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Abstract: We propose a quantum-mechanical model that represents a human system of beliefs as
the quantised energy levels of a physical system. This model represents a novel perspective on
opinion dynamics, recreating a broad range of experimental and real-world data that exhibit an
asymmetry of opinion radicalisation. In particular, the model demonstrates the phenomena of
pronounced conservatism versus mild liberalism when individuals are exposed to opposing views,
mirroring recent findings on opinion polarisation via social media exposure. Advancing this model,
we establish a robust framework that integrates elements from physics, psychology, behavioural
science, decision-making theory, and philosophy. We also emphasise the inherent advantages of
the quantum approach over traditional models, suggesting a number of new directions for future
research work on quantum-mechanical models of human cognition and decision-making.
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1. Introduction

The dynamics of human beliefs and radicalisation of opinions have emerged as defin-
ing factors in our society’s trajectory, as witnessed across a myriad of political [1–6], edu-
cational [7], environmental [8–10], religious [6], moral [6,11–14], and racial divides [14,15].
Evidence of this pervasive polarisation is abundant. For instance, we see political polarisa-
tion in the United States, where Democrats and Republicans hold increasingly disparate
views on topics such as gun control, climate change, and healthcare [3,16]. Racial divides
are also starkly apparent [17], resulting in differing views on police brutality [18] and
immigration policy [19]. In the context of religion, we observe polarisation in the form
of divergent beliefs on topics such as abortion, LGBTQ+ rights, and the role of religion
in public life [6,20]. Ethical polarisation is also evident in ongoing debates on euthanasia,
capital punishment, and animal rights [21].

Yet polarisation is not confined to these broad social issues, since it extends into more
specific realms such as differing views on vaccines, where pro-vaccine advocates and vaccine
sceptics are at odds [11,13]. Opinions on technological issues involving artificial intelligence,
genetic engineering, and data privacy are further examples [22,23]. We also observe polari-
sation in our responses to major global challenges, such as climate change [9,10,16], where
supporters and sceptics hold divergent views. Polarisation further manifests itself in societal
attitudes towards economic disparities, income inequality, and social safety nets [24].

These divisions have spawned numerous problems, ranging from unrest at the societal
level to conflicts within smaller groups with opposing beliefs. People with conflicting
beliefs are often regarded as adversaries, leading to divisive and destructive practices
such as information warfare, cyberattacks, derogatory comments on social media, and the
spreading of fake news [25]. While the damage inflicted to the information ecosystem by
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such actions is often unappreciated and underestimated, its impact on societal cohesion is
profound and far-reaching.

This polarised landscape is significantly influenced by confirmation bias, a psycho-
logical phenomenon where individuals interpret or seek information that confirms their
preexisting beliefs, while overlooking contradictory evidence [26]. Such a bias shapes the
behaviour of social network users, leading them to select and propagate claims aligned with
their beliefs, fuelling group polarisation and entrenchment of beliefs, as well as reinforcing
and perpetuating societal divides. Of particular interest is the backfire effect—a manifes-
tation of confirmation bias, referring to the tendency of people to give more credence to
evidence that supports their preexisting beliefs [3].

Early research into the backfire effect highlighted that not only are fallacious beliefs
stubbornly resistant to correction, but attempts to refute them can inadvertently cement
them further [5,13,27–31]. This phenomenon extends to beliefs that align closely with an
individual’s worldview; for instance, challenging principles tied to Republican ideologies
might only deepen a Republican’s adherence to those principles. More recent studies
have suggested that the backfire effect may not be as universally consistent as previously
thought [32]. However, the current consensus in the field reaffirms that while refutations
may temporarily sway beliefs toward accuracy, this impact is generally short-lived [4].
The impermanence of these corrections means that inaccuracies, as well as beliefs reinforced
by personal ideologies, can continue to influence public opinion well after being discredited.
The resilience of such beliefs and misconceptions likely stems from the corrective informa-
tion not being conveyed in a manner that results in a long-lasting change in perspective [33].
This issue is compounded by the fact that individuals often navigate complex information
through the lens of their preexisting worldviews and affiliations, which can override their
interpretations and acceptance of new evidence [34].

To further understand the complex dynamics of the backfire effect, our work advances
a model derived from the principles of quantum mechanics [35,36]. This approach provides
a unique perspective for comprehending and quantifying opinion radicalisation, elucidat-
ing the evolution of individual beliefs when exposed to counter-attitudinal information
and revealing its contribution to societal polarisation.

Examining societal opinion dynamics through the lens of this quantum-inspired
model bears considerable implications. This model reproduces the asymmetric behaviour
of opinion radicalisation commonly observed when individuals confront opposing views
on social media. Such a radicalisation, augmented by the backfire effect, is prominently
manifested in political domains. For instance, in the political arena of the United States,
exposure to counter-attitudinal information typically results in an entrenchment of beliefs
among both Democrats and Republicans. However, Republicans have been observed to be
radicalised to a higher degree than Democrats in response to conflicting perspectives [3].

It is noteworthy that the applications of the model are not limited to politics, since the
phenomenon of radicalisation applies to other societal issues such as climate change, gun
control, and vaccinations, often leading to an intensification of individuals’ initial beliefs
when they are presented with contrasting evidence or viewpoints. Our model elucidates
this counter-intuitive dynamics, thus offering a new perspective on the complex landscape
of human beliefs and opinions.

Figure 1 provides empirical evidence of the ‘double-sided’ polarisation behaviour
triggered by the backfire effect, observed in the domains of politics [3] and abortion [6].
Conversely, in Figure 1, the domains of climate change [9] and vaccination [13] are marked
by a seemingly ‘one-sided’ view. This discrepancy arises due to missing data for these
areas, as studies focusing on climate change and vaccinations typically present scientifically
accurate information in experimental treatments, without offering opposing viewpoints.
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Figure 1. Notable examples of the backfire effect in the literature. The figure represents the backfire
effect observed in four studies covering (a) politics [3]; (b) vaccinations [13]; (c) climate change [9];
and (d) abortion [6]. In each of these studies, groups exhibited the backfire effect after being subjected
to an opposing view. Note: Each of the horizontal axes should be read independently. Results from the
cited papers have been normalised to be presented on a scale from −1 to 1. The figure demonstrates
the direction and magnitude of the backfire effect for one or more groups in each study, showcasing
that Republicans, people highly concerned with vaccination side effects, climate change deniers, and
religious people are more likely to become more conservative, more likely to refuse vaccination, more
likely to deny climate change, and more likely to object to abortion rights, respectively, after being
subjected to opposing views. At the same time, Democrats and non-religious people exhibit a much
lower backfire effect in magnitude than their Republican and religious counterparts, respectively.
Counterpart views are not available for all studies.

The apparent limitation of the available motivational data should not be perceived
as a detriment to our investigation, since our model can predict radicalisation trends in
contexts where data on opposing views are unavailable or scarce. Thus, by elucidating such
trends, we aspire to contribute to an interdisciplinary understanding of opinion dynamics,
with the potential of informing interventions that could mitigate polarisation and foster
more productive and respectful societal dialogues.

Furthermore, the proposed model reveals the fundamental origin of these advantages
over classical models in understanding the radicalisation of opinions, thereby providing a
robust framework that can predict changes in opinion with superior accuracy and reliabil-
ity.This model also contributes to the growing body of research exploring the plausibility
of the ‘quantum mind’ hypothesis, which posits that the principles of quantum mechanics
could underlie cognitive processes [36–38]. In particular, through its successful simula-
tion of experimental data on opinion dynamics, the model provides further arguments
supporting the potential of this hypothesis.

The examples of the backfire effect in Figure 1 provide evidence of the scale and
gravity of polarisation across multiple dimensions of our society. Yet, understanding these
dynamics is only the first step. The ultimate goal is to leverage these insights and devise
strategies to alleviate the destructive effects of radicalisation and polarisation. By offering a
comprehensive and robust framework to interpret these dynamics, the proposed quantum-
mechanical model stands to make a contribution to these efforts.

2. Quantised Energy Level Model of the System of Human Beliefs

The application of the fundamental principles of quantum mechanics in the fields of
behavioural science, economics, and decision-making has opened up novel opportunities
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for unifying and formalising previously heuristically formulated psychological, cognitive,
and finance-related concepts and ideas [36,37]. In particular, an analogy between mental
states and quantum states has been used to explain cognitive dissonance [39] and gender
fluidity [20]. A similar approach has been adopted in models of confirmation bias [40,41],
gambling [36,42], the prisoner’s dilemma game [36,43], conjunction fallacy [36,41], and
the Ellsberg paradox [36]. However, although there exist classical models of confirmation
bias [40,41], opinion formation and polarisation [44–56], human morality [57], and backfire
effect [15,58], the core principles of quantum mechanics exploited in this paper have not
been previously applied to the aforementioned psychological phenomena.

We propose a quantum-mechanical model of the human system of beliefs (see the inset
in Figure 2) and demonstrate its application to opinion radicalisation and the backfire effect
in social networks. It is well known that a quantum-mechanical system can have only cer-
tain energy levels compared with the continuum of energy states of a classical system [35].
Therefore, drawing on the previous works in the domain of socio-physics [59,60], we repre-
sent the system of human beliefs as a set of discrete energy levels. Furthermore, in Figure 2,
we draw a hypothetical parallel between the social network circles and atomic orbitals used
in quantum mechanics to describe the location and wave properties of an electron in an
atom [61]. The electrons occupy atomic orbitals that have discrete energy levels [61]. When
atoms interact, their atomic orbitals overlap and energy levels hybridise [61]. Extending
previous works that employed spin-like classical magnetic dipoles to understand and
predict the social interaction between individuals [20,45,49,62,63], we rigorously adopt the
quantum-mechanical processes of atomic orbital overlap and energy level hybridisation to
model the influence of social network circles on the system of beliefs of an individual.

Figure 2. Sketch of a social network showing the social circles and human systems of beliefs repre-
sented by discrete energy levels (the horizontal lines superposed on the human head silhouettes).
The physical analogy between overlaps of social circles and overlaps of atomic orbitals and concomi-
tant energy level changes underpins the model proposed in this paper.

The proposed model stands on solid psychological, philosophical, mathematical, and
physical ground. First, it is consistent with both the notion of discrete mental states [59,64–66]
and the understanding of information as energy states of a physical system [67–69]. Second,
the model captures the psychological [70] and mathematical [49,71] complexity of a system of
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human beliefs. Third, the model aligns with the famous philosophical maxim pronounced
by Ortega y Gasset: ‘Yo soy yo y mi circunstancia’ (‘I am me and my circumstance’, see [72],
p. 322; a link between Ortega and Gasset’s circumstance and quantum aspects of cognition has
also been established [73]). In the model, circumstance is represented by interactions between
atoms and its influence results in a change in the energy level structure. Finally, the model
relies on a rigorous solution of the fundamental Schrödinger equation [35], whose relevance
to the domains of psychology and decision-making has been demonstrated [36,74].

To establish a physico-mathematical connection between the energy levels and a
system of human beliefs, we employ a harmonic quantum oscillator model represented
by an electron trapped in a one-dimensional rectangular well, where the energy states
are quantised as En ∝ (n/L)2, with n = 1, 2, . . . being the number of the energy state
and L the width of the well [35]. Noting that potential wells of different widths L have
different allowable energy levels En, we arrange two or more potential wells into a chain to
represent interactions of an individual with social neighbours (Figure 3). We also use the
fact that electrons can change energy levels by emitting or absorbing a photon and note
that crystalline solids can have energy bands that consist of many closely located discrete
energy levels [61]. In the latter case, although electrons are restricted to the band energies,
they can assume a continuum of energy values inside a band.

Figure 3. Quantised energy level model of opinion polarisation. (a) Social network of like-minded
individuals represented as a one-dimensional lattice made of rectangular potential wells (parameter a
denotes the period of repetition of the wells). (b) Energy dispersion diagram of the lattice of potential
wells (the solid curves in the main panel) and the corresponding energy level structure (the solid lines
in the inset). The dashed lines denote the energy levels of a standalone potential well corresponding
to an isolated individual. Note that, in the group, the energy levels split and aggregate, forming
bands of continuous energy states, compared with the purely discrete energy levels of the standalone
individual. While transitions inside an energy band are readily possible, high energy is required to
transition between the bands. This physical property is interpreted as opinion polarisation.
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In exact sciences, theoretical models are often based on postulates, as famously exem-
plified by Einstein’s postulates of special relativity [75] and the postulates that underpin
Bohr’s model of the atom [76]. In general, postulates are accepted to be true without proof,
since they make a statement that is seen as truth within the framework of the model [77].

Using this approach, we postulate that, in our model, a rather regular and sparse
energy level pattern corresponds to a polarised (biased) set of beliefs, but the beliefs of an
idealised unbiased person or group of individuals are represented by a continuum of energy
values. Other scenarios are also possible, including the case of several continuum state
bands separated by large energy gaps that would correspond to the division of opinions
into sub-groups [78]. An additional relevant discussion can be found in Appendix A.

We also choose a set of model parameters that have a strict physical meaning. If a
person holds deeply polarised beliefs, a significant amount of information would be needed
to ameliorate the situation [79]; for example, by means of metacognitive training [80]. Since
information has been associated with energy [67–69,81,82], the quantum-mechanical model
captures this scenario as the large energy needed for an electron to transition from one
energy level to another. However, a set of densely packed energy levels would represent
‘open-mindedness’, because a continuous distribution of energy levels is characterised by
a low transition energy, which means that the individual is receptive to new information,
ideas, and opinions.

To implement the model as a computational code, we numerically solve the Schrödinger
equation that defines eigenfunctions corresponding to eigenvalues E of the Hamiltonian
operator Ĥ as [35]

Ĥψ(r) ≡
[
− h̄2

2m
∆ + V(r)

]
ψ(r) = Eψ(r) , (1)

where h̄ is Plank’s constant, ∆ is the Laplacian operator, m is the mass of the electron, and
V(r) is the scalar potential. We employ a one-dimensional finite-difference method, where
Equation (1) is discretised along the coordinate x, so that V(x) is represented as a vector of
N equally spaced points with a step hx [83]. Using a second-order central finite-difference
scheme, we obtain

ψ′′(xi) ≈
1
h2

x
[ψ(xi−1)− 2ψ(xi) + ψ(xi+1)] . (2)

The substitution of Equation (2) into Equation (1) gives rise to a finite-difference
version of the Schrödinger equation written in matrix form (see Ref. [83] and Ref. [84],
Chapter 2 for additional numerical details):

− h̄2

2mh2
x



−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0

· · ·
0 0 0 1 −2





ψ(x1)
ψ(x2)
ψ(x3)
· · ·

ψ(xN)


+



V(x1)ψ(x1)
V(x2)ψ(x2)
V(x3)ψ(x3)

· · ·
V(xN)ψ(xN)


= E



ψ(x1)
ψ(x2)
ψ(x3)
· · ·

ψ(xN)


, (3)

where m ≈ 9.1093837 × 10−31 kg and h̄ ≈ 1.054571817 × 10−34 J·s. In all calculations, we
set hx = 2 × 10−10 m.

Using the virtual points x0 and xN+1 that do not directly participate in the calcula-
tion but help compute the values of the neighbouring points, we employ Floquet peri-
odic boundary conditions ψ(x0) = ψ(xN) exp(−jka) and ψ(xN+1) = ψ(x1) exp(jka) (see
Ref. [85], p. 82), where j is the unit of the imaginary number, k denotes the wavevec-
tor, and a is the period of repetition of the profile of V(x) (for an isolated potential well
ψ(x0) = ψ(xN+1) = 0). The introduction of Floquet periodic boundary conditions changes
the last element of the first row and the last element of the first column of the tridiagonal
matrix in the left-hand side of Equation (3).

The numerical solution of Equation (3) using a standard procedure eigs of MAT-
LAB/Octave software yields the eigenvalues E for each discrete value of the wavevector k
corresponding to the first Brillouin zone. The energy level diagrams plotted alongside the
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dispersion diagrams are obtained by integrating the values of E for all values of k taken
into account in the calculation. The computational code that implements the model can be
accessed by following the link provided in the Data Availability Statement section.

3. Results
3.1. Opinion Polarisation in Social Networks

We first use our model to capture the phenomenon of opinion polarisation in a social
network. Then, we explain the technical aspects of the model and demonstrate a rela-
tionship between the physics and dynamics of social networks, relaxing the need for the
readers to understand physics-specific terms.

When two individuals do not interact and are not influenced by the news media,
the systems of their beliefs, represented by the energy levels, remain unchanged because the
corresponding wave functions—probability waves that govern the motion of the electron
and are described by the Schrödinger equation [35]—do not overlap. However, as a result
of information exchange between these individuals, the potential wells move closer to one
another and the wave functions overlap, thereby forcing the energy levels to adjust and
split, such that they remain unique [61].

Figure 3 shows the result of a simulation of the opinion polarisation in a social network,
where we form a social network of like-minded individuals; i.e., individuals whose systems
of beliefs are represented by the same discrete energy level systems. We take into account a
large number of members of the social group and represent them as a periodically arranged
sequence (one-dimensional lattice) of identical potential wells (Figure 3a).

The main panel of Figure 3b shows the calculated energy dispersion diagram (the solid
curves) alongside the energy levels of a standalone single potential well (the dashed lines).
The former depicts the group opinion formed in a social network of like-minded individuals,
but the latter corresponds to the opinion of one individual considered separately from
their social neighbours. The right inset to Figure 3b shows the discrete energy levels
corresponding to the group (the solid lines) and the isolated individual (the dashed lines).
In this calculation, the depth and width of the wells are 0.1 eV and 10 nm, respectively (the
meaning of these parameters will be revealed below).

We can see that, by virtue of the laws of quantum mechanics [61], in our model of the
social network, the original discrete energy levels corresponding to the individuals split
and self-arrange, forming several allowed energy bands separated by band gaps (regions of
forbidden energies [61]). According to the postulates of our model, the formation of energy
bands corresponds to the polarisation of opinions: the opinions of the group participants
are more likely to remain withing the energy bands, but changes in opinion are less likely
because a high energy is required for an interband transition.

The presence of the fundamental effect of energy splitting differentiates our model
from any previous physics-inspired models of social interaction (for a more detailed dis-
cussion see Appendix A). Indeed, in the Sznajd model [63] and its modifications [49],
the interaction between two neighbours changes the opinions of their respective neigh-
bours. However, the opinions of these two particular neighbours are assumed to be
unchanged. A similar assumption is also made in the other models [44,86,87].

However, generally speaking, making this assumption contradicts the accepted philo-
sophical vision of the dialogue as a means of change [88,89]. In fact, dialogue entails such
quality relationships between individuals as mutuality, responsibility, engagement, and
acceptance, inevitably resulting in the evolution of personal beliefs and views [90]. While
such a change may materialise in a long-term perspective, thus making it possible to neglect
it in certain social model situations such as the prediction of political election exit polls [91],
it should be taken into account in a model of opinion polarisation in social media, where
dialogue plays an important role [92].

In the calculation used to produce the data plotted in Figure 3b, we denoted the
period of repetition of the potential wells as a and applied Floquet periodic boundary
conditions, which are often employed in solid-state physics to approximate a large system
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using a small part called the unit cell [61]. We also used the concept of the reciprocal
lattice, which represents the Fourier transform of the periodic lattice of potential wells in
the physical space (the x-coordinate in Figure 3a) and that exists in the reciprocal space of
the wavevector k. According to the convention adopted in the field of solid-state physics,
we plotted the energy dispersion diagram as a function of the normalised wavevector ka/π
in the range of values corresponding to the first Brillouin zone, which defines the unit cell
in the reciprocal space [61].

Whereas the discussion above employs the terminology adopted in physics, we can
establish a link between the physical concepts and those concepts used in data science
and studies of social networks. Indeed, studies of social networks often exploit the notion
of periodicity and rely on the Fourier transformation of data [93,94], highlighting the
important role of the reciprocal space in analysis of big datasets [95,96]. Hence, readers
who do not wish to use the physical language can also comprehend our model using
the terminology adopted in the fields of graph signal processing [94], data science [93],
or mathematical sociology [95]. Moreover, we present energy level plots alongside the
dispersion diagrams, helping readers understand the mainstream discussion, without the
need to use the concepts of wavevector and Brillouin zone. We also note that the depth
and width of the wells used in our model can be made nondimensional, enabling the users
of the model to employ the system of measure that is typical in their field of research.
For example, the spacing between the discrete energy states can be related to the social
distance [97] or opinion distance in social networks [98–100].

3.2. Opinion Radicalisation

Now, we showcase the ability of the model to capture the backfire effect and opinion
radicalisation in social networks. As an example, we refer to a study demonstrating that
exposure to opposing views on social media can radicalise political views [3]. In the cited
paper, members of the Republican and Democratic parties received financial compensation
for following officials and opinion leaders with opposing political views. As a result
of the experiment, compared with the control group, both Republican and Democrat
participants developed more radicalised views with respect to their respective traditional
party positions [3]. Interestingly, the degree of opinion radicalisation was different among
the two groups: the Republican participants showed substantially more conservative views
but the Democrat participants only exhibited a slight but statistically significant increase in
liberal attitudes (Figure 1, top panel).

The corresponding model situation is presented in Figure 4a, where persons with the
same systems of beliefs, represented by regular potential wells, are exposed to an opposing
opinion expressed by another person represented by an irregular potential well. Unlike the
regular potential wells that are 0.1 eV deep and 10 nm wide, the irregular well is 0.07 eV
deep and 20 nm wide (we remind that the parameters of the wells are chosen empirically
and they are meaningful only in the framework of the postulates that underpin our model).
Subsequently, the allowed energy levels of an individual irregular well taken alone were
significantly shifted with respect to those of an individual regular well. To account for
the presence of the irregular well in an otherwise periodic sequence of identical regular
wells, we employed a super cell computational approach that is often used to model
crystallographic defects, an interruption of the regular patterns of the arrangement of
atoms in crystalline solids [61].

While the super cell approach appears to be unique to the domains of physics and
mathematics, we show that it can easily be adopted in models of social networks. An in-
finitely large, idealised network consisting of identical individuals can be mathematically
represented as one individual (the unit cell) that self-repeats an infinite number of times.
A more realistic network will consist of different individuals. However, a careful analysis
of such a network is likely to reveal the existence of sub-groups of similar individuals [101].
Considering such sub-groups as super cells, we can create a model of the network where
the super cells repeat as many times as needed to reproduce the structure of the network.
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We can further extend this idea by manipulating the opinions of individuals within a
sub-group, i.e., within a super cell. For instance, we can require one individual within a
sub-group to suddenly change their opinion for an opposite one. This action is equivalent
to the introduction of a crystallographic defect, which is the reason why we adopt the
physical term ‘defect’ in the discussion of our model.

Figure 4. Example of opinion polarisation. (a) Like-minded individuals are exposed to an opposing
opinion, represented by a one-dimensional lattice of identical potential wells with a ‘defect’ lattice
node given by an irregular well. The super cell approach described in the main text is employed in the
calculation. (b) Main panel: Energy dispersion diagram corresponding to the group opinion before
the exposure to an opposing opinion (the solid curves) and after (the dotted curves). The respective
energy level structures are shown in the left inset. Note that the exposure to the opposing opinion
results in the addition of new discrete energy levels and splitting of the existing ones, which can be
seen both in the right and central insets and which is interpreted as opinion polarisation. The degree
of opinion polarisation can be estimated by computing the energy difference between the lowest and
highest energy levels, as shown in the central inset.

In the main panel of Figure 4b, the solid lines denote the energy dispersion diagram
corresponding to a polarised opinion in a group of like-minded individuals, which cor-
responds to the control group, where the irregular well was replaced by a regular one.
The dotted lines plot the energy dispersion in the case of exposure to an opposing opinion.
The corresponding energy bands are shown in the inset. For the sake of presentation, we
limit the energy range of interest to 0 . . . 0.1 eV. For the readers interested in the physical
and mathematical aspects of the model, we also note that the introduction of a super
cell consisting of Ncell potential wells effectively folded the Brillouin zone, modifying the
energy dispersion curves and requiring an adjustment of the wavevector normalisation as
kaNcell/π compared with Figure 3b.
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We can see that the exposure to an opposing opinion changed the energy level structure,
because a defect in an otherwise perfectly periodic lattice of potential wells produces a series
of sparse energy levels. Since we stipulated that a sparse energy level pattern corresponds
to a polarised set of beliefs, we can conclude that our model reproduces the backfire effect.

According to the data presented in Figure 1, radicalisation should also occur in a
scenario that is the reverse of Figure 4a: the majority opinion becomes represented by the
potential well considered in Figure 4a as irregular, but the formerly regular well serves
as the ‘defect’. We simulated this scenario using a super cell consisting of 0.07 eV deep
and 20 nm wide potential wells containing a 0.1 eV deep and 10 nm wide irregular well
(Figure 5a), which is a structure that is topologically opposite to that shown in Figure 4a.

Figure 5. Example of opinion polarisation in the reverse scenario with respect to Figure 4a. (a) Like-
minded individuals were exposed to an opposing opinion, represented by a one-dimensional lattice
of identical potential wells with a ‘defect’ lattice node. Unlike in Figure 4a, the irregular well is deep
and narrow but the majority opinion wells are shallow and wide. (b) Main panel: Energy dispersion
diagram corresponding to the group opinion before the exposure to an opposing opinion (the solid
curves) and after (the dotted curves). The respective energy level structures are shown in the left
inset. Even though the exposure to the opposing opinion resulted in the addition of new discrete
energy levels and splitting of the existing ones as in Figure 4b, these processes were less pronounced,
thereby indicating a lower degree of opinion polarisation with respect to the scenario modelled in
Figure 4.

The result of the corresponding calculation is presented in Figure 5b, where we observe
that the exposure to an opposite view led to the formation of sparse discrete energy levels,
i.e., to a radicalisation of the group opinion. We can see that the sparse energy levels in
Figure 5b are quantitatively different from those in Figure 4b, which indicates that the levels
of opinion radicalisation corresponding to the results presented in these figures were also
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different. Below, we will show that the difference between the results in Figures 5b and 4b
correlates with the data presented in Figure 1.

In the work [3] that presents the asymmetric radicalisation data used in the top panel
of Figure 1, the degree of radicalisation was studied using the Rubin casual model of
potential outcomes [102], resulting in a quantitative liberal/conservative scale based on
experimental data obtained from a mainstream social network. The energy states plotted
in the insets to Figures 4b and 5b are analogous to the scale used in Ref. [3]. To provide
a measure of radicalisation, in our model, we first calculate the difference between the
highest and lowest ‘group opinion’ energy states and then compare the resulting values
with the difference between the respective ‘radicalised opinion’ energy states. Applying
this procedure to the energy bands at approximately 0.022 eV in Figure 4b and 0.008 eV
in Figure 5b, we can establish that the opinion radicalisation in Figure 4 is a factor of 1.5
stronger than in Figure 5.

This result is close to the ratio of the experimental values for non-religious/religious
(Figure 1, bottom panel) and consistent with the radicalisation ratio for Democrats/Republicans
(Figure 1, top panel). Thus, although further model adjustments are required to obtain more
accurate results, it is plausible that the model may predict at least approximate radicalisation
data for pro-vaccine and pro-climate change groups (these data are not available, as explained
in the caption to Figure 1) using the data available for anti-vaccine groups and climate change
sceptics. In particular, the model confirms an intuitive conclusion that can be drawn from
observing Figure 1: social groups that share more liberal views experience a milder radicalisa-
tion due to exposure to conservative views compared with the considerable radicalisation of
conservative social groups exposed to liberal views.

4. Discussion

The model developed in this paper adopts a new approach that has not been used in
the previous quantum models of decision-making and opinion formation. Since this work is
a joint effort of a physicist working on the social aspects of AI and an expert in psychology,
behavioural science, economics, and decision-making, it presents a integrative view of
the quantum-mechanical models of opinion formation and polarisation compared with
previous works written by experts in traditional fields of research. In particular, this paper
combines the physical concept of the electronic band structure that represents energy levels
with intricate psychological effects, elaborating on previous suggestions to describe mental
states as discrete energy levels [59,60] and also bridging the gap between psychological
studies and those interdisciplinary academic works that broadly contribute to the emergent
research topics of quantum mind and socio-physics. Since this paper targets readers
specialised in different research areas, ranging from psychology and decision-making to
data science, mathematics, and physics, in this section, we use field-of-research-neutral
language to summarise the main features of the proposed model, also demonstrating the
place of the model in the taxonomy of socio-physical approaches to opinion formation in
social networks.

4.1. The Origin of Quantum Advantage in Models of Social Media

Socio-physical models based on classical physical effects [44,45,49,63,71,103,104] have
become an important topic of mainstream scientific research and have found practical
applications outside academia [105,106]. Thus, one of the main questions of this paper is
what, in general, makes a quantum-mechanical model attractive for the analysis of opinion
polarisation in social networks.

To address this question, let us compare a classical digital computer with a quantum
computer [107]. Similarly to an on-off light switch, a bit of a digital computer is always
in one of two physical states corresponding to the binary values ‘0’ and ‘1’. However,
a quantum computer uses a quantum bit (qubit) that can be in the states |0⟩ =

[
1
0
]

and
|1⟩ =

[
0
1
]
. While these states are analogous to the ‘0’ and ‘1’ binary states of the digital
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computer, a qubit also exists in a superposition of the states |0⟩ and |1⟩, expressed as
|ψ⟩ = α|0⟩+ β|1⟩ with |α|2 + |β|2 = 1.

Computational algorithms based on measurements of a qubit are exponentially faster
than any possible deterministic classical algorithm [107]. This advantage can be illus-
trated using the concept of the Bloch sphere (Figure 6) that depicts the multitude of qubit
states that can be used to conduct a calculation. When a quantum measurement is per-
formed [35,107], a closed qubit system interacts in a controlled way with an external
system, revealing the state of the qubit under measurement. Using projective measure-
ment operators M0 = |0⟩⟨0| and M1 = |1⟩⟨1| [107], the measurement probabilities for
|ψ⟩ = α|0⟩+ β|1⟩ are P|0⟩ = |α|2 and P|1⟩ = |β|2, which means that the qubit will be in
one of its basis states. Visually, this measurement procedure means that the qubit can be
projected on one of the coordinate axes of Figure 6.

Figure 6. Illustration of a projective measurement of a qubit |ψ⟩ using the Bloch sphere.

Thus, it has been demonstrated that quantum mechanics can model human mental
states better than any existing classical model [36,108–110]. Indeed, referring to classical
models where opinion states can be either ‘0’ or ‘1’ [49,63], in Figure 6, we can see that
quantum mechanics enables us to describe human opinions using the multitude of possible
qubit states. In particular, while in the classical models the two allowed states can be
limited to ‘agree’ and ‘disagree’ [49,63], in a quantum-mechanical model, we can have a
spectrum of opinions that gradually vary from ‘agree’ to ‘disagree’. More intriguingly,
a quantum-mechanical model of cognition is not constricted by any technical limitations
of the hardware physical systems that realise qubits. This means that, in a model, we can
unleash the full potential of the qubit states (as well as of more complex states, as discussed
in Appendix A) to describe complex human mental states [36,37,111].

Further evidence of the superiority of quantum-mechanical models over the classical
physical ones can be provided by considering the recent advances in the field of quan-
titative finance, where the methods of quantum physics play an increasingly important
role [112,113]. Historically, the financial markets have been strongly influenced by the emo-
tions of traders [114]. Therefore, it has been established that the processes that underpin
the formation of the opinions of traders and the formation of opinion in social networks
are essentially similar and intertwined [115,116] and that their analysis would benefit
from the richness of the quantum states used in respective quantum quantitative finance
models [112,113].

In fact, both financial markets [117] and the human brain [118,119] are dynamical
systems. A dynamical system is a mathematical or physical system whose evolution
can be described by differential equations that involve time derivatives. Subsequently,
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financial markets can be described by an appropriate differential equation that, for example,
may correspond to a classical harmonic oscillator [120]. Yet, it was demonstrated that a
quantum harmonic oscillator governed by the Schrödinger equation producing quantised
eigenfunction solutions—essentially as in Equation (1) of our model—serves as a better
model of financial markets [121]. Importantly, as with the model presented in this paper,
the quantum oscillator financial model outperforms the classical oscillator financial models
due to the quantum effects resulting in the formation of discrete energy levels. The same
conclusion has been drawn in relevant quantum mind studies, where quantum oscillator
models demonstrated significant advantages over the classical models [36,74].

Finally, the fundamental principles of quantum mechanics used in this paper have
also been employed in a recent work [122] that demonstrated that quantum processes
can help find conditions suitable for making conflict-free joint decisions between two
individuals. Although the authors of the cited paper considered the quantum processes of
photon entanglement and interference of orbital angular momentum, at the fundamental
level, they reached similar conclusions. In particular, they revealed the importance of the
symmetry of a quantum system for decision-making modelling. The relevance of symmetry
to the model presented in this paper is discussed in Appendix A.

4.2. Quantum-Mechanical Model vs. Statistics-Based and Data Science-Driven Approaches

Now, we compare the quantum-mechanical model with the traditional statistics-
based and data-science-driven approaches. As with the established classical physics-based
models of opinion formation in social media [44,49,53,63], the present quantum-mechanical
model differs conceptually from the statistics-based and data-science-driven methodologies
adopted in the fields of psychology, econometrics, and decision-making [102]. Specifically,
it provides a robust insight into the origin of the radicalisation effect, without relying
on large datasets obtained in complex and time-consuming experiments involving large
groups of the population.

Indeed, a typical single run of a computer program that implements the model pre-
sented in this paper requires about 10 s, which enables the user to gain an understanding
of the processes underpinning the radicalisation in a very short period of time compared
with the time needed to collect, process, and analyse experimental data (see the works cited
in the caption to Figure 1). While the information about the time required to collect and
process data is not readily available in the literature, in our own relevant work [123] we
demonstrated that it takes approximately one hour of CPU time of a workstation computer
for a quantum model to reproduce empirical psychological datasets obtained as a result of
experiments conducted over several months.

As a next development stage, the agreement between the outcomes produced by our
model and the experimental results can be increased using the fact that the potential well
profiles capturing the intricate system of human beliefs can be arbitrarily complex. That
is, the potential wells may not necessarily be rectangular but can assume a parabolic or a
triangular shape or their combinations. To automatise the search for a suitable profile, one
can use machine learning techniques, which have been employed to optimise the structure
of photonic crystals, periodic dielectric structures that share some physical properties with
the periodic array of potential wells [124].

4.3. Integration with Bot-Detection Systems and Decision-Making Software

Bot-detection is the process of identifying and distinguishing between automated
bots and human users [125,126]. Bots can be detected using algorithms based on be-
havioural analysis, challenge–response authentication systems, and machine learning
techniques [125]. Nevertheless, despite the constant progress in the domain of cybersecu-
rity, bots remain a serious threat, since they can shape public opinion by spreading fake
news and serving as an instrument for cyberbullying and harassment [125,126].

At present, many bot detection systems analyse user behaviour patterns, such as page
navigation habits, to detect anomalies that may indicate bot activity. The model proposed
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in this paper offers the opportunity to extend the capability of bot detection systems by
modelling the way humans think while they use social networks. Comparing such models
with the decision-making patterns of users of social networks, a bot-detection system
may differentiate a real user from a bot. This functionality should be especially useful,
since the developers of bots employ artificial intelligence systems that learn to accurately
reproduce certain behaviour patterns of social network users [126]. However, even the
most sophisticated bot system cannot yet reproduce human thoughts, thereby revealing the
synthetic nature of the bot when its behaviour is benchmarked against a quantum digital
twin of a human.

A quantum digital twin can also be used in decision-making software to help business
leaders make decisions based on a large number of factors, including their presence on
social media and feedback received from them.According to a recent report [127], 41% of
senior leaders in Australia make decisions on instinct alone, and 81% reported that their
business suffered the consequences of such decisions. Similar decision-making distress
also affects leaders in politics, police forces, secret intelligence, and the army, causing
them to question or regret decisions they have made. The development of quantum
models of human behaviour aligns with the vision expressed in the report in [127]: a
judicious combination of artificial intelligence systems with advanced mathematical models
should help extend the ability of a human mind to predict decision outcomes and de-risk
operational transformation.

5. Conclusions

This paper demonstrates the potential of a quantum-mechanical model to illustrate,
interpret, and explain the dynamics of opinion polarisation and radicalisation in social net-
works. We have shown that the structure of energy levels of a quantum system, specifically
of a chain of potential wells, can effectively model social dynamics such as the interactions
between individuals and groups.

Our results indicate that the phenomenon of opinion polarisation can be represented
by the formation of continuous energy bands and interband gaps when like-minded
individuals interact within a social network. These energy bands represent the polarised
groups, with transitions between them requiring significant energy. The ability of this
model to capture the experimental results obtained using the established social psychology
methods is a promising indication of its predictive capacity.

Moreover, we extended this model to capture the effects of exposing like-minded
groups to opposing views, demonstrating that this situation can lead to the creation of
new, sparse energy levels, symbolising the radicalisation of the group’s opinion. This
was interpreted as the backfire effect, a behaviour observed in real-world scenarios and
supported by empirical studies. We also showcased how variations in potential well
profiles can influence the degree of opinion radicalisation, corroborating the observation
that different groups might react differently to exposure to opposing views.

Utilising a novel approach of conceptualising social interactions, this model provides
a theoretical basis for understanding and predicting social dynamics in intricate scenarios.
Although this work primarily employs a one-dimensional model, it opens the door for
future research extending the model to higher spatial dimensions and considering more
complex potential well profiles. In conjunction with the ability of machine learning tech-
niques to synthesise profiles that capture intricate systems of human beliefs, emotions, and
brain activity, this property enables us to further refine the model and better represent and
anticipate the multifaceted reality of social network interactions.
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Appendix A. Additional Discussion and Future Research Directions

Electron spin is a purely quantum-mechanical concept [35,61]. However, as discussed
in more detail in [20,123], certain properties of the spin can be described using a classical
magnetic dipole, making it possible to use the spin states ↑ and ↓ in classical socio-physical
models [49,63]. At the conceptual level, these states may be compared with the basis |0⟩
and |1⟩ states shown in Figure 6.

In an idealised scenario, a classical physical magnetic dipole model of opinion for-
mation may involve two interacting particles—individuals A and B—that can assume
one of the two allowable states ξ ′ and ξ ′′ defined at any time by the position and mo-
mentum ξA ≡ (rA, pA) and ξB ≡ (rB, pB). The corresponding Hamiltonian function is
Ĥ(ξA, ξB) = p2

A/(2m) + p2
B/(2m) + V(|rA − rB|), where m is the mass of the particles and

V(r) is the profile of potential [35]. Since Ĥ(ξ ′, ξ ′′) = Ĥ(ξ ′′, ξ ′), we can conclude that, in
the classical model, the common opinion state of a group consisting of two individuals is
known to be within the permutation of the individuals.This ambiguity should not represent
any difficulty in modelling the opinion dynamics. However, it does not enable one to
differentiate the impact of the views of A based on the views of B and vice versa, which is
disadvantageous for modelling the asymmetry of opinion radicalisation.

The treatment of a two-individual system using methods of quantum mechanics
produces a more complex physical picture. Assuming that the states of A and B are ψ′(r)
and ψ′′(r), we can show that the observation of the interaction between A and B does not
permit deciding whether the group opinion is in the state ψ(rA, rB) ≡ ψ′(rA)ψ

′′(rB) or
ψ̂(rA, rB) ≡ ψ′′(rA)ψ

′(rB). This situation is called exchange degeneracy and it originates
from the fact that the functions ψ and ψ̂ are both eigenfunctions corresponding to the set
values produced by the measurement [35]. Subsequently, any linear combination αψ + βψ̂
with |α|2 + |β|2 = 1 can represent the state of the system.

Quantum mechanics removes the exchange degeneracy, introducing a symmetrisation
postulate that fixes the coefficients α and β of the linear combination of the states ψ and ψ̂ [35].
Therefore, the states of the system consisting of individuals A and B are necessarily either all
symmetric (α = 0, β = 1) or all antisymmetric (α = 1, β = 0) in the permutation of A and B.
The symmetrisation applies to a system of N particles/individuals [35] and it can be used to
capture the effect of asymmetric opinion polarisation.

In the proposed model, the corresponding states are antisymmetric and they are
governed by the Pauli exclusion principle, according to which no two electrons can occupy
the same quantum state [35]. Thus, in light of the illustration in Figure 2, by analogy
with solid-state physical systems [61], each orbital labelled by the quantum number n
can accommodate two individuals, one with the state ↑ and another one with the state ↓.
Moreover, when the orbitals overlap, the Pauli principle prevents multiple-state occupancy,
resulting in a change in the total energy of the system [61]. While this physical picture
does not necessarily reflect the actual human mental states (in fact, models that emulate the
actual mental states may suffer from fundamental drawbacks [128]), its integration into
the model of social opinion dynamics adds novel degrees of freedom that enable a deeper
understanding of complex human decision-making processes [36,59,60].

https://github.com/IvanMaksymov/OpinionPolarisation
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Figure A1. (a) Degenerate bosons, (b) fermions, and (c) SU(N) fermions. Unlike bosons, which can
occupy the same energy level at low temperatures, fermions separate into different energy levels.
However, SU(N) fermions can have N particles per energy level. In each level, each particle has
(N − 1) distinct neighbours that strongly interact with one another.

The particles with antisymmetric states are called fermions [35]. Unlike fermions,
bosons—particles with symmetric states—are not subject to the Pauli exclusion principle;
i.e., two or more bosons can occupy the same quantum state (Figure A1). If we have
two experimental setups, one containing a gas of bosons but another containing a gas of
non-interacting fermions, as the temperature decreases to absolute zero, the gas of bosons
collapses, forming a Bose–Einstein condensate (Figure A1a). However, fermions cannot
reach this state, since they cannot occupy the same quantum state: they occupy discrete
energy levels as depicted in Figure A1b, where the energy of the highest occupied quantum
state is called the Fermi energy.

Thus, we anticipate that the incorporation of the quantum physical principles that
underpin the properties of fermions and bosons into a model of opinion formation on social
media will enables us to understand and predict even more complex social interactions.
Interestingly, a similar idea was expressed in the field of the quantum modelling of financial
markets [129], which additionally speaks in favour of the correctness of our discussion
by establishing a link between the quantum models of social networks and the quantum
models used in the finance sector. Yet, intriguingly, similar models have been shown to
correctly describe the arrangement of people in a concert and cars in a parking lot [130].
Taken together, these applications demonstrate the significant potential of quantum models
to capture complex human decision-making patterns.

Finally, utilising group theory—the mathematical framework for describing symmetry
properties of quantum mechanical systems [131]—and drawing on recent advances in
the field of quantum physics [132,133], we suggest a new research direction for further
development of quantum-mechanical models of human cognition and decision-making.
A recent work demonstrated that some real-life materials can have N distinct states, each
of which have the same properties due to symmetry [134]. Such physical systems are
called SU(N) symmetric [131,132]. In particular, SU(N) fermions can have N particles per
energy level and, in each level, each particle has (N − 1) distinct neighbours that strongly
interact with one another (Figure A1c). Taking this property into account in a model of
social dynamics should dramatically increase the ability of the model presented in this
paper, introducing additional degrees of freedom that can be used to represent the human
mental states.
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