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Abstract: Pedestrian crossings are an essential part of the urban landscape, providing safe passage
for pedestrians to cross busy streets. While some are regulated by timed signals and are marked with
signs and lights, others are simply marked on the road and do not have additional infrastructure.
Nevertheless, the markings undergo wear and tear due to traffic, weather, and road maintenance
activities. If pedestrian crossing markings are excessively worn, drivers may not be able to see them,
which creates road safety issues. This paper presents a study of computer vision techniques that can
be used to identify and classify pedestrian crossings. It first introduces the related concepts. Then, it
surveys related work and categorizes existing solutions, highlighting their key features, strengths,
and limitations. The most promising techniques are identified and described: Convolutional Neural
Networks, Histogram of Oriented Gradients, Maximally Stable Extremal Regions, Canny Edge, and
thresholding methods. Their performance is evaluated and compared on a custom dataset developed
for this work. Insights on open issues and research opportunities in the field are also provided.
It is shown that managers responsible for road safety, in the context of a smart city, can benefit
from computer vision approaches to automate the process of determining the wear and tear of
pedestrian crossings.

Keywords: pedestrian crossings; smart cities; computer vision; state-of-the-art; performance evaluation

1. Introduction

It is important to acknowledge that pedestrians are more vulnerable than other users
of public roads due to their lack of physical protection. To ensure their safety, it is necessary
to create designated areas for them. One such solution is the implementation of pedestrian
crossings (i.e., zebra crossings or crosswalks), which are marked points on the road that
allow pedestrians to cross the carriageway safely. Pedestrian crossings are typically marked
on the pavement with parallel white stripes perpendicular to the road’s direction. These
stripes are usually around 50 cm wide and can vary in length between 250, 300, and 400 cm,
depending on their location. The distance between the stripes is approximately 50 cm [1].

According to the annual report by the Portuguese National Road Safety Authority,
Portugal experienced 27,725 road accidents in 2020. It is important to note that 13.3% of
these accidents involved victims being hit by a car, and unfortunately, 17.7% of the road
accident victims were fatal [2]. In this context, safety measures are necessary to address the
alarming statistics. In Portugal, local authorities have implemented measures to enhance
visibility in pedestrian crossing areas, such as replacing static vertical signs with dynamic
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light-emitting diode (LED) signs or using flashing LEDs near pedestrian crossings. It is
worth noting that while these measures are a significant contribution, their effectiveness is
most noticeable during the night [3].

Although some pedestrian crossings are regulated by timed signals and are marked
with signs and lights, others are only simply marked on the road. Over time, the markings
may experience wear and tear due to weather conditions, heavy traffic, and other factors,
which can make them difficult to be viewed by drivers. Hence, it may be necessary to
consider interventions to address this issue. Therefore, it is important to develop solutions
that can effectively identify and classify the wear and tear of pedestrian crossings.

The work presented in this paper represents a first step in a project aimed at develop-
ing a system that uses computer vision techniques and solutions to address the challenge
of timely detection of wear and tear on pedestrian crossings. Such a system could identify
pedestrian crossings that may require repair and notify the responsible entities promptly.
This solution could be utilized in local authority vehicles traveling on city roads, as part of
smart cities’ initiatives that aim to explore new strategies for optimizing available resources
towards a more sustainable future [4]. It is of utmost importance that municipal authorities
effectively integrate and implement these technologies to ensure efficient urban manage-
ment and the development of resilient urban communities that can meet the increasing
demands of the future.

In Portugal, the responsibility of monitoring and maintaining road markings lies with
Infraestruturas de Portugal (IP) and the municipal authorities. However, it is worth noting
that technology can now assist these organizations in identifying and diagnosing the state
of road markings, which can complement citizen reports. This approach has the potential
to improve the efficiency and accuracy of road maintenance. According to information
provided by IP [5], enforcement is more prevalent in areas with high traffic volume and
commercial activity, among other criteria, which can exclude many urban areas. It is
important to foster cooperation between local authorities and IP to address these issues.

The integration of computer vision techniques into the mobile inspection and support
units from IP or local authority vehicles can facilitate the collection of information on
road conditions, such as the location and the wear and tear of pedestrian crossings. This
information may be useful to competent authorities in the maintenance and restoration of
pedestrian crossings if deemed necessary. This paper surveys commonly used computer
vision techniques that have been used to address these problems and related topics. It
discusses their strengths and limitations. Then, it identifies the most promising techniques
and evaluates their performance using a new dataset that has been created in the context of
this work.

The rest of the paper is organized as follows. Section 2 introduces the computer vision
techniques that form the basis of this work. Section 3 presents related work. Section 4
presents a performance evaluation study of the most promising techniques. Section 5
outlines the challenges and opportunities. Finally, Section 6 presents conclusions and
identifies potential areas for future research.

2. Computer Vision Techniques

Computer vision is a field of artificial intelligence that focuses on extracting visual
data, such as images and videos, which can be used to perform various tasks, including
object detection and classification. Cameras are often the primary source of this data, and a
significant amount of information is required to achieve accurate recognition. Moreover,
algorithms play a crucial role in facilitating autonomous learning of the model without the
need for human intervention. This technology has a wide range of applications, including
machine learning [6].

This section is divided into three subsections. Firstly, it will address the area of
convolutional neural networks (CNN), covering their respective types and architectures.
Subsequently, it will discuss image processing techniques, detailing how they work and
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demonstrating their use in the context of pedestrian crossings. Finally, a section on classifi-
cation architectures will be presented.

2.1. Convolutional Neural Network Architectures

In recent years, computer vision has made significant progress, largely due to the
development of new deep learning techniques. This field aims to enable computers to
recognize complex patterns in images, texts, sounds, and other objects, like the human
brain [7]. Simultaneously, there has been an enhancement in the processing capacity of
Graphics Processing Units (GPUs), which has enabled researchers to train deeper networks.
Regarding the issue of object detection, CNNs have demonstrated their effectiveness and
can be classified into two categories: One-Stage Detectors and Two-Stage Detectors.

CNNs are widely recognized for their crucial role in computer vision, as they are
optimized to process visual data and recognize complex features. Due to their ability to
automatically learn data characteristics, they have become powerful tools for tasks such
as object recognition, image segmentation, and visual classification. CNNs have found
various applications in fields such as automobile automation, healthcare, and document
analysis [8].

CNNs are composed of three types of layers, as illustrated in Figure 1, and can be
replicated. Each layer has a crucial role in both image reduction and processing. The first
layer, known as the input layer, receives the image to be processed. Its function is to provide
image input to the network, and it also has channels for the different red, green, and blue
(RGB) colors. However, it is not considered a part of the CNN structure. The convolutional
layer is a crucial element of a CNN. It applies the weights of the previous layers to extract
image details through a convolutional mathematical operation [9]. The layer uses a matrix,
known as a kernel, which contains learned data and where the learning process occurs. The
output is then transformed into a feature map and forwarded to the next layer, where new
characteristics such as textures and colors are learned. The pooling layer is designed to
simplify the subsequent layers, much like reducing the resolution of an image. Its primary
objective is to reduce computing time [10]. The process of image classification takes place
in the fully connected (FC) layer, which makes use of information from the previous layers
and applies either a sigmoid or softmax activation function [11].
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Figure 1. Neural network architecture with convolutional layers.

The following sections will discuss two types of CNNs: One-Stage and Two-Stage.
Furthermore, examples of CNNs and their architectures will be provided.

2.1.1. One-Stage Detection

The process of One-Stage Detection models involves the direct processing of the
image upon receipt by the network. The network generates anchor boxes, which are
areas identified as probable locations of objects to be detected. These anchor boxes are
later converted into bounding boxes, representing the areas that the model identifies as
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the objects present. While it is true that One-Stage models may offer faster processing
times than Two-Stage models, it is also important to note that they tend to have lower
accuracy [12]. Therefore, it is crucial to consider both speed and accuracy when selecting a
model. In the context of this paper, the models that adopt the One-Stage Detection approach
are You Only Look Once (YOLO), Single Shot Detector (SSD), and EfficientDet. Although
these use similar processing methods, they have specific variations.

The YOLO model [13], also known as ‘You Only Look Once’, is a highly efficient
method for object detection that utilizes a single pass through the neural network. It can
identify objects in images and videos with great accuracy thanks to various optimization
strategies, such as dividing the image into a grid of cells. This approach allows for precise
identification even when objects overlap. Furthermore, during network training, techniques
such as L2 regularization [14] can be employed to prevent the weights from assuming
excessively high values. This aids in preventing overfitting [14], which will be discussed
in later sections, and enhances the model’s generalizability. The detection process of the
YOLO model is depicted in Figure 2.
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Figure 2. YOLO model detection process.

The Single Shot Detector (SSD) model [15] is based on feed-forward neural networks,
where the information follows one direction, unlike other networks where the nodes of the
network forms cycles. These networks produce a collection of bounding boxes and a score,
usually in percentage format, which indicates the probability that the object present in
these bounding boxes is the object it was trained to identify. According to [16], this model
has better accuracy and inference time than YOLO [13] and Fast R-CNN [16].

The SSD model [15] is characterized by a backbone where a CNN architecture is
used to extract important features from the image. This phase is essential for capturing
information at different levels of detail, and models such as VGG-16 [17], ResNet [18], or
MobileNet [19] are often adopted as backbones, adapted according to the specific needs of
precision and computational efficiency. The SSD contains several detection layers operating
at different scales. Each layer is responsible for detecting objects of different sizes, applying
convolutional filters adapted to each scale. The detection layers produce feature maps
that provide information about the presence of objects in different regions and scales of
the image. These maps are then used to make predictions about bounding boxes and
associated classes. Each point on the feature map makes predictions for different sizes
of bounding boxes and classes, allowing the model to deal efficiently with objects of
different scales and shapes. The SSD also incorporates anchor boxes to facilitate multi-
scale detection. Predictions include information on the location of the bounding boxes
and the confidence scores associated with each class. The use of activation functions,
such as softmax, is common to obtain normalized probabilities. Finally, non-maximum
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suppression is applied to eliminate duplicate detections and select the most relevant
bounding boxes corresponding to the detected objects. Figure 3 illustrates the architecture
of the SSD network.
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Figure 3. Illustration of the architecture of the SSD model. Adapted from [15].

The EfficientNet model [20] is a one-stage convolutional neural network that utilizes
a systematic scaling approach. This approach carefully adjusts the depth, width, and
resolution dimensions through a composite coefficient. Unlike conventional methods
found in most CNNs, which perform arbitrary scaling of these factors, the EfficientNet
approach uniformly modifies the width, depth, and resolution of the network. This is
achieved using predetermined coefficients derived from a small grid search in the original
model, which is smaller in size. For example, if an increase of 2N computing resources
is needed, the grid’s depth can be increased by αN , its width by βN , and the image size
by γN . These coefficients are constant and are determined by a grid search on the original
model. EfficientNet uses a compound coefficient to uniformly scale the width, depth, and
resolution of the grid. One possible justification for using the compound scaling method
could be that if the input image is larger, the network may require more layers to increase
the receptive field and more channels to capture finer patterns in the larger image. The
EfficientNet-B0 network is built on the inverted bottleneck residual blocks of MobileNetV2,
along with compression and excitation blocks. Figure 4 provides a comparison of different
types of CNN architectures. The standard network architecture is shown in Figure 4a.
Figure 4b–d illustrate conventional scaling methods that increase only one dimension,
namely width, depth, or resolution. On the other hand, the EfficientNet network employs a
compound scaling method that increases all dimensions, as depicted in Figure 4e.

Information 2024, 15, x FOR PEER REVIEW 6 of 44 
 

 

 

 
Figure 4. Comparison of CNN architectures. Adapted from [21]. 

2.1.2. Two-Stage Detection 
Models based on the Two-Stage Detection paradigm are highly accurate at detecting 

and localizing objects. However, it is worth noting that these methods may have a high 
computational cost, which may make them unsuitable for real-time processing systems 
[21]. On the other hand, One-Stage Detection methods have lower computational cost and 
are often considered real-time detectors. However, it is worth noting that their level of 
detection accuracy may be comparatively lower [22,23]. 

The Mask R-CNN model [24] is an example of Two-Stage Detection. It is a 
development of Faster R-CNN, using the same architecture but with an extra step. Faster 
R-CNN works in two stages. In the first stage, the network receives the image and 
identifies proposed regions [25] that may contain the objects to be detected, determined 
using Region Proposal Networks (RPNs). The proposed regions are sent to the ROIAlign 
layer, which aligns the features of a region of interest (ROI) with the spatial grid of the 
output feature map. In the subsequent stage, the bounding boxes are classified and refined 
to enhance detection accuracy. Additionally, Mask R-CNN introduces a third step known 
as the ‘Mask Head’. The system aims to perform image segmentation, allowing for the 
identification of objects that may be partially or completely obscured by other elements or 
by the proximity of multiple objects of the same class. To achieve this, the Mask Head 
employs the ROIAlign technique to predict individual binary masks for each object, 
creating distinct areas for each pixel. For further clarification on the architecture of the 
Mask R-CNN model, please refer to Figure 5. 

  

Figure 4. Comparison of CNN architectures. Adapted from [21].

2.1.2. Two-Stage Detection

Models based on the Two-Stage Detection paradigm are highly accurate at detecting
and localizing objects. However, it is worth noting that these methods may have a high
computational cost, which may make them unsuitable for real-time processing systems [21].
On the other hand, One-Stage Detection methods have lower computational cost and
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are often considered real-time detectors. However, it is worth noting that their level of
detection accuracy may be comparatively lower [22,23].

The Mask R-CNN model [24] is an example of Two-Stage Detection. It is a development
of Faster R-CNN, using the same architecture but with an extra step. Faster R-CNN works
in two stages. In the first stage, the network receives the image and identifies proposed
regions [25] that may contain the objects to be detected, determined using Region Proposal
Networks (RPNs). The proposed regions are sent to the ROIAlign layer, which aligns the
features of a region of interest (ROI) with the spatial grid of the output feature map. In
the subsequent stage, the bounding boxes are classified and refined to enhance detection
accuracy. Additionally, Mask R-CNN introduces a third step known as the ‘Mask Head’.
The system aims to perform image segmentation, allowing for the identification of objects
that may be partially or completely obscured by other elements or by the proximity of
multiple objects of the same class. To achieve this, the Mask Head employs the ROIAlign
technique to predict individual binary masks for each object, creating distinct areas for each
pixel. For further clarification on the architecture of the Mask R-CNN model, please refer
to Figure 5.
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2.2. Image Processing

The Histogram of Oriented Gradients (HOG) [27,28] is a feature descriptor that extracts
useful information from images. It allows for the selection of areas of interest and the
elimination of unnecessary information, which facilitates the detection of object edges
present in these images. This includes Canny Edge and Scale-Invariant Feature Transform,
which are discussed in this section. This technique can be used to detect objects in images
or process them for later use in CNN models.

The concept behind this technique is to describe the appearance and shape of objects
in an image through the distribution of intensity gradients or edge directions. The image is
divided into cells, and for each cell, a histogram of gradient directions is generated. The
feature descriptor is obtained by concatenating these histograms. To further improve the
accuracy of the histograms, it may be beneficial to consider normalizing them based on
contrast. This can be achieved by using intensity measurements on larger image blocks,
which can help to mitigate the effects of variations in lighting and shadows. This can be
accomplished by using intensity measurements on larger image blocks, which can help to
mitigate the effects of variations in lighting and shadows.

To apply the HOG, the original image in Figure 6a was first converted to grayscale.
Then, a cell containing the edge of a pedestrian crossing was selected to distinguish
between the area representing the pedestrian crossing and the area representing the road
surface. The directions in which these variations are most marked are shown in Figure 6b,
while Figure 6c shows the selected cell. Figure 6d displays several angles where there are
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noticeable changes in gradient tone. The histogram presented in Figure 6e demonstrates
the various angles at which the most significant changes occur.
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(e) histogram graph of gradient tone. Using code available in [29,30].

The study [27] emphasizes the importance of adjusting image dimensions to the
128 × 64 pixel standard. According to [31], this is a crucial step in achieving better per-
formance by obtaining 8 × 8 cells. The original images before the HOG application are
depicted in Figure 7a,c. Figure 7b,d were evaluated using HOG to assess the state of
degradation of pedestrian crossings in the original images. It was observed that Figure 7b
exhibits greater wear, while Figure 7d shows good preservation.
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Maximally Stable Extremal Regions (MSERs) [32] can be used to identify areas in an
image with differing properties. To apply this technique, the image must first be converted
to grayscale, which allows for the application of various threshold values. This process
enables the identification of regions that remain between these thresholds. Pixels with
an intensity above the defined threshold will be converted to white, while the rest will
be displayed in black. Later, techniques can be applied to find the contours using the
defined regions. For instance, the contours can be represented as a list of points using
findContours [33], which can then be used to extract features. This technique has been
demonstrated in the road context, as shown in [34,35]. An example of the application of
this technique is provided in Figure 8.
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Figure 8. An example showcasing the application of the MSER technique.

Another technique widely used in these contexts is Image Perspective Transformation
(IPT). IPT plays a significant role in optimizing CNN models by allowing adjustments to
be made to the perspective of images. It is often necessary to emphasize or eliminate less
important details and focus on the most relevant areas. Below is a description of some
perspective techniques that typically improve object identification in the road context.

The Bird’s Eye View technique was developed to provide an aerial view [36], with a
specific focus on the road surface. In [37], its effectiveness in detecting road markings while
excluding other objects that may appear on the sides of an image was tested. An example
of the application of this technique is provided in Figure 9.
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Figure 9. Example of the application of the Bird’s Eye View technique: (a) is the original image; (b) is
the image after application of the technique.

Another example of this technique’s application was demonstrated by [38]. Bird’s
Eye View was used in conjunction with HOG to identify road lanes in the context of
self-driving cars.

The Fish Eye View technique can be applied to create a panoramic or spherical image
by distorting lines and magnifying the curvature of objects. This technique can be useful for
extracting additional information about an object. In this case, it allows for the observation
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of the current state of pedestrian crossings. An example of the application of this technique
is provided in Figure 10.
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Figure 10. Examples of the application of the Fish Eye View technique: (a) the original image; (b) the
image after applying the technique.

The techniques mentioned above could potentially be combined with a CNN to
improve the detection of objects in images or videos, as noted in [39].

Image Threshold is a technique commonly used for object detection, defect checking,
and medical imaging. In this context, it can be used to assess the degradation of pedes-
trian crossings. The technique involves replacing pixels in an image with either white
or black pixels based on their intensity level. The following describes the application of
this technique:

• If the intensity of a pixel, represented by Ii,j, is lower than a fixed threshold value, T,
then that pixel will be replaced with the color black.

• Otherwise, it will be replaced with the color white.

Figure 11 presents the outcomes of a combination of techniques, including Threshold,
Bird’s Eye View, Region of Interest, and Contour Detection, as provided by [33]. It is essen-
tial to segment the irrelevant areas and focus on the areas of interest, namely the pavement.
To achieve this, methods such as those described above can be applied. Subsequently, the
Threshold algorithm is utilized to extract information about the geometry of pedestrian
crossings. Figure 11a appears to show some signs of wear on the pedestrian crossing, while
Figure 11b seems to show no such signs. Figure 11c,d show the crosswalk stripes in green
using the findContours function.
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Although the previous results were positive in detecting and classifying the state of
pedestrian crossings, it is important to note that certain factors can affect the recognition of
the edges of these road markings. These factors include low light conditions, wet surfaces,
and shaded areas covering the markings, as can be observed in Figure 12.
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Figure 12. Illustration of images featuring less favorable elements.

The Canny Edge Detector [40] is a technique that is widely used for identifying object
edges in images. The process involves multiple stages, beginning with the removal of image
noise using a Gaussian filter. Next, the image gradient is calculated using operators such as
Sobel, Prewitt, or Roberts [41]. One approach to achieve this is by utilizing two threshold
values, namely a minimum and a maximum. Any pixels with an intensity greater than
the defined maximum will be labeled as strong pixels, while those between the minimum
and maximum values will be labeled as weak pixels and subsequently eliminated. It
is recommended to consider removing any pixels from the image that may be deemed
irrelevant. It is also advisable to evaluate whether the pixels designated as weak are
necessary to retain in the final image. Validation is carried out by verifying whether the
pixel is connected to a strong pixel. If this is the case, the pixel is retained in the image. This
technique is commonly referred to as Edge Tracking by Hysteresis [40]. An illustration of
how this technique could be applied is presented in Figure 13.
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2.3. Architectures for Classification

Support Vector Machine (SVM) [42] is commonly used for data classification and
regression analysis. Its main objective is to identify the hyperplane that best separates
data points from different classes. SVM employs two vectors, known as support vectors,
which are important for determining the position and orientation of the hyperplane [43].
Its objective is to achieve the largest possible margin, or maximum margin, between data
points of different classes, which enables better generalization of unseen data. The SVM
algorithm is commonly employed as a classifier based on previously extracted features,
often utilizing the HOG and MSER algorithms. Figure 14 illustrates how this algorithm
is applied.
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Figure 14. Illustration of the Support Vector Machine concept.

MobileNetV2 [44] is the second iteration of the MobileNet model [19]. Similar to its
predecessor, this model performs well on mobile devices due to its architecture, which
includes an inverted residual structure with connections between bottleneck layers. The
inputs and outputs of these residual blocks are connected via a linear layer, which helps to
maintain small feature spaces and minimize the risk of information loss. MobileNetV2 uti-
lizes depthwise separable convolutions [45], which are employed in new CNN architectures.
This approach replaces the fully connected layer with a factorized version that splits the
standard convolutional layer into two: depthwise convolution and pointwise convolution.
By doing so, the standard convolutional layer applies filters and transforms the inputs
into a new set of data in two separate steps, resulting in improved efficiency and reduced
computational cost. The MobileNet architecture differs from traditional CNN architectures
in its use of depthwise convolution, which is separated into two layers: one for filtering
and the other for combining inputs. This reduces the model size and computational cost.
Additionally, a 3 × 3 convolutional layer is used, followed by a batch normalizer (BN)
and an ReLU. The MobileNet architecture utilizes a separation of the 3 × 3 convolutional
layer into 3 × 3 depthwise convolution and 1 × 1 pointwise convolution. MobileNetV2 is
frequently employed as a backbone for the SSD model, especially in devices with limited
resources, like mobile phones or Internet of Things (IoT) devices. Figure 15 depicts the
distinctions between the architectures described.
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Figure 15. Traditional CNN architecture compared to a MobileNet model architecture.

VGG-16 [17] uses a conventional convolutional approach, which has resulted in a
highly resilient architecture. Its remarkable performance in computer vision tasks is due to
its 16-layer architecture, which consists of 13 convolutional layers and 3 fully connected
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layers. The VGG-16 model is designed to process RGB images of a fixed size, typically
224 × 224 pixels. Its 13 convolutional layers are organized into 5 blocks, each consisting
of 3 × 3 layers, which are then followed by a max-pooling layer. After the convolutional
blocks, there are 3 fully connected (FC) layers. The first two FC layers have 4096 channels,
while the last layer has only 1000 channels per class. The architecture uses a softmax layer
that predicts the class of the input image [17]. However, it is worth noting that this architec-
ture has some weaknesses, particularly in terms of model size and number of parameters,
which result in longer training times [46]. This characteristic may be undesirable for devices
with limited resources. Figure 16 illustrates the network’s architecture.
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3. Related Work

In a study conducted in [47], pedestrian crossings were detected in real time using
the YOLOv5 model, which was implemented on a Jetson Nano device. The dataset used
in the study was created by capturing videos using a camera mounted on a vehicle in
various atmospheric conditions. Additionally, to ensure a diverse dataset, the Synthetic
Fog augmentation algorithm was employed. The model’s robustness was further improved
by creating images with a fog scenario. To handle complex environments, such as excessive
brightness, fog, and wet ground, a Squeeze-and-Excitation unit [48] was incorporated to
improve accuracy. Furthermore, the Negative Sample Training and Region of Interest (ROI)
algorithms were implemented to enhance the model’s detection speed. Hence, the YOLOv5
model was adapted, leading to an F1 score of 94.83% in complex scenarios and 98% in less
complex scenarios.

In [37], a study was carried out to evaluate the effectiveness of detecting road markings
using segmentation and object detection algorithms. The researchers created a new dataset
due to the inadequacy of existing ones, which lacked visible markings and appropriate
resolutions and contained few images in various atmospheric environments. The study
assessed the performance of various models, including SSD MobileNet version 1, SSD
Inception version 2, and two versions of Mask RCNN, with the Inception-v2 and ResNet 50
architecture being applied. Furthermore, the MobileNet networks underwent optimization
using the Image Perspective Transformation (IPT) technique, which transformed the images
into a ‘bird’s-eye view’, eliminating unnecessary background elements and allowing the
model to focus on the object of interest. Based on the results, it was found that the Mask
R-CNN networks outperformed the other models. Both the ResNet 50 and Inception-v2
models have shown impressive performance in different scenarios. The ResNet 50 model
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has demonstrated superior performance in scenarios with rain, shadows, and nearby
obstacles, while the Inception-v2 model has excelled in nighttime environments.

In [38], it was proposed to use an algorithm based solely on computer vision techniques
and data obtained from a camera to detect lanes. The proposed approach suggested using
color segmentation, a fundamental technique for identifying objects or specific regions of
an image with distinct colors, in a minimalist manner. This method allowed the algorithm
to focus solely on predetermined color segments of the image, simplifying processing
and analysis. The approach used in this study was found to be effective in identifying
information related to carriageway markings. This is because road markings around the
world are mostly in shades of yellow or white. To distinguish these markings from the
rest of the road surface, the Canny Edge Detector algorithm was applied. This algorithm
identifies the pixels of different intensities that make up the distinction between road
markings and the road surface. The authors proposed two approaches for identifying
regions of a given frame with the highest density of non-zero pixels. It was found that
the bird’s-eye view technique with sliding window search was less effective in identifying
curved markings, while the second approach, histogram analysis, was more robust and
less susceptible to adverse conditions.

In [49], an architecture called Vanishing Point Prediction (VPP) was proposed to iden-
tify carriageways and other markings, creating an illusion of a three-dimensional surface
in a two-dimensional image. The proposed architecture aimed to accomplish four tasks:
grid regression, object detection, multi-label classification, and vanishing point prediction.
The authors also created a dataset of approximately 20,000 images with 17 classes. The
system was developed based on four different scenarios: heavy rain, normal rain, no rain,
and nighttime rain. The collected images had a resolution of 1288 × 728. The authors
suggested using grid-level annotation instead of pixel-level annotation. This involved
dividing the image into an 8 × 8 grid and labeling the grid cell if any pixel from the original
annotation is inside it. This approach allowed for the integration of two independent
objectives: identifying road markings and carriageway boundaries. In the context of fully
convolutional networks, it has been demonstrated that grid-level annotations outperform
pixel-level annotations. The authors concluded that this architecture was robust in various
weather conditions and operated in real time.

In [50], an approach was presented for the real-time detection of road markings, with
emphasis on classifying damaged or undamaged markings, using object detection algo-
rithms in Edge Computing environments. The study began by constructing a dataset,
obtained by capturing images from cameras installed in garbage collection trucks. The ini-
tial use of the Deep-on-Edge (DOE) algorithm on a Raspberry Pi 3, with the camera pointed
at the ground, was found to be unsuitable for the intended application. To overcome this
limitation, the YOLO algorithm was proposed, which allowed the camera to be configured
on the garbage collection trucks. Furthermore, the VGG-16 architecture was employed
to extract the necessary visual characteristics for identifying road markings. The authors
have proposed other architectures, such as Mask R-CNN and SegNet. However, it is worth
noting that these architectures may have a higher inference time, which could potentially
pose challenges in detecting other road markings.

In [51], a model was proposed to detect pedestrian crossings using Mask R-CNN. The
instance segmentation architecture employed ResNet-101 as its backbone. The dataset used
to train and validate the model was created by collecting images using a dashcam and was
divided into two parts: 80% for training and 20% for validation. The model was also tested
using 30 images with a resolution of 640 × 480. The architecture was configured with a
learning rate of 0.001 and a batch size of 100 and trained for 30 epochs. Mask images were
used to calculate the reverse loss and optimize the model. The model was trained using an
Intel (R) Core (TM) i7-7700k CPU, 2 NVIDIA GeForce 1080 Ti for GPU acceleration, and
32 G of memory with the Matterport framework. The test images yielded an mAP of 97%.

In [52], the authors presented an algorithm that identified damage to road markings.
To ensure privacy, the algorithm was implemented using a half-celestial camera positioned
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on the underside of a vehicle, specifically a rubbish lorry. The algorithm was based on
two methods: Measure Outline Percentage, which created a border around the road mark
to indicate how many objects are present inside it, and Measure Detect Percentage, which
formed a binary image containing only black and white to allow the shape of the road
mark to be discerned. The study involved the collection of 242 images, out of which
164 were found to be damaged while the remaining 78 were undamaged. Two methods
were employed to measure the accuracy of the road mark detection. The Measure Outline
Percentage method demonstrated an accuracy of 76.6%, whereas the Measure Detect
Percentage exhibited 51.8%. It is worth noting that both methods had limitations related to
atmospheric conditions, as an appropriate threshold needed to be defined, and complex
road markings.

A pavement damage detection model was proposed in [53], based on the fusion of
thermal and RGB images. This fusion allowed for the collection of important information
from a set of images. For instance, while an RGB image may detect n objects, thermal
images can detect the same objects and others not detected in the RGB image, thereby
enhancing the model. The dataset was created by using a FLIR ONE camera attached
to a mobile phone. The captured images were extracted using the MATLAB library API,
resulting in 1500 RGB images and 1500 thermal images. To expand the dataset, the authors
applied Gaussian noise to the RGB images and randomly reduced or expanded the color
bar by 20% in the thermal images. These procedures resulted in a total of 13,500 final
images. The EfficientNet model was trained using a high-performance CPU and GPU.
The Stochastic Gradient Descent (SGD) algorithm with a momentum of 0.7 was chosen to
update the model’s weights. For the learning rate, the authors chose an initial value of 0.01,
which was adjusted over time using a multiple learning rate strategy: the initial learning
rate was multiplied by 0.6 in each iteration until it reached a maximum of 30,000, after
which the learning rate remained constant. The study suggested that combining fused
images with RGB images may result in higher accuracy rates, as demonstrated by the
achieved 98.34% accuracy. Furthermore, the use of an augmented dataset appears to have
improved the stability of the detection model, resulting in an accuracy rate of 98.35%, a
recovery rate of 98.34%, and an F1 score of 98.34%.

In [54], a study proposed the use of image processing techniques to identify pedestrian
crossings. Two techniques, namely the Canny Edge Detector and Hough Transform, were
considered for this purpose. These techniques facilitated the identification of the edges
present in the stripes of pedestrian crossings and their respective geometric shapes. To
determine whether the identified object was a pedestrian crossing, the authors used the
Hough technique to draw parallel lines on the edges of the pedestrian crossings. The
results were obtained using the Canny Edge technique. If the total number of parallel lines
exceeded a certain constant, the image was considered to contain a pedestrian crossing.
Furthermore, the authors utilized ROI and Inverse Perspective Mapping (IPM) to eliminate
unwanted objects and enhance the study’s outcomes. The techniques used allowed the
identification of 96% of pedestrian crossings in 51 test images, all of which were under
favorable lighting conditions.

In [55], a method was proposed for detecting and recognizing text on road markings.
The method was based on the MSER technique, which was used to identify possible
candidate areas where road markings may be present. Additionally, IPM was used to
create a top-down view, which facilitated the extraction of text from road markings and
provided a better perspective. The authors divided the detection process into two stages.
In the first stage, they used HOG and SVM techniques to detect the symbols on the road
markings. In the second stage, they used optical character recognition to detect the text
on these markings. The authors tested the performance of these techniques on videos and
achieved an F1 score of 85% for text and 91% for symbols.

In [56], a study was carried out to detect pedestrian crossings in urban environments,
considering both the pedestrian and driver perspectives. The dataset was divided into
three sets for training, validation, and testing, with an 80%, 10%, and 10% split, respectively.
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Data augmentation was applied to increase the dataset. Two models, YOLOv7 and Faster
R-CNN (versions R101-FPN and X101-FPN), were evaluated. The results obtained were
similar for both models. The YOLOv7 model achieved an accuracy of 98.6%, whereas the
Faster R-CNN model achieved an accuracy of 98.29%.

In [57], the U-Net model was proposed for pedestrian crossing segmentation in im-
ages. A dataset of 150 training images and 30 validation images was created. To extract
information from the images, ResNet-34 was initially applied to improve the U-Net model.
The convolution layer was expanded to increase the receptive field of the feature points,
while still preserving the resolution of the feature map. Following this, the abstract features,
such as shapes, colors, tones, or textures, were restored to their original size by utilizing the
original U-Net subsampling network, in addition to complementary information from the
jump link. As a result, the model achieved an accuracy of 94.6%. It has been suggested that
the use of ResNet-34 may improve the training of the U-Net model, potentially mitigating
degradation over time.

In [58], a method was proposed for detecting pedestrian crossings. The method em-
ployed various techniques, including adaptive histogram equalization, Flood Fill operation,
and Hough Transform. Subsequently, the SVM classification algorithm was applied. The
authors first applied adaptive histogram equalization to enhance the contrast of the pedes-
trian crossing markings. Then, they converted the resulting image into a binary image with
only black and white pixels using the Otsu method. To reduce the number of non-candidate
objects in the image, they applied a statistical threshold process, which eliminated objects
with an edge size below the defined value. To determine whether an image contains a
pedestrian crossing, the authors employed the Flood Fill and Canny Edge methods. To
identify the edges of the pedestrian crossing stripes, which would later be used to extract
information, they used Uniform Local Binary in conjunction with ROI with a dimension of
128 by 128 pixels. Under varying atmospheric and lighting conditions, this method was
shown to achieve high accuracy rates of 97.95% and 98.17%, respectively.

Table 1 summarizes the articles analyzed in the state-of-the-art review.

Table 1. Summary of the studies included in the state-of-the-art review.

References Year of
Publication Dataset Purpose of Study Methodology Results

[37] 2022 Dataset created
by authors

To help make up for the
lack of public datasets

related to road markings.

SSD MobileNetV1, SSD
InceptionV2,
Mask-RCNN-

InceptionV2, and
Mask-RCNN-ResNet50

The ResNet 50 version performed
better in scenarios with rain,

shadows, and nearby obstacles.
The Inception-v2 excelled in

nighttime environments.

[38] 2020 N/A

Propose an algorithm for
identifying road

markings using only
histogram analysis and

perspective
transformation

techniques.

Perspective
transformation,

Threshold.

The results indicate that the
curved markings approach

outperformed the minimalist
approach. Conversely, the second
approach demonstrated greater

resilience and was less vulnerable
to adverse conditions.

[47] 2022 CDNet dataset,
created by authors

Detect pedestrian
crossings in real time and
optimizing algorithms for

devices with
limited resources.

YOLOv5 with NST,
ROI, SVM, and FOG

algorithms.

YOLOv5 achieved an F1 score of
94.83% in complex scenarios. In

less complex scenarios,
98% was achieved.

[49] 2017 Dataset created
by authors

Propose a multi-task
network to detect

carriageways and road
markings in adverse
weather conditions.

VPGNet for road mark
detection and MSER,
FAST, and HOG to
extract features and

SVM to produce labels.

VPGNet has proved to be robust
in different weather conditions, in

real time.

[50] 2017 Dataset created
by authors

Create a solution to
identify road markings

using the YOLO and
VGG-16 algorithms.

VGG-16 as a way of
extracting

characteristics and
using YOLO to
identify brands.

It showed an average precision of
22.4% for pedestrian crossings.
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Table 1. Cont.

References Year of
Publication Dataset Purpose of Study Methodology Results

[51] 2019 Dataset created
by authors

Detect pedestrian
crossings using Instance

Segmentation algorithms.

Mask R-CNN using
ResNet-101 for the
network backbone.

Mask R-CNN with ResNet-101 as
the backbone, recorded an mAP

of 97%.

[52] 2015 Dataset created
by authors

Use of an image
recognition algorithm to
identify possible damage

to road markings.

Image processing
techniques.

Measure Outline Percentage
showed a precision of 76.6%,
Measure Detect Percentage
achieved 51.8%. Using an

appropriate threshold value for
various atmospheric scenarios is

a problem.

[53] 2022 Dataset created
by authors

Propose a pavement
damage detection model

based on the fusion of
RGB thermal images,
using EfficientNet as

a backbone.

EfficientNet B4 and
EfficientNet B5

Using image fusion to detect
damage to road markings can
achieve an accuracy of 98.34%.

When using the augmented
dataset, the detection model

appears to be more stable,
achieving 98.35% accuracy, 98.34%

recovery, and 98.34% F1 score.

[54] 2021 N/A

Propose an algorithm
capable of identifying
pedestrian crossings

using image processing
techniques.

ROI, Hough Transform
line, Canny Edge, and

Inverse
perspective Mapping.

There were 96% of pedestrian
crossings identified in 51 test

images, all of which were in good
lighting conditions.

[55] 2015 N/A

Create a solution to
identify road markings
and recognize text on

them, using image
processing techniques.

MSER, SVM, HOG,
inverse perspective

mapping, and optical
character recognition.

An F score of about 85% was
obtained for text and

91% for symbols.

[56] 2023 Dataset created
by authors

Create a solution to
identify pedestrian

crossings using the YOLO
and Fast R-CNN models.

Faster R-CNN
(R101-FPN and

X101-FPN)
and YOLOv7.

YOLOv7 obtained an accuracy of
98.6%, and Faster R-CNN

obtained an accuracy of 98.29%.

[57] 2020 Dataset created
by authors

Using an image
segmentation model to

identify pedestrian
crossings.

U-Net together
with ResNet-34.

The U-Net model showed an
accuracy of 94.6%. The use of

ResNet-34 improved the training
of the U-Net model, which could

prevent the model from
degrading over training time.

[58] 2019 N/A

Propose an algorithm
capable of identifying
pedestrian crossings

using image
processing techniques.

Hough Transform line,
Canny Edge, adaptive

histogram equalization,
SVM, and Flood Fill.

In different atmospheric
conditions, the accuracy was

97.95%, while in different lighting
conditions the accuracy

was 98.17%.

The work presented in this paper represents a first step in an ongoing effort to develop
a prototype that is appropriate for use in vehicles owned by local councils or other entities,
which uses computer vision techniques to collect information on road conditions, such as
the location and the wear and tear of pedestrian crossings. Therefore, compact, modular,
and mobile hardware solutions, such as Raspberry, Jetson, and Google Coral, are the most
suitable options for the prototype. To make the best use of the limited computing resources
of such devices, the above studies suggest that the most promising models for detecting
pedestrian crossings are YOLOv4-tiny [59], SSD-MobileNetV2 [60], and SSD-EfficientDet-
D0 [60]. Although the Mask R-CNN model was an option, it was not considered due to its
Two-Stage architecture.

4. Performance Evaluation

This section presents a performance comparison of Histogram of Oriented Gradients,
Maximally Stable Extremal Regions, Canny Edge, thresholding methods, and Convolu-
tional Neural Networks models. It begins by introducing a new dataset that was developed
purposefully to assess their performance for detecting pedestrian crossings. Then, it pro-
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ceeds to the performance assessment study. Results and discussion are provided for the
conducted experiments.

4.1. Description of the Dataset

The preparation procedure for the dataset to be used in this study began with an
examination of the Roboflow platform [61] to identify datasets that could be suitable.
However, it was found that these datasets mainly contained images of pedestrian crossings
from the perspective of a pedestrian. Since this project aimed to create a device for vehicle
integration, the use of such datasets could affect the detection capability. Therefore, a new
dataset had to be created.

For this reason, a mobile phone holder was incorporated into the vehicle’s windscreen,
as shown in Figure 17, to ensure an appropriate image perspective. To ensure safe driving,
a decision was made to capture videos instead of taking static photos, at a resolution
of 1920 × 1080 at 30 FPS. The videos were recorded at a resolution of 1920 by 1080 at
30 FPS and were then divided into frames. From these frames, the most relevant ones were
selected. The approach was deemed suitable and efficient in capturing images of pedestrian
crossings under realistic traffic conditions, meeting the requirements of this work.
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Figure 17. Cell phone setup for capturing videos.

Table 2 presents the surface conditions and recording times, which are important
factors in building a robust dataset. It is recommended to consider potential obstacles, ex-
cessive luminosity, and shadows that may hinder pedestrian crossing detection. Therefore,
it is advisable to include a variety of images with different characteristics.

Table 2. Dataset description.

Date of Capture Surface Conditions Time of Capture Number of Images

8 September 2023 Dry Morning 151
9 September 2023 Wet Morning 137

12 September 2023 Dry Afternoon 156
2 October 2023 Dry End of the day 143
3 October 2023 Dry Morning 55

Total: 642

It is worth noting that some of the recordings were made during a time of day when
the sun was often lower on the horizon. This decision was made to avoid potential
visibility issues and to account for a higher volume of users, which could make it difficult
to see pedestrian crossings. Furthermore, this approach helped to diversify the range of
images captured.

The city roads and routes, illustrated in Figure 18, used in this study for the dataset
construction process are from the city of Castelo Branco, Portugal. It is worth mention-
ing that the study did not include the areas of the city of Castelo Branco with cobbled
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surface, as they were not the focus and did not exhibit significant signs of wear in the
pedestrian crossings.

Information 2024, 15, x FOR PEER REVIEW 25 of 44 
 

 

 

Table 2. Dataset description. 

Date of Capture Surface Conditions Time of Capture Number of Images 
8 September 2023 Dry Morning 151 
9 September 2023 Wet Morning 137 

12 September 2023 Dry Afternoon 156 
2 October 2023 Dry End of the day 143 
3 October 2023 Dry Morning 55 

   Total: 642 

 
Figure 18. Routes taken to create the dataset in the city of Castelo Branco, Portugal. 

To compile the dataset, areas with a high concentration of pedestrian crossings were 
strategically selected. This approach allowed for the capture of a diverse set of images and 
information related to pedestrian crossings, contributing to a more comprehensive and 
representative dataset. The annotation tool available on the Roboflow platform was then 
used. This task aimed to determine the location and classification of objects. The resulting 
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Figure 18. Routes taken to create the dataset in the city of Castelo Branco, Portugal.

To compile the dataset, areas with a high concentration of pedestrian crossings were
strategically selected. This approach allowed for the capture of a diverse set of images and
information related to pedestrian crossings, contributing to a more comprehensive and
representative dataset. The annotation tool available on the Roboflow platform was then
used. This task aimed to determine the location and classification of objects. The resulting
data were used for model training and performance evaluation. Figure 19 illustrates the
process of generating annotations in Roboflow.
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Figure 19. Example of creating annotations on the Roboflow platform.

To further improve the dataset, several pre-processing techniques outlined in Section 2
were implemented, in addition to utilizing the data augmentation tools available on the
Roboflow platform. The specific techniques employed are detailed in Table 3. The resulting
differences between each version are illustrated in Figure 20, and hence the modifications
made to the dataset. Figure 20a shows the original image without any changes. Figure 20b
shows the changes using Version A of Table 3. Figure 20c shows the Version B of the dataset.
The contrast between the road markings is greater than in Version A.

Table 3. Techniques applied to the dataset.

Techniques Version A Version B

Resize 1 616 × 616 608 × 608
Auto-Adjust Contrast 1 Histogram Equalization Adaptive Equalization

Flip (Horizontal) 2 Used Used
Grayscale 2 Applied to 25% of images Applied to 25% of images

Noise 2 Up to 1% of pixels Not used
Brightness 3 Not used Between −10% and +10%
Exposure 3 Not used Between −10% and +10%

1 Pre-processing, 2 Data augmentation, 3 Bounding box data augmentation.
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Figure 20. Original image (a) and images (b,c) after the changes have been applied.

The purpose of this updated dataset was to improve the contrast between the road
markings and the surrounding environment by pre-processing the images. To achieve this,
the Adaptive Equalization technique available on the Roboflow platform was utilized.

Additionally, the dataset was divided into training, validation, and test sets to facilitate
model learning and validation. This separation facilitated the analysis of the model’s
behavior to identify signs of overfitting. Additionally, it enabled the evaluation of the
model’s capability to detect objects, particularly pedestrian crossings, in images that were
not previously seen.

Table 4 presents the distribution of images across the sets. The dataset created in the
context of this work is available on the Roboflow platform [62], and it is divided into three
partitions: 80% for training, 15% for validation, and the remaining 5% for testing.

Table 4. Number of images in the training, validation, and test sets.

Class Train Validation Test Total

Passadeira *
1190 1 259 1 55 1 1504 1

1250 2 279 2 20 2 1549 2

* Crosswalk in English, 1 Version A, 2 Version B.

4.2. Image Processing

This section presents the image processing techniques that can be used to identify
pedestrian crossings and determine their wear and tear. Demonstrative examples will also
be provided. Figure 21 illustrates one possible approach to these techniques.
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Figure 21. Method for detecting signs of usage on pedestrian crossings.

Figures 22 and 23a show that the HOG technique can be used to obtain the shape of
pedestrian crossings and visualize the wear and tear caused by vehicles. This technique
provides valuable information as a feature descriptor, which can be utilized by classification
algorithms such as k-Nearest Neighbor (K-NN), SVM, or decision trees. As can be seen in
Figure 23b, it can be challenging to use this technique in areas with high levels of light.
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Figure 22. Example of the application of HOG in the context of pedestrian crossings together with
the ROI technique.

Information 2024, 15, x FOR PEER REVIEW 30 of 44 
 

 

 

 
Figure 23. Example of combining HOG, ROI, and perspective techniques in favorable (a) and 
unfavorable (b) crosswalk conditions. 

Figure 24 displays examples of the image processing techniques described in this 
paper. In Figure 24a(2), the Adaptive Threshold technique was used to identify a 
pedestrian crossing. The threshold of the THRESH_BINARY type was provided by the 
OpenCV library [33]. The observed outcome indicated signs of wear on nearly all the 
stripes of the pedestrian crossing, which were not discernible in the original image Figure 
24a(1). To address this issue, a threshold of type THRESH_OTSU was utilized, as shown 
in Figure 24a(3). This method automatically calculated a threshold value between the two 
peaks of the histogram, as demonstrated in Figure 25. This approach enabled finding a 
threshold value that can adjust to varying lighting conditions. 
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Figure 24 displays examples of the image processing techniques described in this paper.
In Figure 24a(2), the Adaptive Threshold technique was used to identify a pedestrian cross-
ing. The threshold of the THRESH_BINARY type was provided by the OpenCV library [33].
The observed outcome indicated signs of wear on nearly all the stripes of the pedestrian
crossing, which were not discernible in the original image Figure 24a(1). To address this
issue, a threshold of type THRESH_OTSU was utilized, as shown in Figure 24a(3). This
method automatically calculated a threshold value between the two peaks of the histogram,
as demonstrated in Figure 25. This approach enabled finding a threshold value that can
adjust to varying lighting conditions.
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Figure 24. Examples of the application of image processing techniques. Different Threshold methods
applied on (a) and (b), (c) and (d) shows the use of Canny Edge algorithm.
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Figure 25. Comparison of a fixed threshold value with the automatically calculated threshold.

It could be argued that the image contains some extraneous information. Therefore,
the use of ROI could be considered advantageous as it allows for the selection of the
specific area where the object is present. To enhance the identification of wear on pedestrian
crossings, it is important to consider a perspective that offers such conditions. Figure 24b(1)
shows a pedestrian crossing where ROI, or region of interest, is applied, with the region
delimited by red dots. Subsequently, in Figure 24b(2), a perspective is applied based on the
selected region to obtain a better perception of wear. By applying the same thresholding
concept described above and using a perspective, Figure 24b(3) shows the wear and tear
on the pedestrian crossing. Another technique that can be used is Canny Edge Detection,
which identifies the edges of objects. In this case, it identified the edges of the pedestrian
crossing stripes and the wear and tear within them, as seen in Figure 24c(3),d(3). Where an
ROI is initially selected on the original images Figure 24c(1),d(1) to obtain better results,
the results are shown in Figure 24c(2),d(2).

During the conducted tests, it was observed that the use of these techniques in en-
vironments with abrupt lighting variations may present some challenges, as shown in
Figure 26a(1),b(1). Figure 26a,b illustrate that the use of a threshold, even when automati-
cally calculated using the OTSU method, was more effective in low-light or wet surface
environments, as demonstrated in Figure 26b(3). On the other hand, Canny Edge presents
challenges in both environments, which could be attributed to the use of ROI with perspec-
tive, as illustrated in Figure 27a,b.
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Figure 26. Visualization of Canny Edge and Adaptive Threshold behavior in the presence of different
types of lighting, (a(1–4)) shows the behavior of Canny Edge and Adaptive Threshold on shadows;
(b(1–4)) illustrates behavior on wet floor conditions.
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Figure 27. Comparison of Canny Edge without using a perspective and ROI, (a) uses Canny Edge
and (b) uses Canny Edge and ROI.

With regards to the MSER technique, a perspective, and a region of interest (ROI) were
applied to enhance the results. Figure 28a displays the original image, Figure 28b shows
the image after the perspective and ROI selection were applied. Figure 28c,d are similar,
except that Figure 28d represents the mask that can be obtained using the MSER technique.
It is worth noting that Figure 28d shows that some elements, such as lane separation lines,
were obtained unnecessarily. To address these issues and potentially improve the results,
it may be helpful to consider filtering elements based on their minimum and maximum
area values. This approach would exclude regions that fall outside of these values, as
demonstrated in Figure 28d.
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Figure 28. Application of the MSER technique, (a) original image; (b) ROI selected; (c,d) areas
detected by MSER technique; (e) fine tunned parameters to reduce irrelevant areas.

In conclusion, it is recommended to apply the presented techniques in a controlled
environment, taking care to avoid sudden changes in lighting or wet surfaces. Even if
the image is pre-processed to reduce illumination or increase contrast, it is important to
consider that each image may exhibit unique characteristics. For instance, it is possible that
the effectiveness of these techniques may vary depending on the time of day and whether
the image has been pre-processed. This suggests that a universal logic cannot be applied to
all variables in each environment, which may result in less favorable outcomes.

4.3. Convolutional Neural Network Models

This subsection presents a performance assessment study of the CNN models YOLOv4-
tiny, SSD-MobileNetV2, and SSD-EfficientDet-D0, which were selected in Section 3 as the
most promising. Firstly, the benchmark scenario is presented. After that, the performance
metrics are described. Then, the results obtained after training the models are presented,
along with some tests carried out to improve the identification of pedestrian crossings.
Examples of pedestrian crossings detected by these models are presented.

4.3.1. Benchmark Scenario

The YOLOv4-tiny model was trained and tested on the Google Colab platform [63],
while the other models were trained on the Kaggle platform [64]. The Kaggle platform was
preferred for the other models as they required more time to complete their training, and
this platform allowed the process to continue running in the background until it reached a
12 h time limit.

The training on the Google Colab platform was carried out using an Intel(R) Xeon(R)
CPU @ 2.00 GHz, 12 GB of RAM, and a Tesla T4 GPU. The Kaggle platform made use of an
Intel(R) Xeon(R) CPU @ 2.20 GHz, 32 GB of RAM, and two Tesla T4 GPUs, which increased
its computing power.

4.3.2. Performance Metrics

To evaluate the performance of these models in object detection and classification,
YOLOv4-tiny was trained for 6000 iterations with a batch size of 32, which is equivalent to
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141 epochs, as per Equation (1). The SSD-MobileNet-V2 model underwent 50,000 iterations,
resulting in 640 epochs. The SSD-EfficientDet-D0 model underwent 200,000 iterations,
resulting in 640 epochs.

Epochs =
number o f iteractions
number o f training images

batch

(1)

The model’s performance was assessed using the mean Average Precision (mAP)
metric. The Average Precision was calculated using Equation (2), while Precision (P) and
Recall (R) were calculated using Equation (3) and Equation (4), respectively. Equation (3)
and Equation (4) provide definitions for TP, FP, and FN, representing True Positives, False
Positives, and False Negatives, respectively. Additionally, Equation (5) was utilized to
calculate mAP.

AP =
∫ 1

0
P(R)dR (2)

P =
TP

TP + FP′ (3)

R =
TP

TP + FN′ (4)

mAP =
1
n

k=n

∑
k=1

APk (5)

Overfitting [65] can be a common occurrence when training CNNs. The model may
perform well when trained on specific data but may not perform as well on new and
unseen data. This phenomenon can result from models that memorize the training data,
including irrelevant noise, but fail to learn the underlying patterns [66]. To address this
issue, it is important to find a balance between accurately capturing meaningful patterns
and avoiding an overly complex model that overfits the training data [66]. Figure 29
illustrates the concept of overfitting.
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One possible approach to mitigate overfitting is to halt the training of the model at
a specific point, commonly referred to as early stopping [65]. This entails observing the
model’s performance on a validation dataset throughout training to determine the point
at which it starts to plateau or exhibit signs of deterioration. Once it is determined that
the validation dataset is no longer improving or is deteriorating, indicating an increased
number of errors, training should be terminated. This prevents the model from memorizing
the characteristics of the training dataset. This concept is depicted in Figure 30.
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4.3.3. Results and Discussion

This section evaluates the performance results achieved by the YOLOv4-tiny [59],
SSD-MobileNetV2, and SSD-EfficientDet-D0 models. The pre-trained versions of the
SSD-MobileNet-V2 and SSD-EfficientDet-D0 models were obtained from the COCO 2017
dataset [67], which was made available by the Tensorflow 2.0 library’s zoo model [68].
Subsequently, these models were trained with the dataset created in this work, using
transfer learning [69]. Version B of the dataset was chosen due to the occurrence of false
positives (FPs) in some of the trained models. For example, oblique lanes were incorrectly
identified as pedestrian crossings due to their visual similarities. An example of an FP is
shown in Figure 31.
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Table 5 shows the preliminary results obtained after training the models with their
predefined configuration.
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Table 5. A comparison of models that were trained using predefined epochs.

Model Input Size Batch_Size mAP (%) Epochs

YOLOv4-tiny 608 × 608 32 77.3 51
SSD-MobileNet-V2 320 × 320 16 31.24 640

SSD-EfficientDet-D0 512 × 512 4 26.36 640

The experimental results showed that the YOLOv4-tiny model obtained a higher mAP
than the other models, suggesting better performance in the pedestrian crossing detection
task. It is worth noting, however, that the number of epochs used during training can have
an impact on the results. The SSD-MobileNet-V2 and SSD-EfficientDet-D0 models may
benefit from longer training sessions to improve their performance.

To explore the impact of additional epochs on the mAP value, further training sessions
were conducted. The new results are outlined in Table 6.

Table 6. Comparison of models trained with a higher number of epochs.

Model Input Size Batch_Size mAP (%) Epochs

YOLOv4-tiny 608 × 608 32 87 153
SSD-MobileNet-V2 320 × 320 16 39.29 1024

SSD-EfficientDet-D0 512 × 512 4 28.35 736

Additionally, the inference time was calculated to assess the duration required for the
model to detect pedestrian crossings in new images. The inference times of the trained
models are compared in Figure 32. It is worth noting that the SSD-EfficientDet-D0 model
achieved an inference time of 154 ms, which may be considered high and could potentially
affect the detection of pedestrian crossings on devices with limited resources. On the other
hand, the SSD-MobileNet-V2 model had a faster inference time than the SSD-EfficientDet-
D0 model by 41 ms. The backbone architecture of the model was lightweight, which
resulted in less processing time. However, it is worth noting that the mAP value was lower
compared to other models.
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Figure 32. Comparison of inference time.

Among the models tested, the YOLOv4-tiny model achieved the highest mAP. Consid-
ering its inference time and its ability to detect pedestrian crossings in video format, it can
be concluded that this model was the most suitable for the context of this work.

Figure 33 displays examples of pedestrian crossing detection using the previously
discussed models. Figure 33a displays the results obtained by the SSD-MobileNet-V2 model.
Figure 33b shows examples of the SSD-Efficient-D0 model, and Figure 33c displays the use
of the YOLOv4-tiny model. These models could detect multiple pedestrian crossings per
image, as well as identify obstacles that may partially obstruct them.
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5. Discussion

The following section discusses the limitations that persist despite the various pro-
posed solutions. As demonstrated in the literature, real-time detection remains a challenge
due to obstacles related to processing time and/or computational cost, which often renders
them incompatible with the intended solutions.

Pedestrian crossing detection in urban scenarios presents several challenges. These
include occlusions caused by vehicles, pedestrians, or other objects partially or completely
obstructing the crossing. Additionally, scale and rotation variations result from the move-
ment of these objects along the camera’s perspective. Illumination changes caused by
environmental factors such as shadows or reflections are also a challenge. Finally, there are
variations in the types of markings and colors used to delimit these crossing zones, which
differ between countries.

The limitations of these systems can sometimes be attributed to the computational
capacity of detection devices. It is important to ensure that sufficient processing resources
are available to guarantee their proper functioning. Furthermore, the quality of the image
used to detect defects in road surfaces can pose a significant challenge, as well as the capture
of images without the consent of other road users. In this context, the use of high-definition
cameras positioned externally on vehicles or in the vehicle cabin (as shown in Figure 17)
could potentially contribute to the effectiveness of the proposed solution by capturing only
road surfaces.

This paper presents the initial phase of an ongoing research project. The project aims
to develop an autonomous system based on computer vision to detect, classify, and geo-
reference defects in road surfaces, particularly the wear and tear on pedestrian crossings,
in real time. The solution also includes notifying the responsible entities of any necessary
maintenance. The research conclusions of this paper are of great significance as they have
identified the computer vision methodologies with the highest potential for the proposed
solution [38,47,49,54,56,58]. These methodologies will be subject to testing and performance
evaluations in the next project development phase.

6. Conclusions

Since pedestrians are the most vulnerable road users, safe pedestrian crossings are
essential. However, over time they are subjected to wear and tear due to weather conditions,
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heavy traffic, and other factors, which may affect their visibility and thus compromise the
pedestrian’s safety. Therefore, it is important to explore technological solutions that can
help the entities responsible for their conservation and maintenance.

This paper demonstrated that computer vision approaches can play a major role
in improving road safety and urban infrastructure maintenance. Managers responsible
for road safety, in the context of a smart city, can use them to automate the process of
determining the wear and tear of pedestrian crossings. In summary, the main contributions
resulting from this article are: (1) a survey on various computer vision approaches for
detecting pedestrian crossings; (2) the creation and sharing of a new dataset with pedestrian
crossings; and (3) a performance assessment study of various image processing techniques
and CNN models for detecting pedestrian crossings.

The conducted performance evaluation concluded that the YOLOv4-tiny CNN model
has good potential. This model demonstrated an mAP of 87% and the capability to detect
data in video format. Even though the other evaluated models registered lower mAP
results, it may be premature to dismiss them at this stage as they still hold potential. It is
worth noting that these results were obtained using the Google Colab and Kaggle platforms,
which have limitations when it comes to training the models.

It should be noted that the work presented in this paper is the first step of an ongoing
research project that aims to develop a computer vision system approach to detect and
classify the wear and tear of pedestrian crossings. The objective is to develop a prototype
to be installed in vehicles, and to test and demonstrate it in real-world scenarios. Therefore,
as for future work, it is fundamental to carry out tests to assess which of these techniques
can be used to classify and categorize wear and tear. Furthermore, it may be necessary to
test other computer vision techniques.
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