
Citation: Groppe, J.; Groppe, S.; Senf,

D.; Möller, R. There Are Infinite Ways

to Formulate Code: How to Mitigate

the Resulting Problems for Better

Software Vulnerability Detection.

Information 2024, 15, 216. https://

doi.org/10.3390/info15040216

Academic Editor: Aneta

Poniszewska-Maranda

Received: 11 March 2024

Revised: 5 April 2024

Accepted: 7 April 2024

Published: 11 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

There Are Infinite Ways to Formulate Code: How to
Mitigate the Resulting Problems for Better Software
Vulnerability Detection †

Jinghua Groppe 1,*, Sven Groppe 1,* , Daniel Senf 2 and Ralf Möller 1

1 Institute of Information Systems (IFIS), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
2 Lufthansa Industry Solutions AS GmbH, Schützenwall 1, 22844 Norderstedt, Germany
* Correspondence: jinghua.groppe@uni-luebeck.de (J.G.); sven.groppe@uni-luebeck.de (S.G.)
† This article is an extended version of the paper entitled “Variables are a Curse in Software Vulnerability

Prediction” presented at the 34th International Conference on Database and Expert Systems Applications
(DEXA 2023), Panang, Malaysia, 28–30 August 2023.

Abstract: Given a set of software programs, each being labeled either as vulnerable or benign,
deep learning technology can be used to automatically build a software vulnerability detector. A
challenge in this context is that there are countless equivalent ways to implement a particular func-
tionality in a program. For instance, the naming of variables is often a matter of the personal style
of programmers, and thus, the detection of vulnerability patterns in programs is made difficult.
Current deep learning approaches to software vulnerability detection rely on the raw text of a
program and exploit general natural language processing capabilities to address the problem of
dealing with different naming schemes in instances of vulnerability patterns. Relying on natural
language processing, and learning how to reveal variable reference structures from the raw text, is
often too high a burden, however. Thus, approaches based on deep learning still exhibit problems
generating a detector with decent generalization properties due to the naming or, more generally
formulated, the vocabulary explosion problem. In this work, we propose techniques to mitigate
this problem by making the referential structure of variable references explicit in input represen-
tations for deep learning approaches. Evaluation results show that deep learning models based
on techniques presented in this article outperform raw text approaches for vulnerability detection.
In addition, the new techniques also induce a very small main memory footprint. The efficiency
gain of memory usage can be up to four orders of magnitude compared to existing methods as our
experiments indicate.

Keywords: software security; software vulnerability; deep learning; 3-property encoding; variable
name dependence; abstract syntax graph

1. Introduction

Software security is an important factor in facing cyber-attacks. However, detect-
ing code vulnerabilities to guarantee software security is still a daunting task. Tradi-
tional approaches [1–9] to vulnerability detection, for instance, rely on manually designed
vulnerability rules, which are typically highly complex and also very difficult to define
due to the diversity and complexity of vulnerabilities in application programs. In con-
trast, deep learning (DL) technology can learn complicated patterns hidden in data, in
this case programs, and therefore provides a promising solution to automatically learn
vulnerability rules.

A significant amount of research work has been dedicated to applying DL to predict
the vulnerabilities of software code. Despite these efforts, DL-based approaches have not
achieved a final breakthrough in this field and still have a limited capability to distinguish
vulnerable from non-vulnerable code [10]. We could perhaps explain the lack of success

Information 2024, 15, 216. https://doi.org/10.3390/info15040216 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15040216
https://doi.org/10.3390/info15040216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-5196-1117
https://doi.org/10.3390/info15040216
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15040216?type=check_update&version=1

Information 2024, 15, 216 2 of 15

like this: A program has complicated structures that contain various syntactical and
semantic dependencies. If it contains a vulnerability, the vulnerability only involves a
tiny part of the complex program structure. Consequently, it is very challenging to learn
vulnerability features, which are submerged in a plethora of dependencies. However, deep
learning is well known for its ability to learn complex patterns, and we have witnessed its
great success in natural language processing [11], speech recognition [12] and computer
vision [13]. Therefore, we have to ask ourselves why DL-based approaches have not yet
learned vulnerability patterns well.

To answer this question, we must investigate exactly how DL approaches work. Cur-
rently, DL approaches, either graph-based [10,14] or unstructured ones [15–18], borrow
methods used in natural language processing to define the semantics of the textual program
code or nodes in a graph of the code. The full code or a piece of the code is considered as
plain text like a natural language and it is first split into a sequence of tokens, and each
token is represented by a real-valued vector (called embedding representation). Unstruc-
tured approaches learn the representation of the code based solely on the sequence of the
tokens. The sophisticated graph-based approaches learn a presentation based on the tokens
appearing in each node and the relations between nodes.

Let us consider a very simple example: We want to program the summation of two
variables, and we can write the code as a = b + c. From the text of this code, we can create
its graph structure, tokens and their embeddings as illustrated in Figure 1. A representation
of the code can be learned based on these embeddings and the relations of nodes. We can
use other variable names to express the same functionality, such as x = y + z, c = e + f ,
or a = a1 + a2. Since different names have different embeddings, DL models, which learn
based on the raw code text, could only find a representation that is specific to the code
text with the used variable names. It is hard for them to capture the intrinsic functionality
beyond the diversity of code expression using different variable names and to generalize to
new code pieces given name-specific encoding of variables.

assign
a = b + c

ident
a

add
b + c

ident
b

ident
c

Token Embedding

a 1.288, …

b 1.449, …

c 0.066, …

= -0.764, …

+ -1.092, …

assign 0.031, …

ident -1.022, …

add -1.436, …

Figure 1. The graph structure and embeddings of the summation functionality coded as a = b + c,
from which a representation specific to the code text will be learned.

In fact, one can use any combination of letters, digits, and other symbols to name a
variable as long as the combination conforms to the syntax rules. This means that there are
numerous possibilities to code text representations of equivalent expressions. It would be
very difficult for DL models to capture patterns hidden in an infinite number of equivalent
expressions, and, hence, we have to solve the problem of the infinity. We can think about
two solutions to this issue:

Collecting enough training data. DL models have the ability to capture the intrinsic
patterns hidden under the variety of equivalent expressions if we provide them with enough
training data, which covers all the text representations of equivalent expressions. The
question is how we can collect data that covers an unlimited number of text representations.
Apart from the fact that different variable names could express the same semantics, the
same variable names could express different semantics. What makes things worse is that it
may be random whether two different variables express the same semantics in different
contexts, or whether two identical variable names have different semantics. Although

Information 2024, 15, 216 3 of 15

Motzkin [19] and Ramsey theory [20] have pointed out that pure randomness is impossible
and this is especially true in the choice of variable names, generally we can consider variable
names as a random event. The occurrence of random events does not show any patterns,
and a DL model will, therefore, not be able to discover a pattern from a random event.

Mitigating the infinity and randomness. We could not obtain a well-generalized
model in the presence of an infinite number and randomness of text code of the same
functionality, and we, therefore, need solutions to address these challenges. Ideal solutions
should transform an infinite number of text representations into a finite number, and
unfortunately, we have not found such a solution. The solution we propose in this work is
to mitigate the infinity and randomness by removing the names of variables, which are a
major cause of this problem. Concretely, we suggest a new edge type of name dependence
and a type of abstract syntax graph (ASG) extending the abstract syntax tree (AST) with
the edges of name dependence and develop a 3-property node encoding scheme based
on the ASG. These techniques allow us to remove variable names from code but retain
the semantics of the code, and thus greatly mitigate the semantic uncertainty of variables
and the diversity of text code of a functionality. The empirical evidence presented later
shows that our techniques help DL models to better learn the intrinsic functionality of
the software and improve their prediction performance. The evidence is especially strong
over the extremely imbalanced training dataset Chromium+Debian, which contains only
592 (6.92%) samples with vulnerability.

The rest of this paper is organized as follows: We first review related work in Section 2
and present our techniques of how to deal with variable names in program code in Section 3.
These techniques are evaluated and compared with existing approaches in Section 4.
Section 5 summarizes and concludes this work.

2. Related Work

This work is based on the work [21] and extends it with at least 60% new content,
where we conduct a comprehensive experimental evaluation, perform an extensive and
in-depth analysis of the techniques and evaluation results, investigate the problem of
vocabulary explosion, and explore the quality of the data and the representations learned
by the techniques and models proposed in this work.

Deep learning-based software vulnerability detection, both unstructured [15–18] and
structure-based [10,14,22–24], currently adopt the raw text representations of code to
describe the semantics of code. Approaches to unstructured data treat source code as plain
text, and the text is split into a sequence of tokens, which is used as the representation of
the code. This representation only describes a flat structure, which does not directly reflect
the syntactical and semantic dependencies. The structure-based approaches address the
limitation using the structure information of program code. Among them, graph-based
models [10,14] are more sophisticated because they can directly work with graph data.
However, since they still use pieces of raw code as the feature of nodes, these models could
learn only a representation specific to the code text, not its intrinsic functionality. Models
based on a representation specific to the original code text require much more training data
to abstract away variable names in code.

Inspired by the success of pre-trained models in natural language processing (NLP),
especially BERT [25], several pre-trained models like RoBERTa [26], CuBERT [27], Code-
BERT [28], GraphCodeBERT [29] and SyncoBERT [30] were recently developed to learn
representations of code. The first three approaches treat source code as plain text and do not
support syntactic and semantic dependencies, whereas GraphCodeBERT and SyncoBERT
are structure-based ones, which additionally introduce a variable relation graph and an
AST, respectively. Specifically, the unstructured models use source code and text documents
(code, document) as input data, while the GraphCodeBERT and SyncoBERT require three
components (code, document, variable relation graph) and (code, document, AST), respec-
tively, as input data to learn code representations. The variable relation graph is created
by first parsing the source code to an AST and then extracting a variable sequence from

Information 2024, 15, 216 4 of 15

the AST. GraphCodeBERT outperformed other models for the downstream tasks of clone
detection, code translation and code refinement. SyncoBERT exhibited better performance
in code search.

As discussed earlier, DL models that use original code text as input require much
more training data to abstract away variable names in code. For example, GraphCodeBert
is pre-trained over six million code samples and does show such potential. It can be
fine-tuned for specific tasks after pre-training requiring less training data. Nevertheless,
for each supported programming language, the data for pre-training are immense. A big
advantage of our techniques is that they require small quantities of training data even for
the pre-training (and do not need fine-tuning): There are only a few real-world vulnerability
datasets available, which contain very few vulnerable code examples from less than 1000
to 32,000, which are all that we require for pre-training DL models based on our techniques.
Furthermore, our techniques have a very low memory footprint, as shown in the evaluation
part. The work [31] extends GraphCodeBERT with the two mechanisms of k-nearest
neighbor and contrastive learning and is evaluated over QEMU+FFmpeg code samples
using the F1 metric. The evaluation results show that [31] achieved slightly better F1-scores
(69.43% for the single FFmpeg dataset and 72.47% for the single QEMU dataset) than ours
(62.99% for the original QEMU+FFmpeg dataset that is a collection of QEMU and FFmpeg
code samples). However, the QEMU and FFmpeg datasets used in [31] have 9116 vulnerable
samples while ours contains only 5865 vulnerable samples. Therefore, we have reason
to believe that our techniques are more efficient in comparison to GraphCodeBERT and
its variants.

Because of the wide variety of possibilities of naming identifiers, DL models of repre-
sentation learning [32] also face the problem of vocabulary explosion. In order to address
this issue, refs. [15,33] define a set of keywords, such as VAR1, VAR2, FUNC1, FUNC2, and
use them to replace the variable and user-defined function names. This method can indeed
reduce the number of unique tokens, but at the same time, it could mislead models since
the same keywords could have different semantics in different settings.

The code graphs in our work are generated based on the tool developed in [34] and
the AST+ used in our work is equivalent to its code property graph (CPG), i.e., adding
flow dependence, data dependence, and control flow into AST. CPG was first used in the
non-learning approaches to find software vulnerabilities [34,35] and later on was adopted
in deep learning-based approaches [10,14] as the input of graph encoding networks. Two
widely used libraries for graph encoding networks are PyG [36] and DGL [37], and in this
work, we use the latter to implement our models.

In this work, we suggest a new kind of edge of name dependence, and a type of ASG,
which adds the edges of name dependence to AST and removes the names of variables
from it without changing the semantics of the code. Abstract syntax graphs are not a new
concept and many studies have suggested different ASG graphs from AST for different
purposes [38–42], and named them differently, either abstract syntax graph, abstract se-
mantic graph or term graph. They are mainly applied in software engineering for graph
transformation [38], program optimization [39,40] and code refactoring [41].

3. Mitigating the Infinity and Randomness

In order to help DL models of software vulnerability detection improve their general-
ization ability, in this section, we propose techniques for how to mitigate the infinity and
randomness of text representations of code by getting rid of one of its main causes, i.e., the
names of variables.

3.1. Feasibility Analysis

We aim at removing the names of variables in the program code but still maintain
its semantics. Let us first analyze the feasibility of this goal by comparing programming
languages with natural languages. Each natural language contains a vocabulary, which
is a set of words pre-defined in terms of their spelling and meaning. A sentence consists

Information 2024, 15, 216 5 of 15

of words from the vocabulary, and its semantics is determined by its words. When we
replace a word with another with a different meaning, the semantics of the sentence will
be changed. The opposite should be true in a programming language. The meaning of a
variable is determined by the code where it is in, not determined by its name. This means
that we can use many other names to replace this variable. This actually implies that the
concrete text representations, i.e., the names of variables, are not important. Therefore, we
have reason to believe that it is theoretically possible to describe the semantics of code
without using the concrete names of variables. Now, we need to find a practical solution to
do this.

3.2. Name Dependence for Removing Variables

We will use a type of abstract syntax graph (ASG) to get rid of variable names. Before
we present this ASG, we first examine why existing graph representations of code, abstract
syntax tree (AST), control flow graph (CFG), data dependence graph (DDG) and control
dependence graph (CDG), are not enough to maintain the semantics of a program under the
absence of the variable names. Once again, let us use a very simple piece of code presented
in Figure 2.

assign
a = b + a

ident
a

add
b + a

ident
b

ident
a

BLOCK

varDecl
int a

varDecl
int b

{

int a

int b

a = b + a

}

assign

ident add

ident ident

BLOCK

varDecl
int

varDecl
intX

AST with variable names AST without variable names

Figure 2. Abstract syntax trees with and without variable names.

The left tree in Figure 2 is a standard AST of the code given in the middle part, which
contains complete information about the code. Given this AST, we can revert to its original
code exactly. However, we want to mitigate the infinity and randomness of the possible
text representations, so we should create an AST without variable names, like the tree on
the right side. Unfortunately, the AST will not be able to maintain the semantics of the
original code. Adding control flow edges and data dependence as indicated by the dotted
lines would not work either. We need a solution and so our abstract syntax graph comes
into play.

In programming languages, a variable is related to its declaration (which is either
explicitly given or implied). We can determine this relation by the name of the variable.
Software engineering uses the term ‘dependence’ to describe the relations between two
components, like data dependence and control dependence. To align with it, we define a
new kind of dependence called Name Dependence (see Definition 1), to express the relation
between a variable and its declaration. With regard to the definition, the name dependence
can, hence, be statically determined for programming languages with static name resolution
like C, C++, Erlang, Haskell, Java, Pascal, Scheme, and Smalltalk, and only partially for
programming languages with dynamic name resolution like some Lisp dialects, Perl, PHP,
Python, REBOL and Tcl. In an AST with full information, the name dependence between
two nodes can be inferred by the names of variables and identifiers and their lexical
scope. When we remove the names of variables and identifiers from the AST, we lose the
information on name dependence. Without the information, we will not be able to restore
the semantics of the original code.

Information 2024, 15, 216 6 of 15

Definition 1 (Name Dependence). In a computer program, a variable declaration has a name
dependence with an identifier in a statement if the identifier matches the variable declaration
according to the name resolution rules of the specific programming language.

So, we need a way to express the name dependence when names are absent. A solution
is to add an edge of name dependence between two related nodes. After adding such
edges, the tree structure turns into a graph structure as illustrated in Figure 3, which we
call an abstract syntax graph. From the graph, we can construct a fragment of code with the
exact semantics of the original code, but perhaps with a different text representation, which
would not be a problem at all for the task of vulnerability detection.

{

int a

int b

a = b + a

}

assign

ident add

ident ident

BLOCK

varDecl
int

varDecl
int

Adding edges of name dependence

{

int x

int y

x = y + x

}

Figure 3. Abstract syntax graph, which expresses the semantics of code without using its variable names.

We can also extend the ASG with the control flow edges and data dependence edges.
The extended graph will integrate more information about the behavior of code but also
becomes much more complicated. It is obvious that processing more complicated graphs
will need more computing resources and time. What we are not sure of is if the complicated
graphs can bring more benefits to vulnerability prediction. We know that a code flaw
typically involves only a very small part of the graph of code. When the whole code graph
becomes more complicated, the ratio of the flaw part to it could become smaller. This means
that it would be more difficult to detect it. In our work, we use the ASG and extended ASG
to train DL models, and the training results are reported in later sections.

ASTs and ASGs describe the structure information of program code that cannot be
reflected in the raw text representations of code. However, since there is not a standardized
AST model, different tools would construct different ASTs for the same program code,
and so ASGs extended from the ASTs will also be different. Interesting research topics
include investigations about how different AST models and corresponding ASGs impact
the performance of software vulnerability detection and what is the best AST model for
this task.

3.3. Property-Based Node Encoding Scheme

Our ASG provides software programs with a graph representation independent of
their text formulation of variable names, and this will help a DL model to learn the
‘intrinsic’ functionality of code. Apart from the ASG, we further suggest a method to
efficiently represent the semantics of nodes in a code graph, 3-property encoding, which
provides a consistent description of the features of nodes and allows DL models to infer
the commonalities and differences between nodes easily. This 3-property encoding is
developed in the context of our ASG but it can be applied to other code graphs, and it is
also programming languages agnostic.

In a code graph, every node represents an executable syntactic construct in code, which
can be an expression or a statement or its constituent parts, like variables and constants

Information 2024, 15, 216 7 of 15

(which are, of course, also executable). Currently, the piece of code that consists of the
construct (with or without a notation to the construct like ‘varDecl’ and ‘add’) is used as the
feature of the node. The feature is encoded by first splitting the piece of code into tokens
and then averaging the embeddings of all the tokens. The code-based encoding uses the
original piece of code to present the feature of a node, and at the same time, the result of
encoding blurs the semantics of the original code because of the averaging operation. Our
3-property encoding avoids these two issues by introducing additional information related
to the language constructs.

Each language construct has its properties, which may not explicitly appear in the raw
code text. Independent of specific programming languages, we found that it is enough to
use three properties to describe different constructs: class, name and type of data if any, and
each value of the properties will be represented by a unique token. Table 1 demonstrates
several common language constructs and their representations with the three properties.
With this property-based approach, we can encode all nodes in a consistent way, and this is
a very valuable characteristic for many applications. So far, this 3-property encoding has not
removed the diversity of text representations and we will further normalize this encoding
scheme to mitigate the diversity as much as possible based on the name dependence
and ASG.

Table 1. 3-property encoding scheme.

3-prop. Encoding 3-prop. Encoding
With Variable Names Without Variable Names

Construct Class Name Type Class Name Type

int x varDecl x int varDecl - int
if (x ≥ 0) control if - control if -
x·0.05 mathOp mul - mathOp mul -
fputs(x, stdout) call fputs - call fputs -
x ident x int ident var int
stdout ident stdout - ident stdout -
{. . . } block - - block - -
0.05 literal 0.05 float literal - float
‘Hello’ literal ‘Hello’ str literal - str
char[6] y varDecl y char[6] varDecl - char[N]

Variables are one of the main factors that lead to the enormous number of text formu-
lations of the same functionality. Thanks to the edges of name dependence, we can remove
variable names from code. Besides the variable names, there are also other constructs in
code, which can have any values. One of them is literals, e.g., 0.01, ‘Hello’, which will
cause similar issues as variable names, so we will also remove the concrete value of a literal.
Another construct is array declarations with size, e.g., char[8], char[1024]. We will normal-
ize them as char[N]. A more refined solution could be to create several normalized data
types, e.g., char[uint8], char[uint16], char[uint32], and normalize the data type of arrays
according to their sizes. For instance, any char arrays with sizes between 0 and 256 could be
normalized to char[uint8]. Table 1 also provides examples of normalized representations.
The definition of the classes of language constructs and the normalized tokens could vary
depending on the implementation of applications and the tool for generating code graphs.

4. Evaluation

In order to evaluate our techniques, we have generated four types of code graphs,
AST, AST+, ASG, and ASG+, for training DL models of software vulnerability detection.
AST+ is AST extended with data dependence, control dependence, and control flow. ASG
is AST with the edges of name dependence and variable names removed, and ASG+ is
ASG with control dependence, data dependence, and control flow.

Information 2024, 15, 216 8 of 15

4.1. Models

We develop two models (3propASG and 3propASG+) for our techniques and two base-
lines (codeAST and codeAST+) based on the existing approaches [10,14]. 3propASG and
3propASG+ adopt our graph structures and 3-property node encoding scheme. codeAST
and codeAST+ use the common graph structures and the code-based encoding scheme
presented in Section 3, which is currently adopted by existing models. In the code-based
encoding scheme, a piece of code is used to learn the feature of a node. The piece of code is
split into a sequence of tokens and the average of the embeddings of tokens in the sequence
is considered as the feature of the node. In comparison, in our property-based encoding
scheme, all nodes in the code graph are described by three tokens and the concatenation of
the embeddings of the three tokens in a node represents the node’s feature.

In order to better evaluate and compare our techniques to the code-based encoding
scheme, we follow the design of existing graph-based models for software vulnerabili-
ties [10,14] and use the gated graph recurrent unit (GGRU) [43] as the graph convolution
module to learn a graph representation. All models share the following architecture: The
graph data of code is first delivered to an embedding layer to learn token embeddings. The
learned embeddings and the graph structure are fed into the module of GGRU with one
time step, the least expensive option, to perform the operation of graph convolution. The
output of GGRU is sent to each of three 1D convolution (Conv1d) layers with 128 filters each
and perceptive fields of 1, 2 and 3, respectively, and one 1D max pooling (MaxPool1d) is
applied over the output of each Conv1D to downsample. The results of the MaxPool1d lay-
ers are concatenated together and sent to a linear hidden layer with 128 neurons, and a 25%
dropout is applied to the output of the convolution and hidden layers as a regularization
mechanism. We apply ReLU [44] for non-linear transformation because of its computa-
tional efficiency and the reduced likelihood of gradient vanishing and use embeddings with
100 dimensions to encode tokens. The architecture is illustrated in Figure 4.

tokens token
emb.

node
repr.

token
embedding

graph
conv.

conv.,
droput,
ReLU

pool-
ing

hidden,
dropout,

ReLU

linear

Figure 4. Architecture of models. In our 3-property encoding, the number of tokens of each node is 3.
In code-based encoding, each node has the number of tokens of the node that has the most tokens.

Currently, we do not perform a pre-training of token embeddings; instead, we use
the standard normal distribution N (0, 1) to initialize the embeddings and test several
different initializations. There is empirical evidence [45] which has shown in some cases
that pre-trained token embeddings are not necessarily better than random initializations
with the standard normal distribution. Future work could investigate if performing a
pre-training of token embeddings will significantly improve the performance of DL models
in this area.

4.2. Datasets

We use several real-world datasets from different open-source projects, Chromium
+Debian [10], FFmpeg+Quemu [14] and VDISC [16], and adopt the open-source tool Joern
(https://github.com/joernio/joern (accessed on 1 August 2023)) to create the AST and
AST+ from the source code. Our AST+ corresponds to the code property graph of Joern.

Chromium+Debian [10] consists of source code from the Chromium and Debian
projects, and code samples are labeled based on the information from their issue-tracking
systems. Chromium is a popular Web browser from Google, and Debian is a widely used

https://github.com/joernio/joern

Information 2024, 15, 216 9 of 15

Linux operating system. In the dataset of FFmpeg+Qemu [14], FFmpeg is a multimedia
framework and Qemu is a hardware emulator and virtualizer. Several professional security
experts and researchers labeled the code samples from FFmpeg and Qemu. VDSIC consists
of the source code of 1.27 million functions from different open-source software and they
are labeled by static analyzers.

Given the limitation of computational resources, it is extremely costly to process the
full VDSIC dataset. Therefore, we down-sample negative samples in its training dataset to
a number similar to the number of positive samples. Furthermore, we also have to remove
the code with the following components: :: operators, new operators, switch, and goto
statements, which we found cannot be correctly parsed by Joern. Table 2 gives an overview
of the final datasets, 80% of which are used to train the models and 20% for evaluation.

Table 2. Overview of datasets.

Dataset Total- 80% for Training-
Bad, Good Bad, Good

Chromium+Debian 754 (7.05%), 9945 (92.95%) 592 (6.92%), 7967 (93.08%)
FFmpeg+Quemu 5865 (43.68%), 7563 (56.32%) 4687 (43.63%), 6055 (56.37%)

VDISC 31,723 (46.38%), 36,675 (53.62%) 25,304 (46.24%), 29,414 (53.76%)

4.3. Prediction Performance

Given historical data, a model learns its parameter settings in order to optimally gen-
eralize the patterns of positive and negative classes. Optimal model parameters are learned
by minimizing the cross-entropy loss [46], which especially penalizes those predictions
that are confident but wrong. The models are trained with a batch size of 32 and a learning
rate of 0.001, and the Adam optimizer [47] is used to minimize the loss function. Each
model is trained with 10 different seeds and the training stops after five further training
epochs when the validation loss reaches its minimal value. The models are evaluated
over the five metrics: accuracy, precision, recall, F1 and AUC, which measure different
abilities of models. The results of the evaluation are presented in Tables 3–5. All DL models
are developed in the Python programming language and executed under the platform
of Linux-5.15.0-88-generic-x86_64-with-glibc2.35. The main software packages used are
Python 3.6.9, torch 1.10.2 + cu102, and dgl 0.6.1.

Table 3. Performance of models over Chromium+Debian dataset.

Model Graph Encoding Acc Prec Recall F1 AUC

codeAST AST code with best F1 92.01 44.58 22.84 30.20 60.26
aver. of 10 trainings 92.4 10.34 2.9 4.14 51.32

3propASG ASG 3-prop. with best F1 92.34 49.26 41.36 44.97 68.93
aver. of 10 trainings 92.52 46.87 24.75 31.88 61.41

codeAST+ AST+ code with best F1 90.89 33.66 20.99 25.86 58.80
aver. of 10 trainings 92.28 15.14 3.83 5.36 51.68

3propASG+ ASG+ 3-prop. with best F1 92.34 49.25 40.74 44.59 68.65
aver. of 10 trainings 92.41 34.93 18.09 23.35 58.29

Table 4. Performance of models over FFmpeg+Qemu dataset.

Model Graph Encoding Acc Prec Recall F1 AUC

codeAST AST code with best F1 55.36 49.35 67.49 57.01 56.69
aver. of 10 trainings 58.14 51.32 35.07 37.61 55.61

3propASG ASG 3-prop with best F1 60.35 53.43 74.70 62.30 61.92
aver. of 10 trainings 59.71 53.64 64.91 57.67 60.28

codeAST+ AST+ code with best F1 58.38 53.27 41.51 46.66 56.53
aver. of 10 trainings 58.03 52.94 18.37 25.04 53.7

3propASG+ ASG+ 3-prop with best F1 57.04 50.62 83.36 62.99 59.92
aver. of 10 trainings 58.9 52.76 65.49 56.85 59.62

Information 2024, 15, 216 10 of 15

Table 5. Performance of models over VDSIC dataset.

Model Graph Encoding Acc Prec Recall F1 AUC

codeAST AST code with best F1 77.82 78.2 73.11 75.57 77.55
aver. of 10 trainings 77.0 78.3 70.63 74.22 76.63

3prorASG ASG 3-prop with best F1 81.27 80.62 79.11 79.86 81.15
aver. of 10 trainings 80.81 79.68 79.36 79.51 80.73

codeAST+ AST+ code with best F1 75.67 73.32 75.7 74.49 75.67
aver. of 10 trainings 74.88 74.36 71.1 72.61 74.66

3propASG+ ASG+ 3-prop with best F1 80.94 79.85 79.4 79.63 80.85
aver. of 10 trainings 80.25 78.24 80.39 79.26 80.26

4.3.1. Best Performances

From the 10 times of training, the models with the best F1 value are considered to
be the best models. The evaluation results show that the DL models based on our graph
structures (ASG and ASG+) and 3-property encoding scheme outperform those based
on existing graph structures (AST and AST+) and code-based encoding in terms of the
F1 metrics over all the datasets. Among these datasets, Chromium+Debian is extremely
imbalanced and contains only 592 (6.92%) programs with vulnerability. Over this dataset,
our models perform significantly well with F1: 3propASG is 14.77% better than codeAST
and 3propASG+ is 18.73% better than codeAST+. These results are strong evidence that
our techniques improve the ability of models to infer the functionality of code. However,
we also see that when positive samples become more and more, although our techniques
still outperform the existing approaches, the difference in performance becomes less and
less. This observation in fact supports our discussion above—collecting more data will also
help the models using code-based encoding to combat the diversity of text representations.

4.3.2. Average Performances

We also include the average values of 10 trainings in these tables, which can serve as an
indicator of how sensitive a model is to the initialization of parameters. In our evaluation,
we see that the models based on code-based encoding approaches are especially sensitive
to the initialization of the extremely imbalanced dataset of Chromium+Debian. Out of
10 trainings, it occurred eight times that codeAST has no ability to predict any positive
samples and this happens only one time with 3propASG. With the codeAST+ model, this
occurs six times. Meanwhile, with 3propASG+, this occurs three times. The sensitivity to
initialization gradually decreases as the training data becomes larger. The sensitivity of
models to initialization can be observed from the results of the average of 10 trainings. But
what does the sensitivity to initialization mean? This is further evidence that it is difficult
for the models with code-based encoding to capture the functionality of code.

4.3.3. Basic Graph Structures vs. Extended Ones

The graph structures (AST+ and ASG+) extend AST and ASG with more semantic
information (data dependence, control dependence, and control flow). However, these
extended graphs do not bring significant benefits to the models. On the contrary, they
decrease the detection ability of the models for different metrics in comparison to the basic
structures. Flawed semantic dependencies between language constructs in code could
cause software vulnerability. So why does the integration of this information not contribute
to the detection of vulnerabilities? There might be two possible reasons that could lead
to the degradation of performance after the introduction of more information: (i) AST+
and ASG+ are much more complicated than AST and ASG. It becomes more difficult for
models to generalize the vulnerability patterns hidden in very complicated structures;
(ii) AST and ASG are well-defined and relatively easy to build. However, identifying the
data dependence, control dependence, and control flow in code is not a simple task, and
constructing high-quality AST+ and ASG+ is much more difficult. Joern is a great tool for
us to obtain AST+ and ASG+, but it currently has limited capabilities and may generate
inaccurate code graphs.

Information 2024, 15, 216 11 of 15

4.4. Quality, Representation and Separability

The quality of data ultimately determines what quality a DL model can achieve. To
analyze the quality of data and models, in this section, we will examine the representations
learned by the models and how well these representations separate positive (vulnerable)
from negative (non-vulnerable) samples. One way to do this is to visualize these represen-
tations and their separability. Two popular techniques for visualizing high-dimensional
data are t-SNE [48] and UMAP [49]. In this work, we are using the latter, because it can
preserve a more global structure and is computationally more efficient than t-SNE.

Figure 5 presents the representations learned and the classes detected by the four
models on the evaluation parts of the three datasets, where the representation is from the
hidden linear layer; the gray dots indicate correctly predicted negative samples (TN) and
the blue dots the correctly detected positive samples (TP); the red dots are the negative
samples which are wrongly detected as positive (FP) and the green dots are the positive
samples which are wrongly detected as negative (FN).

(a) Chr+Deb by codeAST (b) FFm+Qem by codeAST (c) VDSIC by codeAST

(d) Chr+Deb by codeAST+ (e) FFm+Qem by codeAST+ (f) VDSIC by codeAST+

(g) Chr+Deb by 3propASG (h) FFm+Qem by 3propASG (i) VDSIC by 3propASG

(j) Chr+Deb by 3propASG+ (k) FFm+Qem by 3propASG+ (l) VDSIC by 3propASG+

Legend: I True Negatives I True Positives
I False Positives I False Negatives

Figure 5. Representation, separability and prediction of the four models in the three datasets.

In Figure 5, we see that the representations learned by the models (3propASG,
3propASG+) based on our techniques are different from the representations learned by

Information 2024, 15, 216 12 of 15

the models (codeAST, codeAST+) based on existing techniques over different datasets and
different representations lead to different shapes of scatter plots. However, unfortunately,
from these scatter plots alone it is not obvious which representations are superior to the
others and which shape is better or worse. Nevertheless, we can still observe that the
models based on ASG, ASG+ and 3-property encoding produce fewer green and red points,
and thus make fewer false-positive and false-negative errors than the models based on AST,
AST+ and code-based encoding. This observation is supported by the concrete evaluation
results presented in Tables 3–5.

What we can see from these scatter plots is that (i) positive samples (blue and green
dots) interleave together with negative samples (gray and red dots), and (ii) in the areas
where the number of samples of a class dominates, mostly all samples of another class are
wrongly detected as the dominated class in that area. These facts mean that there is a low
separability of classes and it is really hard to find reasonably good boundaries to separate
them. This, in turn, indirectly shows that the representations based on our techniques are
better ones because they enable DL models to make better detection.

4.5. Memory Footprint

A huge advantage of our 3-property encoding is that it has very low memory require-
ments and can process very large code graphs in comparison to the existing code-based en-
coding. In our experiments, 8 GB of memory is enough to process all data using 3-property
encoding. In comparison, code-based encoding requires as much as 560 GB of memory.
With the 3-property encoding, the feature of each node is represented by only three tokens.
With code-based encoding, the feature of each node is represented by a piece of raw code.
Although different pieces of code will create different numbers of tokens and the minimal
node could contain only one token, all nodes are required to have the same number of
tokens. This means that all nodes in a code graph finally consist of the maximum number
of tokens.

Let #nodes be the number of nodes in a code graph, dim the dimension of token
embeddings, #tokens the maximal number of tokens in the graph, and each value consumes
4 bytes. The memory needed for processing a single graph of code is computed as follows:

3-property encoding: #nodes× 3× dim× 4
code-based encoding: #nodes× #tokens× dim× 4
code-based/3-property: #nodes×#tokens×dim×4

#nodes×3×dim×4 = #tokens
3

Let us use several samples from the Chromium+Debian dataset to demonstrate the effi-
ciency of our technique. Table 6 provides the memory footprint required by our 3-property
encoding and the existing code-based encoding for processing these samples. The com-
parison shows that our encoding scheme can be up to 32,000 times more efficient than the
code-based encoding.

Table 6. Memory needs of three samples from Chromium+Debian.

Code ID #Nodes #Tokens Code-Based 3-prop. Code-Based
/3-prop.

-6552851419396579257 4409 33,659 59 G 5.3 M 11,220
2388171415474875762 7012 54,157 152 G 8.4 M 18,052
5045872831385413038 12,077 96,805 468 G 14.5 M 32,268

More concretely, for the embeddings of 100 dimensions with 8 GB of main memory,
our 3-property encoding can process graphs with 7 million nodes, and with 128 GB of
main memory, it can handle graphs with 114 million nodes. As shown in Table 6, with the
code-based encoding, 128 GB main memory is not enough for the graph with 7012 nodes.
This explains why existing works [10,14] only use code samples with a number of nodes
less than 500.

Information 2024, 15, 216 13 of 15

4.6. Alleviating Vocabulary Explosion

Since there are infinitely many ways of naming identifiers in program code, the repre-
sentation learning approaches face the problem of vocabulary explosion. Our techniques
remove the variable names from code and this naturally brings the benefit of a smaller
vocabulary and, thus, mitigates the issue of vocabulary explosion. Table 7 exemplifies the
number of vocabularies generated by the existing code-based and our 3-property node
encoding schemes for the three datasets.

Table 7. Size of vocabulary generated by the code-based and our 3-property encoding schemes.

Dataset Code-Based 3-prop. 3-prop./Code-Based

Chromium+Debian 57,027 35,416 62.10%
FFmpeg+Qume 66,791 45,795 68.56%
VDSIC 449,148 312,948 69.68%

5. Summary and Conclusions

A challenge in deep learning-based software vulnerability detection is the infinity
and randomness of text representations of functionality in software code. Variable names
in code are one cause of this issue. In order to better cope with them, in this work, we
introduce edges of name dependence and a type of abstract syntax graph (ASG) extending
AST with this new type of edges and suggest a 3-property node encoding scheme based on
the ASG. These techniques not only allow us to represent the semantics of code without
using its variable names but also allow us to encode all nodes in a consistent way. These
characteristics will help DL models capture the commonalities and differences between
nodes and learn the intrinsic functionality of code more easily.

In order to evaluate our techniques, we develop two models for our techniques and
two baselines based on the existing graph structures and node encoding scheme, and
all the models are built on the gated graph encoding network and convolution network.
These models are trained on several real-world datasets from widely used open-source
projects and libraries (Chromium, Debian, FFmpeg and Qemu), and they are evaluated
using the five criteria (accuracy, precision, recall, F1 and AUC-ROC). The results of the
evaluation show that the models based on our techniques outperform the ones based on
existing approaches.

Apart from leading to better detection performance, our techniques have two further
advantages. One of them is that they naturally lead to the mitigation of the problem of
vocabulary explosion because the large variety of variable names is a key reason for this
problem. The other is that they have a very low memory footprint. Given a certain dimen-
sion of embeddings, the memory need of the 3-property encoding is linearly proportional to
the number of nodes in the code graph while the memory need of the code-based encoding
is linearly proportional to the product of the number of nodes and the maximal number
of tokens. For example, our techniques can process graphs with 7 million nodes with
8 GB memory given 100-dimension embeddings. To be able to process the datasets used
in the evaluation, the code-based encoding scheme needs up to 468 GB of main memory
while our techniques consume only 14.5 MB of main memory. The difference in memory
need is in a dimension of 32,000 and this is really amazing. Apart from its application in
software vulnerability detection, we believe that the 3-property encoding (with or without
variable names) will also be a useful technique for many tasks in software analysis and
software engineering.

Author Contributions: Conceptualization, J.G.; Methodology, J.G.; Software, J.G.; Validation, J.G.;
Formal analysis, J.G.; Data curation, J.G.; Writing—original draft, J.G.; Writing—review & editing,
S.G., D.S. and R.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Federal Ministry of Education and Research of Germany
under Grant Agreement No 16KIS1337.

Information 2024, 15, 216 14 of 15

Data Availability Statement: The datasets analyzed during the current study are publicly available from
the following links: https://drive.google.com/drive/folders/1KuIYgFcvWUXheDhT--cBALsfy1I4utOy;
https://osf.io/d45bw/; https://drive.google.com/file/d/1x6hoF7G-tSYxg8AFybggypLZgMGDNHfF/
view?pli=1.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

References
1. Brooks, T.N. Survey of automated vulnerability detection and exploit generation techniques in cyber reasoning systems. In

Proceedings of the Science and Information Conference, Semarang, Indonesia, 7–8 August 2018; pp. 1083–1102.
2. Henzinger, T.A.; Jhala, R.; Majumdar, R.; Sutre, G. Software verification with BLAST. In Proceedings of the Workshop on Model

Checking of Software, Portland, OR, USA, 9–10 May 2003; pp. 235–239.
3. Böhme, M.; Pham, V.T.; Roychoudhury, A. Coverage-based greybox fuzzing as markov chain. In Proceedings of the ACM

SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 1032–1043.
4. Stephens, N.; Grosen, J.; Salls, C.; Dutcher, A.; Wang, R.; Corbetta, J.; Shoshitaishvili, Y.; Kruegel, C.; Vigna, G. Driller: Augmenting

fuzzing through selective symbolic execution. In Proceedings of the NDSS, San Diego, CA, USA, 21–24 February 2016; pp. 1–16.
5. Johnson, B.; Song, Y.; Murphy-Hill, E.; Bowdidge, R. Why don’t software developers use static analysis tools to find bugs? In

Proceedings of the 2013 35th International Conference on Software Engineering (ICSE), San Francisco, CA, USA, 18–26 May 2013;
pp. 672–681.

6. Smith, J.; Johnson, B.; Murphy-Hill, E.; Chu, B.; Lipford, H.R. Questions developers ask while diagnosing potential security
vulnerabilities with static analysis. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
Bergamo, Italy, 30 August–4 September 2015; pp. 248–259.

7. Ayewah, N.; Pugh, W.; Morgenthaler, J.D.; Penix, J.; Zhou, Y. Evaluating static analysis defect warnings on production software.
In Proceedings of the 7th Acm Sigplan-Sigsoft Workshop on Program Analysis for Software Tools and Engineering, San Diego,
CA, USA, 13–14 June 2007; pp. 1–8.

8. Newsome, J.; Song, D.X. Dynamic taint analysis for automatic detection, analysis, and signaturegeneration of exploits on
commodity software. Proc. Ndss. Citeseer 2005, 5, 3–4.

9. Liu, B.; Shi, L.; Cai, Z.; Li, M. Software vulnerability discovery techniques: A survey. In Proceedings of the 2012 Fourth
International Conference on Multimedia Information Networking and Security, Nanjing, China, 2–4 November 2012; pp. 152–156.

10. Chakraborty, S.; Krishna, R.; Ding, Y.; Ray, B. Deep learning based vulnerability detection: Are we there yet. IEEE Trans. Softw.
Eng. 2021, 48, 3280–3296. [CrossRef]

11. Collobert, R.; Weston, J. A unified architecture for natural language processing: Deep neural networks with multitask learning.
In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 160–167.

12. Dahl, G.; Ranzato, M.; Mohamed, A.R.; Hinton, G.E. Phone recognition with the mean-covariance restricted Boltzmann machine.
Adv. Neural Inf. Process. Syst. 2010, 23, 1–9.

13. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

14. Zhou, Y.; Liu, S.; Siow, J.; Du, X.; Liu, Y. Devign: Effective vulnerability identification by learning comprehensive program
semantics via graph neural networks. Adv. Neural Inf. Process. Syst. 2019, 32, 1–11.

15. Li, Z.; Zou, D.; Xu, S.; Ou, X.; Jin, H.; Wang, S.; Deng, Z.; Zhong, Y. Vuldeepecker: A deep learning-based system for vulnerability
detection. arXiv 2018, arXiv:1801.01681.

16. Russell, R.; Kim, L.; Hamilton, L.; Lazovich, T.; Harer, J.; Ozdemir, O.; Ellingwood, P.; McConley, M. Automated vulnerability
detection in source code using deep representation learning. In Proceedings of the 17th IEEE International Conference on
Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 757–762.

17. Dam, H.K.; Tran, T.; Pham, T.; Ng, S.W.; Grundy, J.; Ghose, A. Automatic feature learning for vulnerability prediction. arXiv
2017, arXiv:1708.02368.

18. Zou, D.; Wang, S.; Xu, S.; Li, Z.; Jin, H. VulDeePecker: A Deep Learning-Based System for Multiclass Vulnerability Detection.
IEEE Trans. Dependable Secur. Comput. 2019, 18, 2224–2236.

19. Prömel, H.J. Complete disorder is impossible: The mathematical work of Walter Deuber. Comb. Probab. Comput. 2005, 14, 3–16.
[CrossRef]

20. Graham, R.L.; Rothschild, B.L.; Spencer, J.H. Ramsey Theory; John Wiley & Sons: Hoboken, NJ, USA, 1991; Volume 20.
21. Groppe, J.; Groppe, S.; Möller, R. Variables are a Curse in Software Vulnerability Prediction. In Proceedings of the 34th

International Conference on Database and Expert Systems Applications (DEXA 2023), Penang, Malaysia, 28–30 August 2023;
Springer: Berlin/Heidelberg, Germany , 2023; pp. 1–6.

22. Wang, S.; Liu, T.; Tan, L. Automatically learning semantic features for defect prediction. In Proceedings of the 38th International
Conference on Software Engineering, Austin, TX, USA, 14–22 May 2016; pp. 297–308.

https://drive.google.com/drive/folders/1KuIYgFcvWUXheDhT--cBALsfy1I4utOy
https://osf.io/d45bw/
https://drive.google.com/file/d/1x6hoF7G-tSYxg8AFybggypLZgMGDNHfF/view?pli=1
https://drive.google.com/file/d/1x6hoF7G-tSYxg8AFybggypLZgMGDNHfF/view?pli=1
http://doi.org/10.1109/TSE.2021.3087402
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1017/S0963548304006674

Information 2024, 15, 216 15 of 15

23. Lin, G.; Zhang, J.; Luo, W.; Pan, L.; Xiang, Y.; De Vel, O.; Montague, P. Cross-project transfer representation learning for vulnerable
function discovery. IEEE Trans. Ind. Inform. 2018, 14, 3289–3297. [CrossRef]

24. Pradel, M.; Sen, K. Deepbugs: A learning approach to name-based bug detection. Proc. ACM Program. Lang. 2018, 2, 1–25.
[CrossRef]

25. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

26. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692.

27. Kanade, A.; Maniatis, P.; Balakrishnan, G.; Shi, K. Learning and Evaluating Contextual Embedding of Source Code. arXiv 2020,
arXiv:2001.00059.

28. Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong, M.; Shou, L.; Qin, B.; Liu, T.; Jiang, D.; et al. Codebert: A pre-trained model
for programming and natural languages. arXiv 2020, arXiv:2002.08155.

29. Guo, D.; Ren, S.; Lu, S.; Feng, Z.; Tang, D.; Liu, S.; Zhou, L.; Duan, N.; Svyatkovskiy, A.; Fu, S.; et al. Graphcodebert: Pre-training
code representations with data flow. arXiv 2020, arXiv:2009.08366.

30. Wang, X.; Wang, Y.; Mi, F.; Zhou, P.; Wan, Y.; Liu, X.; Li, L.; Wu, H.; Liu, J.; Jiang, X. Syncobert: Syntax-guided multi-modal
contrastive pre-training for code representation. arXiv 2021, arXiv:2108.04556.

31. Du, Q.; Kuang, X.; Zhao, G. Code Vulnerability Detection via Nearest Neighbor Mechanism. In Proceedings of the Findings of
the Association for Computational Linguistics, Dublin, Ireland, 22–27 May 2022.

32. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach.
Intell. 2013, 35, 1798–1828. [CrossRef] [PubMed]

33. Li, Z.; Zou, D.; Xu, S.; Jin, H.; Zhu, Y.; Chen, Z. Sysevr: A framework for using deep learning to detect software vulnerabilities.
IEEE Trans. Dependable Secur. Comput. 2021, 19, 2244–2258. [CrossRef]

34. Yamaguchi, F.; Golde, N.; Arp, D.; Rieck, K. Modeling and Discovering Vulnerabilities with Code Property Graphs. In Proceedings
of the 2014 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 18–21 May 2014; pp. 590–604.

35. Yamaguchi, F.; Maier, A.; Gascon, H.; Rieck, K. Automatic inference of search patterns for taint-style vulnerabilities. In
Proceedings of the 2015 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 17–21 May 2015; pp. 797–812.

36. Fey, M.; Lenssen, J.E. Fast graph representation learning with PyTorch Geometric. arXiv 2019, arXiv:1903.02428.
37. Wang, M.; Zheng, D.; Ye, Z.; Gan, Q.; Li, M.; Song, X.; Zhou, J.; Ma, C.; Yu, L.; Gai, Y.; et al. Deep graph library: A graph-centric,

highly-performant package for graph neural networks. arXiv 2019, arXiv:1909.01315.
38. Ehrig, H.; Rozenberg, G.; Kreowski, H.J. Handbook of Graph Grammars and Computing by Graph Transformation; World Scientific:

London, UK, 1999; Volume 3.
39. Garner, R. An abstract view on syntax with sharing. J. Log. Comput. 2012, 22, 1427–1452. [CrossRef]
40. Wang, Y.; Li, H. Code completion by modeling flattened abstract syntax trees as graphs. In Proceedings of the AAAI Conference

on Artificial Intelligence, Virtual Event, 8 February 2021; pp. 14015–14023.
41. Fowler, M. Refactoring: Improving the Design of Existing Code; Addison-Wesley Professional: Boston, MA, USA, 2018.
42. Raghavan, S.; Rohana, R.; Leon, D.; Podgurski, A.; Augustine, V. Dex: A semantic-graph differencing tool for studying changes in

large code bases. In Proceedings of the 20th IEEE International Conference on Software Maintenance, Chicago, IL, USA, 11–17
Sepember 2004; pp. 188–197.

43. Li, Y.; Tarlow, D.; Brockschmidt, M.; Zemel, R. Gated graph sequence neural networks. arXiv 2015, arXiv:1511.05493.
44. Fukushima, K. Cognitron: A self-organizing multilayered neural network. Biol. Cybern. 1975, 20, 121–136. [CrossRef] [PubMed]
45. Groppe, J.; Schlichting, R.; Groppe, S.; Möller, R. Deep Learning-based Classification of Customer Communications of a German

Utility Company. In Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–16.
46. Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012.
47. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
48. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
49. McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2020,

arXiv:1802.03426.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TII.2018.2821768
http://dx.doi.org/10.1145/3276517
http://dx.doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338
http://dx.doi.org/10.1109/TDSC.2021.3051525
http://dx.doi.org/10.1093/logcom/exr021
http://dx.doi.org/10.1007/BF00342633
http://www.ncbi.nlm.nih.gov/pubmed/1203338

	Introduction
	Related Work
	Mitigating the Infinity and Randomness
	Feasibility Analysis
	Name Dependence for Removing Variables
	Property-Based Node Encoding Scheme

	Evaluation
	Models
	Datasets
	Prediction Performance
	Best Performances
	Average Performances
	Basic Graph Structures vs. Extended Ones

	Quality, Representation and Separability
	Memory Footprint
	Alleviating Vocabulary Explosion

	Summary and Conclusions
	References

