

Ref. Algorithms Software
Requirements

Data Types Processing
Methods Computations

Input Output

[18] ANN with PCR
and Kalman
filter

Python Time-series
data

Predicted area Filtering and
real-time data

processing

Raspberry PI with
3.00 GB RAM

[19] LSTM Python,
TensorFlow

Time-series
data

Predicted CO
level

Real-time data
processing

Google Cloud Server

[20] LSTM - Time-series
data

Predicted air
pollutants level

Real-time data
processing

-

[21] ARIMA - Time-series
data

Predicted AQI Real-time data
processing

IBM Cloud

[22] Bayesian
Network

Python Time-series
data

Predicted PM2.5
level

Missing data
handling, data

normalization, and
data correlations

AMD R7-5800
processor 4.0 GHz
with 16GB of RAM

[23] LSTM Python,
TensorFlow

Time-series
data

Predicted
machine states

Data transformation
and real-time data

processing

Intel CoreTM i7 CPU
with 8.00 GB RAM

[24] Logistic
Regression

Azure Machine
Learning REST

API services

Time-series
data

Predicted
equipment health

states

Real-time data
processing

Azure Machine
Learning

[25] LSTM and
ARIMA

Python,
TensorFlow

Time-series
data

Predicted energy
consumption

Missing data
handling, outlier
detection, data
transformation

Intel CoreTM i7 CPU
with 8.00 GB RAM



Information 2024, 15, 153 7 of 30

Table 1. Cont.

Ref. Algorithms Software
Requirements

Data Types Processing
Methods Computations

Input Output

[26] ARIMA and
SVR

Python Time-series
data

Predicted electric
consumption

Missing data
handling, data

normalization, and
data correlations

Intel Core i5 CPU
with 8.00 GB RAM

[27] Bidirectional
LSTM

Python,
TensorFlow

Time-series
data

Predicted
diagnosis of heart

disease

Data Filtering i2k2 Cloud platform

[28] Self-Adaptive
Bayesian

- Time-series
data

Predicted
diagnosis of heart

disease

Data normalization -

[29] LSTM Python,
TensorFlow

Time-series
data

Predicted soil
moisture

Data correlations and
data synchronization

-

[30] Dynamic
Bayesian

MATLAB™ Time-series
data

Predicted ET
value

Real-time data
processing

-

In addition, the works by Kocian et al. in [30], Jin et al. in [22], and Subahi et al. in [28]
used Bayesian-based approaches. While ARIMA focuses on constructing models of the time-
series data, Bayesian approaches take a different approach by generating prior knowledge
in the form of a probability distribution for predicting the data. This prior knowledge
represents initial beliefs. It is then updated with observed data using Bayes’ theorem,
allowing for more flexible and robust modeling. Moreover, Bayesian approaches can be
implemented in scenarios with limited datasets, as mentioned in the work by Kocian et al.
in [30].

Predictive analytics is essential to estimate future values or labels in real-time scenarios
of IoT applications. The effective implementation of this technique requires consideration
of several key elements. First, a database system that can handle time-series data is critical
for efficient data storage and retrieval. Second, the pre-processing capabilities must be
implemented to prevent potential error data in the collected data and improve reliability.
Third, the IoT system must have real-time data processing capabilities to perform immediate
analysis for rapid forecasting and decision-making. Fourth, Python, with its extensive
support for algorithms for predictive analytics such as LSTM, ARIMA and Bayesian, becomes
the suitable option for the software environment. As shown in Table 1, the predictive
analytics can be deployed on either servers or edge devices such as Raspberry Pi.

3.3. Image Classification

In this subsection, we review papers emphasizing IoT application use cases for image
classifications.

3.3.1. Introduction

Computer vision is the field of AI that mimics human intelligence to understand
image data. It enables machines to see and recognize objects from visual images to facilitate
decision-making [33]. Techniques such as image classification and object detection are part
of the fields in computer vision, where image classification refers to the ability to identify
categories of images. In the IoT domain, image classification plays an important role in
recognizing visual data using a classification model. Typically, the data model is trained
using labeled image datasets, where each image is assigned to a specific category.

3.3.2. Use Cases in IoT Applications and Characteristics Overview

The implementation of an image classification in an IoT application has been explored
in numerous papers. Each paper demonstrated the effectiveness of image classification
algorithms in addressing vision-based use cases in a variety of applications.



Information 2024, 15, 153 8 of 30

For IoT applications in agriculture, image classification is a valuable technique for
monitoring crops and detecting plant diseases. In Ref. [34], Chouhan et al. introduced a
system for detecting galls, a plant disease that affects leaves, using captured images. This
technique is also suitable for drone-based IoT applications in environmental monitoring
systems. In a separate study [35], Munawar et al. developed a system to detect flooding
from aerial images captured by drones using image classifications.

Image classification is a proven AI technique for supporting diagnostic processes
through visual data analysis. In Ref. [36], Abd Elaziz et al. proposed a deep learning model
incorporating MobileNet and DenseNet architectures for medical image classifications to
achieve rapid diagnostic results. In Ref. [37], Saleh et al. employed a hybrid approach of
combining Convolutional Neural Network (CNN) and SVM to classify lung cancers based on
computed tomography (CT) scan images. These studies demonstrated the effectiveness of
image classifications in improving diagnostic capabilities within smart healthcare use cases.

In Ref. [38], Iyer et al. explored the application of image classifications in transportation
monitoring. This study demonstrated the detection of rail fractures by analyzing images
captured by a mobile robot. Similarly, Medus et al. in [39] introduced a vision-based system
for detecting leakage in food tray seals on the production line, using a similar concept of
image classifications with the CNN algorithm. These use cases demonstrated the versatility
of image classifications and extended its benefits to diverse areas beyond healthcare, such
as transportation infrastructure and quality control in food production.

Table 2 shows the overview of the characteristics of image classification techniques in
the literature discussed in this paper. The CNN algorithm [39] has been widely used for
image classifications in various applications. The architecture of the CNN algorithm allows
it to be integrated with other algorithms, such as SVM. In Ref. [37], Saleh et al. presented
a hybrid algorithm with CNN and SVM to achieve robust performance. SVM is used to
generate the classification result using features extracted by CNN. This approach leverages
the strengths of both models and enhances accuracy in classification tasks.

Several researchers have proposed alternative approaches to classifying images instead
of the CNN algorithm. Abd Elaziz et al. in [36] have developed a deep learning model that
combines MobileNet and DenseNet architectures to extract medical image representation.
This model is able to extract complex features from medical images, making it useful for
better understanding and diagnosing medical conditions. Medus et al. in [39] presented
the implementation of the Fuzzy-Based Functional Network (FBFN) algorithm that integrates
fuzzy logic with function network capabilities. This approach allows the user to apply the
image classification process in real time.

There are several key elements to be considered for implementing image classification
algorithms. As the programming language, Python is often used. Then, libraries such as
TensorFlow, Keras, and OpenCV are installed to implement various deep learning-based
image processing algorithms. Since the input data includes image files, storage capacity
becomes necessary. To achieve high performance, additional functions such as noise
reductions in images are applied. Hyperparameter optimization is also applied to optimize
the performance of the model under different input data. Finally, for the computation
device, researchers often use GPU-integrated and memory-optimized approaches. For
example, Saleh et al. in [37] improved the performance by adding GPUs, accelerating the
training phase, and reducing the processing time during the detection phase.



Information 2024, 15, 153 9 of 30

Table 2. Key characteristics of image classification techniques.

Ref. Algorithms Software
Requirements

Data Types Processing
Methods Computations

Input Output

[34] FBFN Python and
OpenCV

Captured
images

Leaf gall
detection
(Boolean)

Image
pre-processing,

feature
extraction, hy-
perparameters
optimization,
and real-time

data processing

-

[35] CNN Python, OpenCV,
and TensorFlow

Captured
images

Flooded
detection
(Boolean)

Image
pre-processing

Intel Core i7
CPU

[36] Deep learning
(MobileNetV2 and
DenseNet169)

Python, OpenCV,
and TensorFlow

Medical images Medical
diagnostic

classes

Feature
extraction,

feature selection,
and REST API

services

-

[37] The hybrid of CNN and
SVM

Python, OpenCV,
and TensorFlow

Medical images Lung cancer
classes

Hyperparameters
optimization

Intel Core i5
CPU with 16.00
GB of RAM and

NVIDIA
GeForce RTX

2060 GPU
[38] CNN Python, OpenCV,

and TensorFlow
Captured

images
Fracture
detection
(Boolean)

Image
pre-processing

and feature
extraction

Raspberry Pi 3

[39] CNN Python, OpenCV,
TensorFlow, and

Keras

Captured
images

Failure
detection
(Boolean)

Hyperparameters
optimization

Intel Core i7
CPU with 8.00

GB of RAM

3.4. Object Detection

In this subsection, we provide an overview of integrating object detection techniques
into IoT applications.

3.4.1. Introduction

Object detection is one of the AI techniques in the field of computer vision. While
image classification focuses on categorizing entire images, object detection goes a step
further by recognizing both the categories and the precise locations of specific objects
within the images. This technique is often used as the first step to perform other tasks,
including recognizing faces, estimating poses, and analyzing human activity.

In the context of IoT, object detection plays a critical role in various applications, such
as autonomous video surveillance, smart cities, and manufacturing. Its integration into
IoT devices facilitates real-time analysis of video sequences, which is essential for ensuring
safety and efficiency in various environments. However, this integration brings new
challenges in detecting moving objects and rapidly extracting their features. Addressing
these challenges requires consideration of computational resources to efficiently manage
the huge amount of IoT data, especially in use cases of intelligent surveillance systems.

3.4.2. Use Cases in IoT Applications and Characteristics Overview

In this section, we explore the papers that discuss the integration of object detection in
the IoT domain. They presented how object detection algorithms are applied in various ap-
plication scenarios, such as smart cities with drones, smart manufacturing, smart buildings,
and smart laboratories. In the context of smart cities, object detection helps to improve



Information 2024, 15, 153 10 of 30

urban management. It allows the detection and localization of various entities in urban
environments, such as vehicles, pedestrians, and objects, for intelligent transportation,
intelligent surveillance, and drone monitoring.

In Ref. [40], Zhou et al. presented a multi-target detection system for real-time surveil-
lance using IoT sensors. By following this concept, Abdellatif et al. in [41] advanced
the implementation of object detection by developing a server framework that uses a
flying drone and data stream communication to detect multiple objects. They used the
You Only Look Once (YOLO) algorithm for this purpose. To address a similar use case,
Lee et al. in [42] proposed a cloud computing service for detecting multiple objects in
drone-captured images by using the Faster Region-based CNN (Faster R-CNN) algorithm.
In another study, Meivel et al. in [43] presented a mask detection and social distance
measurement system using drones. These literature studies highlight the effectiveness of
integrating object detection and IoT devices, such as drones, to enhance urban surveillance
and security management.

The concept of Industry 4.0 brings manufacturing processes to be monitored and
controlled virtually. Recent research in this area has focused on the detection of intelligent
small objects to build a digital twin environment. As an example, Yao et al. in [44] proposed
a small object detection model in a manufacturing workshop use case using YOLOX.

In the context of smart laboratories, object detection contributes to efficient equipment
monitoring and helps ensure compliance with safety protocols. Ali et al. in [45] introduced
an IoT-based monitoring system for detecting compliance with personal protective equipment
(PPE) guidelines to improve laboratory safety.

With the growth of communication protocol technology, object detection can be seam-
lessly performed on cloud servers in real-time scenarios. Baretto et al. in [46] demonstrated
an application for person detections with CCTV cameras on cloud servers using WebRTC
technology [47]. As the technology continues to evolve, the integration of real-time ob-
ject detection on cloud servers opens up new possibilities for improved monitoring and
decision-making.

Table 3 summarizes the characteristics of the object detection techniques used in the
papers discussed in this subsection.

YOLO and Faster R-CNN are popular algorithms for their computation speed and
accuracy in detecting objects in image data. The architecture of YOLO processes entire
images in a single forward pass through the neural network to enable real-time object
detection. On the other hand, Faster R-CNN uses a two-stage process, where the first
stage proposes regions of interest, and the second stage classifies these regions and refines
the bounding boxes to achieve better accuracy. This difference in concepts contributes
to the different characteristics of the two algorithms, with YOLO being highly efficient
for real-time processing, while Faster R-CNN focuses on improving accuracy by using a
two-stage approach.

Implementing YOLO and Faster R-CNN typically involves using deep learning frame-
works such as TensorFlow and PyTorch. These frameworks are commonly employed within
Python environments that seamlessly integrate with CUDA for GPU acceleration and sup-
porting libraries such as Keras and OpenCV. In order to accommodate the high demand for
computing resources, a physical server is deployed along with GPUs. This hardware setup
ensures more efficient processing and optimization of the algorithms.

According to use cases of IoT applications, object detection processes a captured image
to obtain the detected objects in an image file. The detected objects are annotated with
bounding boxes, class labels, and confidence scores. Similar to image classification, these
techniques require a significant storage capacity for dataset storage. In addition, the data
management approach is a critical aspect. The users need to carefully consider whether the
results will be stored on temporary or permanent storage mechanisms.



Information 2024, 15, 153 11 of 30

Table 3. Key characteristics of object recognition techniques.

Ref. Algorithms Software
Requirements

Data Types Processing
Methods Computations

Input Output

[40] Integration of
YOLOv3 and
Multitask CNN
(MTCNN)

Python,
TensorFlow,
CUDA, and

OpenCV

Captured
images

Images with
bounding box, class

labels, and
confidence scores

Real-time data
processing

Jetson TX1 with
6.00 GB RAM and
NVIDIA Maxwell

GPU
[41] YOLOv5 Python with

PyTorch, Apache
Kafka, Apache

Flink and CUDA

Captured
images

Images with
bounding box, class

labels, and
confidence scores

Real-time data
processing, batch
processing, and
dynamic model

deployment

Intel Core i7 CPU
with 8.00 GB RAM

[42] Faster R-CNN Python with
PyTorch and

OpenCV

Captured
images

Images with
bounding box, class

labels, and
confidence scores

Real-time data
processing

Intel Xeon E5-2680
v3 with 128.00 GB
and Nvidia Tesla

K40 GPU
[43] Faster R-CNN and

YOLOv3
Python with

PyTorch,
TensorFlow,

CUDA, Keras,
and OpenCV

Captured
images

Images with
bounding box, class

labels, and
confidence scores

Image
pre-processing

-

[44] YOLOX Python with
PyTorch, CUDA,

and OpenCV

Captured
images

Images with
bounding box, class

labels, and
confidence scores

Image
enhancement
and feature

enhancement

Intel Core i9 CPU
with16.00 GB RAM
and NVIDIA RTX

A4000 GPU
[45] YOLOv5 Python,

TensorFlow,
CUDA, and

OpenCV

Captured
images

Images with
bounding box, class

labels, and
confidence scores

Real-time data
processing

Intel XEON
E5-2698 v4 with
NVIDIA DGX-1

GPU
[46] YOLOv3 Python, OpenCV,

CUDA, and
WebRTC

Captured
images

Images with
bounding box, class

labels, and
confidence scores

Real-time data
processing

Intel Core i7 CPU
with Nvidia GTX

1050 GPU

3.5. Text Spotting

This subsection presents an overview of the papers that focus on application use cases
of text-spotting techniques in IoT systems.

3.5.1. Introduction

In AI, text spotting refers to the ability to detect and recognize texts within an
image [12]. This technique is closely related to object detection, as it includes the recognition
and localization of the text regions within images. However, text spotting extends beyond
object detection by further extracting the textual content presented in the identified regions.
The objective of this technique is to automate the extraction of meaningful information
from images containing texts. This is particularly important for real-world applications
such as mapping, document analysis, and augmented reality.

Text spotting has a significant role in IoT by enabling the extraction of valuable
information in texts from visual data collected by sensors. This capability is particularly
valuable for the tasks such as recognizing street signs, license plates, and product labels.
By effectively identifying and extracting texts from images, text spotting enhances the
intelligence of IoT systems, enabling them to derive meaningful insights and support
diverse application use cases. Nevertheless, the implementation of text spotting involves
numerous challenges. The wide variety of text appearances, including variations in sizes,
lengths, widths, and orientations, poses a significant challenge to the development of
effective text-spotting techniques.



Information 2024, 15, 153 12 of 30

3.5.2. Use Cases in IoT Applications and Characteristics Overview

The implementation of text spotting in IoT has been thoroughly explored in numerous
literature studies. They illustrated the effectiveness of text-spotting algorithms in detecting
and recognizing textual information from images for various application use cases.

The seamless integrations of IoT and text-spotting techniques in smart cities play a
critical role in improving the efficiency, safety, and functionality of urban environments.
The integrations are able to optimize parking management, ensure city safety, and improve
public services.

In Ref. [48], Bassam et al. presented an IoT system designed to detect available
parking spaces in urban areas. Following this concept, Wu et al. in [49] proposed a vehicle
localization system to detect parking space numbers in real time. Both studies employed
cameras placed in parking lots and implemented an Optical Character Recognition (OCR)
model to extract the textual information about available parking spaces. This innovative
approach highlights the effectiveness of integrating IoT and text-spotting techniques for
efficient parking management in urban environments.

The works of Glasenapp et al. in [50] and Tham et al. in [51] proposed innovative
systems to improve public safety. Their works focus on the development of IoT solutions
for license plate recognitions from video streams. In another study, Ktari et al. in [52]
presented an IoT-based system for monitoring water consumption. This helps staff to
efficiently recognize water meters and improve smart city services, especially in the area of
water consumption management.

This technique has also been applied to assist in recognizing medicine labels in smart
healthcare applications. In Ref. [53], Abdullah et al. presented an IoT device for recognizing
medicine names to manage the medicine consumption of elderly people by using the OCR
model and Bidirectional LSTM (BiLSTM) algorithm. Chang et al. in [54] demonstrated the
implementation of the OCR model in an intelligent medicine dispensing system to detect
medicine bag information. These applications collectively highlighted the significant role
of text recognition research in advancing healthcare applications.

In Ref. [55], Dilshad et al. applied an OCR model to determine the location of a UAV
by analyzing visual data from its surroundings. Meanwhile, Promsuk et al. in [56] imple-
mented a neural network to recognize numbers in seven-segment displays of industrial
instruments. Extending this concept, Meng et al. in [57] developed early warning systems
for cold chain logistics using text spotting to detect labels on goods. In addition, Cao et al.
in [58] demonstrated the application of an OCR model in an infrastructure management
scenario. They proposed systems for identifying irregular components on terminal blocks
of electrical power equipment cabinets. These studies clearly demonstrate the versatility
and practicality of text spotting in various domains.

Table 4 presents the characteristics overview of text-spotting techniques applied in the
literature studies discussed in this paper.

Among the applied text-spotting algorithms, OCR models have proven their effec-
tiveness in extracting textual information from vision-based data. First, these models
identify regions within the image where text exists. Then, characters within each identified
region are recognized and converted to machine-readable texts. Finally, they output the
recognized texts and the image with the bounding boxes indicating the text locations.

Currently, a variety of OCR models are available to address different use cases, such as
TesseractOCR, EasyOCR, PaddleOCR, and PaddlePaddle OCR (PP-OCR). These models offer
different capabilities and should be selected based on characteristics such as performance,
ease of use, and suitability for specific applications. In addition, OCR models can be effec-
tively combined with other algorithms to improve the accuracy. In Ref. [53], Abdullah et al.
demonstrated the integration of EasyOCR models with the BiLSTM algorithm to improve
text recognition results. These integrations implement the adaptability of OCR models and
the ability to benefit from complementary algorithms in specialized use cases.



Information 2024, 15, 153 13 of 30

Table 4. Key characteristics of text-spotting techniques.

Ref. Algorithms Software
Requirements

Data Types Processing
Methods Computations

Input Output

[48] OCR model LabView Captured
images

Recognized
text

Image pre-processing,
segmentation, and
morphology filters

-

[49] ABCNet OCR Python, PyTorch,
and OpenCV

Captured
images

Recognized
text

Object detection, anomaly
filter module, and real-time

data processing

-

[50] OCR model by
OpenALPR API

Python, OpenCV,
and OpenALPR

API

Captured
images

Recognized
text

Object Detection, Image
pre-processing, feature

extraction, segmentation,
and real-time data

processing

Intel Core i5 CPU
with 20.00 GB of
RAM and Nvidia
GTX 1050 GPU

[51] Tesseract OCR Python, OpenCV,
CUDA, and
TensorFlow

Captured
images

Recognized
text

Object Detection, Image
pre-processing, geofencing,
segmentation, and real-time

data processing

UP Squared AI Edge
X Intel Atom CPU

with Intel Movidius
Myriad VPU

[52] Tesseract OCR Python, OpenCV,
CUDA, and
TensorFlow

Captured
images

Recognized
text

Object detection and
real-time data processing

-

[53] EasyOCR with
BiLSTM

Python, OpenCV,
and TensorFlow

Captured
images

Recognized
text

Image pre-processing and
real-time data processing

AMD Ryzen 5900x
CPU with 64.00 GB

of RAM and
NVIDIA RTX 3080

GPU
[54] PP-OCR Python and

OpenCV
Captured

images
Recognized

text
Image pre-processing and
parameters optimization

Intel Xeon i5 CPU
with 16.00 GB of

RAM
[55] EasyOCR Python, OpenCV,

and PyTorch
Captured

images
Recognized

text
Object detection, image

pre-processing, and
real-time data processing

Intel Core i7 CPU
with 32.00 GB of
RAM and Nvidia

RTX 2060 Super GPU
[56] Neural Network Python Captured

images
Recognized

text
Image pre-processing,
feature extraction, and

real-time data processing

Intel Core i5 CPU
with 8.00 GB of RAM

[57] OCR model Python and
OpenCV

Captured
images

Recognized
text

Video pre-processing and
real-time data processing

-

[58] Paddle OCR Python, PyTorch,
and OpenCV

Captured
images

Recognized
text

Object detection, feature
extraction, and
segmentation

AMD Ryzen 9 with
32.00 GB of RAM

and NVIDIA
GeForce RTX 3080

Although existing OCR models are still the leading algorithm for text spotting, re-
searchers have also explored alternative approaches. For instance, Promsuk et al. intro-
duced a novel neural network algorithm in [56]. The algorithm was designed to recognize
numbers in seven-segment displays.

Several aspects should be considered for effective implementations of text spotting.
First, an appropriate software environment is required. Python environments are commonly
used because of the key libraries such as OpenCV, CUDA, and TensorFlow. To achieve
optimal performance, object recognition techniques often require a lot of computational
resources. The addition of hardware accelerations is one solution to meet this demand.
While the algorithms can be adapted for deployments on edge devices, it is noteworthy that
additional GPUs will be required to achieve better performances, as shown in the studies
of Glasenapp et al. in [50], Tham et al. in [51], Abdullah et al. in [53], Dilshad et al. in [55]
and Cao et al. in [58].



Information 2024, 15, 153 14 of 30

On the data storage aspect, an effective data management system becomes critical. Due
to the possibility of storing the input data, it is necessary to have a system for handling and
organizing the image data. In addition, the implementation of additional processing meth-
ods in the algorithm is essential to improve accuracy and prevent errors in text recognition.

3.6. Auditory Perception

In this subsection, we provide an overview of the integration of auditory percep-
tion techniques into IoT through a review of the current literature studies that include
application use cases.

3.6.1. Introduction

The motivation behind the development of auditory perception in AI is to mimic the
human ability to understand and interpret sound. While computer vision enables machines
to “see” by recognizing objects from visual information, auditory perception enables ma-
chines to “hear” and understand auditory information [33]. This capability expands AI
applications to perform tasks that involve processing and extracting meaningful informa-
tion from audio signals. Speech recognition, speaker recognition, sound classification, and
environmental sound analysis are integral components of auditory perception. By applying
these techniques, AI systems are able to extract and identify the auditory environment.
This enables the development of more immersive and interactive applications.

In the IoT context, auditory perception is essential for extracting valuable information
from the audio data gathered by IoT devices. In general, this technology allows the
devices to analyze the sounds in their environments to identify certain patterns, events,
and irregularities. This feature enhances the cognitive capabilities of IoT devices, where the
IoT systems are able to trigger automated responses and actions based on the results of this
auditory analysis.

3.6.2. Use Cases in IoT Applications and Characteristics Overview

In this section, we review the literature studies that presented how algorithms in audi-
tory perception are applied in various application scenarios, such as smart cities [59–61],
smart homes [62], and smart environments [63].

The application of auditory perception techniques in smart cities refers to the imple-
mentation of audio analysis algorithms for urban security. In this case, IoT devices were
used to collect audio data in the urban environment. In Ref. [59], Balia et al. introduced an
IoT system designed to enhance urban security by identifying potential threats through
audio-based analysis on roads. They used the Short-Time Fourier Transform (STFT) algorithm
to extract spectrograms as features of audio data. Following this approach, Yan et al. in [60]
developed a sound detection system to identify traffic accidents in tunnels by using Deep
Neural Network (DNN) for classifier and Mel-Frequency Cepstral Coefficients (MFCCs) for
feature extraction. In another use case, Ciaburro et al. in [61] proposed a UAV presence
detection system using sound analysis. This system addresses the increasing use of UAVs
in urban areas.

The auditory perception has been employed to monitor environmental sounds in
homes and buildings. Polo et al. in [62] combined MFCCs with CNN to detect activities of
daily living based on sound cues. This research demonstrates the effectiveness of the inte-
grated approach in identifying various activities of daily living through auditory analysis.
Chhaglani et al. in [63] presented the application of auditory perception techniques in an
intelligent environment. This study focused on predicting the airflow rate in a building by
analyzing the sounds associated with air flowing through a duct in a building.

Table 5 summarizes the characteristics of the auditory perception techniques applied
in the literature studies discussed in this subsection.



Information 2024, 15, 153 15 of 30

Table 5. Key characteristics of auditory perception techniques.

Ref. Algorithms Software
Requirements

Data Types Processing
Methods Computations

Input Output

[59] STFT, CNN, FCNN,
and Bi-LSTM

Python,
TensorFlow,
and Keras

Audio
spectrograms

Dangerous event
classes

Audio pre-processing,
feature extraction,

and hyperparameter
optimization

32.00 GB RAM
with Nvidia
GeForce GTX

1060 Max
[60] MFCCs and DNN Python,

TensorFlow
and Keras

Audio
spectrograms

Accident event
classes

Audio pre-processing
and feature extraction

Intel Core i5 CPU
with 16.00 GB

RAM
[61] CNN Python and

TensorFlow
Audio

spectrograms
UAV state

classes (Boolean)
Feature extraction -

[62] MFCCs and CNN Python and
Keras

Audio
spectrograms

Daily living
activities classes

Feature extraction
and real-time

processing

Raspberry Pi

[63] XGBoost Regressions Python and
Java

Audio in
frequency
domain

Predicted Air
Flow Rate

Filtering and data
transformation

Android Mobile
Phone

In the field of auditory perception, neural network-based algorithms are commonly
used. In computer vision applications, features extracted from an image are typically used
as the input. However, to process audio data, CNN analyzes spectrograms of audio data
as features. Spectrograms refer to visual representations of the frequency variations of a
sound signal over time. They consist of coefficients that capture the spectral characteristics
of an audio signal. To obtain spectrograms of audio data, feature extraction algorithms
such as MFCCs [64] and STFT [65] algorithms are integrated. The effectiveness of this
integration was demonstrated in works by Balia et al. in [59] and Polo et al. in [62]. In
addition, similar to the CNN algorithm, other approaches such as DNN, Fully Connected
Neural Network (FCNN), and Bi-LSTM algorithms also require spectrograms of audio data
as the input. The selection among these algorithms depends on several factors, such as the
complexity of the auditory task, the size and nature of the dataset, and the desired level of
abstraction for feature extraction.

Currently, auditory perception algorithms are implemented using deep learning frame-
works along with Python programming environments. Through integration with support-
ing libraries such as Keras, the process of building, training, and deploying algorithms
based on neural networks can be simplified. As a result, algorithms for auditory percep-
tion have lower computational requirements compared to computer vision applications.
Researchers are potentially using edge computing devices such as the Raspberry Pi to
implement the algorithms.

As we explore the characteristics of auditory perception, the implementation requires
specific pre-processing steps before audio data can be analyzed. The steps include filtering,
data transformation, and feature extraction, because algorithms cannot directly handle raw
sensor data. They need transformed representations of audio data, such as spectrograms, to
perform auditory perception effectively. Thus, we highlight that selecting feature extraction
approaches offers the potential for significantly improving IoT applications in the auditory
perception field.

3.7. Natural Language Processing

This subsection provides an overview of papers on implementations of NLP techniques
in IoT systems considering application use cases.

3.7.1. Introduction

In the field of AI, NLP refers to the ability of computers to understand and interact
with human language [66]. The objective of this technique is to enhance the efficiency



Information 2024, 15, 153 16 of 30

of communications between humans and computers. This involves computers not only
understanding human language but also recognizing the contextual details involved in
human communication. Through this process, computers are able to perform actions and
generate responses that are associated with human language and communication patterns.
NLP techniques are mainly divided into Natural Language Understanding (NLU) and Nat-
ural Language Generation (NLG). NLU is concerned with understanding and recognizing
the linguistic aspects of natural language, while NLG is concerned with generating clear
responses in the form of words or sentences to facilitate efficient communication. NLP inte-
grates speech recognition, particularly in specific scenarios such as voice control systems,
to extend its functionality and potential.

Currently, NLP has attracted widespread attention from researchers due to its capabili-
ties. In the IoT context, NLP plays an important role in enabling users to control and interact
with IoT systems using human language. The integration of NLP into IoT applications
enables more instinctive and interactive connections between humans and computers. It
facilitates voice control, text data analysis, and intelligent assistants in IoT environments.

3.7.2. Use Cases in IoT Applications and Characteristics Overview

The implementation of NLP in IoT applications has been thoroughly explored by
several researchers. They demonstrated the effectiveness of NLP approaches in improving
communications and interactions between humans and IoT systems.

In smart home applications, ongoing developments use NLP techniques to recognize
and understand natural language commands spoken by humans accurately. In Ref. [67],
Ismail et al. developed an IoT system that provides speech recognition to control home
appliances. This system enables users, especially elderly patients and people with dis-
abilities, to effortlessly control home appliances using voice commands. They adopted a
robust combination of the SVM algorithm and Dynamic Time Warping (DTW) to accurately
interpret commands from users’ voice audio. Following this work, Froiz et al. in [68]
incorporated advanced technologies such as Wav2vec2 and Whisper models for speech
recognition and the Bidirectional Encoder Representations from Transformers (BERT) model
for NLP to enable seamless control of IoT devices through voice commands. Furthermore,
Ali et al. in [69] combined the Google Speech API, NLP model, and logistic regression to
enable the recognition and execution of both structured and unstructured voice commands.

In the context of smart buildings, Dweik et al. in [70] presented a significant step
forward by introducing a voice control system designed to manage devices in buildings
autonomously. These smart home and smart building use cases demonstrate the benefits of
NLP techniques in diverse domains.

Table 6 presents the characteristics overview of the NLP techniques applied in the
literature studies discussed in this paper.

The main purpose of NLP is to extract information from transcribed spoken sentences.
To achieve this task, researchers often employ NLP models, as illustrated in the works
of Ali et al. in [69] and Dweik et al. in [70]. Typically, an NLP model executes multiple
steps, such as sentence segmentation, word tokenization, prediction of parts of speech,
lemmatization, identification of stop words, definition of relationships between tokens, and
recognition of named entities. Nevertheless, it is necessary to emphasize that different NLP
models, such as BERT and BoW models, may contain different procedures. For instance, a
BoW model involves steps including tokenization, stop word removal, token normalization,
and vocabulary generation [71].

According to the use cases of IoT applications, the effective implementation of this
technology requires the consideration of several key elements. Firstly, the software require-
ments should be considered. Currently, Python programming provides Natural Language
Toolkit (NLTK) libraries to perform algorithms in NLP techniques. The NLTK libraries work
together with TensorFlow to produce the desired results.



Information 2024, 15, 153 17 of 30

Table 6. Key characteristics of NLP techniques.

Ref. Algorithms Software
Requirements

Data Types Processing
Methods Computations

Input Output

[67] SVM with a Dynamic
Time Warping (DTW)
algorithm

Python and
Java

User‘s speech
audio

Command
recognized

(string)

Speech recognition
and device control

Raspberry Pi

[68] Wav2vec2, Whisper,
and BERT models

Python and
TensorFlow

User‘s speech
audio

Command
recognized

(string)

Speech recognition,
device control,

model optimization

Raspberry Pi 4
with 2 GB of

RAM
[69] Google Speech API,

NLP model, and
Logistic Regression

Python,
NLTK, and
TensorFlow

User‘s speech
audio

Command
recognized

(string)

Speech recognition
and device control

Intel Core i5 CPU
with 16.00 GB of

RAM and
NVIDIA GeForce

830 GPU
[70] Google Speech API and

NLP model using
Bag-of-Words (BoW)
approach

Python,
NLTK, and
TensorFlow

User‘s speech
audio

Command
recognized

(string)

Speaker verification,
speech recognition,
and device control.

-

As we explore the characteristics of NLP in IoT systems, implementing the related
processes will significantly contribute to achieving optimal results. A speech recognition
algorithm becomes an important process. For this purpose, researchers can use existing
models or third-party platforms such as Whisper models and the Google Speech API. Then, a
device control process is required to allow an IoT application to perform the control systems.
Finally, the model optimization is able to enhance the trained models. For computational
hardware, Table 6 shows that NLP models can be deployed and executed on either servers
or edge devices such as Raspberry Pi.

3.8. Collaborative AI

In this subsection, we provide an overview of the practical use cases of the collaborative
AI approach in IoT systems in existing literature studies.

3.8.1. Introduction

The development of collaborative AI in IoT systems is driven by the demand to
address challenges associated with traditional cloud-based processing. In the traditional
model, AI algorithms are executed on centralized cloud servers. As a result, cloud servers
require high computational resources to cover all the AI processes. This raises many issues
related to latency, communication, connectivity, and privacy concerns [12]. To address these
challenges, collaborative AI aims to distribute computational tasks effectively by using
both edge computing and cloud resources.

In the IoT context, collaborative AI extends data processing at the edge to reduce
latency and bandwidth consumption. The purpose of this technique is not only to optimize
resources but also to enable real-time or near-real-time analysis of IoT data. This is impor-
tant in applications where rapid decision-making is required. This paradigm emphasizes
the balanced and efficient use of local and cloud resources. Local processing involves the
execution of lightweight AI algorithms for fast analysis, addressing the need for reduced la-
tency. At the same time, the centralized cloud servers handle heavier data processing tasks,
ensuring a comprehensive and robust approach to AI computation. The implementation
of this collaborative approach indicates improvements towards an AI application in IoT
systems, which is more adaptable and efficient.

3.8.2. Use Cases in IoT Applications and Characteristics Overview

In this section, we conducted a thorough review of the literature studies that explored
applications of collaborative AI in IoT systems. They demonstrated the effectiveness of



Information 2024, 15, 153 18 of 30

collaborative AI in improving system performance across various application use cases. By
leveraging the processing capabilities of both the edge and the cloud, collaborative AI has
become a powerful paradigm for improving the efficiency and effectiveness of IoT systems.

In Ref. [72], Song et al. presented the implementation of collaborative AI in a monitor-
ing system using Unmanned Aerial Vehicles (UAVs) as edge computing and cloud servers.
The UAV used a faster R-CNN model to detect insulator strings. Then, the images of the
insulator strings were transmitted to the cloud server. Finally, the cloud-based system iden-
tified defects in the insulator strings using the Up-Net model. This collaborative approach
effectively optimizes the resources of the UAV and the cloud, which improves the efficiency
of the monitoring system.

In Ref. [73], Li et al. introduced an edge/cloud collaborative architecture designed
for efficient image recognition in the smart agriculture use case. The system employs a
lightweight DNN model for object detection at the edge. If the object is not successfully
recognized, the image is then transmitted to a server for further processing using more
powerful DNNs.

In addition, this technique has been developed for further distributed AI architectures.
In Ref. [74], Chen et al. introduced a distributed real-time object detection framework for
video surveillance systems. This approach allows edge nodes to perform object detection
using a YOLO model. Then, images of the detected objects are sent to the server to be used
to generate a new model. Once the model is generated, it is sent back to the edge nodes.
Following this concept, in [75], Loseto et al. proposed edge intelligence components that
allow edge devices to perform data training using local data to generate models for early
prediction. Using data collected from multiple edge devices, the cloud performs more
advanced data training to generate highly accurate models and sends them to the edge
devices. These scenarios illustrate the use of collaborative AI to continuously improve AI
capabilities at the edge.

Table 7 presents the characteristics overview of the collaborative AI applied in the
literature studies discussed in this paper.

Table 7. Key characteristics of collaborative AI techniques.

Ref. Algorithms Software
Requirements

Data Types Processing
Methods Computations

Input Output

[72] Faster RCNN
(UAV), Up-Net
Model (cloud)

Python,
TensorFlow,

Keras,
OpenCV and

Caffe

Captured
images (UAV

and cloud)

Images with
bounding box

(UAV and cloud)

Image pre-processing,
image rotation and

segmentation on the
cloud, image detection
on UAVs, and real-time

data processing

PC Server with
NVIDIA GeForce

RTX 2080 Ti
(Server)

[73] DNN Python and
PyTorch

Captured
images

Image classes Image difficulty
prediction and model

optimizations

-

[74] YOLOv3 Python,
PyTorch, and

OpenCV

Captured
images

Images with
bounding box,

class labels, and
confidence

scores

Real-time data
processing and model

update capabilities

NVIDIA Jetson
Xavier NX (Edge)
and Intel Core i7

CPU with 32.00 GB
of RAM and Nvidia

RTX 2080 GPU
(Cloud)

[72] Multi-layer
perceptron
regressor

Python,
Apache
Kafka,

TensorFlow
and Keras

Time-series
data

Predicted
amount of silica

Real-time data
processing and model

update capabilities

Raspberry Pi 4
Model B with

4.00 GB of RAM
(Edge) and Intel

Xeon CPU E5-2673
with 32.00 GB of

RAM (Cloud)



Information 2024, 15, 153 19 of 30

The effective integration of collaborative AI into IoT applications involves several
elements. First, the software requirement plays an important role in designing lightweight
algorithms specifically for resource-constrained edge devices. Due to its integration capa-
bilities with popular AI frameworks and supporting libraries, Python is often preferred for
this application.

The integration architecture between the edge and the cloud is also necessary, as
highlighted in the work of Chen et al. in [74] and Loseto et al. in [72]. The proposed
distributed AI architecture allows local data training and model updates directly from the
cloud server. To achieve this, well-designed communication methods with an emphasis on
efficient protocols are required.

3.9. Integration of AI in IoT Platforms

This section presents a comparison between the SEMAR platform and the current
state-of-the-art research on the integration of AI in IoT platforms to highlight our proposed
ideas. We identified eight literature studies that have similar approaches to our design. In
Ref. [76], Bu et al. proposed a platform for integrating AI with Industrial Internet of Things
(IIoT) technologies to monitor and optimize manufacturing processes. In Ref. [77], Seshan
et al. demonstrated the integration of the FIWARE framework [78] with AI capabilities,
specifically for anomaly detection in wastewater monitoring applications. The FIWARE
framework was chosen for device management and data collection processes. In another
study presented in [79], Ramallo-Gonzalez et al. proposed an IoT platform for smart
healthcare that leverages the FIWARE framework, big data technologies, and AI-based data
analysis support. Both studies demonstrate the use of existing open-source frameworks to
build an IoT platform service.

In Ref. [80], Raj et al. developed a framework called EdgeMLOps to deploy AI models
directly at the edge. In Ref. [81], Li et al. introduced an Artificial IoT (AIoT) platform
for smart agriculture applications that supports the addition of AI models on the edge
device. In another study by Rong et al. in [82], the Sophon Edge platform was designed for
collaborative computing between the cloud and edge devices. This platform enables the
updating of AI models. In Ref. [83], Liang et al. developed an AIoT platform that facilitates
the implementation of various AI models. Utilizing a micro-service architecture, each AI
model runs concurrently. It allows the platform to support the combination of multiple
AI models into a single dataflow process. Then, in [84], Stavropoulos et al. introduced the
integration of machine learning into the IoT platform to create virtual sensors to replace
physical sensors.

Table 8 shows the comparison of our proposed idea with the eight literature studies.
Several parameters are considered, as follows:
• IoT applications: represents the use cases of the IoT applications that are implemented

in each work.
• Device management: represents the ability to allow users to dynamically manage devices

connected to the platform (Yes or No).
• Model management: represents the ability to manage multiple AI models, including

adding and updating models (Yes or No).
• Support various AI techniques: indicates that the platform supports AI-driven capabili-

ties across several techniques (Yes or No).
• Edge device integration: refers to the ability to deploy AI models to edge device systems

(Yes or No).
• Data types: represents the specific types of data that can be handled by the platform.



Information 2024, 15, 153 20 of 30

Table 8. State-of-the-art comparison between the existing related studies and the proposed solution.

R
ef

.

Io
T

A
pp

li
ca

ti
on

D
ev

ic
e

M
an

ag
em

en
t

M
od

el
M

an
ag

em
en

t

Su
pp

or
t

V
ar

io
us

A
I

Te
ch

ni
qu

es

Ed
ge

D
ev

ic
es

In
te

gr
at

io
n

D
at

a
Ty

pe
s

[76] Smart Manufacturing ✓ ✗ ✓ ✗ Common data types
[78] Smart Environments ✓ ✗ ✗ ✗ Common data types
[79] Smart Healthcare ✓ ✗ ✓ ✗ Common data types
[80] Various IoT applications ✓ ✓ ✗ ✓ Common data types
[81] Smart Agriculture ✓ ✓ ✗ ✓ Common data types and image
[82] Various IoT Applications ✓ ✓ ✗ ✓ Common data types and image
[83] Various IoT Applications ✓ ✓ ✓ ✗ Common data types, image and audio
[84] Smart Homes and Environ-

ments
✓ ✗ ✗ ✗ Common data types

Our
Work

Various IoT applications ✓ ✓ ✓ ✓ Common data types, image and audio

Regarding the covered IoT application use cases, the works of Raj et al. in [80],
Rong et al. in [82], and Liang et al. in [83] have the potential to be used in various IoT
applications. This is similar to our SEMAR platform, which has been implemented and
integrated into various IoT application use cases.

All of the mentioned works, including our IoT platform, provide device management
capabilities for adding and removing connected IoT devices. These works also allow for
receiving common data types from sensors, such as integer, float, string, boolean, date, and
time. However, since IoT devices have a variety of data types, an IoT platform should be
able to handle media file data types, including images and audio. The works by Li et al.
in [81] and Rong et al. in [82] have demonstrated the ability to receive image frame data.
Furthermore, the work of Liang et al. in [83] extends this capability by providing a system
that can process both image and audio data. Our proposed design for the SEMAR platform
addresses these concerns by facilitating the collection of both image and audio data types.

An IoT platform may require the ability to manage a large number of AI models and
flexibly deploy different models across its processes. For this purpose, robust AI model
management capabilities are used to enable users to handle AI models in order to achieve
optimal results. The works of Raj et al. in [80], Li et al. in [81], Rong et al. in [82], and Liang
et al. in [83] exemplify these capabilities in managing AI models within the flow of IoT data
processes. The AI integration in the SEMAR platform follows this approach. We develop
the functionalities that enable users to manage the versioning of AI models, store them in
data storage, and deploy them in the flow of data processing.

Several works have emphasized the importance of AI techniques in IoT platforms by
designing systems that support multiple AI capabilities. The works of Bu et al. in [76],
Ramallo-Gonzalez et al. in [79], and Liang et al. in [83] have demonstrated that their
proposed platform is able to accommodate different types of AI techniques. By supporting
multiple AI techniques, an AIoT platform can effectively handle the variety of data gener-
ated by IoT devices. In line with this concept, the AI capabilities in the SEMAR platform
are designed to facilitate the seamless integration of multiple AI techniques. With these
capabilities, our platform is able to process different types of data.

In the field of IoT, the current approach involves the utilization of edge computing to
perform data processing close to the device. The work by Raj et al. in [80], Li et al. in [81],
and Rong et al. in [82] introduced a platform that facilitates the implementation of AI
models on edge devices. This approach involves utilizing AI models that are designed
to be lightweight in order to accommodate the limited computational resources available
on the edge device. Following this idea, we also provide the capability to allow users to
deploy their AI model to the edge device through the cloud environment.



Information 2024, 15, 153 21 of 30

4. Design of AI Techniques Integration in SEMAR

In this section, we present the design of integrating AI techniques in the SEMAR IoT
server platform.

4.1. System Overview

The section presents the design for the seamless integration of AI techniques into
SEMAR with considering the key characteristics and analysis of each AI technique described
in Section 3. Figure 2 shows the design overview of integrating AI techniques in SEMAR.
It consists of AI Model Management, Real-Time AI, and Batch AI services. The AI Model
Management feature is responsible for managing AI models. It allows users to generate
models from datasets stored in the sensor data storage and to upload existing models from
other machines. The Real-Time AI feature performs data processing using AI in real-time
scenarios. The Batch AI feature enables users to apply AI models to process existing data in
the data storage. Furthermore, we show how to implement AI on edge computing devices
by integrating the Edge Device Framework [10] with SEMAR.

Figure 2. Design overview of AI techniques in SEMAR IoT application server platform.

The limitation of our proposed approach arises from the fact that the training of the
AI model occurs in an environment external to the SEMAR platform. This implies that our
platform is not able to directly influence or control the performance of the model. As a
result, there may be variations in the performance of the model. To mitigate this limitation,
the AI Model Management feature allows seamless versioning of AI models for deployments,
enabling users to effectively track and manage different AI models. Another limitation is
related to the compatibility of AI models supported by the SEMAR platform. Our approach
restricts the platform’s support to Python-based models only.

4.2. AI Model Management

The implementation of AI requires a systematic approach to defining objectives,
collecting data, building models, and deploying them for real-world applications. As an
IoT development tool, SEMAR should perform the functions that allow users to implement
AI techniques in the applications easily. The current implementation of SEMAR provides
the ability to collect sensor data. To help the integration of AI models, we design the



Information 2024, 15, 153 22 of 30

implementation of the AI Model Management feature in SEMAR. It allows users to manage,
add, remove, and deploy models through the user interfaces of SEMAR.

In this design, SEMAR enables users to utilize models generated on other machines.
First, users can grab sensor data stored in the data storage of SEMAR. This provides easy
access to relevant data sets and simplifies the data preparation process. Then, users engage
in the data training process to generate an AI model. After obtaining a trained model,
users upload it through user interfaces of SEMAR. Next, users define the properties of
the model, including its name, version, inputs, outputs, and the type of AI techniques
employed. Inputs represent the list of data to be processed, while outputs represent the list
of results obtained after AI processing. The system simplifies the deployment process by
automatically specifying the data types of inputs and outputs for image classification, object
detection, text spotting, and NLP techniques, although users are still able to customize
these settings. For predictive analytics, users manually define input and output elements.
Once a user registers a new model, the system stores it in the AI model data store through
file access. This ensures that the model can be easily accessed for future use. Finally, to
bring the models into applications, users are allowed to deploy the models for Real-Time AI
or Batch AI processing.

According to the software requirement characteristics identified in the literature review,
we select Python to build the features. Then, we build new features in user interfaces and
REST API services of the SEMAR that focus on seamlessly guiding users in managing
AI models.

4.3. Real-Time and Batch AI Processing

This section introduces two features, namely Real-Time AI and Batch AI services,
for applying AI models in SEMAR. The Real-Time AI service is specifically designed for
scenarios that require immediate AI processing. As shown in Figure 2, this service is
seamlessly integrated with IoT cloud gateway and the data aggregator to perform the data
stream processing.

In object detection, image classification, text spotting, audio recognition, and NLP
techniques, the IoT cloud gateway receives image frames or audio data. The data aggregator
verifies the format of the data in following standards such as JPEG and WAV. The verified
data are sent to the Real-Time AI service through established communication protocols for
further processing by AI models. For this purpose, we utilize the Kafka communication
protocols. Once the system receives the results, it stores them in the data storage. In the
predictive analytics scenario, the data aggregator forwards the data to the data filter before
reaching the Real-Time AI services, which perform data pre-processing. These services
predict the future events of data using an AI model and the historical data collected from
the data storage.

The Batch AI service provides a service designed for AI processing on existing data
saved in the data storage. This service is particularly useful for dealing with large data sets
that cannot be processed in real-time scenarios. Unlike the Real-Time AI services that process
data automatically, users should first select specific data that will be processed through
the user interface of SEMAR. Then, users select a suitable AI model from the storage. The
system systematically applies the AI processes to all of the selected data, collects the results,
and saves them back to the data storage. The implementation of Real-Time AI and Batch
AI services in SEMAR enhances system flexibility by handling both immediate processing
tasks and post-processing analysis requirements.

4.4. AI Implementation in Edge Devices

Previously, we introduced the edge device framework as one feature of SEMAR [10]. This
framework allows users to optimize the functionality of IoT devices by allowing them to be
configured remotely from the server. It provides the functions for connecting to multiple
IoT sensors, processing data in standard formats, and using the collected data through
multiple output components. These functions are organized into the input, processing, and



Information 2024, 15, 153 23 of 30

output components. As the insights from collaborative AI techniques in the literature review,
we design a strategic extension by implementing AI models on edge devices. Figure 3
illustrates the design overview of the AI implementation in the edge device framework. We
add the Real-Time AI function within the processing components to facilitate the immediate
processing of sensor data using AI models.

Figure 3. Design overview of AI model implementation in edge device framework.

For the installation process, users need to select the appropriate AI model and define
field output to store the result. Then, web services download the AI models from the
SEMAR server through the HTTP-POST communication. After the download process is
completed, the main service on the framework reads the AI model and runs the service
to collect sensor data. Finally, once the Real-Time AI function receives sensor data from
input components or the filtering function, it processes the data using this AI model. The
generated results are forwarded to the output components or serve as the input to the
ruling function. This interconnected workflow enables dynamic and responsive integration
of AI models at the edge.

5. Use Cases of Integration AI and IoT Applications in SEMAR

In this section, we discuss IoT application use cases that are integrated with the
AI-driven capabilities in SEMAR. Each use case presents the application overview, require-
ments, the AI algorithms being employed, and how SEMAR can be utilized to support them.
They include the drone-based building monitoring system, the Indoor Navigation System
Using Unity and Smartphone (INSUS), and the air-conditioning guidance system (AC-Guide).

5.1. Drone-Based Building Monitoring System

As the first application use case, we discuss the implementation of AI within a drone-
based surveillance system. In the building inspection use case, drones emerge as powerful
tools for rapid surveillance systems with the ability to navigate autonomously based on
missions defined by the programs or to be operated under human control. Their versatility
is advantageous for expanding the coverage areas of monitoring systems. By seamlessly
integrating drones with AI technologies and an IoT system, drones are able to automatically
detect defects in buildings such as cracks.

In the previous research, we introduced the concept of a drone-based building crack
detection system [85]. This system consists of flying drones and edge devices connected to
the SEMAR server. The flying drones capture the image data around the building, while
the edge devices are placed in a specific area of the building to control the drones and
facilitate the transfer of image data to the SEMAR server through a communication protocol



Information 2024, 15, 153 24 of 30

service. Once the SEMAR server receives the image data, it processes the data using object
detection models to detect cracks in the images. Finally, the user interface visualizes the
crack detection results.

Several services are required to build this application, such as the communication
protocol, object detection, data storage, and user interface services. The communication
protocol service should be responsible for transmitting image data. Then, the object
detection service provides the capability to identify the crack objects in the image.

To achieve an efficient implementation of this use case, we will use Confluent Kafka as
the communication protocol service between SEMAR and edge devices. As mentioned in
Section 3, the YOLO algorithm has gained popularity for its efficiency in real-time scenarios.
Thus, the AI Model Training service generates a YOLO model using the open-source crack
datasets available on the Internet in [86]. We then deploy the YOLO model to the Real-Time
AI service to perform crack detections. This deployment step places the crack-detecting
capabilities derived from the YOLO algorithm into the flow of data streams in SEMAR.
Once the system detects crack objects in an image, it stores them in the data storage. Finally,
the user interface visualizes the detected cracks for users by accessing the REST API service.

Figure 4 shows the preliminary implementation results of crack detections using the
YOLOv7 algorithm. The crack images were captured using the Ryze Tello drone. The model
was built using 3717 crack images. Then, we utilized an additional 200 images to validate
the model with the Intersection over Union (IoU) threshold of 50%. The validation results
show that the average model accuracy is up to 73% and the mean average precision (mAP) is
up to 82%.

(a) Crack image captured by drone. (b) Crack detection result.
Figure 4. Drone-based crack detection result.

5.2. Indoor Navigation System Using Unity and Smartphone

For the second application use case, we introduce the integration of the SEMAR server
with the Indoor Navigation System Using Unity and Smartphone (INSUS). In this scenario,
the primary requirement for the navigation system is to accurately determine the current
position of the user. While Global Positioning System (GPS) is a commonly used technology
in outdoor scenarios, its accuracy decreases in the indoor environment due to the difficulty
of obtaining a stable signal. To address this limitation, indoor navigation systems use
alternative approaches to determine the current position of the user.

In Ref. [87], the INSUS application introduced Augmented Reality (AR) technology
for user guidance. This system utilizes the Simultaneous Localization and Mapping (SLAM)
technique, which combines a 3D map of the building with a camera and inertial measurement
unit (IMU) sensors of the smartphone. This system works by identifying the users’ initial
position using the QR code technology. It then guides users from their starting position to
their destination using the 3D arrows in the real view. However, a drawback of this method
is the requirement of the QR code sheet in every room of the target building to achieve
accurate initial positions. In order to solve this challenge, the current implementation of
INSUS proposes a novel approach to identify the user’s position by recognizing room-



Information 2024, 15, 153 25 of 30

specific information that appears at the door, including floor levels, the number of rooms,
and resident names.

Text spotting becomes a viable solution for this use case. It can extract room-specific
information from the image captured by the smartphone through the INSUS system. In
contrast to the first use case, where the application does not need any feedback from the
SEMAR server after sending the image frame, this use case requires real-time communi-
cation that is able to send the image to the SEMAR server and receive the corresponding
room information in real time.

For this purpose, the combination of HTTP-POST for the communication protocol
and an OCR model for the text recognition can be a solution to achieve the efficient
implementation of this use case. The process consists of several steps. First, we build
the OCR model within AI Model Training Service. Next, the generated model is deployed
to the Real-Time AI service. When the system receives input from the INSUS application,
it employs the OCR model to recognize the room information in the image. Finally, the
result is sent back to INSUS through the REST API services in JSON format to complete the
real-time communication loop.

Figure 5 demonstrates the preliminary results of the text recognition using the Pad-
dleOCR model. The results show that the room label was successfully identified from the
image captured by the camera in the INSUS application.

(a) Door image captured by camera in INSUS. (b) Recognized text result.
Figure 5. Result of text recognition algorithm using OCR model.

5.3. Air-Conditioning Guidance System

As the last use case of IoT applications, we introduce the integration of AI in the
air conditioning guidance system, namely AC-Guide. Recently, the development of smart
homes has gained significant popularity and attention from both academia and industry.
It focuses on technologies that enhance the convenience, efficiency, and comfort of users’
daily lives. In this use case, the environmental condition data are essential for the system
to recognize the comfort or discomfort state of the specific area. Therefore, a smart home
system utilizes IoT sensors to measure environmental conditions in order to fulfill this
important requirement.

Previously, we integrated AC-Guide, an IoT system, to guide the use of AC by identify-
ing the discomfort state of the room, with the SEMAR IoT application platform [4]. This
system consists of a Raspberry Pi with attached sensors to measure the temperature and
humidity of the room and a camera to collect images of the AC control panel. It accesses the
OpenWeatherMap API [88] to collect the standard outdoor weather data. Then, it calculates
the indoor and outdoor discomfort index (DI) to identify whether the current state conditions
are comfort or discomfort. By considering the on/off state of AC, indoor DI and outdoor
DI, it sends the proper guidance to users to turn on or turn off the AC through a message.
Finally, it sends data to the server through MQTT communication and stores the data in the
local log file.

Our implementation results demonstrate that the system has successfully identified
the current state of DI. However, this system can be improved by using advanced analysis
techniques to identify data patterns for predicting future events. This improvement is
useful in preventing discomfort states.



Information 2024, 15, 153 26 of 30

One AI technique that can be applied to this application is predictive analytics. As
mentioned in Section 3, predictive analytics allows the system to estimate future values
and use the results to support decision-making. Therefore, we propose the application of
predictive analytics techniques to perform early guidance systems for the use of AC by
considering the prediction data.

For this purpose, we use the LSTM algorithm to generate AI models for predicting
indoor temperature and humidity using collected sensor data. This process is performed
by the AI Model Training service. After the models are generated, the system deploys them
to the Real-Time AI service. Once it receives the sensor data, it predicts the future value by
using the AI models and the stored data from the data storage. Then, it stores the data in
the data storage. Finally, we build the plug-in function to calculate the DI state based on the
predicted sensor values.

In this paper, we present the preliminary system to predict the humidity and tem-
perature data collected by the AC-Guide system. We trained a model based on the LSTM
algorithm for 100 epochs. The data sets contain 132 data for training and 68 data for
validation. The validation results indicate that the model can predict the values with a root
mean square error (RMSE) of 0.08 for humidity and 0.04 for temperature. Figure 6 shows the
results of the predicted values compared to the real value.

Figure 6. Predictive analytics results using LSTM algorithm in AC-Guide system.

6. Conclusions

This paper presents the study of AI techniques and their implementation use cases
for designing AI integrations in the SEMAR IoT application server platform. This study
provides a comprehensive review of current research on implementing AI techniques
in IoT applications, covering predictive analytics, image classification, object detection,
text spotting, auditory perception, NLP, and collaborative AI. Software requirements,
input/output (I/O) data types, processing methods, and computations are parameters used
to identify the characteristics of each technique.

Based on the findings, we have designed the implementation for the seamless inte-
gration of AI techniques into SEMAR by incorporating new features such as AI Model
Training, Real-Time AI, and Batch AI services. The paper also outlines the design of AI
implementations in edge devices by utilizing the SEMAR and the edge device framework.
Through the integration design with three IoT application use cases, the advantages of the
proposed system are described.

In future works, we will continue to implement AI technologies in SEMAR to complete
the proposed design in Figure 2, and will proceed with evaluations through integrations
with other IoT application use cases.



Information 2024, 15, 153 27 of 30

Author Contributions: Conceptualization, Y.Y.F.P., N.F. and S.S.; Methodology, Y.Y.F.P., E.D.F. and
S.F.; Software, Y.Y.F.P., E.D.F. and S.F.; Writing—Original Draft Preparation, Y.Y.F.P.; Writing—Review
and Editing, N.F.; Validation, S.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Dataset used in this work is available based on the request.

Acknowledgments: The authors thank the reviewers for their thorough reading and helpful comments.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of things (IoT): A Vision, Architectural Elements, and Future Directions.

Future Gener. Comput. Syst. 2013, 29, 1645–1660. [CrossRef]
2. Stankovic, J.A. Research Directions for the Internet of Things. IEEE Internet Things J. 2014, 1, 3–9. [CrossRef]
3. Noura, M.; Atiquzzaman, M.; Gaedke, M. Interoperability in Internet of Things: Taxonomies and Open Challenges. Mob. Netw.

Appl. 2018, 24, 796–809. [CrossRef]
4. Panduman, Y.Y.F.; Funabiki, N.; Puspitaningayu, P.; Kuribayashi, M.; Sukaridhoto, S.; Kao, W.-C. Design and Implementation of

SEMAR IoT Server Platform with Applications. Sensors 2022, 22, 6436. [CrossRef] [PubMed]
5. Hassabis, D.; Kumaran, D.; Summerfield, C.; Botvinick, M. Neuroscience-inspired Artificial Intelligence. Neuron 2017, 95, 245–258.

[CrossRef] [PubMed]
6. Duan, Y.; Edwards, J.S.; Dwivedi, Y.K. Artificial Intelligence for Decision Making in the Era of Big Data—Evolution, Challenges

and Research Agenda. Int. J. Inf. Manag. 2019, 48, 63–71. [CrossRef]
7. Belgaum, M.R.; Alansari, Z.; Musa, S.; Mansoor Alam, M.; Mazliham, M.S. Role of Artificial Intelligence in Cloud Computing, IoT

and SDN: Reliability and Scalability Issues. Int. J. Electr. Comput. Eng. (IJECE) 2021, 11, 4458. [CrossRef]
8. Janbi, N.; Katib, I.; Mehmood, R. Distributed Artificial Intelligence: Taxonomy, Review, Framework, and Reference Architecture.

Intell. Syst. Appl. 2023, 18, 200231. [CrossRef]
9. Saleem, T.J.; Chishti, M.A. Deep Learning for the Internet of Things: Potential Benefits and Use-cases. Digit. Commun. Netw. 2021,

7, 526–542. [CrossRef]
10. Panduman, Y.Y.F.; Funabiki, N.; Ito, S.; Husna, R.; Kuribayashi, M.; Okayasu, M.; Shimazu, J.; Sukaridhoto, S. An Edge Device

Framework in SEMAR IoT Application Server Platform. Information 2023, 14, 312. [CrossRef]
11. MongoDB, Mongodb: The Application Data Platform. Available online: https://www.mongodb.com/ (accessed on

22 February 2024).
12. Zhang, J.; Tao, D. Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial

Intelligence of Things. IEEE Internet Things J. 2021, 8, 7789–7817. [CrossRef]
13. Talib, M.A.; Majzoub, S.; Nasir, Q.; Jamal, D. A Systematic Literature Review on Hardware Implementation of Artificial Intelligence

Algorithms. J. Supercomput. 2020, 77, 1897–1938. [CrossRef]
14. Abioye, S.O.; Oyedele, L.O.; Akanbi, L.; Ajayi, A.; Davila Delgado, J.M.; Bilal, M.; Akinade, O.O.; Ahmed, A. Artificial Intelligence

in the Construction Industry: A Review of Present Status, Opportunities and Future Challenges. J. Build. Eng. 2021, 44, 103299.
[CrossRef]

15. Sarker, I.H. Machine Learning: Algorithms, Real-world Applications and Research Directions. SN Comput. Sci. 2021, 2, 160.
[CrossRef]

16. Alahi, M.E.; Sukkuea, A.; Tina, F.W.; Nag, A.; Kurdthongmee, W.; Suwannarat, K.; Mukhopadhyay, S.C. Integration of IoT-enabled
Technologies and Artificial Intelligence (AI) for Smart City Scenario: Recent Advancements and Future Trends. Sensors 2023,
23, 5206. [CrossRef] [PubMed]

17. Kumar, V. Predictive Analytics: A Review of Trends and Techniques. Int. J. Comput. Appl. 2018, 182, 31–37. [CrossRef]
18. Imran; Iqbal, N.; Ahmad, S.; Kim, D.H. Towards Mountain Fire Safety Using Fire Spread Predictive Analytics and Mountain Fire

Containment in IoT Environment. Sustainability 2021, 13, 2461. [CrossRef]
19. Hussain, A.; Draz, U.; Ali, T.; Tariq, S.; Irfan, M.; Glowacz, A.; Antonino Daviu, J.A.; Yasin, S.; Rahman, S. Waste Management and

Prediction of Air Pollutants Using IoT and Machine Learning Approach. Energies 2020, 13, 3930. [CrossRef]
20. Mumtaz, R.; Zaidi, S.M.; Shakir, M.Z.; Shafi, U.; Malik, M.M.; Haque, A.; Mumtaz, S.; Zaidi, S.A. Internet of Things (IoT) Based

Indoor Air Quality Sensing and Predictive Analytic—A COVID-19 Perspective. Electronics 2021, 10, 184. [CrossRef]
21. Barthwal, A.; Acharya, D. An IoT Based Sensing System for Modeling and Forecasting Urban Air Quality. Wirel. Pers. Commun.

2021,116, 3503–3526. [CrossRef]
22. Jin, X.B.; Gong, W.T.; Kong, J.L.; Bai, Y.T.; Su, T.L. A Variational Bayesian Deep Network with Data Self-screening Layer for

Massive Time-series Data Forecasting. Entropy 2022, 24, 355. [CrossRef]

http://doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1109/JIOT.2014.2312291
http://dx.doi.org/10.1007/s11036-018-1089-9
http://dx.doi.org/10.3390/s22176436
http://www.ncbi.nlm.nih.gov/pubmed/36080895
http://dx.doi.org/10.1016/j.neuron.2017.06.011
http://www.ncbi.nlm.nih.gov/pubmed/28728020
http://dx.doi.org/10.1016/j.ijinfomgt.2019.01.021
http://dx.doi.org/10.11591/ijece.v11i5.pp4458-4470
http://dx.doi.org/10.1016/j.iswa.2023.200231
http://dx.doi.org/10.1016/j.dcan.2020.12.002
http://dx.doi.org/10.3390/info14060312
https://www.mongodb.com/
http://dx.doi.org/10.1109/JIOT.2020.3039359
http://dx.doi.org/10.1007/s11227-020-03325-8
http://dx.doi.org/10.1016/j.jobe.2021.103299
http://dx.doi.org/10.1007/s42979-021-00592-x
http://dx.doi.org/10.3390/s23115206
http://www.ncbi.nlm.nih.gov/pubmed/37299934
http://dx.doi.org/10.5120/ijca2018917434
http://dx.doi.org/10.3390/su13052461
http://dx.doi.org/10.3390/en13153930
http://dx.doi.org/10.3390/electronics10020184
http://dx.doi.org/10.1007/s11277-020-07862-6
http://dx.doi.org/10.3390/e24030335


Information 2024, 15, 153 28 of 30

23. Bampoula, X.; Siaterlis, G.; Nikolakis, N.; Alexopoulos, K. A Deep Learning Model for Predictive Maintenance in Cyber-Physical
Production Systems Using LSTM Autoencoders. Sensors 2021, 21, 972. [CrossRef] [PubMed]

24. Teoh, Y.K.; Gill, S.S.; Parlikad, A.K. IoT and Fog-computing-based Predictive Maintenance Model for Effective Asset Management
in Industry 4.0 Using Machine Learning. IEEE Internet Things J. 2023, 10, 2087–2094. [CrossRef]

25. Shorfuzzaman, M.; Hossain, M.S. Predictive Analytics of Energy Usage by IoT-based Smart Home Appliances for Green Urban
Development. ACM Trans. Internet Technol. 2021, 22, 1–26. [CrossRef]

26. Guo, N.; Chen, W.; Wang, M.; Tian, Z.; Jin, H. Appling an Improved Method Based on ARIMA Model to Predict the Short-term
Electricity Consumption Transmitted by the Internet of Things (IoT). Wirel. Commun. Mob. Comput. 2021, 2021, 6610273. [CrossRef]

27. Nancy, A.A.; Ravindran, D.; Raj Vincent, P.M.; Srinivasan, K.; Gutierrez Reina, D. IoT-cloud-based Smart Healthcare Monitoring
System for Heart Disease Prediction via Deep Learning. Electronics 2022, 11, 2292. [CrossRef]

28. Subahi, A.F.; Khalaf, O.I.; Alotaibi, Y.; Natarajan, R.; Mahadev, N.; Ramesh, T. Modified Self-Adaptive Bayesian Algorithm for
Smart Heart Disease Prediction in IoT System. Sustainability 2022, 14, 14208. [CrossRef]

29. Patrizi, G.; Bartolini, A.; Ciani, L.; Gallo, V.; Sommella, P.; Carratu, M. A Virtual Soil Moisture Sensor for Smart Farming Using
Deep Learning. IEEE Trans. Instrum. Meas. 2022, 71, 1–11.

30. Kocian, A.; Carmassi, G.; Cela, F.; Chessa, S.; Milazzo, P.; Incrocci, L. IoT Based Dynamic Bayesian Prediction of Crop Evapotran-
spiration in Soilless Cultivations. Comput. Electron. Agric. 2023, 205, 107608. [CrossRef]

31. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput.
2019, 31, 1235–1270. [CrossRef]

32. Schaffer, A.L.; Dobbins, T.A.; Pearson, S.-A. Interrupted Time Series Analysis Using Autoregressive Integrated Moving Average
(ARIMA) Models: A Guide for Evaluating Large-scale Health Interventions. BMC Med. Res. Methodol. 2021, 21, 58. [CrossRef]

33. Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.W.; et al. Artificial intelligence: A powerful
paradigm for scientific research. Innovation 2021, 2, 100179. [CrossRef] [PubMed]

34. Chouhan, S.S.; Singh, U.P.; Jain, S. Automated Plant Leaf Disease Detection and Classification Using Fuzzy Based Function
Network. Wirel. Pers. Commun. 2021, 121, 1757–1779. [CrossRef]

35. Munawar, H.S.; Ullah, F.; Qayyum, S.; Heravi, A. Application of Deep Learning on UAV-based Aerial Images for Flood Detection.
Smart Cities 2021, 4, 1220–1243. [CrossRef]

36. Abd Elaziz, M.; Mabrouk, A.; Dahou, A.; Chelloug, S.A. Medical Image Classification Utilizing Ensemble Learning and Levy
Flight-based Honey Badger Algorithm on 6g-enabled Internet of Things. Comput. Intell. Neurosci. 2022, 2022, 5830766.

37. Saleh, A.Y.; Chin, C.K.; Penshie, V.; Al-Absi, H.R. Lung Cancer Medical Images Classification Using Hybrid CNN-SVM. Int. J.
Adv. Intell. Inform. 2021, 7, 151. [CrossRef]

38. Iyer, S.; Velmurugan, T.; Gandomi, A.H.; Noor Mohammed, V.; Saravanan, K.; Nandakumar, S. Structural Health Monitoring of
Railway Tracks Using IoT-based Multi-robot System. Neural Comput. Appl. 2020, 33, 5897–5915. [CrossRef]

39. Medus, L.D.; Saban, M.; Francés-Víllora, J.V.; Bataller-Mompeán, M.; Rosado-Muñoz, A. Hyperspectral Image Classification
Using CNN: Application to Industrial Food Packaging. Food Control 2021, 125, 107962. [CrossRef]

40. Zhou, X.; Xu, X.; Liang, W.; Zeng, Z.; Yan, Z. Deep-Learning-Enhanced Multitarget Detection for End–Edge–Cloud Surveillance
in Smart IoT. IEEE Internet Things J. 2021, 8, 12588–12596. [CrossRef]

41. Abdellatif, T.; Sedrine, M.A.; Gacha, Y. DroMOD: A Drone-Based Multi-Scope Object Detection System. IEEE Access 2023, 11,
26652–26666. [CrossRef]

42. Lee, J.; Wang, J.; Crandall, D.; Šabanović, S.; Fox, G. Real-time, cloud-based object detection for unmanned aerial vehicles.
In Proceedings of the 2017 First IEEE International Conference on Robotic Computing (IRC), Taichung, Taiwan, 10–12 April 2017;
pp. 36–43.

43. Meivel, S.; Sindhwani, N.; Anand, R.; Pandey, D.; Alnuaim, A.A.; Altheneyan, A.S.; Jabarulla, M.Y.; Lelisho, M.E. Mask Detection
and Social Distance Identification Using Internet of Things and Faster R-CNN Algorithm. Comput. Intell. Neurosci. 2022, 2022,
2103975. [CrossRef] [PubMed]

44. Yao, R.; Qi, P.; Hua, D.; Zhang, X.; Lu, H.; Liu, X. A Foreign Object Detection Method for Belt Conveyors Based on an Improved
YOLOX Model. Technologies 2023, 11, 114. [CrossRef]

45. Ali, L.; Alnajjar, F.; Parambil, M.M.; Younes, M.I.; Abdelhalim, Z.I.; Aljassmi, H. Development of YOLOv5-Based Real-Time Smart
Monitoring System for Increasing Lab Safety Awareness in Educational Institutions. Sensors 2022, 22, 8820. [CrossRef] [PubMed]

46. Baretto, A.; Pudussery, N.; Subramaniam, V.; Siddiqui, A. Real-Time WebRTC based Mobile Surveillance System. Int. J. Eng.
Manag. Res. 2021, 11, 30–35. [CrossRef]

47. Sredojev, B.; Samardzija, D.; Posarac, D. WebRTC technology overview and signaling solution design and implementation.
In Proceedings of the 2015 38th International Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), Opatija, Croatia, 25–29 May 2015; pp. 1006–1009. [CrossRef]

48. Bassam, R.; Samann, F. Smart Parking System based on Improved OCR Model. IOP Conf. Ser. Mater. Sci. Eng. 2020, 978, 012007.
[CrossRef]

49. Wu, Z.; Chen, X.; Wang, J.; Wang, X.; Gan, Y.; Fang, M.; Xu, T. OCR-RTPS: An OCR-Based Real-time Positioning System for the
Valet Parking. Appl. Intell. 2023, 53, 17920–17934. [CrossRef]

50. Glasenapp, L.A.; Hoppe, A.F.; Wisintainer, M.A.; Sartori, A.; Stefenon, S.F. OCR Applied for Identification of Vehicles with
Irregular Documentation Using IoT. Electronics 2023, 12, 1083. [CrossRef]

http://dx.doi.org/10.3390/s21030972
http://www.ncbi.nlm.nih.gov/pubmed/33535642
http://dx.doi.org/10.1109/JIOT.2021.3050441
http://dx.doi.org/10.1145/3426970
http://dx.doi.org/10.1155/2021/6610273
http://dx.doi.org/10.3390/electronics11152292
http://dx.doi.org/10.3390/su142114208
http://dx.doi.org/10.1016/j.compag.2022.107608
http://dx.doi.org/10.1162/neco_a_01199
http://dx.doi.org/10.1186/s12874-021-01235-8
http://dx.doi.org/10.1016/j.xinn.2021.100179
http://www.ncbi.nlm.nih.gov/pubmed/34877560
http://dx.doi.org/10.1007/s11277-021-08734-3
http://dx.doi.org/10.3390/smartcities4030065
http://dx.doi.org/10.26555/ijain.v7i2.317
http://dx.doi.org/10.1007/s00521-020-05366-9
http://dx.doi.org/10.1016/j.foodcont.2021.107962
http://dx.doi.org/10.1109/JIOT.2021.3077449
http://dx.doi.org/10.1109/ACCESS.2023.3253767
http://dx.doi.org/10.1155/2022/2103975
http://www.ncbi.nlm.nih.gov/pubmed/35116063
http://dx.doi.org/10.3390/technologies11050114
http://dx.doi.org/10.3390/s22228820
http://www.ncbi.nlm.nih.gov/pubmed/36433418
http://dx.doi.org/10.31033/ijemr.11.3.4
http://dx.doi.org/10.1109/MIPRO.2015.7160422
http://dx.doi.org/10.1088/1757-899X/978/1/012007
http://dx.doi.org/10.1007/s10489-022-04362-x
http://dx.doi.org/10.3390/electronics12051083


Information 2024, 15, 153 29 of 30

51. Tham, M.L.; Tan, W.K. IoT Based License Plate Recognition System Using Deep Learning and OpenVINO. In Proceedings of the
2021 4th International Conference on Sensors, Signal and Image Processing, Nanjing, China, 15–17 October 2021; pp. 7–14.

52. Ktari, J.; Frikha, T.; Hamdi, M.; Elmannai, H.; Hmam, H. Lightweight AI Framework for Industry 4.0 Case Study: Water Meter
Recognition. Big Data Cogn. Comput. 2022, 6, 72. [CrossRef]

53. Abdullah, R.; Ahmed, R.; Jamal, L. A Novel IoT-Based Medicine Consumption System for Elders. SN Comput. Sci. 2022, 3, 471.
[CrossRef]

54. Chang, J.; Ong, H.; Wang, T.; Chen, H.-H. A Fully Automated Intelligent Medicine Dispensary System Based on AIoT. IEEE
Internet Things J. 2022, 9, 23954–23966. [CrossRef]

55. Dilshad, N.; Ullah, A.; Kim, J.; Seo, J. LocateUAV: Unmanned Aerial Vehicle Location Estimation via Contextual Analysis in an
IoT Environment. IEEE Internet Things J. 2023, 10, 4021–4033. [CrossRef]

56. Promsuk, N.; Taparugssanagorn, A. Numerical Reader System for Digital Measurement Instruments Embedded Industrial
Internet of Things. J. Commun. 2021, 16, 132–142. [CrossRef]

57. Meng, J. Research on the Early Warning System of Cold Chain Cargo Based on OCR Technology. World J. Eng. Technol. 2022, 10,
527–538. [CrossRef]

58. Cao, W.; Chen, Z.; Deng, X.; Wu, C.; Li, T. An Identification Method for Irregular Components Related to Terminal Blocks in
Equipment Cabinet of Power Substation. Sensors 2023, 23, 7739. [CrossRef]

59. Balia, R.; Giuliani, A.; Piano, L.; Pisu, A.; Saia, R.; Sansoni, N. A Comparison of Audio-Based Deep Learning Methods for
Detecting Anomalous Road Events. Procedia Comput. Sci. 2022, 210, 198–203. [CrossRef]

60. Yan, L.; Ko, S.-W. In-tunnel Accident Detection System based on the Learning of Accident Sound. Open Transp. J. 2021, 15, 81–92.
[CrossRef]

61. Ciaburro, G.; Iannace, G. Improving Smart Cities Safety Using Sound Events Detection Based on Deep Neural Network
Algorithms. Informatics 2020, 7, 23. [CrossRef]

62. Polo-Rodriguez, A.; Vilchez Chiachio, J.M.; Paggetti, C.; Medina-Quero, J. Ambient Sound Recognition of Daily Events by Means
of Convolutional Neural Networks and Fuzzy Temporal Restrictions. Appl. Sci. 2021, 11, 6978. [CrossRef]

63. Chhaglani, B.; Zakaria, C.; Lechowicz, A.; Gummeson, J.; Shenoy, P. FlowSense: Monitoring Airflow in Building Ventilation
Systems Using Audio Sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2022, 6, 1–26. [CrossRef]

64. Tiwari, V. MFCC and Its Applications in Speaker Recognition. Int. J. Emerg. Technol. 2010, 1, 19–22.
65. Giv, H.H. Directional Short-time Fourier Transform. J. Math. Anal. Appl. 2013, 399, 100–107. [CrossRef]
66. Otter, D.W.; Medina, J.R.; Kalita, J.K. A Survey of the Usages of Deep Learning for Natural Language Processing. IEEE Trans.

Neural Netw. Learn. Syst. 2021, 32, 604–624. [CrossRef] [PubMed]
67. Ismail, A.; Abdlerazek, S.; El-Henawy, I.M. Development of Smart Healthcare System Based on Speech Recognition Using Support

Vector Machine and Dynamic Time Warping. Sustainability 2020, 12, 2403. [CrossRef]
68. Froiz-Míguez, I.; Fraga-Lamas, P.; Fernández-CaraméS, T.M. Design, Implementation, and Practical Evaluation of a Voice

Recognition Based IoT Home Automation System for Low-Resource Languages and Resource-Constrained Edge IoT Devices: A
System for Galician and Mobile Opportunistic Scenarios. IEEE Access 2023, 11, 63623–63649. [CrossRef]

69. Ali, A.A.; Mashhour, M.; Salama, A.S.; Shoitan, R.; Shaban, H. Development of an Intelligent Personal Assistant System Based on
IoT for People with Disabilities. Sustainability 2023, 15, 5166. [CrossRef]

70. Dweik, W.; Abdalla, M.; AlHroob, Y.; AlMajali, A.; Mustafa, S.A.; Abdel-Majeed, M. Skeleton of Implementing Voice Control for
Building Automation Systems. Sci. Program. 2022, 2022, 6886086. [CrossRef]

71. Juluru, K.; Shih, H.-H.; Keshava Murthy, K.N.; Elnajjar, P. Bag-of-Words Technique in Natural Language Processing: A Primer for
Radiologists. RadioGraphics 2021, 41, 1420–1426. [CrossRef]

72. Song, C.; Xu, W.; Han, G.; Zeng, P.; Wang, Z.; Yu, S. A Cloud Edge Collaborative Intelligence Method of Insulator String Defect
Detection for Power IIoT. IEEE Internet Things J. 2021, 8, 7510–7520. [CrossRef]

73. Li, M.; Li, Y.; Tian, Y.; Jiang, L.; Xu, Q. AppealNet: An Efficient and Highly Accurate Edge/Cloud Collaborative Architecture for
DNN Inference. In Proceedings of the 2021 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 5–9
December 2021; pp. 409–414. [CrossRef]

74. Chen, Y.-Y.; Lin, Y.-H.; Hu, Y.-C.; Hsia, C.-H.; Lian, Y.-A.; Jhong, S.-Y. Distributed Real-Time Object Detection Based on Edge-Cloud
Collaboration for Smart Video Surveillance Applications. IEEE Access 2022, S10, 93745–93759. [CrossRef]

75. Loseto, G.; Scioscia, F.; Ruta, M.; Gramegna, F.; Ieva, S.; Fasciano, C.; Bilenchi, I.; Loconte, D. Osmotic Cloud-Edge Intelligence for
IoT-Based Cyber-Physical Systems. Sensors 2022, 22, 2166. [CrossRef]

76. Bu, L.; Zhang, Y.; Liu, H.; Yuan, X.; Guo, J.; Han, S. An IIoT-Driven and AI-Enabled Framework for Smart Manufacturing System
Based on Three-Terminal Collaborative Platform. Adv. Eng. Inform. 2021, 50, 101370. [CrossRef]

77. Seshan, S.; Vries, D.; van Duren, M.; van Helm, A.; Poinapen, J. AI-Based Validation of Wastewater Treatment Plant Sensor Data
Using an Open Data Exchange Architecture. IOP Conf. Ser. Earth Environ. Sci. 2023, 1136, 012055. [CrossRef]

78. Cirillo, F.; Solmaz, G.; Berz, E.L.; Bauer, M.; Cheng, B.; Kovacs, E. A Standard-Based Open Source IoT Platform: FIWARE. IEEE
Internet Things Mag. 2019, 2, 12–18. [CrossRef]

79. Ramallo-Gonzalez, A.P.; Gonzalez-Vidal, A.; Skarmeta, A.F. CIoTVID: Towards an Open IoT-Platform for Infective Pandemic
Diseases such as COVID-19. Sensors 2021, 21, 484. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/bdcc6030072
http://dx.doi.org/10.1007/s42979-022-01367-8
http://dx.doi.org/10.1109/JIOT.2022.3188552
http://dx.doi.org/10.1109/JIOT.2022.3162300
http://dx.doi.org/10.12720/jcm.16.4.132-142
http://dx.doi.org/10.4236/wjet.2022.103033
http://dx.doi.org/10.3390/s23187739
http://dx.doi.org/10.1016/j.procs.2022.10.137
http://dx.doi.org/10.2174/1874447802115010081
http://dx.doi.org/10.3390/informatics7030023
http://dx.doi.org/10.3390/app11156978
http://dx.doi.org/10.1145/3517258
http://dx.doi.org/10.1016/j.jmaa.2012.09.053
http://dx.doi.org/10.1109/TNNLS.2020.2979670
http://www.ncbi.nlm.nih.gov/pubmed/32324570
http://dx.doi.org/10.3390/su12062403
http://dx.doi.org/10.1109/ACCESS.2023.3286391
http://dx.doi.org/10.3390/su15065166
http://dx.doi.org/10.1155/2022/6886086
http://dx.doi.org/10.1148/rg.2021210025
http://dx.doi.org/10.1109/JIOT.2020.3039226
http://dx.doi.org/10.1109/DAC18074.2021.9586176
http://dx.doi.org/10.1109/ACCESS.2022.3203053
http://dx.doi.org/10.3390/s22062166
http://dx.doi.org/10.1016/j.aei.2021.101370
http://dx.doi.org/10.1088/1755-1315/1136/1/012055
http://dx.doi.org/10.1109/IOTM.0001.1800022
http://dx.doi.org/10.3390/s21020484
http://www.ncbi.nlm.nih.gov/pubmed/33445499


Information 2024, 15, 153 30 of 30

80. Raj, E.; Buffoni, D.; Westerlund, M.; Ahola, K. Edge MLOps: An Automation Framework for AIoT Applications. In Proceedings
of the 2021 IEEE International Conference on Cloud Engineering (IC2E), San Francisco, CA, USA, 4–8 October 2021; pp. 191–200.
[CrossRef]

81. Li, H.; Li, S.; Yu, J.; Han, Y.; Dong, A. AIoT Platform Design Based on Front and Rear End Separation Architecture for Smart
Agricultural. In Proceedings of the 2022 4th Asia Pacific Information Technology Conference (APIT 2022), Virtual Event, Thailand,
14–16 January 2022; ACM: New York, NY, USA, 2022; pp. 208–214. [CrossRef]

82. Rong, G.; Xu, Y.; Tong, X.; Fan, H. An edge-cloud collaborative computing platform for building AIoT applications efficiently.
J. Cloud Comput. 2021, 10, 36. [CrossRef]

83. Liang, Y.-C.; Wu, K.-R.; Tong, K.-L.; Ren, Y.; Tseng, Y.-C. An Exchange-based AIoT Platform for Fast AI Application Development.
In Proceedings of the 19th ACM International Symposium on QoS and Security for Wireless and Mobile Networks, Montreal, QC,
Canada, 30 October–3 November 2023; pp. 105–114. [CrossRef]

84. Stavropoulos, G.; Violos, J.; Tsanakas, S.; Leivadeas, A. Enabling Artificial Intelligent Virtual Sensors in an IoT Environment.
Sensors 2023, 23, 1328. [CrossRef]

85. Panduman, Y.Y.F.; Funabiki, N.; Sukaridhoto, S. An Idea of Drone-Based Building Crack Detection System in SEMAR IoT Server
Platform. In Proceedings of the 2023 IEEE 12th Global Conference on Consumer Electronics (GCCE) 2023, Nara, Japan, 10–13
October 2023. [CrossRef]

86. University, “Crack Instance Segmentation Dataset (V2) by University,” Roboflow. Available online: https://universe.roboflow.
com/university-bswxt/crack-bphdr/dataset/2 (accessed on 22 February 2024).

87. Fajrianti, E.D.; Funabiki, N.; Sukaridhoto, S.; Panduman, Y.Y.F.; Dezheng, K.; Shihao, F.; Surya Pradhana, A.A. INSUS: Indoor
Navigation System Using Unity and Smartphone for User Ambulation Assistance. Information 2023, 14, 359. [CrossRef]

88. OpenWeatherMap. Current Weather and Forecast—OpenWeatherMap. Available online: https://openweathermap.org/
(accessed on 22 February 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ic2e52221.2021.00034
http://dx.doi.org/10.1145/3512353.3512384
http://dx.doi.org/10.1186/s13677-021-00250-w
http://dx.doi.org/10.1145/3616391.3622770
http://dx.doi.org/10.3390/s23031328
http://dx.doi.org/10.1109/gcce59613.2023.10315417
https://universe.roboflow.com/university-bswxt/crack-bphdr/dataset/2
https://universe.roboflow.com/university-bswxt/crack-bphdr/dataset/2
http://dx.doi.org/10.3390/info14070359
https://openweathermap.org/

	Introduction
	Review of SEMAR IoT Application Server Platform
	Literature Review on Use Cases of AI Techniques in IoT Applications
	Methodology
	Predictive Analytics
	Overview
	Use Cases in IoT Applications and Characteristics Overview

	Image Classification
	Introduction
	Use Cases in IoT Applications and Characteristics Overview

	Object Detection
	Introduction
	Use Cases in IoT Applications and Characteristics Overview

	Text Spotting
	Introduction
	Use Cases in IoT Applications and Characteristics Overview

	Auditory Perception
	Introduction
	Use Cases in IoT Applications and Characteristics Overview

	Natural Language Processing
	Introduction
	Use Cases in IoT Applications and Characteristics Overview

	Collaborative AI
	Introduction
	Use Cases in IoT Applications and Characteristics Overview

	Integration of AI in IoT Platforms

	Design of AI Techniques Integration in SEMAR
	System Overview
	AI Model Management
	Real-Time and Batch AI Processing
	AI Implementation in Edge Devices

	Use Cases of Integration AI and IoT Applications in SEMAR
	Drone-Based Building Monitoring System
	Indoor Navigation System Using Unity and Smartphone
	Air-Conditioning Guidance System

	Conclusions
	References

