
Citation: Kegyes, T.; Kummer, A.;

Süle, Z.; Abonyi, J. Generally

Applicable Q-Table Compression

Method and Its Application for

Constrained Stochastic Graph

Traversal Optimization Problems.

Information 2024, 15, 193. https://

doi.org/10.3390/info15040193

Academic Editor: Arkaitz Zubiaga

Received: 22 February 2024

Revised: 19 March 2024

Accepted: 30 March 2024

Published: 31 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Generally Applicable Q-Table Compression Method and Its
Application for Constrained Stochastic Graph Traversal
Optimization Problems
Tamás Kegyes 1,2,† , Alex Kummer 1,† , Zoltán Süle 2,† and János Abonyi 1,∗,†

1 HUN-REN-PE Complex Systems Monitoring Research Group, University of Pannonia, Egyetem Utca 10,
8200 Veszprém, Hungary; kegyes.tamas@mik.uni-pannon.hu (T.K.); kummer.alex@mk.uni-pannon.hu (A.K.)

2 Department of Computer Science and Systems Technology, University of Pannonia, Egyetem Utca 10,
8200 Veszprém, Hungary; sule.zoltan@mik.uni-pannon.hu

* Correspondence: janos@abonyilab.com
† These authors contributed equally to this work.

Abstract: We analyzed a special class of graph traversal problems, where the distances are stochastic,
and the agent is restricted to take a limited range in one go. We showed that both constrained shortest
Hamiltonian pathfinding problems and disassembly line balancing problems belong to the class of
constrained shortest pathfinding problems, which can be represented as mixed-integer optimization
problems. Reinforcement learning (RL) methods have proven their efficiency in multiple complex
problems. However, researchers concluded that the learning time increases radically by growing the
state- and action spaces. In continuous cases, approximation techniques are used, but these methods
have several limitations in mixed-integer searching spaces. We present the Q-table compression
method as a multistep method with dimension reduction, state fusion, and space compression
techniques that project a mixed-integer optimization problem into a discrete one. The RL agent is
then trained using an extended Q-value-based method to deliver a human-interpretable model for
optimal action selection. Our approach was tested in selected constrained stochastic graph traversal
use cases, and comparative results are shown to the simple grid-based discretization method.

Keywords: constrainedshortest path; constrained shortest Hamiltonian path; disassembly line
balancing optimization; stochastic shortest path; stochastic graph-based routing; reinforcement
learning; Q-compression method; mixed-integer state space

1. Introduction

We developed a generally applicable Q-compression method for solving specific
mixed-integer graph optimization problems. Our approach is based on a dynamic discrete
representation of the mixed-integer state space and provides a human-interpretable solution
to the curse of dimensionality issue. The efficiency of our method is demonstrated on
selected use cases that belong to a common problem class of constrained stochastic graph
traversal problems.

We identified a diverse set of problems that belong to the class of constrained graph
traversal problems. Although the shortest pathfinding problem is a well-known combinato-
rial optimization problem, its parameters are difficult to define exactly [1]. It is easy to see
that the optimal route problem of a truck is practically a constrained shortest pathfinding
problem [2], where the constraints describe the working hours limits of the driver and
the availability of parking or the fuel capacity limits [3]. Daily planning of the route of
an electric delivery van is a constrained Hamiltonian pathfinding problem, where the
constraints are based on the limits of battery capacity [4] and charging options [5] or battery
exchange opportunities [6]. Furthermore, disassembling all components of a product after
its life cycle is also a constrained graph traversal problem, where a precedence graph

Information 2024, 15, 193. https://doi.org/10.3390/info15040193 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15040193
https://doi.org/10.3390/info15040193
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-9003-7776
https://orcid.org/0000-0002-6550-5101
https://orcid.org/0000-0002-5589-2355
https://orcid.org/0000-0001-8593-1493
https://doi.org/10.3390/info15040193
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15040193?type=check_update&version=3

Information 2024, 15, 193 2 of 19

describes component removal dependencies, and the constraints limit the use of parallel
workstations [7]. Finally, we would like to highlight that in real-life problems, these kinds
of problems are rather stochastic optimization tasks than discrete [8,9].

The constrained shortest pathfinding problem (CSPP) is shown to be NP-complete,
and furthermore, the Hamiltonian pathfinding problem can be transformed into an SPP
in polynomial time [10]. It is also presented that disassembly optimization problems can
be solved by formulating as an SPP [11]. It is easy to see that these problems originate
from one common root, which is based on CSPP. Therefore, a solution for other types of
problems within the problem class can be derived from a CSPP solution.

Traditional methods for the shortest pathfinding problem, such as Dijkstra’s [12],
Floyd-Warshall [13], and Bellman-Ford algorithms, deliver the optimal solution in a rea-
sonable time but are not able to handle stochastic distance distributions and complex
constraints. The exact mixed-integer linear or quadratic programming technique [14] can
be an option in multiple cases because it supports the integration of constraints, but is sen-
sitive to stochastic parameters and the size of the problem [15]. There are successful results
in applying machine learning (ML) tools to improve the performance of branch & bound
method by optimizing the plane cuts. However, the optimal strategy depends significantly
on the nature of the problem, and hence, it is hard to generalize the method [16]. The ge-
netic algorithm demonstrated its power in stochastic search problems and converges to the
Pareto-optimal solution. It provides not only the best solution, but also alternatives, but re-
quires built-in heuristics to retain cycles in the path, and its performance strongly depends
on the right parameterization setup [17]. In summary, there are no general methods to solve
constrained stochastic graph traversal problems, so we propose to use the reinforcement
learning approach, which can handle both stochastic challenges and constraints well [18].

Reinforcement learning (RL) can be an obvious solution for sequential decision-making
processes such as step-by-step pathfinding [19]. The objective function should be imple-
mented in the reward function, as well as in violation of constraints [20]. However, by con-
sidering some stochastic effect or measurement uncertainty, additional difficulties arise:
some continuous components need to be integrated into the state space, which becomes
mixed discrete-continuous.

Mixed-integer programming covers a general framework for a wide range of opti-
mization problems, such as scheduling, routing, production planning, and other graph
optimization tasks [21]. As mixed-integer programs (MIPs) are hard to solve problems, their
effective solvers rely on heuristics. Heuristics have variable performance in different types
of problems, leading to a heavily human-supervised solution design. As the number of
optimization tasks increases exponentially, there is a need for a higher level of autonomous
processes for optimal decisions. Reinforcement learning (RL) can serve as a valuable tool in
the development of self-optimizing solutions.

There are already several directions for applying RL techniques to solve MIPs. Deep
reinforcement learning (DRL) can be used to find a feasible solution to MIPs applying
the Smart Feasibility Pump method [22]. RL can be applied to determine the optimal
cutting plane as a subroutine of a modern IP solver [23]. Gradient-based RL methods can
be extended to use mixed-integer model predictive control (MPC) for an optimal policy
approximation [24]. A general integer programming (IP) solver technique was developed
to learn the large neighborhood search (LNS) policy for IP [25], but the method does not
handle the stochastic constraints yet. Constrained combinatorial optimization problems
can also be solved by RL techniques [26]. Moreover, stochastic shortest-path problems
also have RL solutions [27]. In contrast with these solutions of mixed-integer optimization
problems, we developed a new discretization approach for reducing the state-space into a
purely discrete space representation by performing the DBSCAN clustering method and
applied an iterative policy optimization method to that.

Our contributions are as follows.

• We define the class of constrained stochastic graph traversal problems by identifying
several real-life problems that belong to that. Although the pairwise relationships of

Information 2024, 15, 193 3 of 19

individual problems were already known, we recognized that their joint investigation
is recommended.

• We present a general end-to-end process for collecting observations, creating and
fine-tuning the discretization function based on DBSCAN clustering results, building
a Q-table, and using it for optimal decisions. We call our framework the Q-table
compression method.

• Our solution delivers a human-interpretable model without a complex pre-study of
the correlation of distances or further hidden dependencies.

• We demonstrate the usability of our method in three selected use cases belonging to
the problem class of constrained stochastic graph traversal problem: in a constrained
stochastic shortest pathfinding problem, in a constrained stochastic Hamiltonian
pathfinding problem, and in a stochastic disassembly line balancing problem. We also
verify the performance of the Q compression method compared to a simple grid-based
discretization method.

In Section 2, we define the class of constrained stochastic graph traversal problems
and formulate the constrained shortest pathfinding problem (CSPP), the constrained Hamil-
tonian pathfinding problem (CHPP), and the disassembly line balancing problem (DLBP).
We also show that a solution for CSPP can be used directly for CHPP and DLBP as well.
In Section 3, we will present a new multistep method, called the Q-table compression
method, which integrates different state-space reduction steps with a dynamic training
sampling technique to deliver an adaptive policy iteration algorithm. In Section 4, we
demonstrate the applicability of our algorithm to three selected use cases: a CSPP, a CHPP,
and a DLBP example. In Section 5, we give a summary and conclusions, and we will
describe some further research directions and open research questions.

2. Constrained Graph Traversal Problem Formulation

Due to the rapid development of technology and economics, optimization problems
are increasingly being focussed on to further increase efficiency. There are numerous
proven methods for finding optimal solutions for certain tasks, but there are cases where
the classical methods cannot be applied directly or do not perform well. We present
a special optimization problem class for which no general solution is known. We will
formulate the problem and show that multiple real-world problems belong to the class.

Consider a weighted directed graph G = (V , E ,D). The vertex set is denoted by
V = {v1, v2, . . . , vn}, while the edge set is described by E = {e1, e2, . . . , em} and finally
the corresponding positive distances are in D = {d1, d2, . . . , dm}. We can use the function
d : E → D as an assignment to identify the corresponding distance of an edge: di = d(ei)
for all i ∈ 1, 2, . . . , m. The graph is assumed to be connected and simple in the context that
there are no self-loops or multi-edges in it. The edge that connects the vertex i and the
vertex j can be referred to as (vi, vj).

Suppose that the graph G has two privileged vertices: s and t are the starting vertex
and the target vertex. A path is defined as a series of edges: P = (e1, e2, . . . , ek) =
((v0, v1), (v1, v2), . . . (vk−1, vk) ⊂ E . The shortest pathfinding problem (SPP) is to find a
path from s to t with the shortest total distance: min |P| = min ∑k

i=1 di, where v0 = s,
vk = t and di is the distance value of the edge ei = (vi−1, vi).

We can add further limitations on the shortest pathfinding problem: assume that the
traveler can cover only a limited distance in one go, hence the shortest path should be
split into subroutes or ranges that do not exceed their distance limit L: P = ∪l

i=1Pi, where
∑i∈P| di ≤ L for all j ∈ {1, 2, . . . , l}. It is easy to see that |P| = ∑l

j=1 |Pj| = ∑k
i=1 di.

An important relevance of a constrained shortest path problem in practice is the
truck routing problem: in this case, the traveler should split his route into feasible ranges
due to the driver’s working hours limits and parking availability or fuel capacity limits.
A secondary goal is to minimize the number of ranges in the whole path. To reach this, it is
mandatory to extend the objective of the classical shortest pathfinding problem, and declare
the common scale for it, which can be the cost:

Information 2024, 15, 193 4 of 19

min z =
(
cd

l

∑
j=1
|Pj|+ crl

)
, (1)

where cd represents the distance proportional cost of the completed path and cr covers the
range cost (e.g., battery recharge cost). We refer to this problem type as the constrained
shortest pathfinding problem (CSPP).

There are other problems that can be transformed into a CSPP. Consider a directed
connected graph G = (V , E). The Hamiltonian pathfinding problem is to find a continuous
path in the graph that visits all the vertices exactly once. The problem can be reduced to a
shortest pathfinding problem. We can perform a reversible transformation t̂ on graph G to
prepare graph Ĝ as follows:

• Every possible loop-free route v ⊆ V declares a vertex v̂ in the transformed graph,
including v̂0 = () which represents the empty subset.

• êij = (v̂i, v̂j) is an edge in the transformed graph if and only if:

– The path in G represented by v̂i ⊂ V is a sub-path of the one represented by
v̂j ⊂ V :

v̂i ⊂ v̂j

– The path of v̂j is longer exactly by one edge than the path of v̂i:

v̂i ∪ (vy) = v̂j, where vy ∈ V

– By marking with vx ∈ V the last element of v̂i, the additional edge of path v̂j is at
its end compared to the path of v̂j:

(vx, vy) ∈ E

– The initial vertex can be freely chosen from all vertex v ∈ V

((), (v)) ∈ Ê for all v ∈ V

• As in the classical Hamiltonian pathfinding problem in our formulation, there were
no distances in the original graph G, but the SPP formulation requires distances
to the edges, so we can assign a constant value 1 to all existing (v̂i, v̂j) edges of
the transformed graph Ĝ. However, in real-world problems, there are given dis-
tances: d̂(v̂i, v̂j) = d(vx, vy) and we are interested in solving the shortest Hamiltonian
pathfinding problem (SHPP).

• Finally, an optimal solution to the shortest path finding problem of Ĝ will provide the
shortest Hamiltonian path with an objective function of min |H| = min ∑k

i=1 di.

We can simplify the graph Ĝ by merging vertex pairs v̂a and v̂b into a single trans-
formed vertex if both contain the same original vertices and their last elements are iden-
tical. (For example, (v1, v2, v3) can be merged into (v2, v1, v3), but cannot be merged into
(v3, v2, v1)). The merging concept comes from the observation that it does not matter in
a route what the vertex visiting order was, only the fact whether a vertex was visited or
not and the last visited vertex, which determines where the traveler can move on. Denote
by v̂max ⊂ V̂ those transformed vertices that contain all v ∈ V . Then it can be shown that
finding a Hamiltonian route in graph G indicates a path from v̂0 to v̂max in Ĝ, and vice versa.

Similarly to CSPP, a further constraint can be introduced to limit the distance that
the traveler can cover in one go. Formally, the Hamiltonian path H should be split
into subroutes or ranges that do not exceed their distance limit L: H = ∪l

i=1Hi, where
∑i∈H| di ≤ L for all j ∈ {1, 2, . . . , l}. It is easy to see that |H| = ∑l

j=1 |Hj|.

Information 2024, 15, 193 5 of 19

The objective of the constrained shortest Hamiltonian pathfinding problem (CSHPP)
will contain a second term to minimize the number of required ranges:

min z =
(
cd

l

∑
j=1
|Hj|+ crl

)
,

where cd represents the proportional cost of the distance of the completed path and cr
covers the range cost.

A relevant practical problem type is the daily route planning of an electric delivery
van where all the target addresses should be visited by taking into account the limits of the
battery capacity and the charging options or the battery exchange opportunities.

Another type of problem that can be transformed into a CSPP is the disassembly
line balancing problem. In its simplest form, we consider a disassembly line for a single
product with a finite supply. Each product has n elementary components to remove,
represented by a vertex set V . The task of eliminating the component vi ∈ V is specified
by its processing time ti ∈ T , while a boolean flag of hi ∈ H indicates its hazardousness,
and finally di ∈ D declares the demand value of it. The general problem is to determine
the disassembly order of the components and assign every task to the workstations of
the disassembly line to optimize the objective function. The pre-defined cycle time is
denoted by tc ∈ R, and each workstation should complete its assigned removal tasks
within the cycle time. A directed precedence graph P = (V , E , (T ,H,D)) describes the
logical dependencies of component removal tasks. As we mentioned above, the vertices
represent the components to be removed. The removal process of a component vi can
be started only if all components from which a directed edge goes to the vertex vi are
already removed. Typically, the precedence graph is used in its transitive reduced form.
Consider a feasible solution that declares the order of component removals: the component
represented by the vertex vi should be removed as the rith element, and wj

i determines
which component should be removed on the workstation i as the jth task. Then the objective
function can be formulated as follows:

min
(

ci

l

∑
i=1

(tc −
lj

∑
j=1

t
wj

i
)2 + ch

n

∑
i=1

hiri + cd

n

∑
i=1

diri

)
The first term determines the quadratic idle times of the used workstations, which supports
not only minimizing idle times but also decreasing imbalance. The second and third terms
depend on the component property and disassembly sequence and aim to remove the
hazardous components and the components with higher values earlier. The three terms
are weighted by ci, ch, and cd, which have multiple goals behind them: compensating for
the scaling discrepancies of the objectives and determining the relative importance of the
objective components based on external preferences.

It is easy to see that the disassembly line balancing problem is a special modified case
of a constrained Hamiltonian pathfinding problem since all the components should be
removed. However, on the one hand, the disassembly of the components depends not only
on the last removed components but also on the previously removed components, and on
the other hand, the objective function is more complex, with a quadratic term in it. Similarly
to the Hamiltonian pathfinding problem, we can construct a reversible transformation t̃
to formulate a problem as a CSPP to produce graph G̃ = (Ṽ , Ẽ , (T̃ , H̃, D̃)), for which the
objective function becomes to the following form:

min z =
(
ci

l

∑
j=1

(tc − |H̃j|)2 + ch

n

∑
j=1

h̃j j + cd

n

∑
j=1

d̃j j
)

(2)

In the real world, the previously described problems are rather stochastic than deter-
ministic: in the routing problems, the distances are measured on a time scale that depends

Information 2024, 15, 193 6 of 19

on the traffic, the weather, and further external conditions, while in the disassembly prob-
lems, the component removal times depend on the product conditions.

In the formulation of stochastic shortest pathfinding problems, the directed graph has the
same structure as in the deterministic case, so the vertex set and the edge set are identical, but the
related distances are probability variables: Di ∼ LogNormal(µdi

, σ2
di
) for all i = 1, . . . , m.

Classical solution methods are not directly applicable to the types of problems formu-
lated above, or their resource requirements increase radically for larger problems. This led
us to turn to the reinforcement learning method which demonstrated its ability to approach
the optimal solution efficiently.

3. Q-Table Compression Method

In this section, we present a discretization method integrated into the Q-table-based
policy iteration algorithm to solve mixed continuous-discrete problems with a reinforce-
ment learning approach. First, we summarize the key properties of reinforcement learning
by highlighting the action-value-based policy iteration methods, especially the every-visit
Monte Carlo method and the Q-learning concept. Then we declare the basic requirements
for a state compression solution. Finally, we describe the Q-table compression process in
detail by providing the pseudo-algorithm to support its implementation.

3.1. Reinforcement Learning (RL)

Reinforcement learning (RL) solves problems due to sequential learning. An agent
takes observations (Ot) of the environment and, based on that, executes an action (At). As a
result of the action in the environment, the agent will receive a reward (Rt), and it can take
a new observation (Ot+1) from the environment, and the cycle is repeated. The problem is
to let the agent learn to maximize the total expected reward.

Preliminary, we should highlight that graph traversal problems can be approached as
a sequential decision problem: the agent observes the traveled path, which is a sequence
of the visited vertices, and needs to decide on the next action that should define the next
vertex to visit. Therefore, RL techniques can provide an obvious solution for graph traversal
problems by determining a sequence of vertices to find an optimal (shortest) path.

Reinforcement learning is based on the reward hypothesis, which states that max-
imization of expected cumulative rewards can describe all goals. Formally, the history
is the sequence of observations, actions, and rewards: Ht = O1, R1, A1, . . . , At−1, Ot, Rt.
The state is the information used to determine what happens next. Formally, the state
is a function of the history: St = f (Ht). A state is Markov if and only if P[St+1 | St] =
P[St+1 | S1, . . . , St]. Markov property is fundamental to the theoretical basis of RL methods.
Gt denotes the total discounted reward of the time step t: Gt = Rt+1 + γRt+2 + · · · =
∑∞

k=0 γkRt+k+1. According to these, for a graph traversal problem, the action space
is practically the vertex set: At ∈ V , the observation space is the subroute performed:
Ot = ((v0, v1), (v1, v2), . . . (vt−1, vt) ⊂ E , while the reward is the increment of the partial
objectives: Rt ∈ R = zt − zt−1

The state value function v(s) gives the expected total discounted return if starting from
state s: v(s) = E[Gt | St = s]. The Bellman equation practically states that the state value
function can be decomposed into two parts: immediate reward (Rt+1) and the discounted
value of successor states γv(St+1).

The policy covers the agent’s behavior in all possible cases, so it is essentially a map
from states to actions. There are two main categories in it: deterministic policy (a = π(s))
and stochastic policy (π(a | s) = P[At = a | St = s]).

We will focus on using an action-value function to determine the current optimal
action. However, it can be a very slow process for large state- and/or action spaces to keep
the value function updated (and hence optimal). Denote by N(s, a) the counter of visiting
the state s with an action selection of a. Then consider the function Q(s, a) : S ×A → R,
which accumulates the expected total discounted reward starting from state s and choosing
action a. According to the every-visit Monte Carlo policy evaluation process, if the agent

Information 2024, 15, 193 7 of 19

performs a new episode and receives rewards accordingly, then the counter must be
incremented: N(St, At)← N(St, At) + 1, and the Q-value function must be updated for all
visited (St, At) pairs: Q(St, At) ← Q(St, At) +

1
N(St ,At)

(
Gt − Q(St, At)

)
. It is proven that

if the agent follows the update of the Q value function combined with a simple ϵ-Greedy
action selection method, then the Q-value function approaches the optimal policy as the
number of observations tends to infinity.

There are several situations where the learning process is not based only on the agent’s
own experience. Formally, this means that action-value function qπ(s; a) is determined by
observing the results of an external behavior policy µ(a|s).

A possible way to handle the difference between the target and behavior policies is
to modify the update logic of the value function as Q-learning does (Section 6.5 in [28]).
Assume that in state St the very next action is derived by using the behavior policy:
At+1 ∼ µ(·|St). By taking action At+1 immediate reward Rt+1 and the next state St+1 will
be determined. But for the update of the value-function, let us consider an alternative
successor action based on target policy: A′ ∼ π(·|St). Then the Q-learning value-function
update will look like: Q(St; At)← Q(St; At) + α

(
Rt+1 + γQ(St+1; A′)−Q(St; At)

)
.

In a special case, if the target policy π is chosen as a pure greedy policy and the
behavior policy µ follows ϵ-greedy policy, then the so-called SARSAMAX update can be
defined as follows: Q(S; A)← Q(S; A) + α

(
R + γ maxa′ Q(S′; a′)−Q(S; A)

)
. Last, but not

least, it was proven that Q-learning control converges to the optimal action-value function:
Q(s; a)→ q∗(s; a).

In our solution, we used the every-visit Monte Carlo method to determine the optimal
policy. However, this can be easily replaced by Q compression, but in that case, it is
necessary to choose a suitable α-strategy.

3.2. Q-Table Compression Process

In this section, we collect the basic requirements of a discretization function, then
present the Q-table compression process in detail, and highlight some hints and guidelines
for implementation.

In general, Q-table methods are used for discrete problems. However, there are cases
where the discrete problems partially become continuous by considering some stochastic
effect or measurement uncertainty. One option to decrease the complexity of such a problem
is to divide it into sub-problems. It can be done by introducing sub-goals and solving these
problems separately [29]. Another option is to merge those observed states into a common
one that differs from each other only insignificantly. This can be done by introducing a
grid representation over the continuous observation space [30]. In this section, we will
present an integrated method to dynamically redefine the state space and transform the
Q-table to align it to the changes. We assume a stochastic Markov Decision Process with a
mixed-integer state space and discrete action space.

oi
j denotes the jth observation in episode i, and it is an element of the observation

space O. Our goal is to define a discrete representation S that will be used as a state space
in the reinforcement learning process. Formally, we are looking for an iteratively refined
mapping function F i : O→ S.

We can declare the following requirements for the functions F i.

• Let’s assume that the optimal action is determined for each and every oi
j and it is

denoted by ai
j. If ai

j ̸= ak
j then F (ai

j) ̸= F (ak
j). This practically means that the mapping

function merges observation states only if their optimal actions do not differ.
• The mapping function F should be consistent in that sense that if action ai

j moves the

agent from the observation state oi
j to oi

j+1 then action ai
j should move the agent from

F (oi
j) to F (oi

j+1).

• |S| ≪ |O|, or in other words: the size of the state representation S should be
significantly smaller than the size of observation space O. The smaller S is the
better representation.

Information 2024, 15, 193 8 of 19

The first requirement prevents merging states that have different optimal actions.
The second defines the transitivity of the mapping function. The last requirement states
that the potential of using the described representation function depends on the efficiency
of dimension reduction: if no significant reduction can be reached, then the method cannot
raise the efficiency of the learning process.

According to the above requirements, we design a modified Q-table-based policy
iteration method by integrating a discretization step into it. In the simplest RL framework,
the agent observes its states directly and takes its actions accordingly. In our approach,
the agent takes observations, determines the simplified state, and takes actions based on it.
So observations determine the state, but observation space differs from state space: the first
one is a mixed-integer space, while the last one is purely discrete. The key component in
the process is the state space definition and its projection.

We suggest maintaining a compression-based Q-table learning process due to the
following steps, which are summarized in Figure 1.

get state

choose action method

get random action

get optimal action

take action

save observation

update statecheck exit criterion

check update criterion

get observation history

update discretization

discretization function

discretize observ. hist.

update Q-tableQ-table

optimal

random

false

true

Standard reinforcement learning loop

Regular discretization update

Figure 1. Q-compression process flow.

There is a standard reinforcement learning loop in the process. The agent queries
its current discretized state (get state). The learning process is based on the ϵ-Greedy
algorithm: the agent decides whether to take a random action or take the best-known
action (choose action method). The agent randomly chooses an action with ϵ probability
of the feasible actions (get random action), or chooses the optimal action from the feasible
actions with (1− ϵ) probability (get optimal action). In this case, the agent determines
the expected cumulative rewards to reach the target state for all feasible actions first and
then chooses the action with the best total expected reward (or if there are multiple actions
with the same total expected reward, then randomly choose one out of them). If the Q-table
does not contain a relevant entry for the current state because the trajectory is undiscovered,
then the action selection falls back to the random method. The value of the parameter ϵ
decreases from 1 to 0 linearly as the number of episodes goes to its predefined limit. We
would like to highlight that the restriction on potential actions improves the efficiency of
the learning process compared to enabling any action and producing a bad reward for
unfeasible actions.

Once the action is chosen, the agent performs the selected action, determines the
new observation state, and registers the reward (take action). After that, the agent
saves the quadlet (old state, action, new state, reward) into the observation history (save
observation), and determines the new discretized state by applying the discretization

Information 2024, 15, 193 9 of 19

function for the observation (update state). Finally, the agent checks whether the target
state has been reached (check exit criterion). If not, then the cycle repeats.

Next to the standard reinforcement learning loop, the agent needs to update the
discretization regularly, and on top of that, compress the state space size. The discretization
update process is quite resource-intensive. Therefore, we suggest performing it after a
batch of episodes. Once, when the update criterion is satisfied (check update criterion)
the agent queries the observation history (get observation history). To let the agent
act adaptively, the history can be accessible due to a moving observation window to get
the most relevant part of the history and not process the old, invalid records from there.
The major goal at this stage is to create a new/updated discretization ruleset that fits
the requirements as described above in this subsection and projects the mixed discrete-
continuous observation space to a discrete state space (update discretization). Denote
by st = (vt, ut) ∈ V × R an observation, where vt shows the currently visited vertex of the
graph, and ut describes the current range utilization. The agent takes the observations in a
loop: It fixes the discrete part of the observation space (practically a vertex) and queries
all matching records: (vi, ui)|vi = v f ixed. Then it uses the DBSCAN algorithm to assign
the continuous range utilization values of the observations into clusters. Denote Rv

i the
ith range of the corresponding cluster and kv the number of identified clusters of the
vertex v. The ranges should be nonoverlapping: Ri

⋂
Rj = ∅ for all i ̸= j ∈ {1, . . . , kv},

and they need to be widened to completely cover the potential value range:
⋃kv

i=1 Ri = R.
Figure 2 demonstrate the result of applying DBSCAN algorithm to determine the clusters for
two different verices.

Range utilization

N
u
m
b
er

of
ob

se
rv
at
io
n
s

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Range utilization

N
u
m
b
er

of
ob

se
rv
at
io
n
s

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Figure 2. Applying DBSCAN for clustering range utilization component of a selected vertex.

The agent repeats the process for all elements in the loop. After updating the dis-
cretization function for the ith time by assigning the centroid value to each elements of the
widened ranges, the agent applies it to the observation history to produce a discretized

Information 2024, 15, 193 10 of 19

version of it: F i : V × R → V × {R1, R2, . . . Rvk} (discretize observation history).
Finally, the agent truncates the Q-table and rebuilds it from the discretized observation
history using the discretized states (update Q-table). The Algorithm 1 presents the Q-
compression method in pseudo-code format .

Algorithm 1 Q-table compression reinforcement learning method

1: function Q-COMPRESSION(D, lsim, lrange)
2: inputs:
3: D: n× n matrix ▷ represents the graph distances
4: lsim: constant parameter ▷ define simulation length
5: lrange: constant parameter ▷ define single range limit
6: ▷ initialize learning parameters
7: Q()← [.] ▷ initialize Q-table
8: O()← [.] ▷ initialize observation history
9: for i = 1, 2, . . . , lsim do ▷ loop for iterating episodes

10: (v, u)curr ← (vstart, 0) ▷ reset state (current vertex, range util.)
11: while vcurr ̸= vtarget do ▷ check episode exit criterion
12: ξ ← ∽ U(0, 1) ▷ generate standard uniform random number
13: a← {v|D(vcurr, v) > 0} ▷ get feasible action options list
14: if ξ < i

lsim
then ▷ optimal action selection criterion

15: m← max
(
r = Q(s, a)|s = (vcurr,Fvcurr (u))}

)
▷ get maximal expected

cumulative reward from Q-table
16: vmax ←

{
a|Q(s, a) = m, s = (vcurr,Fvcurr (u))

}
▷ get all maximal-reward

actions from Q-table
17: if |vmax > 0| then ▷ If no applicable action found then fallback to

random action
18: a← a ∩ vmax ▷ restrict optimal action list to optimals
19: end if
20: end if
21: a← ∽ U(a) ▷ choose next action from options
22: vnext ← a, d ∽ D(scurr, a), unext ← u− d ▷ determine next obs.
23: r← REWARD(scurr, a, d) ▷ get reward
24: O +←− ((scurr, a, snext, r) ▷ save observation into history
25: vcurr ← vnext, ucurr ← unext ▷ update state
26: end while
27: if mod (i, lrange) == 0 then ▷ Q-table update due criterion
28: UPDATE-Q(O) ▷ call discret. and Q-table update sub-process
29: end if
30: end for
31: end function
32: function REWARD(scurr, a, d, lrange)
33: inputs:
34: scurr: pair of current vertex and range utilization
35: a: single vertex ▷ action a determines the next vertex to visit
36: d: dynamic value ▷ measures distance realized on performed action a
37: lrange: constant parameter ▷ define utilization limit
38: rd ← cd · d ▷ get reward term of distance proportional cost
39: rr ← cr(d == ucurr) ▷ get reward term of range proportional cost
40: ro ← co(lrange < ucurr) ▷ get reward term of range overutilization cost
41: return rd + rr + ro
42: end function

Information 2024, 15, 193 11 of 19

Algorithm 1 Cont.

43: function UPDATE-Q(O)
44: inputs:
45: O: list of quad-tuples ▷ stores the observation history up to episode i
46: for v ∈ V do ▷ loop for iterating vertices
47: Ov ← {O(scurr, a, snext, r)|scurr = (v, .)} ▷ filter for relevant obs.
48: Cv ← DBSCAN

(
Ov(r)

)
▷ determine clusters by DBSCAN

49: Rv ← Cv ▷ widen the clusters to get complete disjoint covering ranges
50: for i = 1, 2, . . . , kv do ▷ loop on identified clusters of vertex v
51: Fv(u ∈ Ri

v)← AVERAGE(Ri
v) ▷ update discretization function by assigning

cluster’s centroid value
52: end for
53: end for
54: Q()← [.] ▷ reset Q-table
55: for j = 1, 2, . . . , |O| do ▷ loop for iterating obs. history
56:

(
(v, u)curr, a, r, (v, u)next

)
← Oj(scurr, a, r, snext) ▷ read jth obs.

57: s̃curr ←
(
vcurr,F (ucurr)

)
▷ determine discretized current state

58: s̃next ←
(
vnext,F (unext)

)
▷ determine discretized next state

59: Q(s̃curr, a) +←− 1
|O(s̃curr ,a,.,.|

(
r + γ maxanext Q(s̃next, anext)−Q(s̃curr, a)

)
▷ calculate

expected reward for the intervals discretized by DBSCAN
60: end for
61: end function

4. Results and Discussion

In this section, we present three application examples in which we demonstrate the
usability of the Q-compression method. The first use case is a constrained shortest pathfind-
ing problem (CSPP), the second one is a constrained shortest Hamiltonian pathfinding
problem (CSHPP), and the last one is a disassembly line balancing problem (DLBP). We
present the performance of Q-compression method in these examples and compare it to
a simple grid-based discretization method and the optimal solution of the deterministic
version of the problems.

If we assume that the constrained graph traversal process is a sequence of decisions to
determine which vertex should be visited next, then two pieces of information influence the
decision: the currently visited vertex and the range utilization. In Table 1 we summarize
the key components of the constrained graph traversal problem class.

As we described in Section 2 the Hamiltonian pathfinding problems (including the
disassembly problems) can be transformed into the shortest pathfinding problem. The Q-
compression method is executed on the original graph in the CSPP case and on a trans-
formed graph in the other two cases. In CSHPP the transformed graph vertices correspond
to a feasible subpath that ends in a specific vertex in the original graph. In DLBP the
last vertex of the sub-path has no influence, therefore, the transformed graph’s vertices
correspond to the feasible subpaths only independently from the last vertex.

The edges represent the connectivity of two vertices: whether or not a feasible transi-
tion from one vertex to the other exists. Edges integrate information about vertex connec-
tivity in the CSPP and CSHPP cases and the precedence graph in the DLBP case.

The constraints describe the restrictions on range utilization in the CSPP and CSHPP
cases and the utilization of the workstation in the DLBP case.

In the CSPP and CSHPP cases, the objective stands for a weighted sum of the total
distances of the traveled path and the number of performed ranges. In the DLBP case,
the objective is more complex: it is a weighted sum of the quadratic idle time of the
workstations and the products of component disassembly order and their hazardousness
and demand values.

Information 2024, 15, 193 12 of 19

Aligning to the traditional setup of RL solutions, we use the opposite of objectives
for reward. Therefore, optimization problems turn to maximization tasks. Our results are
presented by retransforming rewards to original objectives.

Table 1. Constrained graph traversal problem components by problem types.

Vertex Setup (State Space)

CSPP current vertex
CSHPP visited vertices + current vertex
DLBP removed components

Edge context (action space)

CSPP integrates the vertex connectivity
CSHPP integrates the vertex connectivity
DLBP integrates the precedence graph

Constraints (restrictions for action selection)

CSPP range utilization ≤ battery capacity
CSHPP range utilization ≤ battery capacity
DLBP workstation utilization ≤ cycle time

Objective

CSPP min
(
cd ∑l

j=1 |Pj|+ cr l
)

CSHPP min
(
cd ∑l

j=1 |Hj|+ cr l
)

DLBP min
(

ci ∑l
i=1(tc −∑

lj

j=1 twj
i
)2 + ch ∑n

i=1 hiri + cd ∑n
i=1 diri

)

4.1. Constrained Shortest Path Finding Use Case

Our first use case is a simple shortest pathfinding problem. Figure 3 presents a
directed graph.

1 3

2

4

7

6

5

8

1

2

3

4

3

4

3

2

4

2

1

6

Figure 3. Distance graph of shortest pathfinding use case.

The edges are labeled with their average lengths. However, these distances are stochas-
tic, which was simulated by multiplying random values from a log-normal distribution
with parameter values of µ = 0 and σ = 0.01. The goal is to find the shortest path from
vertex 1 to vertex 8, taking into account an additional constraint: the traveler can only go
through L = 4.5 units in one go. We can easily see that the expected overall shortest path
has a length of 7 units. The path 1→ 3→ 6→ 8 should be divided into three sub-paths
to remain within the range limit, while the path 1→ 2→ 5→ 6→ 8 needs to split only
into two.

Information 2024, 15, 193 13 of 19

The objective function is a slightly modified version of Equation (1) by standing for
three terms:

min z =
(
cd

l

∑
j=1
|Pj|+ co

l

∑
j=1

(|Pj > L) + crl
)

(3)

The first term measures the total length of performed distances. The second term counts
the ranges that exceed the limit value of L. Converting the range-limit constraint into an
objective term transforms it into a soft condition. The third term describes the number of
ranges into which the entire route was divided. The final objective function is a weighted
sum of these three terms. In our use case, we set the cd distance proportional cost to 1,
the co overutilization cost to 100, and the cr range cost to 10.

We performed 20 simulations with 500 episodes in each for both the Q-compression
method and the grid-based method. The granularity of the grid was set to 0.01. Figure 4
shows the distance distribution histogram by edges with a granularity of 0.01 unit.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
0

100

200

300

400

500

600

Distance (edge length)

N
u
m
b
er

of
ob

se
rv
at
io
n
s

Edge 1-2
Edge 1-3
Edge 1-4
Edge 2-5
Edge 2-7
Edge 3-4
Edge 3-6
Edge 3-7
Edge 4-5
Edge 5-6
Edge 6-8
Edge 7-8

Figure 4. Distances by edges of constrained shortest pathfinding use case.

We applied the ϵ-Greedy decision mechanism with a linearly decreasing ϵ-strategy.
The frequency of updating the discretization and the Q-table was set to 50 episodes. Figure 5
presents the results of our simulation.

0 100 200 300 400 500
0

50

100

150

200

250

300

Episode

O
b
je
ct
iv
e

Q-compression episode objectives
Best deterministic solution

20-episode MA of Q-compression objectives
20-episode MA of grid-based objectives

Figure 5. Q-compression method performance on constrained shortest pathfinding use case.

The optimal solution of the deterministic problem has an objective value of 27. We
can observe that in some cases the empirical episode reward is lower than this, which

Information 2024, 15, 193 14 of 19

comes from the stochastic property of the problem. Both the grid-based discretization
method and the Q-compression method improve their performance as ϵ approaches 0,
but the Q-compression finds a better objective value on average than the grid-based method
(29.26 vs. 36.95). Table 2 summarizes the increase in Q-table size by episodes for the grid-
based method and the Q-compression method. It shows that the Q-table continuously
grows using the grid-based discretization method, even if with decreasing momentum.
In contrast, the Q-compression method keeps the Q-table compact, which definitely sup-
ports the better learning capability that we observed in the achieved objective values.

Table 2. Q-table size comparison for CSPP by episodes.

Discretization
Method

Episode
50 100 150 200 250 300 350 400 450 500

Grid-based 135 203 254 292 320 340 356 366 372 375
Q-compression 39 42 43 43 43 43 43 43 43 43

4.2. Constrained Hamiltonian Path Finding Use Case

Our second use case is a Hamiltonian pathfinding problem [31]. Figure 6 presents a
directed graph.

1

2

3

4

5

67

Figure 6. Directed graph of Hamiltonian pathfinding use case.

Since there are no distances declared to the edges, we set the average length of all
the edges to 1. To ensure the feasibility of the problem, non-existing edges are replaced
with new edges with an average length of 100. Similarly to the CHPP use case, we apply
multiplicative stochastic noise from a log-normal distribution with parameter values of
µ = 0 and σ = 0.05. The goal is to find the continuous path from vertex 1 to vertex 5 by
visiting all other vertices exactly once. The range limit is set to L = 10. We should note that
an entire feasible Hamiltonian path does not exceed the range limit. Furthermore, it is easy
to validate that 1→ 4→ 7→ 2→ 3→ 6→ 5 is a suitable solution (and the only one).

The objective function is identical to the previous one formulated in Equation (3).
The weighting parameters are set as follows: cd = 1, cu = 100, cr = 10. Further settings are
identical to the descriptions of the CSPP use case.

We performed 20 simulations with 2000 episodes in each for both the Q-compression
method and the grid-based method. The granularity of the grid was set to 0.1. The fre-
quency of updating the discretization and the Q-table was set to 100 episodes. Figure 7
presents the results of our simulation.

The optimal solution of the deterministic problem has an objective value of 16. The Q-
compression method approaches the optimal solution better by reaching an average objec-
tive value of 17.01 than the grid-based method, which produces an average objective value
of 224.38. However, both show constant convergence to it. Table 3 shows the size of the
Q-table by episodes. We can observe that the grid-based method grows the Q-table to an

Information 2024, 15, 193 15 of 19

average size of 3647 records, while the Q-compression method leads to less than half the
size by having 1735 records on average.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

1,000

2,000

3,000

4,000

5,000

6,000

Episode

O
b
je
ct
iv
e

Q-compression episode objectives
Best deterministic solution

20-episode MA of Q-compression objectives
20-episode MA of grid-based objectives

Figure 7. Q-compression method performance on constrained Hamiltonian pathfinding use case.

Table 3. Q-table size comparison for CHPP by episodes.

Discretization
Method

Episode
100 200 300 400 500 600 700 800 900 1000

Grid-based 649 1127 1526 1863 2167 2425 2650 2844 3008 3145
Q-compression 411 615 788 944 1093 1223 1339 1428 1504 1563

Discretization
method

Episode
1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Grid-based 3266 3362 3442 3504 3554 3589 3613 3630 3640 3647
Q-compression 1615 1651 1678 1698 1713 1723 1730 1733 1735 1735

4.3. Disassembly Line Balancing Use Case

Our third use case is a computer disassembling problem from the literature [32,33].
Similarly to the previous use cases, we apply multiplicative stochastic noise from a log-
normal distribution with parameter values of µ = 0 and σ = 0.05. There are identified
8 salvageable components of a PC. The parts themselves, their removal times, demand
values, and hazardousness indicators are collected in Table 4.

Table 4. Personal computer disassembly tasks and parameters.

Task No. Disassembly Task Removal Time Demand Hazardousness

1 PC top cover 14 360 No
2 Floppy drive 10 500 No
3 Hard drive 12 620 No
4 Backplane 18 480 No
5 PCI cards 23 540 No
6 RAM modules (2) 16 750 No
7 Power supply 20 295 Yes
8 Motherboard 36 720 No

A precedence graph describes the logical dependencies of the order of the disassembly
task in Figure 8.

Information 2024, 15, 193 16 of 19

1 3

2

5

6

8 7 4

Figure 8. Precedence graph of personal computer disassembly problem.

We can distinguish two types of edges: solid edges represent predecessor AND
relations, while dashed edges represent predecessor OR relations. The predecessor AND
relation (PAND(i)) declares a set of predecessor tasks that all must be completed before
starting the task i. The predecessor OR relation (POR(i)) declares a set of predecessor tasks
of which at least one needs to be completed before starting the task i.

The objective function comes from Equation (2) with a minor modification for sanc-
tioning workstation over-utilization:

min z =
(
ci

l

∑
j=1

(tc − |H̃j|)2 + co · l min(max(|H̃j| − tc), 0) + ch

n

∑
j=1

h̃j j + cd

n

∑
j=1

d̃j j

The first term is the quadratic idle time. It minimizes both the number of workstations used
for disassembling the products and their imbalance. The second term is the soft criterion to
keep the utilization of the workstation under the limit. If any of the workstations breaks
the limit, then a significant penalty will be imposed. The third and fourth terms force the
removal of hazardous components and components with higher demand value earlier.
Following the referenced literature, the weights of ci, ch, and cd are set at 1, while co has a
value of 100. The cycle time (which corresponds to the range limit L of previous use cases)
is declared externally: tc = 40.

We performed 20 simulations with 1000 episodes each for both the Q-compression
method and the grid-based method. The granularity of the grid was set to 0.1. The fre-
quency of updating the discretization and the Q-table was set to 100 episodes. Figure 9
shows the removal time distribution histogram with 0.1 unit granularity by components of
the personal computer.

0 5 10 15 20 25 30 35 40 45
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Removal times

N
u
m
b
er

of
ob

se
rv
at
io
n
s

Component 1
Component 2
Component 3
Component 4
Component 5
Component 6
Component 7
Component 8

Figure 9. Removal time distributions by personal computer components.

Information 2024, 15, 193 17 of 19

The optimal solution to the deterministic problem has an objective value of 19,065.
In this use case, the reward curves of the two discretization methods diverge. The Q
compression method significantly better approaches the optimal solution by reaching
an average objective value of 19,122.29. In contrast, the grid-based method produces an
average objective value of 22,747.21 (Figure 10).

0 100 200 300 400 500 600 700 800 900 1,000
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6
·104

Episode

O
b
je
ct
iv
e

Q-compression episode objectives
Best deterministic solution

20-episode MA of Q-compression objectives
20-episode MA of grid-based objectives

Figure 10. Q-compression method performance on personal computer disassembly use case.

As Table 5 shows, the grid-based method grows the Q-table to an average size of
2672 records, while the Q-compression method keeps the Q-table very compact by having
146 records on average, which definitely supports the better learning capability that we
observed in the achieved objective values.

Table 5. Q-table size comparison for DLBP by episodes.

Discretization
Method

Episode
100 200 300 400 500 600 700 800 900 1000

Grid-based 702 1158 1522 1834 2087 2320 2485 2609 2716 2807
Q-compression 144 151 152 150 147 147 146 146 146 146

5. Conclusions

In our article, we gave an overview of some graph traversal problems and showed
that they have a common root, namely the constrained shortest path finding problem.
Then we presented a general multistep Q-table compression method to provide a human-
interpretable solution for mixed-integer optimization problems. The main result of our
method is that it provides an algorithm to find an optimal abstraction level by deriving
a reduced state space with significantly smaller number of elements. We demonstrated
the ability of our method on three selected use cases of the constrained stochastic graph
traversal problem class, namely, a constrained stochastic shortest pathfinding problem,
a constrained stochastic Hamiltonian pathfinding problem, and a stochastic disassembly
line balancing problem. In all three use cases, we compared the performance of our Q-
compression method for discretizing the mixed continuous-discrete state-space to the
classical grid-based partitioning approach. We found that our DBSCAN-based Q-table
compression method achieves a better objective function value while producing a more
compact Q-table than the reference technique. As the optimization problem is more
complex, the difference in performance is more significant.

In future research, on the one hand, we desire to test our method on larger graph
traversal problems as well and to analyze the options for transferring the knowledge from a
Q-table with a structure of a previous iteration to a new one decreasing the training period.

Information 2024, 15, 193 18 of 19

On the other hand, as the Q-compression method is a general technique for solving mixed-
integer sequential optimization tasks, we are working on identifying further problem types
for which it can be applicable, such as constrained stochastic backpack problems and
constrained stochastic production scheduling tasks.

Author Contributions: Conceptualization, A.K. and J.A.; methodology, T.K., A.K., Z.S. and J.A.;
software, T.K.; validation, A.K., Z.S. and J.A.; formal analysis, T.K. and A.K.; investigation, T.K.;
resources, J.A.; data curation, T.K.; writing—original draft preparation, T.K.; writing—review and
editing, A.K. and Z.S.; visualization, T.K.; supervision, J.A.; project administration, J.A.; funding
acquisition, J.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the TKP2021-NVA-10 project with the support provided by
the Ministry of Culture and Innovation of Hungary from the National Research, Development and
Innovation Fund, financed under the 2021 Thematic Excellence Programme funding scheme.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data and source code will be shared on request.

Conflicts of Interest: The authors declare no conflicts of interest regarding the publication of this
article. However, it should be noted that János Abonyi serves as a guest editor for the journal,
therefore he has not been involved in the editorial handling or decision-making process for this
manuscript to ensure impartiality and transparency in the review process.

Abbreviations
The following abbreviations are used in this manuscript:

RL Reinforcement Learning
SPP Shortest Pathfinding Problem
CSPP Constrained Shortest Pathfinding Problem
HPP Hamiltonian Pathfinding Problem
CSHPP Constrained Shortest Hamiltonian Pathfinding Problem
DLBP Disassembly Line Balancing Problem

References
1. Liao, X.; Wang, J.; Ma, L. An algorithmic approach for finding the fuzzy constrained shortest paths in a fuzzy graph. Complex

Intell. Syst. 2021, 7, 17–27. [CrossRef]
2. Qin, H.; Su, X.; Ren, T.; Luo, Z. A review on the electric vehicle routing problems: Variants and algorithms. Front. Eng. Manag.

2021, 8, 370–389. [CrossRef]
3. Vital, F.; Ioannou, P. Scheduling and shortest path for trucks with working hours and parking availability constraints. Transp. Res.

Part B Methodol. 2021, 148, 1–37. [CrossRef]
4. Baum, M.; Dibbelt, J.; Gemsa, A.; Wagner, D. Towards route planning algorithms for electric vehicles with realistic constraints.

Comput.-Sci.-Res. Dev. 2016, 31, 105–109. [CrossRef]
5. Baum, M.; Dibbelt, J.; Gemsa, A.; Wagner, D.; Zündorf, T. Shortest feasible paths with charging stops for battery electric vehicles.

Transp. Sci. 2019, 53, 1627–1655. [CrossRef]
6. Adler, J.D.; Mirchandani, P.B.; Xue, G.; Xia, M. The electric vehicle shortest-walk problem with battery exchanges. Netw. Spat.

Econ. 2016, 16, 155–173. [CrossRef]
7. Çil, Z.A.; Öztop, H.; Kenger, Z.D.; Kizilay, D. Integrating distributed disassembly line balancing and vehicle routing problem in

supply chain: Integer programming, constraint programming, and heuristic algorithms. Int. J. Prod. Econ. 2023, 265, 109014.
[CrossRef]

8. Ulmer, M.W.; Goodson, J.C.; Mattfeld, D.C.; Thomas, B.W. On modeling stochastic dynamic vehicle routing problems. EURO J.
Transp. Logist. 2020, 9, 100008. [CrossRef]

9. Slama, I.; Ben-Ammar, O.; Masmoudi, F.; Dolgui, A. Disassembly scheduling problem: Literature review and future research
directions. IFAC-PapersOnLine 2019, 52, 601–606. [CrossRef]

10. Ferone, D.; Festa, P.; Guerriero, F.; Laganà, D. The constrained shortest path tour problem. Comput. Oper. Res. 2016, 74, 64–77.
[CrossRef]

11. Kang, J.G.; Lee, D.H.; Xirouchakis, P.; Persson, J.G. Parallel disassembly sequencing with sequence-dependent operation times.
CIRP Ann. 2001, 50, 343–346. [CrossRef]

http://doi.org/10.1007/s40747-020-00143-6
http://dx.doi.org/10.1007/s42524-021-0157-1
http://dx.doi.org/10.1016/j.trb.2021.04.002
http://dx.doi.org/10.1007/s00450-014-0287-3
http://dx.doi.org/10.1287/trsc.2018.0889
http://dx.doi.org/10.1007/s11067-013-9221-7
http://dx.doi.org/10.1016/j.ijpe.2023.109014
http://dx.doi.org/10.1016/j.ejtl.2020.100008
http://dx.doi.org/10.1016/j.ifacol.2019.11.225
http://dx.doi.org/10.1016/j.cor.2016.04.002
http://dx.doi.org/10.1016/S0007-8506(07)62136-2

Information 2024, 15, 193 19 of 19

12. AbuSalim, S.W.; Ibrahim, R.; Saringat, M.Z.; Jamel, S.; Wahab, J.A. Comparative analysis between Dijkstra and Bellman-Ford
algorithms in shortest path optimization. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK,
2020; Volume 917, p. 012077.

13. Toroslu, I.H. Improving the floyd-warshall all pairs shortest paths algorithm. arXiv 2021, arXiv:2109.01872.
14. Ferone, D.; Festa, P.; Guerriero, F. An efficient exact approach for the constrained shortest path tour problem. Optim. Methods

Softw. 2020, 35, 1–20. [CrossRef]
15. Dondo, R. A new formulation to the shortest path problem with time windows and capacity constraints. Lat. Am. Appl. Res. 2012,

42, 257–265.
16. Zhang, J.; Liu, C.; Li, X.; Zhen, H.L.; Yuan, M.; Li, Y.; Yan, J. A survey for solving mixed integer programming via machine

learning. Neurocomputing 2023, 519, 205–217. [CrossRef]
17. Magzhan, K.; Jani, H.M. A review and evaluations of shortest path algorithms. Int. J. Sci. Technol. Res 2013, 2, 99–104.
18. Hildebrandt, F.D.; Thomas, B.W.; Ulmer, M.W. Opportunities for reinforcement learning in stochastic dynamic vehicle routing.

Comput. Oper. Res. 2023, 150, 106071. [CrossRef]
19. Li, S.E. Reinforcement Learning for Sequential Decision and Optimal Control; Springer: Berlin/Heidelberg, Germany, 2023.
20. Dong, W.; Zhang, W.; Yang, W. Node constraint routing algorithm based on reinforcement learning. In Proceedings of the 2016

IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, China, 6–10 November 2016; pp. 1752–1756.
21. Kallrath, J. Solving planning and design problems in the process industry using mixed integer and global optimization. Ann.

Oper. Res. 2005, 140, 339–373. [CrossRef]
22. Qi, M.; Wang, M.; Shen, Z.J. Smart feasibility pump: Reinforcement learning for (mixed) integer programming. arXiv 2021,

arXiv:2102.09663.
23. Tang, Y.; Agrawal, S.; Faenza, Y. Reinforcement learning for integer programming: Learning to cut. In Proceedings of the 37th

International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 9367–9376.
24. Gros, S.; Zanon, M. Reinforcement learning for mixed-integer problems based on mpc. IFAC-PapersOnLine 2020, 53, 5219–5224.

[CrossRef]
25. Wu, Y.; Song, W.; Cao, Z.; Zhang, J. Learning large neighborhood search policy for integer programming. Adv. Neural Inf. Process.

Syst. 2021, 34, 30075–30087.
26. Cappart, Q.; Moisan, T.; Rousseau, L.M.; Prémont-Schwarz, I.; Cire, A.A. Combining reinforcement learning and constraint

programming for combinatorial optimization. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual,
2–9 February 2021; Volume 35, pp. 3677–3687.

27. Xia, W.; Di, C.; Guo, H.; Li, S. Reinforcement learning based stochastic shortest path finding in wireless sensor networks. IEEE
Access 2019, 7, 157807–157817. [CrossRef]

28. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2018.
29. Arts, L.; Heskes, T.; de Vries, A.P. Comparing Discretization Methods for Applying Q-Learning in Continuous State-Action Space.

2017. Available online : https://www.cs.ru.nl/bachelors-theses/2017/Luuk_Arts___4396863___Comparing_Discretization_
Methods_for_Applying_Q-learning_in_Continuous_State-Action_Space.pdf (accessed on 2 February 2024).

30. Sinclair, S.R.; Banerjee, S.; Yu, C.L. Adaptive discretization for episodic reinforcement learning in metric spaces. In Proceedings of
the ACM on Measurement and Analysis of Computing Systems, Boston, MA, USA, 8–12 June 2020; Volume 3, pp. 1–44.

31. Baumgardner, J.; Acker, K.; Adefuye, O.; Crowley, S.T.; DeLoache, W.; Dickson, J.O.; Heard, L.; Martens, A.T.; Morton, N.; Ritter,
M.; et al. Solving a Hamiltonian Path Problem with a bacterial computer. J. Biol. Eng. 2009, 3, 1–11. [CrossRef]

32. Tuncel, E.; Zeid, A.; Kamarthi, S. Solving large scale disassembly line balancing problem with uncertainty using reinforcement
learning. J. Intell. Manuf. 2014, 25, 647–659. [CrossRef]

33. Lambert, A.; Gupta, S. Disassembly Modeling for Assembly, Maintenance, Reuse and Recycling; CRC Press: Boca Raton, FL, USA, 2004.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/10556788.2018.1548015
http://dx.doi.org/10.1016/j.neucom.2022.11.024
http://dx.doi.org/10.1016/j.cor.2022.106071
http://dx.doi.org/10.1007/s10479-005-3976-2
http://dx.doi.org/10.1016/j.ifacol.2020.12.1196
http://dx.doi.org/10.1109/ACCESS.2019.2950055
https://www.cs.ru.nl/bachelors-theses/2017/Luuk_Arts___4396863___Comparing_Discretization_Methods_for_Applying_Q-learning_in_Continuous_State-Action_Space.pdf
https://www.cs.ru.nl/bachelors-theses/2017/Luuk_Arts___4396863___Comparing_Discretization_Methods_for_Applying_Q-learning_in_Continuous_State-Action_Space.pdf
http://dx.doi.org/10.1186/1754-1611-3-11
http://dx.doi.org/10.1007/s10845-012-0711-0

	Introduction
	Constrained Graph Traversal Problem Formulation
	Q-Table Compression Method
	Reinforcement Learning (RL)
	Q-Table Compression Process

	Results and Discussion
	Constrained Shortest Path Finding Use Case
	Constrained Hamiltonian Path Finding Use Case
	Disassembly Line Balancing Use Case

	Conclusions
	References

