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Abstract: Accurate prediction of subcellular localization of viral proteins is crucial for understanding
their functions and developing effective antiviral drugs. However, this task poses a significant
challenge, especially when relying on expensive and time-consuming classical biological experiments.
In this study, we introduced a computational model called E-MuLA, based on a deep learning
network that combines multiple local attention modules to enhance feature extraction from protein
sequences. The superior performance of the E-MuLA has been demonstrated through extensive
comparisons with LSTM, CNN, AdaBoost, decision trees, KNN, and other state-of-the-art methods. It
is noteworthy that the E-MuLA achieved an accuracy of 94.87%, specificity of 98.81%, and sensitivity
of 84.18%, indicating that E-MuLA has the potential to become an effective tool for predicting virus
subcellular localization.

Keywords: subcellular localization; multi-classification; viral protein; deep learning

1. Introduction

Accurate prediction of subcellular locations of viral proteins plays a critical role in
comprehending their functions [1]. A precise understanding of the viral protein’s location
within host cells is paramount for drug discovery and design [2,3]. Additionally, the predic-
tion of the subcellular location of viral proteins provides insights into their functions and
interactions within the host cell, facilitating the development of antiviral strategies and the
identification of appropriate vaccine targets [4]. Subcellular localization information can
guide the search for small molecules or therapeutics, specifically targeting viral proteins
at distinct cellular locations, thereby disrupting critical processes such as viral replica-
tion, assembly, or other essential processes. The subcellular localization of viral proteins
can also serve as biomarkers for specific viral infections, aiding in the diagnosis of viral
diseases [5–7], tracking infection progression, or evaluating treatment efficacy [8,9]. How-
ever, due to the complex interactions between the host cell and the host virus, predicting
the subcellular location of viral proteins remains challenging. Nevertheless, the utilization
of machine learning for predicting the subcellular localization of viral proteins is currently
an important area of research. This approach contributes to a deeper understanding of viral
infections and facilitates the development of effective antiviral strategies and drugs.

With the continuous accumulation of protein sequence data, several computational
models have been proposed to address this challenge, each with its strengths and lim-
itations [10]. For instance, Virus-PLoc [4], developed by Shen and Chou, utilized gene
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ontology information to formulate protein samples. However, it has limitations in handling
proteins that can exist or move across multiple subcellular locations. To overcome this
limitation, Shen and Chou proposed Virus-mPLoc [8], which can predict the subcellular
multi-localization of viral proteins. Xiao et al. established iLoc-Virus [10]. This more
powerful predictor infers the subcellular localization of viral proteins based on amino acid
sequences and shows promising results, but it has limitations in extracting information
from protein sequences. Li et al. proposed a classifier that combined K-nearest neighbor
(KNN) and support vector machine (SVM) algorithms [11]. This classifier successfully pre-
dicted the subcellular localization of Eukaryotic, gram-negative bacterial, and viral proteins,
including proteins with multiple locations, by employing a voting strategy. An SVM-based
webserver developed by Anamika et al. [12], called MSLVP, is capable of predicting the
single, double, and multiple subcellular locations of viral proteins. PLoc_bal-mVirus pre-
dicts the subcellular localization of viral proteins using amino acid correlation information
and achieves good prediction results [13]. Shao et al. introduced pLoc_Deep-mVirus [14], a
predictor based on a convolutional neural network (CNN) for predicting the subcellular
localization of viral proteins. This predictor effectively extracted features from sequences
by employing a deep learning framework that combined a bidirectional long short-term
memory (BiLSTM) network and a CNN. In addition, machine learning techniques were
also employed for RNA subcellular localization prediction [15,16].

Despite the satisfactory results achieved by the aforementioned models, further, en-
hanced prediction performance is still needed. Therefore, this paper introduces a computa-
tional framework for feature engineering called E-MuLA, designed to process and predict
the subcellular localization of viral proteins, as shown in Figure 1. E-MuLA is an ensemble
multi-localized attention network that incorporates multiple local attention modules to
enhance the extraction of features from viral proteins. Extensive experimentation was
conducted on reliable viral protein subcellular data, and comparisons were made with
traditional machine learning classifiers (AdaBoost, decision tree, and KNN), deep learn-
ing models (LSTM and CNN), and state-of-the-art methods (Virus-mPLoc). The results
demonstrate the superiority of our approach.
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Figure 1. The illustrative flow of the framework for training and testing learning classifiers for
predicting viral protein subcellular.

2. Materials and Methods
2.1. Framework

High-quality data is the foundation of an excellent model [17–19]. In this study,
protein sequences were extracted from the Universal Protein Source (UniProt) and un-
derwent several preprocessing stages to ensure data quality, as illustrated in Figure 1.
Initially, sequences containing non-standard amino acid characters were removed. Further-
more, the CD-HIT program was employed to eliminate protein sequences with a sequence
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identity > 40%. Consequently, a high-quality dataset comprising 5303 non-redundant
proteins was obtained, as shown in Figure 2. Subsequently, the processed protein sequences
underwent feature extraction, and the sequences were converted into numeric feature val-
ues based on amino acid composition (AAC), pseudo-amino acid composition (PseAAC),
or dipeptide deviation from the expected mean (DDE) descriptors. Principal component
analysis (PCA) was applied for dimensionality reduction of the features.
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During model testing, we employed 5-fold cross-validation, meaning that 4/5 of the
data was used for training, and 1/5 for testing, repeated five times. A fixed random seed
was set for K-fold splitting. To train the classifier model, a batch of training data (Traink)
was fed into the classifier. The error (loss) was computed and utilized for backpropagation
to fine-tune the weights of the model. After iterating through the entire training data with
classifier weight updates, we evaluated the learned classifier on the Testk data (inference)
and assessed model performance using metrics such as accuracy, F1 score, and sensitivity.

2.2. Data Transformation and Feature Extraction

Transforming protein sequences into vectors is a crucial step in using machine learn-
ing for protein prediction [20,21]. Here, we employed the iFeature program to convert
protein sequences into three distinct types of protein features: amino acid composition
(AAC) [22–24], pseudo-amino acid composition (PseAAC), and dipeptide deviation from
the expected mean (DDE). These features are capable of capturing essential characteristics
of protein sequences, thereby facilitating the construction of subsequent prediction models.
In the following sections, these features will be comprehensively described and elaborated.

2.2.1. Amino Acid Composition (AAC)

f (t) =
N(t)

N
, t ∈ {A, B, C, . . . , Y}, (1)

where the frequency f (t) describes the frequency of amino acids t occurring in a protein
sequence with length N, while N(t) represents the total number of amino acids in the
protein sequence.

2.2.2. Pseudo-Amino Acid Composition (PseAAC)

PseAAC is a powerful descriptor for protein sequence. It could include AAC and
contain the correlation of physicochemical properties between two residues. Next, we will
provide a detailed introduction to this method. At first, assuming Ho

1(i), Ho
2(i), Mo(i) rep-

resent the original hydrophobicity, hydrophilicity, and side chain masses of the 20 natural
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amino acids, a standard conversion should be performed. Taking hydrophobicity as an
example, its standard conversion can be calculated as shown in Equation (2).

H1(i) =
H0

1(i)−
1

20 ∑20
i=1 H0

1(i)√
∑20

i=1[H
0
1 (i)−

1
20 ∑20

i=1 H0
1 (i)]

2

20

(2)

Then, we could use the same formulation to standardize the hydrophilicity and side
chain masses. The correlation function of the three properties between two residues, Ri and
Rj can be defined as shown in Equation (3). At the same time, the sequence order-correlated
factor is formulated as shown in Equation (4).

Θ
(

Ri, Rj
)
=

1
3

{[
H1(Ri)− H1

(
Rj
)]2

+
[
H2(Ri)− H2

(
Rj
)]2

+
[
M(Ri)− M

(
Rj
)]2} (3)

θλ =
1

N − λ

N−λ

∑
i=1

Θ(Ri, Ri+λ) (4)

where λ is the integer parameter to be chosen that describes the order of association of
amino acids. If using fi as the normalized occurrence frequency of amino acid i in a protein
sequence, the PseAAC can be defined as described in Equation (5).

xc =


fc

∑20
r=1 fr+y∑λ

j=1 θj
, (1 < c < 20)

yθc−20

∑20
r=1 fr+y∑λ

j=1 θj
, (21 < c < 20 + λ)

(5)

where y is the weighting factor for the sequence-order effect. Here, we selected y = 0.05 in
iFeature.

2.2.3. Dipeptide Deviation from Expected Mean (DDE)

Three descriptors, dipeptide composition (Dc), theoretical mean (Tm), and theoret-
ical variance (Tv), have been proposed to formulate protein samples. Based on these
three parameters, the DDE can be calculated. The Dc can be obtained first, as shown in
Equation (6).

Dc(r, s) =
Nrs

N − 1
, (r, s) ∈ {A, B, C, . . . , Y} (6)

where Dc(r,s) is the dipeptide composition of dipeptide ‘rs’. N is the length of the protein
or peptide, and Nrs is the number of dipeptides ‘rs’. Tm(r,s) is the theoretical mean defined
in Equation (7).

Tm(r, s) =
Cr

CN
× Cs

CN
(7)

where the first and second amino acids in the given dipeptide ‘rs’ are encoded by Cr and
Cs, respectively. CN is the number of possible codons, excluding the three-stop codons. As
a final step, DDE(r,s) is calculated as shown in Equation (8).

DDE(r, s) =
Dc(r, s)− Tm(r, s)√

Tv(r, s)
(8)

where Tv(r,s) is defined as the theoretical variance of the dipeptide ‘rs’.

2.3. Principal Component Analysis (PCA)

Biological data often contain a significant amount of noise or irrelevant informa-
tion, and high-dimensional data introduce challenges such as the curse of dimensionality.
Therefore, to address these issues, we employed PCA for dimensionality reduction [25].
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PCA is a widely used multivariate statistical analysis technique designed to reduce
the dimensionality of a dataset while preserving its information content. It transforms the
data into a new set of uncorrelated variables, known as principal components, that capture
the maximum variance in the original data. PCA is commonly employed to decrease the
number of variables in a dataset, minimize noise, and enhance the interpretability of results.
By applying PCA, we can obtain a reduced-dimensional data representation that retains the
most important features and allows for efficient analysis and visualization. In this study,
we explored different dimensionality reduction ratios calculated as E′ = ρ × E, where E is
the number of features depending on the descriptors (AAC, PseAAC, and DDE) and ρ is
the reduced rate.

2.4. Ensemble MuLA (E-MuLA) Network

We have proposed an ensemble multi-localized attention (E-MuLA) network for
predicting the subcellular localization of viral proteins. Due to feature differences among
descriptors (AAC, PseAAC, and DDE), each one yields distinct prediction scores on viral
protein subcellular (VPS) sequence data. Hence, we utilize the ensemble technique to
improve the prediction performance of our model. The E-MuLA network comprises three
descriptor encoders, each receiving a descriptor feature and extracting relevant features.
The descriptor encoders in Figure 3 share the same structure, except for differences in
the dimension and composition of input features XACC∈ RE1 , XPseAAC ∈ RE2 , XDDE ∈ RE3 .
E-MuLA is represented as

Emula(XACC, XPseAAC, XDDE) = so f tmax
(

L
(
U
(
X′

ACC, X′
PseAAC, X′

DDE
)))

, (9)

where U (·) is a ternary operation, {X’ACC, X’PseAAC, X’DDE} are the output descriptor
features modeled with their respective encoders {EAAC (·), EPseAAC (·), EDDE (·)}, and L
is a linear function with weights {w ∈ R6×UC , b ∈ R6}. UC is dependent on the operator in
U (·). We employ maximum (M ∈ RUC=64), concatenation (C ∈ RUC=64×2), and summation
(S ∈ RUC=64) operations in the U (·) to achieve the best accuracy for subcellular localization.
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2.4.1. Descriptor Encoder

We have proposed an encoder branch for modeling features of viral protein sequences.
As illustrated in Figure 3, there are three encoders, and we focus on detailing one since they
share the same architecture. The AAC descriptor encoder is formulated as

X′
ACC = EAAC(XAAC) (10)

where EAAC(.) ∈ R256 is a descriptor encoder. Each descriptor encoder comprises three
feature-extracting blocks and a fully connected network (FCN). A feature-extracting block
contains three neural layers: linear, ReLU, and multi-attention. The linear layer is defined
as L(X) = wX + b, where w ∈ RC′ × C and b ∈ RC′

are the learnable weight matrix and
bias vector, respectively. C′ and C are the output and input features, respectively. We
utilize the linear layer to project the input features into high-level features. The rectified
linear unit (ReLU) function takes in output from the linear layer and performs non-linear
operations on the features using R(X′) = max (0, X′). This helps alleviate the vanishing
gradient problem common in training deep neural networks. Finally, the feature-extracting
block ends with a multi-attention (MA) module. This module comprises two local atten-
tion (LA) modules initialized with varied receptive fields. The receptive fields (k) aid in
extracting distinct feature scales from a single input feature, enhancing the output feature.
Detailed information about the MA module can be found in Section 2.4.2. After passing the
descriptor input feature X through the feature-extracting blocks, the FCN module takes
the output and reduces the feature dimension gradually. The FCN is sequentially stacked
with linear and ReLU layers. FCN is formulated as F(X) = R(L′′(R(L′(X)))) where L′ contains
learnable matrices {w ∈ R128×256, b ∈ R128}, and L′ ′ has learnable matrices {w ∈ R64×128,
b ∈ R64}.

2.4.2. Multi-Attention (MA) Module

The multi-attention module comprises multiple local attention modules that utilize
different receptive fields (kernel sizes). A large amount of aggregation can be carried out
by using various receptive fields. Given the output feature from the previous layer, the
local attention module can be formulated as

∼
X = σ( fw(X)) ∗ X, (11)

where σ denotes the Sigmoid function and fw( ) represents the attention function with
kernel weight W of the form:

W =


w1,1

0
...
0

· · ·
w2,2

...
· · ·

w1,k

· · ·
...
0

0
w2,k+2

...
0

0
0

. . .
· · ·

0
· · ·
...

wc,c−k+1

0
· · ·
...
· · ·

0
0
...

wc,c

 (12)

The i-th weight of xi can be calculated as

wi = σ

(
k

∑
j=1

wiXj
i

)
, Xj

i ∈ Ωk
i (13)

where Ωk represents a set of k neighboring features of xi. This is implemented with a 1D

convolution, which is simplified as
∼
X = σ(C1Dk(X)) ∗ X, where C1D is a 1D convolution

function. Using the multiple receptive fields, the multi-attention can be calculated as

X’ = CM
(
σ
(
C1Dk1(X)

)
∗ X,σ

(
C1Dk2(X)

)
∗ X
)
, (14)
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where k1 = 3, k2 = 5, and CM(.) ∈ RC (conv merge) denotes a 1d convolution function that
has learnable weight w ∈ RC×C×2. The visual representation of our local attention and
multi-attention modules is shown in Figure 4.
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2.5. Other Algorithms

For other machine learning algorithms, we used the Scikit-learn library.

2.5.1. AdaBoost Classifier

The AdaBoost algorithm was originally developed for binary classification, and Hastie
et al. extended it to handle multi-classification problems [26]. Its principle is to combine
multiple weak classifiers obtained through an iterative process. Each classifier is assigned
a weight, and the final AdaBoost model is formulated as a linear combination of these
weighted classifiers. In this work, we set the number of estimators to 100.

2.5.2. Decision Trees (DTs)

DT is also a common machine learning method. Each internal node in the decision
tree corresponds to an input feature, and each node is labeled with possible target features
or sub-decision nodes representing different input features. The tree leaves are labeled
with class labels or probability distributions over the classes.

2.5.3. K-Nearest Neighbors (KNNs)

The KNN algorithm assigns each test data to its k-nearest neighbor class. Given the
value of k, the label of a data sample is determined by the most common label assigned to
its k-nearest training samples. The Euclidean distance is used to measure the proximity
between data samples with continuous features.

2.5.4. SGD Classifier

The SGD classifier approximates regularized linear algorithms by using stochastic
gradient descent learning. The loss is calculated for each data sample, and the model is
updated based on the learning rate. The SGD classifier employs a mini-batch approach,
where a subset of the data is fed to the model at each iteration. The linear algorithm used
in this classifier is SVM. For this work, we set the number of iterations to 1000.

2.5.5. Gaussian Process Classifier (GPC)

GPCs extend Gaussian Processes used in regression for classification. In this process,
functions are modeled as a distribution rather than as a fixed, deterministic function. This
can be useful in situations with limited or noisy data. The GPC aims to classify data into
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multiple classes by inferring decision boundaries based on a Gaussian Process. This is done
by assuming data points from each class follow a Gaussian distribution. This approach
allows probabilistic decision-making, enhancing classification performance [27].

2.5.6. Linear Support Vector Machine (LSVM)

SVM is a robust and widely used supervised machine learning algorithm for binary
classification tasks [28–31]. It can also be extended to handle multi-class classification
problems using techniques such as one-vs-all or one-vs-one. Its principle is to find the most
appropriate hyperplane that separates data points of different classes in a high-dimensional
feature space. The hyperplane is chosen to maximize the margin between the two types,
i.e., the distance between the hyperplane and the closest data points (support vectors) from
each category. In this work, we used a linear kernel function in SVM.

2.5.7. Long Short-Term Memory (LSTM) Classifier

The LSTM is a type of recurrent neural network (RNN) architecture that addresses
the issues of vanishing and exploding gradients in traditional RNNs [32]. It is particu-
larly effective in processing sequential and time-dependent data [33]. For this study, we
constructed a three-layer LSTM network with 32, 64, and 128 output feature dimensions.
Following the LSTM layers, we added a fully connected layer with input features of size
128 × 16 to classify the data samples into distinct classes [34].

2.5.8. Convolutional Neural Network (CNN) Classifier

CNN is a widely used and powerful technique in deep learning for classification
tasks [35]. CNN utilizes learnable parametric kernels to extract informative feature maps
from the input data. In this work, we designed a CNN consisting of three 1D convolutional
layers, each followed by a ReLU activation function. The final component of the network
is a fully-connected layer that assigns class labels to the input data samples. The output
channels for the three convolutional layers were set to 32, 64, and 128, respectively. The
fully-connected layer has input features of size 128 × 10.

3. Experimentation

This section discusses the experimental setup and evaluation metrics used for
this work.

3.1. Implementation Details

The proposed deep learning methods were implemented using the PyTorch framework
and executed on an RTX 2070 GPU. We utilized a batch size of eight for training and
evaluation, with a learning rate of 0.0001. The model was trained for 100 epochs to
ensure convergence. To assess the generalizability of our models, we employed a 5-fold
cross-validation approach in our experiments. The implementation code is available at
https://github.com/mercurehg/emula, accessed on 6 March 2024.

3.2. Evaluation Metrics

Additionally, we compared our method with other methods to evaluate its perfor-
mance. Equation (15) presents the formulation of Precision, Recall, Accuracy, F1, Specificity,
Sensitivity, and MCC, which are utilized in this work as evaluation metrics [19,36–39].
These evaluation metrics play a crucial role in assessing the efficiency and effectiveness
of machine learning models. In Equation (15), TP represents the number of true positive
predictions (correctly predicted positive subcellular localizations), FP represents the num-
ber of false positive predictions (incorrectly predicted positive subcellular localizations),
TN represents the number of true negative predictions (correctly predicted negative sub-
cellular localizations), FN represents the number of false negative predictions (incorrectly
predicted negative subcellular localizations), and MCC represents Mathew’s correlation

https://github.com/mercurehg/emula
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coefficient. These metrics provide valuable insights into the accuracy and performance of
the subcellular localization predictions.

Precision (Prec) = TP
TP+FP

Recall (Rec) = TP
TP+FN

Accuracy (Acc) = TP+TN
TP+FP+TN+FN

F1 − score(F1) = 2 × Precison×Recall
Precision+Recall

Speci f icity (Spec) = TN
TN+FP

Sensitivity (Sen) = TP
TP+FN

MCC = TP×−TN×FN√
(TP+FN)(TP+FN)(TN+FP)(TN+FN)

(15)

4. Results and Discussion

We conducted a detailed examination of the performance of the proposed models and
compared them with state-of-the-art methods.

4.1. Investigation of PCA

In this study, the performance of each encoding feature (AAC, PseAAC, or DDE) was
also examined using 5-fold cross-validation. Firstly, we applied Principal Component
Analysis (PCA) to reduce the dimensionality of the three types of feature descriptors.
Different reduction rates (ρ) were set for each input feature, and the results were compared,
as shown in Table 1. We observed that when the reduction rate reached 0.8, both AAC and
PseAAC descriptors showed significant improvements in precision, recall, and F1 scores.
In the case of DDE, the optimal results were obtained when the reduction rate reached
0.2. These results indicate that utilizing PCA for dimensionality reduction is effective in
eliminating redundant information and noise.

Table 1. The results of different numbers of PCA components.

Rat (ρ) AAC PseAAC DDE

Acc Prec Rec F1 MCC Acc Prec Rec F1 MCC Acc Prec Rec F1 MCC

0.2 74.60 71.83 65.33 66.87 62.62 90.09 80.72 72.15 74.1 85.45 86.33 87.93 78.19 81.94 79.89
0.4 84.55 80.91 75.83 77.39 77.32 92.55 85.5 78.64 80.74 89.07 82.77 82.88 74.39 77.54 74.64
0.6 86.98 84.46 78.54 80.67 80.85 93.59 88.1 80.79 83.21 90.6 80.64 81.71 71.82 75.37 71.47
0.8 87.71 86.55 79.53 82.16 81.92 94.00 88.66 82.2 84.17 91.21 79.15 81.35 69.55 73.71 69.22
1.0 87.62 85.72 79.40 81.74 81.80 93.94 88.12 81.38 83.62 91.12 74.56 76.32 65.57 69.44 62.43

Figure 5 shows the results of 100 epochs for CNN, LSTM, Virus-mPLoc, and MuLA
models, displaying both the average performance (line plots) and the corresponding
standard deviation (shaded region around the line plots), offering a comprehensive view of
the model’s variability. The MuLA network performs better and converges faster than the
Virus-mPLoc, LSTM, and CNN deep learning networks for the three descriptors. MuLA
networks have lower standard deviation than the other models, which proves MuLA is
more consistent and has less variability.

4.2. Investigation of MuLA

We further investigated the impact of multi-attention (MA) in the MuLA model on
the performance of multiple descriptors. It was observed that in the absence of MA, the
predictive performance of MuLA using AAC, PseAAC, and DDE descriptors decreased,
as shown in Table 2. The model performance when using only receptive fields k1 = 3 and
k1 = 5 without MA is also documented in Table 2. It can be observed that the results
with k1 = 5 surpass those with k1 = 3 for all metrics that utilized AAC, PseAAC, and
DDE descriptors. Employing MA with two receptive fields (k1 = 3, k2 = 5) yielded the
highest scores for accuracy, precision, recall, F1, and MCC metrics across all descriptors.
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These results indicate that the correlation of neighboring features in feature descriptors is
beneficial for enhancing the predictive capability of the model.
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Table 2. Performance comparison of MuLA model with (w) and without (w/o) multi-attention (MA)
with receptive fields (k1 = 3, k2 = 5).

MA
AAC PseAAC DDE

Acc MCC Acc MCC Acc MCC

w/o 84.13 79.65 93.01 90.22 80.74 73.89
w (k1 = 3) 85.43 80.11 93.74 90.83 82.63 74.44
w (k2 = 5) 86.72 80.46 93.84 90.98 84.47 77.15
w (k1 = 3, k2 = 5) 87.71 81.92 94.00 91.21 86.33 79.89

The confusion matrix provides a value description of misclassification rates between
subcellular localizations of viral protein. These misclassifications occur because of the
similarity of features between samples belonging to different classes and the difficulty of
the model in accurately distinguishing these subtle feature differences. Figure 6a–c shows
the confusion matrices for the AAC, PseAAC, and DDE descriptors. In these matrices, sub-
cellular localizations are abbreviated as follows: Host Cytoplasm (HC), Host Endoplasmic
Reticulum (HER), Host Membrane (HM), Host Nucleus (HN), Host Plasmodesma (HP),
and Secreted (SC).
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and DDE descriptors.

For the AAC descriptor matrix, it is evident that several subcellular localizations are
prone to misclassification. For instance, approximately 20% of SC subcellular samples are
incorrectly classified as HM, and 5% are misclassified as HC. Similarly, about 10% of HER
subcellular samples are misclassified as HM. For the PseAAC descriptor, the misclassifica-
tion rate is relatively high for HP and SC subcellular localizations. Approximately 20% of
HP samples are incorrectly predicted as HN and 16% of SC samples are misclassified as
HC. Furthermore, about 15% of SC samples are wrongly classified as HM.

4.3. Comparison with State-of-the-Art Methods

We compared the proposed method with other machine learning methods, deep
learning models, and a published model (Virus-mPLoc) to validate the effectiveness of
our proposed approach. The results for the AAC descriptor in Table 3 show that the GPC
model outperformed the LSTM, CNN, and Virus-mPLoc models in terms of accuracy,
precision, recall, F1-score, specificity, sensitivity, and MCC metrics, with values of 86.70%,
84.43%, 77.25%, 80.01%, 96.49%,77.25%, and 80.85%, respectively. Similarly, the KNN
model is superior to the LSTM, CNN, and Virus-mPLoc models. As depicted in Table 3, our
model performed excellently in all metrics when compared to those of machine learning
algorithms, LSTM, CNN and Virus-mPLoc models. For the PseAAC descriptor in Table 3,
the GPC classifier outperformed all other MLCs in terms of accuracy, MCC, and specificity,
with values of 92.85%, 89.88%, and 97.80%, respectively. Likewise, the GPC classifier
outperformed all other MLCs for the DDE descriptor in terms of accuracy, precision, recall,
F1-score, specificity, sensitivity, and MCC, achieving values of 85.85%, 86.48%, 77.36%,
80.09%, 95.99%, 77.36%, and 78.98%, respectively. These comparisons demonstrate that
MuLA can effectively learn relevant features to distinguish various subcellular sequences
of viral proteins.

Table 3. Classification report on AAC, PseAAC, and DDE descriptors and comparison against
baselines.

Model Acc Prec Rec F1 Spec Sen MCC

AAC (Only)

AdaBoost 38.04 28.88 32.2 25.61 86.96 32.2 20.61
DT 78.49 68.61 69.75 68.84 94.82 69.75 68.48

KNN 84.16 81.17 71.35 73.95 96.21 71.35 76.83
GPC 86.7 84.43 77.25 80.01 96.49 77.25 80.85

LSVM 69.73 48.93 44.04 45.32 92.33 44.04 54.69
SGD 64.81 44.03 34.65 35.44 91.11 34.65 47.21

LSTM 63.75 41.93 40.74 40.57 90.87 40.74 45.73
CNN 62.83 38.66 36.06 35.84 90.49 36.06 44.14

Virus-mPLoc [8] 65.63 42.13 39.29 39.57 91.33 39.29 48.41
MuLA 87.71 86.55 79.53 82.16 97.0 79.53 81.92
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Table 3. Cont.

Model Acc Prec Rec F1 Spec Sen MCC

PseACC (only)

AdaBoost 51.15 21.24 23.39 18.95 88.26 23.39 31.67
DT 89.31 73.51 75.65 73.51 97.6 75.65 84.36

KNN 92.74 84.14 80.1 80.49 97.36 80.1 89.4
GPC 92.85 87.06 81.19 82.59 97.8 81.19 89.88

LSVM 86.37 58.48 55.54 56.57 96.74 55.54 79.8
SGD 84.41 55.93 48.38 49.51 96.28 48.38 76.92

LSTM 80.92 50.31 48.77 48.55 95.38 48.77 72.03
CNN 82.72 51.65 48.19 48.34 95.71 48.19 74.94

Virus-mPLoc [8] 81.21 47.13 45.25 45.1 95.38 45.25 72.37
MuLA 94.0 88.66 82.2 84.17 98.61 82.2 91.21

DDE (only)

AdaBoost 48.06 40.88 32.84 31.18 87.06 32.84 25.24
DT 77.67 69.15 68.09 68.11 94.61 68.09 67.25

KNN 84.86 84.09 76.62 79.76 95.36 76.62 77.78
GPC 85.85 86.48 77.36 80.09 95.99 77.36 78.98

LSVM 79.46 77.68 62.54 66.24 94.92 62.54 69.53
SGD 73.56 69.49 60.27 63.71 93.52 60.27 60.92

LSTM 60.52 42.1 38.95 39.22 90.0 38.95 40.68
CNN 58.06 37.68 33.76 33.76 89.31 33.76 37.15

Virus-mPLoc [8] 57.27 36.56 32.41 32.53 89.15 32.41 35.57
MuLA 86.33 87.93 78.18 81.94 96.65 78.18 79.89

Ensemble (AAC, PseAAC, and DDE) with the ternary operators U (·) = {M, C, S} to merge the descriptors features.

E-MuLA (M = maximum) 94.72 92.31 84.15 87.39 98.78 84.15 92.26
E-MuLA (C = concatenate) 94.55 91.56 83.83 86.84 98.74 83.83 92.01
E-MuLA (S = summation) 94.87 92.72 84.18 87.61 98.81 84.18 92.47

Given the prediction improvement demonstrated by ensemble networks, we finally
evaluated our E-MuLA network using the AAC, PseAAC, and DDE branch encoders.
Table 3 includes results of maximum (M), concatenation (C), and summation (S) operations
used in the ternary fusion U. E-MuLA performed worse in using C than M. E-MuLA with
S outperformed all the other ternary fusion operations. E-MuLA achieved better results
than employing a single MuLA network on the individual descriptors.

5. Conclusions

This study introduced the E-MuLA network, a novel deep-learning model that in-
corporates a multi-attention module to enhance the accuracy of viral protein subcellular
localization classification. Through extensive experiments and evaluations, the superiority
of the E-MuLA model has been demonstrated. Our research shows the importance of
deep-learning models in bioinformatics, particularly in predicting the subcellular localiza-
tion of viral proteins. The E-MuLA model provides a powerful framework for accurate
protein subcellular localization prediction, which will greatly contribute to the develop-
ment of antiviral therapy and our understanding of the behavior of viral proteins in cells.
Future work includes expanding the dataset for training and evaluation as well as explor-
ing the application of the E-MuLA model in other fields of bioinformatics by combining
systems biology [40–42].
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