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Abstract: With the continuous increase in global energy demand and growing environmental aware-
ness, the utilization of renewable energy has become a worldwide consensus. In order to address the
challenges posed by the intermittent and unpredictable nature of renewable energy in distributed
power distribution networks, as well as to improve the economic and operational stability of dis-
tribution systems, this paper proposes the establishment of an active distribution network capable
of accommodating renewable energy. The objective is to enhance the efficiency of new energy uti-
lization. This study investigates optimal scheduling models for energy storage technologies and
economic-operation dispatching techniques in distributed power distribution networks. Additionally,
it develops a comprehensive demand response model, with real-time pricing and incentive policies
aiming to minimize load peak–valley differentials. The control mechanism incorporates time-of-use
pricing and integrates a chaos particle swarm algorithm for a holistic approach to solution finding.
By coordinating and optimizing the control of distributed power sources, energy storage systems,
and flexible loads, the active distribution network achieves minimal operational costs while meeting
demand-side power requirements, striving to smooth out load curves as much as possible. Case
studies demonstrate significant enhancements during off-peak periods, with an approximately 60%
increase in the load power overall elevation of load factors during regular periods, as well as a
reduction in grid loads during evening peak hours, with a maximum decrease of nearly 65 kW. This
approach mitigates grid operational pressures and user expense, effectively enhancing the stability
and economic efficiency in distribution network operations.

Keywords: comprehensive demand response; chaotic particle swarm optimization; economic
dispatch; renewable energy

1. Introduction

There is a continuous transition of the energy consumption structure from non-
renewable sources such as fossil fuels to renewable energy sources. The major objectives of
the global energy revolution include the extensive development and utilization of renew-
able energy sources, increasing the effective utilization rate of renewable energy, ensuring
the supply and security of renewable energy, and reducing environmental pollution.

At present, renewable energy is progressively emerging as a vital energy source in
active distribution grids [1]. The generation methods of distributed generation systems
utilizing renewable energy sources mainly consist of photovoltaic (PV) and wind power
generation. Both are significantly influenced by weather conditions and seasonal fac-
tors. Moreover, their generation periods differ. Wind power generation exhibits anti-peak
characteristics with greater distribution fluctuations, mainly during the nighttime, while
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photovoltaic generation [2] predominantly occurs during daylight hours, complementing
the temporal characteristics of wind power generation. At present, active distribution
grids can manage power flow through the network topology and actively control local
distributed energy resources. This enhances the distribution grid’s capacity to accommo-
date renewable energy sources and ensure power quality and supply reliability. However,
due to the randomness and volatility of renewable energy sources, which contribute to
increased peak-to-valley disparities in the distribution system, there are greater peak load
pressures, resulting in the phenomenon of “curtailment of solar power and wind power.”
Demand-side management plays an important role in enhancing the stability of the power
grid system when integrating renewable energy sources. It achieves this by improving
end-user electricity efficiency, altering consumption patterns, and alleviating electricity de-
mand pressures. The economic dispatch of distributed power grids is a significant research
area, involving a coordinated economic scheduling and management between distributed
energy resources (such as solar, wind, and energy storage systems) and conventional power
systems. The platform for power quality management in distributed power grids [3,4]
has emerged as a significant technology for harnessing renewable energy, offering vast
developmental potential and wide-ranging applications. In the current context of power
market liberalization, a comprehensive demand response, as a nascent business model in
the optimization scheduling of distributed power grids [5], holds a vast potential for devel-
opment. The optimal and efficient dispatch of demand-side resources in distributed power
grids has become a focal point of research for experts and scholars, both domestically and
internationally. Further research is needed to investigate the comprehensive and optimal
algorithms for multi-objective coordination optimization in active distribution networks [6],
as well as for a deeper investigation into the cost reduction aspects of distributed storage
and optimization strategies for demand response mechanisms under a distributed power
source integration.

The primary focus of the current research is on the degree of demand-side response
and the integration of renewable energy sources with unique characteristics, such as
wind and solar energy—on the one hand, actively adjusting the flexibility of the demand
side to enhance user satisfaction, while establishing an economic scheduling model to
policy-direct the comprehensive demand response capability on the user side; on the
other hand, leveraging the advantages of scheduling mechanisms to complement the
active grid and improve the utilization of renewable energy sources. The current research
places significant emphasis on optimization strategies that are based on demand response
mechanisms. There is an excessive focus on the responsiveness of the demand side, using
adjustment strategies or user satisfaction as the main means, without considering economic
scheduling advantages. Additionally, it overlooks the output characteristics and limitations
of renewable energy sources, which can lead to excessive dissipation and impact the overall
smooth operation of the grid.

Based on the above, in order to establish a more coherent, intelligent, and interactive
“source-grid-load-storage-charge” paradigm in the new distribution system, it is necessary
to integrate power market mechanisms and thoroughly explore the comprehensive demand
response potential on the user side, for optimal economic optimization scheduling [7]. In
this paper, an economic scheduling model based on a real-time electricity price response
mechanism, based on a price and incentive policy, is established. This model utilizes
time-of-use electricity pricing as a control measure, with the objective of minimizing load
peak–valley differentials within a comprehensive demand response framework. To enhance
the stability and economic efficiency of distribution network operations, the integration of
a chaotic particle swarm optimization algorithm is introduced for a holistic approach to
solution finding, thereby further reducing the operational costs of distributed power grids
and improving the utilization of clean energy.
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2. Related Literature

The literature related to this research topic can be broadly divided into four main
areas. The first area is the study of active distribution networks. The active distribution
network is a new solution for the flexible use of distributed energy, such as renewable
energy, controllable loads, energy storage systems, etc. It can not only stabilize the safety of
the overall power grid operation but also ensure the rapid deployment of various energy
dispatches. It is a new distribution network, in line with the current development trend of
renewable energy and accompanied by intelligent solutions, such as timely deployment.
The power grid can also offer an integrated deployment according to multiple optimization
objectives. An advanced active network management aims to coordinate power generation
and network and load optimization, while achieving an appropriate balance between
operational expenditure (OPEX) and capital expenditure (CAPEX) [8]. The second area is
the study of economic scheduling. Economic scheduling aims to optimize the economy of
a system by synthesizing the operating costs and profits of multiple pieces of equipment.
Generally, reducing the operating costs and profits is the main scheduling goal. The
third area is the study of chaotic particle swarm optimization. Compared with classical
particle swarm optimization, chaotic particle swarm optimization adds chaotic mapping to
facilitate a global solution. After comparing the solution targets, the optimal solution can
be implemented, and an overall optimization can be achieved. The fourth area is research
on demand response, extending customer participation to the field of the power system
and analyzing the paradigm shift of the power system from a unidirectional operation to
an interactive operation due to the progress of smart grid technology [9]. In the expected
development trend, the demand side will be an important means of maintaining the
stability of the power grid and adjusting the operation situation.

2.1. Research Status of Active Distribution Networks

Recent advancements in active distribution networks underscore the paradigm shift to-
wards integrated, dynamic grid management systems, incorporating distributed generation
(DG) optimization, substation reinforcement, and line expansion.

Koutsoukis et al. [10] proposed an innovative and comprehensive planning framework
that utilizes active distributed generation (DG) management to identify optimal deploy-
ment strategies, encompassing location selection, capacity determination, and investment
timing within the planning horizon. Xiang et al. [8] conducted a thorough analysis of
conventional planning methodologies, highlighting their limitations and suggesting a mul-
tidimensional approach to enhance active distribution network planning. This framework
effectively addresses the technological challenges and outlines the evolutionary trajectory
of network development. Yi et al. [11] emphasized the critical role of active distribution
networks in facilitating renewable energy integration, presenting strategies to manage the
uncertainty of renewable sources, while maximizing their utility. Koutsoukis et al. [12]
improved the planning method to incorporate uncertainties in load and renewable genera-
tion forecasts, using an opportunity-constrained programming model to optimize network
investments. Wan et al. [13] proposed a mixed-integer second-order cone programming
approach to optimizing active distribution networks, by considering a collaboration among
distributed flexible resources and conducting a case analysis, resulting in a significant
reduction of 47.9% in the daily operating costs and 75.2% in carbon emissions for ADNs.
Jiang et al. [14] proposed a robust optimization model for regional network planning, by
incorporating economic indicators to evaluate the benefits of new energy subsidies and
operational efficiency, while also summarizing the physical constraints of various devices
in regional active distribution networks. Kong et al. [15] proposed an optimal strategy
for targeting active management costs related to source–network–load, investigated cost
optimization strategies in active management, with a focus on load response and pricing in-
centives, and developed an opportunity-constrained optimization model that incorporates
Monte Carlo simulations to address uncertainties. Wang et al. [16] proposed a post-fault
network reconstruction strategy, aiming to optimize the selection strategy for segmented
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switches and grid-connected switches following distribution network faults. This model
enhances the utilization of distributed energy, maximizes the potential for power recovery
in distribution networks, and minimizes outage times for production–consumption groups.

With the continuous development of the power grid and renewable energy, the con-
trollable resources of the distribution network are increasing. Traditional one-way, passive
distribution networks are gradually evolving into bidirectional, dynamically coordinated
networks. However, the inherent randomness and variability of renewable energy pose
a significant challenge to the safe and stable operation of distribution networks. Energy
storage systems can provide additional energy storage and release capacity in the distribu-
tion network, meeting the priority conditions of economic scheduling and taking economic
cost as the first priority. The economic dispatching of active distribution networks mainly
relies on demand-side response as the economic dispatching mechanism to achieve the
best economic dispatching goal. In order to strengthen the economic benefits of dispatches,
experts and scholars at home and abroad have carried out the following studies.

2.2. Current Situation of Economic Dispatch Research

Li et al. [17] explored the interrelationship between economic scheduling and reactive
power scheduling and proposed a cooperative optimization strategy for dynamic power
grid scheduling, with two optimization methods. They also improved the multi-objective
hybrid Bat algorithm by using an unbalanced distribution method, which is suitable for dy-
namic power grid scheduling problems. At the same time, they investigated the influence
of wind power integration on power grid dispatching and demonstrated the effectiveness
of their strategy through real-time calculations. Jian et al. [18] provided a comprehensive
description of distributed economic scheduling methods for power systems and discussed
the system structure, performance requirements, and solution process. Additionally, they
presented examples of the advantages and disadvantages of the existing economic schedul-
ing algorithms, adding directional suggestions. Krishnamurthy et al. [19] emphasized
that the core of the power generation economic scheduling problem lies in scheduling the
output of the generator to meet the required load demand, while including equality and
inequality constraints; adding multi-criteria scheduling methods will extend the single
area and multi-area optimization of power system scheduling problems. Yalcino et al. [20]
utilized the novel Hopfield neural network structure for unconstrained economic schedul-
ing, considering transmission capacity constraints and other multi-economic scheduling
problems. They realized multiple quadratic programming problems with equality and
inequality constraints and tested them on different types of generator sets.

Compared with different economic dispatching schemes, multi-directional economic
dispatching schemes based on the environmental benefit, energy loss, power efficiency,
and other aspects are worth learning about. However, this paper focuses on the economic
direction of economic dispatch—that is, when the response ability of the demand-side
response is enhanced, the total income of the grid is increased, and the user’s daily electricity
purchase cost decreases to achieve a win–win policy, which is the main trend of economic
dispatch. At the same time, compared with simple economic scheduling based on the
feedback of a fixed electricity price at a previous time, this paper emphasizes a real-time
economic scheduling model, with strong feedback on the rise and fall of the electricity price;
of course, the economic scheduling model needs to be paired with corresponding learning
algorithms, such as the optimized particle swarm optimization algorithm mentioned in this
paper, which can realize the real-time learning of economic scheduling, so as to facilitate
accurate economic scheduling.

2.3. Research Status of Chaotic Particle Swarm Optimization

Cai et al. [21] discussed the application of a chaotic particle swarm optimization al-
gorithm based on a logistic equation and Tent equation for solving economic scheduling
problems under generator constraint. At the same time, they applied this algorithm to
two power system working conditions. Compared with the traditional particle swarm
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optimization algorithm, the chaotic particle swarm optimization algorithm reduces the
number of convergent iterations and the cost of solution generation, thereby potentially
yielding significant economic benefits. Liu et al. [22] further solidified the link between a
decentralized power supply and active distribution networks. They tackled the challenge
of managing the computational load across multiple scenarios by creating a comprehensive
time series model encompassing wind, photovoltaic, and load power dynamics. Their
primary aim was to mitigate network losses and voltage fluctuations. At the same time,
they introduced an enhanced simulated annealing particle swarm optimization algorithm.
This algorithm initializes the population’s position and velocity based on ecological fitness,
incorporates chaotic disturbance for inertia weight, and accelerates local search through
dynamic parameter learning. Through practical simulation examples, they demonstrated
the effectiveness and practicality of their approach. Huang [23] introduced a novel hybrid
model that integrates vector regression chaotic mapping with the particle swarm optimiza-
tion algorithm, to address a potential constraint inherent in the traditional particle swarm
optimization method. It was observed that this constraint could lead to stagnation and
reduced dynamism during the exploration of local optima, thereby adversely affecting
prediction accuracy. The introduced approach seeks to bolster prediction efficacy, striving
for a heightened precision in forecast outcomes. Peng et al. [24] proposed a chaotic particle
swarm algorithm with a dual fitness value for handling equality constraints, aiming to
address premature convergence and constraint-processing issues in particle swarm algo-
rithms. By incorporating a particle mutation process based on chaos mapping and utilizing
parametric equations to solve equality constraints, as well as considering inequality con-
straints through the use of dual fitness values, the algorithm enhances its global search
capability for engineering models. Kuru et al. [25] emphasized that the chaotic particle
swarm algorithm utilizes logistic mapping and Henon mapping as chaotic mappings to
regulate the parameter values in the velocity update formula, facilitating the identification
of critical voltage stability thresholds. Subsequently, the chaotic particle swarm algorithm
has been further developed for the more efficient resolution of boundary value problems.
Cai et al. [26] investigated the economic scheduling problem of the valve effect in power
systems and proposed algorithms based on chaotic particle swarm optimization and se-
quential quadratic programming technology. The main optimization was achieved using
chaotic particle swarm optimization, while the fine-tuning and improvement of results were
carried out using quadratic programming. Finally, the study discusses the economic im-
pact, solution quality, convergence, and computational efficiency of the proposed method,
verifying its applicability and effectiveness in practical economic scheduling problems. Qin
et al. [27] investigated a comparison between the L1 norm support vector machine and L2
norm support vector machine, and proposed a comprehensively improved double-positive
norm support vector machine, which is suitable for analyzing data sets with small samples
in each variable but a high dimensionality and correlation. However, the accuracy of the
final experiment can be easily affected when selecting the training parameters of the model.
Therefore, the chaotic particle swarm optimization algorithm is utilized to select the model
parameters and assist in analyzing the data set, using the double-positive norm support
vector machine. The experiment demonstrates that the improvement effect is significant.

The existing economic scheduling model proposes that the chaotic particle swarm
optimization algorithm can effectively solve the economic scheduling problem, even when
the optimization objectives are not identical. It is capable of achieving global solutions.
Specifically, compared to the particle swarm algorithm, the addition of chaotic mapping
enables the particle swarm algorithm to break free from fixed global solutions and integrate
multi-directional constraints for global optimization. Chaotic mapping also facilitates
global searching, thereby increasing the calculation speed and accuracy, while reducing
costs. Therefore, in the economic scheduling model, chaotic particle swarm optimization
demonstrates strong adaptability. Additionally, the chaotic particle swarm simplifies the
user load demand-side response and uses evolutionary learning to simulate different
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load types’ responses to real-time electricity prices, in order to achieve optimal economic
dispatch—maximizing grid benefits and minimizing user power purchase costs.

2.4. Demand Response Research Status

The realm of demand response (DR) has garnered considerable attention as a strategic
component of grid management, aiming to bridge the gap between supply and demand
through consumer engagement and technological integration.

Kwag et al. [9] utilized customer information as registration and engagement data for
the demand response (DR), assessing customer response metrics and employing modeled
information to manipulate and express certain DR constraints, accompanied by various
status indicators. They proposed an optimal dispatch, integrating power generation and
disaster recovery by minimizing system operating costs (including generation and disaster
recovery costs) and adhering to generation and disaster recovery constraints. Yang et al. [28]
established a peak–valley periodization model based on fuzzy clustering and iterative
techniques, with the objective of maximizing the silhouette coefficient. They introduced a
multi-objective electricity time–price optimization model considering the interests of both
the supply and demand sides, employing a third-order Hermite interpolation algorithm to
fit the Pareto front curve of the dual-objective function. They utilized a backpropagation
neural network algorithm to derive the time–price corresponding to reliability demands,
and validated the proposed model and algorithm using the RBTS system, demonstrating
their method’s rationality and effectiveness. Yu et al. [29] developed a dynamic economic
model combining Event-Driven Response Programs (EDRPs) with time-of-use (TOU)
schemes. Considering concepts of customer utility functions and demand elasticity, they
devised various DRP alternative schemes, allowing independent system operators to select
the optimal DRP reflecting their perspectives. Multiple Attribute Decision Making (MADM)
was identified as an effective method for enhancing customer satisfaction and load curve
characteristics. Lynch et al. [30] designed a novel approach to estimate the contribution
of load transfer demand response resources to system adequacy. They employed a mixed
complementary model to simulate the electricity market, determining the impact of demand
response participation in the capacity market on market outcomes. Their findings suggested
that demand response participation in capacity markets could alleviate some market
challenges associated with renewable energy integration, particularly the “missing money”
issue. Won et al. [31] analyzed the electricity demand reduction effects exhibited by demand
response plans in the smart grid environment. Their analysis encompassed target demand
response systems, including incentive-based load control systems and price-based demand
response systems currently implemented in South Korea. Samimi et al. [32] proposed a
real-time interactive pricing scheme, utilizing a dual decomposition based on Lagrangian
relaxation to separate the social welfare optimization problem from numerous consumer
sub-problems into a retailer problem. They employed a gradient projection method for
solving it, aiming to maximize the social welfare of participants in real-time demand
response schemes in smart grids. Wang et al. [33] presented a multi-objective optimal
scheduling strategy for residential load resources, with objectives including enhancing user
comfort, user income, and load aggregator revenue. Considering various disaster resilience
potentials and residential user participation willingness, they constructed a comprehensive
evaluation system for user DR potentials. They conducted a simulation analysis using
real regional residential load data, demonstrating that their optimization model could
effectively enhance user satisfaction, while ensuring load aggregator and user benefits.

Based on the above research, considering the user’s expectation of the reliable opera-
tion of active distribution networks, the economic scheduling optimization of the active
distribution network is carried out, the demand-side response is used as the response
method, and the chaotic particle swarm optimization algorithm is used for overall learning
to achieve the economic optimal goal.
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3. Method
3.1. Chaotic Particle Swarm Optimization

Chaotic particle swarm optimization (CPSO) is the enhanced version of the traditional
particle swarm optimization (PSO) algorithm, which uses the principles of chaos theory
to explore space and avoid local optimality. CPSO achieves this by integrating nonlinear
chaotic mapping functions into the velocity-updating equations of particles. These chaotic
functions exhibit nonlinearity, unpredictability, and sensitivity to initial conditions, enabling
CPSO to explore the search space more dynamically. The velocity update equation for
CPSO can be expressed as follows:

vij(t + 1) = wvij(t) + c1r1
(

pbestij − xij(t)
)
+ c2r2

(
gbestj − xij(t)

)
+ α f

(
u
(
vij(t)

))
(1)

where vij(t) represents the velocity of particle i in time t of dimension j, and xij(t) represents
the position of particle i in time t of dimension j. pbestij represents the best position visited
by particle i in the j dimension, and gbestj represents the best position visited by any
particle in the j dimension. Of course, in the whole calculation process, the representative
particles are mainly the response parameters on the demand side. w is the inertia weight,
c1c2 is the acceleration constant, and r1r2 is a random number from 0 to 1. α is the scale
coefficient. f is the chaotic mapping function, just like q(t) above, that is, the real-time
electricity price in the t period. The chaotic mapping function is the optimization core of
chaotic particle swarms, and the mapping form is as follows:

q(t + 1) = αq(t)(1 − q(t)) (2)

When α = 4, the system enters a chaotic state, and the chaos variable traverses all
states between [0, 1]. Therefore, in the process of traversal, it will have more advantages
than a random search for obtaining the local optimal solution in a comprehensive manner.
Of course, the constraint conditions need to be addressed later.

3.2. Economic Dispatching Design of Distribution Networks

First, establish a comprehensive demand response model under a real-time electricity
pricing mechanism. The load at time period t can be classified into three categories: easily
shiftable load, substitutable load, and rigid load. Then, mathematically model each type
of load based on its characteristics to obtain the response load model under real-time
electricity pricing. Next, develop an economic dispatch model for hybrid AC/DC distri-
bution networks with the objective of maximizing revenue. The constraints include a
power balance constraint, bidirectional converter power limit, interruption load capacity
limit, real-time electricity pricing constraint, remaining available capacity constraint, con-
straints on the output limits of distributed energy resources energy storage systems, and
constraints on controllable unit ramp rates, among others. Finally, solve the model using
the chaotic particle swarm optimization algorithm to obtain the corresponding results. The
optimization process of the particle swarm optimization algorithm is shown in Figure 1.
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3.3. Optimal Scheduling Model of Demand-Side Response Active Distribution Network

First, establish the response model of load to price. The load PL(t) of the distribution
network at time period (t) under time-of-use pricing is divided into the following three
categories. As shown in the equation below:

PL(t) = PL−I(t) + PL−I I(t) + PL−I I I(t) (3)

The equation above categorizes the load (PL(t)) into three types: the first type is the
easily transferable load, denoted as a type I load (PL−I(t)), where user response to changes
in electricity price typically involves shifting a portion of the load between different time
periods, and thus a load transfer rate model can be applied; the second type is the easily
substitutable load, denoted as a type II load (PL−I I(t)), meaning user response to changes
in electricity price often involves conserving energy or substituting part of the load with
other sources; the third type is the rigid load, denoted as a type III load (PL−I I I(t)), where
the impact of price changes on this portion of the load can be neglected.

Type I load:
To begin with, the day is divided into T time periods, where I = {i1, i2, · · · , im}

represents the periods when real-time electricity prices exceed the original prices (with m
being the number of such periods). Similarly, J = {j1, j2, · · · , jn} denotes the periods when
real-time electricity prices fall below the original prices (with n representing the number of
such periods). According to this arrangement, there is an increase in real-time electricity
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prices during time period t1 and a decrease during time period t3. The transfer out and the
absorption of charges can be mathematically expressed as follows.

∆PL(t1, t2) = f [∆p(t1)]|∆p(t2)|PL(t1)/ ∑
k∈J

|∆p(k)|

∆PL(t4, t3) = f [∆p(t3)]|∆p(t4)|PL(t3)/ ∑
k∈I

|∆p(k)| (4)

where t1, t4 ∈ I, t2, t3 ∈ J. (∆p(t)) represents the difference between the real-time electricity
price set for time period (t) and the original base price. (∆PL(i, j)) represents the transfer of
load from time period (i) to time period (j). ( f (∆p)) denotes the load transfer rate function.
The equation below describes the relationship between the load transfer rate in each time
period and the change in electricity price, categorizing the reflection of load transfer rates
on electricity prices into a dead zone, linear zone, and saturation zone.

f (∆p) =


0 , 0 ⩽ ∆p ⩽ a

K(∆p − a), a ⩽ ∆p ⩽ fmax
K + a

fmax, ∆p ⩾ fmax/K + a

(5)

where (∆p) represents the absolute value of the change in electricity price. ( fmax) is the max-
imum load transfer rate in the protection zone. (a) is the dead zone threshold. ( fmax/K + a)
denotes the inflection point in the saturation zone, where (K) is the slope of the linear zone
transfer rate curve.

Based on the real-time electricity price, compute the load transfer distribution for each
time period to determine the load response level for the type I load. Equation (4) is used for
the calculation when the price at time (t) is higher than the original price, while Equation (5)
is utilized when the real-time electricity price in time period (t) is lower than the original price.

Pλ
L−I(t) = PL−I(t)− ∑ k∈J ∆PL−I(t, k) t ∈ I (6)

Pλ
L−I(t) = PL−I(t) + ∑ k∈I ∆PL−I(t, k) t ∈ J (7)

where (Pλ
L−I(t)) represents the level of the type I load after responding to time-of-use

electricity prices for time period (t).
Type II load:
This load category approximates the demand response to price changes in time period

(t) using the price elasticity coefficient (est). Define the elasticity matrix (E) as shown in the
following equation:

E = (est) T∗T (8)

est = (∆PL(s)/PL(s))/(∆p(t)/p(t)) (9)

where (PL(s)) represents the original load power of the type II load in time period ( s), while
(∆PL(s)) denotes the change in load power response to time-of-use electricity prices in time
period (s). The diagonal elements of the elasticity matrix are all negative, representing self-
elasticity coefficients, while the remaining elements are positive, indicating cross-elasticity
coefficients. (p(t)) represents the original level of time-of-use electricity prices.

For a type II load, after implementing the real-time electricity price, the variation in
load level for each time period is set, along with the responsive load (Pλ

L−I I(t)), under the
real-time electricity price. It can be expressed as follows:

∆PL−I I(t)
PL−I I(t)

= ∑n
t=1 est∆p(t)/p(t) (10)

Pλ
L−I I(t) = ∆PL−I I(t) + PL−I I(t) t = 1, 2, . . . . . . , T (11)

Type III load:
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The type III load is essentially defined as being inflexible, assuming that its load de-
mand is not influenced by the implementation of real-time electricity prices. The responsive
load under the real-time electricity price can be formulated as follows:

Pλ
L−I I I(t) = PL−I I I(t) (12)

In summary, the comprehensive real-time price demand response model for the
three types of loads can be represented by the responsive load (Pλ

L (t)) as shown in the
following equation:

Pλ
L (t) = Pλ

L−I(t) + Pλ
L−I I(t) + Pλ

L−I I I(t) (13)

Building upon this, a demand-side response model based on the real-time electricity
price mechanism is proposed to solve for the responsive load.

3.3.1. Objective Function

Then, the objective function is defined as the maximum profit of the efficient operation
of the distribution network within a day, as shown in the following equation:

maxF = R − Ctotal (14)

where R represents the daily revenue of the active distribution network and Ctotal represents
the total operating cost of the distribution network within a day.

∑T
t=1

[
γ q(t)Pt,λ

L + (1 − γ)αq(t)Pt,λ
L

]
(15)

where T represents the number of time periods within a day. (Pt,λ
L ) represents the responsive

load in time period t, which is determined by the real-time electricity price in the network.
γ represents the proportion of interruptible load, and α represents the compensation price
coefficient for the interruptible load. It is assumed that the proportion of the interruptible
load remains stable. (q(t)) represents the real-time electricity price within time period t.

Ctotal =
T

∑
t=1

[
fMT

(
Pt

MT
)
+ fFC

(
Pt

FC
)
+ ∑M

i=1 fOM−i
(∣∣Pt

i
∣∣)+ Pt

grid qt
grid + βq(t)Pt

cut

+q(t)

[
∑l1

k=1

(
Pt

k
)2

+
(
Qt

k
)2(

ut
k
)2 Rk + ∑l2

m=1

(
Pt

m
)2

(ut
m)

2 Rm

]] (16)

where ( fMT
(

Pt
MT

)
) represents the fuel cost function of internal combustion engines.

(Pt
MT) denotes the output of internal combustion engines in time period t. ( fFC

(
Pt

FC
)
), on

the other hand, represents the fuel cost function of fuel cells, while (Pt
FC) represents the

output of fuel cells in time period t. ( fOM−i) represents the operating and maintenance cost
function of the i-th device, where M represents the total number of devices. (Pt

i ) represents
the output of the i-th device in time period t, for which maintenance costs are incurred.
(Pt

grid) represents the power exchange between the distribution network and the external
grid in time period t, while (qt

grid) represents the time-based electricity price of the external
grid in time period t. β represents the interruption compensation coefficient, where the
compensation price is calculated as a multiple of the specified price. (Pt

cut) represents the
total interrupted load in time period t. (l1) represents the total number of AC branches,
while (l2) represents the total number of DC branches. Pt

k, Qt
k denote the active power

and reactive power transmitted on the k-th AC branch in time period t, respectively. ut
k,

ut
m represent the effective voltage values of the k-th AC branch and the m-th DC branch,

respectively. (Rm) represents the resistance of the m-th DC branch.

3.3.2. Constraint Condition

Power balance constraint:
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This paper establishes power balance constraints for the distribution network model.
In the distribution network, the power balance constraints include both AC and DC power
balance constraints, as shown in the following equations:

Pt
grid + Pt

MT + Pt
WT + Pt

cut,AC = Pt
ILC + Pt,λ

L−AC + Pt
B−AC (17)

Pt
B−AC

(
Pt

grid + Pt
MT + Pt

cut,AC

)
= 0 (18)

Pt
grid + Pt

PV + Pt
SB + Pt

FC + Pt
cut,DC = Pt,λ

L−DC + Pt
B−DC (19)

Pt
B−DC

(
Pt

FC + Pt
SB + Pt

cut,DC
)
= 0 (20)

where (Pt,λ
L−AC) represents the load responsive to real-time electricity prices on the AC side

in time period t. (Pt,λ
L−DC) represents the load responsive to real-time electricity prices on

the DC side in time period t. (Pt
SB) represents the output of the battery on the DC side

in time period t, where positive and negative values indicate charging and discharging,
respectively. (Pt

cut,AC) represents the power of the interrupted load on the AC side in time
period t, and (Pt

cut,DC) represents the power of the interrupted load on the DC side in time
period t. When formulating real-time electricity prices in highly penetrated distribution
networks, if the output of controllable sources is uncertain but can meet the operational
requirements independently, the controllable source output will be stored. In this case, the
imbalance power on both the AC and DC sides is greater than or equal to 0. However, if the
output of controllable sources is uncertain but cannot meet the operational requirements,
the controllable source output will be used, and electricity will be purchased from the
external grid. In this situation, the imbalance power on both the AC and DC sides is equal
to 0. The imbalance power should also satisfy the following constraints:

Pt
B−AC ≥ 0, Pt

B−DC ≥ 0 (21)

Upper limit constraint on interrupted load capacity:

Pt
cut,AC ≤ Pmax

cut,AC, Pt
cut,DC ≤ Pmax

cut,DC (22)

where Pmax
cut,AC and Pmax

cut,DC represent the interruptible load capacities that users have signed
for, for the AC and DC sides, respectively.

Real-time electricity price formulation constraint:

∑T
t=1

(
Pt,λ

L−AC + Pt,λ
L−DC

)
q(t)

∑T
t=1

(
Pt,λ

L−AC + Pt,λ
L−DC

) ≤
∑T

t=1

(
Pt,λ

L−AC + Pt,λ
L−DC

)
qt

grid

∑T
t=1

(
Pt,λ

L−AC + Pt,λ
L−DC

) (23)

In the aforementioned formulas, it is demonstrated that, under the real-time electricity
price mechanism, the average purchase price of electricity for users is lower than the price
of purchasing electricity from the external grid.

Constraint on remaining available power capacity:
The above formulas demonstrate that, under the real-time electricity price mechanism,

it is proven that the average electricity purchase price for users is lower than the price of
purchasing electricity from the external grid.

Constraint on remaining available power capacity:

Pt
cut,AC

(
Pmax

grid + Pmax
MT − Pt

grid − Pt
MT

)
= 0 (24)

Pt
cut,DC

(
Pmax

FC + Pmax
SB − Pt

FC − PT
SB

)
= 0 (25)
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where (Pmax
grid ) represents the upper limit of the power exchange between the AC side and

the external grid. (Pmax
FC ), (Pmax

SB ), and (Pmax
MT ) are the discharge power limits for fuel cells,

batteries, and internal combustion engines, respectively.
Constraint on node voltage:

Ui min ≤ Ui ≤ Ui max (26)

where (Ui min) and (Ui max) represent the lower and upper limits, respectively, of the
nodal voltage.

Branch current constraints:
Ij ≤ Ij max (27)

In the above equations, (Ij max) represents the maximum current value that can flow
through branch (j).

Constraints on controllable DG (distributed generation) output:
The ramp rate constraint for controllable DG is as follows:

PDG,i(t − 1)− PDG,i(t) ≤ DDG,i

PDG,i(t)− PDG,i(t − 1) ≤ UDG,i

(28)

In the above equations, (PDG,i(t)) and (PDG,i(t − 1)) represent the power of controllable
DG (i) at time (t) and (t − 1) respectively. (UDG,i) and (DDG,i) represent the upper and lower
limits of the ramp rate for DG (i).

Constraints on energy storage operation:
Charge and discharge power constraints:

PESSch,i(t) ≤ PESSch,max

PESSdis,i(t) ≤ PESSdis,max

(29)

In the above equations, (PESSch,i(t)) and (PESSdis,i(t)) represent the maximum charging
and discharging power of the energy storage system (ESS) during time period (t).

Constraints on state of charge (SOC) upper and lower limits:

SOCi min ≤ SOCi(t) ≤ SOCi max (30)

In the above equations, (SOCi(t)) represents the state of charge (SOC) of the energy
storage system (ESS) at time (t), while (SOCi min) and (SOCi max) represent the minimum
and maximum SOC values for the i-th energy storage device. Additionally, it is required
that the initial and final SOC of the energy storage battery should be equal when the energy
storage is completed.

4. Experiments
4.1. Solving the Optimization and Scheduling Model for Active Distribution Network with
Demand Response Referred
4.1.1. Constraint Processing

In order to prevent the controllable distributed generation (DG) from exceeding the
upper and lower limits of its output, constraints on the ramp rate of the controllable DG
are applied.

PDG,i(t) = max
[

min(PDG,i(t), PDG,i(t − 1) + UDG,i)
PDG,i(t − 1)− DDG,i

]
(31)

If the output of the controllable PDG,i(t) > PDG,i(t − 1) + UDG,i then the upper limit
value is taken as PDG,i(t − 1) +UDG,i. On the other hand, if PDG,i(t) < PDG,i(t − 1)−UDG,i
then the lower limit value is taken as PDG,i(t − 1) − UDG,i. This is done to prevent the
excessive charging or discharging of energy storage systems.
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These adjustments are made to ensure that the controllable DG operates within speci-
fied limits and avoid the overcharging or discharging of energy storage.

Additionally, if the state of charge (SOC) of the energy storage system,
SOCi(t + 1) > SOCi max then the upper limit value, SOCi max is taken:

PESS,i(t) =
Eess,i(SOCi(t)− SOCi max)

ηC,i
(32)

If the state of charge (SOC) of the energy storage system, SOCi(t + 1) < SOCi min then
the lower limit value, SOCi min is taken:

PESS,i(t) = Eess,i(SOCi(t)− SOCi max)ηd,i (33)

4.1.2. Solution Step

Step 1: Input the relevant parameters of the active distribution network, including the
structural parameters of the distribution network, wind and solar power generation output
data, and response parameters. The model employs a hybrid particle swarm optimization
algorithm with 200 iterations, a learning speed reduction factor of 0.8, and incorporates
30 iterations of chaotic search.

Step 2: Initialize the demand response population by considering real-time electricity
prices as the control target and randomizing both velocity and position to represent particles
in demand response.

Step 3: Update the particle velocity and position using chaotic particle swarm opti-
mization to optimize the peak-to-valley difference in load as an objective function.

Step 4: Verify if the demand response criteria are met. If the maximum iteration count
is reached, obtain the optimal solution—which is represented by the load curve for the
next day as output—while calculating cost based on electricity price. Otherwise, continue
the computation.

Step 5: Initialize the population for optimization and scheduling. The controllable
objects include controllable DGs, energy storage, and loads. Randomize the velocity and
position of the optimization and scheduling population, and calculate the fitness of particles
based on the objective function.

Step 6: Update the particle velocity and position, using the objective of minimizing
the operating cost of the distribution network, to continue solving the scheduling model.

Step 7: Check if the conditions are met. If yes, output the optimal solution. Otherwise,
continue the calculation.

For the load response model based on real-time electricity prices, a simulation and
emulation of the power output are necessary to validate the capability of load response.

4.2. Example Simulation and Result Analysis
4.2.1. Simulation System and Parameter Setting

This study utilizes a model of a distribution network for residential load supply,
where the lines in the network exhibit an impedance per unit of 0.642 + j0.101 Ω/km. The
operational constraints encompass both wind and solar power generation systems, with an
installed capacity of 1 MW each.

An energy storage system is also present, possessing technical parameters and a
charging/discharging efficiency of 0.4 MW/(2 MW·h) and 0.96, respectively. The energy
storage unit’s state-of-charge (SOC) range spans from 0.2 to 0.9, while the cost per unit
electricity stored is set at 0.12 CNY/kWh. The reference electricity price varies throughout
different pricing periods: from midnight until 7:00 a.m., it decreases to 0.48 CNY/kWh.
From 9:00 a.m. to 11:00 a.m., it increases to 1.35 CNY/kWh. Throughout the afternoon
hours (12:00 p.m.–18:00 p.m.), the electricity price is 0.9 CNY/kWh.
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4.2.2. Simulation Result Analysis

The simulation scenarios in this paper are divided into cases based on annual and
daily units. In the unit of years, the average load response and average price of each time
point in each season of spring, summer, autumn, and winter is selected as the research
representative, and three operation scenarios are devised:

Scenario 1: Seasonal load response model based on wind power generation.
Scenario 2: Seasonal load response model based on solar power generation.
Scenario 3: Seasonal load response model based on controllable load.
Scenario 1 investigates the seasonal load response model by considering wind power

generation and real-time electricity prices. Wind power generation plays a crucial role in
influencing the power grid, without relying on energy storage systems or demand-side
resource scheduling. This implies that a significant portion of the transferable load is shifted
from the demand side through the distribution network to regulate the overall demand.
Such an approach becomes essential to address the integration challenges associated with
wind power generation. Without implementing measures for load adjustment, it would lead
to operational difficulties for the distribution network, resulting in substantial economic
losses and jeopardizing the secure operation of the power grid. The simulation results are
shown in Figure 2.
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Compared to Scenario 1, Scenario 2 highlights the distinct impact of solar power
generation on the distribution network. It showcases specific characteristics, such as
its ability to generate power intermittently during certain periods, particularly at night
when demand is high. As a result, the inherent nature of solar power limits the real-time
perception of electricity prices by the demand-side load. However, there is a moderate
reduction in the demand-side load during the peak morning usage period due to the
availability of solar power generation. The simulation results are shown in Figure 3.
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Scenario 3 leverages the controllable load that remains to achieve real-time responsive-
ness to price fluctuations on the demand side. Additionally, the controllable load closely
aligns with the optimization model of traditional distribution networks. However, it falls
short in terms of achieving a sufficient capability for shifting loads. Relying solely on
optimizing the existing load schedule means that there is no possibility of altering the
overall electricity supply. As a result, while some valley-filling requirements can be met,
the level of optimization remains inadequate. The simulation results are shown in Figure 4.

After conducting an extensive analysis of the four seasons and optimizing the real-time
price load response for wind power, solar power, and controllable load, we have determined
that relying solely on the existing controllable load for the demand-side load response can
only meet the requirement of an increasing transferable load during low-priced periods
and by reducing the load during high-priced periods. However, it still does not address
the issue of high demand during peak load periods. Wind power generation can contribute
to load reduction. However, in certain low-priced periods, if the load is not increased, it
cannot fully absorb fluctuations in wind power generation output. Solar power generation
exhibits time-dependent characteristics and cannot meet electricity demand at higher prices
in the evening. Therefore, it is crucial to consider overall distributed energy resources to
effectively manage demand-side response requirements.

In order to understand the optimization effect of the result more clearly, this paper an-
alyzes the optimization effect of the economic scheduling of wind power generation within
a day, changes the proportion of the three types of load for residential users and industrial
users, calculates the single day cost, and use the classical particle swarm optimization
algorithm to make a comparison.
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As shown in Figure 5, the current distribution of the three types of loads is 0.7:0.2:0.1
for the transferable load, substitutable load, and inflexible load, respectively. This allocation
is suitable for residential users, due to their higher reliance on transferable loads and a
smaller proportion of inflexible loads. However, in the case of the demand-side response for
industrial users, there exists a greater presence of inflexible loads and a reduced proportion
of transferable and substitutable loads. Consequently, the distribution of the three types
of loads is adjusted to 0.35:0.2:0.45 for transferable load, substitutable load, and inflexible
load. The simulation results are shown in Figure 6.
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Following the adjustment of the load proportions, the results of the load response
indicate a significant increase in power consumption during low-priced periods compared
to the pre-response load, and a slight reduction in load power during high-priced periods.
This confirms the ability to categorize users based on variations in load proportions.

After optimization by the chaotic particle swarm optimization algorithm, it can be
found that, when the demand side of the distribution network adopted the real-time elec-
tricity price mechanism for residential users, the daily electricity purchase cost decreased
by CNY 133.71. When the demand side was for industrial users, the cost of purchasing
electricity per day fell by CNY 154.75. At the same time, the daily load income of the
distribution network increased by nearly CNY 1588.8.

In order to validate the efficacy of the algorithm optimization, this paper uses the
classical particle swarm optimization algorithm for comparison. For residential users,
when the ratio of transferable load/substitutable load/rigid load is set to 0.7:0.2:0.1, the
optimization results using the classical particle swarm optimization algorithm are shown in
Figure 7. For industrial users, when the ratio of transferable load/substitutable load/rigid
load is set to 0.35:0.2:0.45, the optimization results using the classical particle swarm
optimization algorithm are shown in Figure 8.
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After optimization using the classical particle swarm algorithm, the simulation results
are shown in Figures 7 and 8. In response to the afterload, the peak of the afterload is 1–4 h,
the response to the afterload continues to decline from 1 to 8 h, and the load trough is
formed from 8 to 9 h. During the period from 9 to 18 h, the response to the afterload is
generally rising, and then the response to the afterload decreases in the period 18–23 h,
rises to 300 kw in the period 23–24 h, and then reaches the peak load again. In response
to the preload, the response to the preload continues to be 200 kw during the period of
1–4 h, and then in the period of 4–8 h, the response to the preload continues, and the
load trough becomes 8–9 h. During the period of 9–18 h, the load fluctuation rises and
recovers to 200 kw, and then peaks at 18–24 h and maintains 200 kw unchanged. Through
calculation, it can be found that, when the demand side of the distribution network adopts
the real-time electricity price mechanism for residential users, the daily electricity purchase
cost decreases by CNY 89.28. When the demand side is for industrial users, the cost of
purchasing electricity per day drops by CNY 103.33. At the same time, the daily load
income of the distribution network increased by nearly CNY 1096.7.

The optimization effects of the chaotic particle swarm optimization algorithm and
the particle swarm optimization algorithm can be obtained not only from the comparison
of the optimization results, but also from the trends in response to real-time electricity
prices. Compared with the chaotic particle swarm optimization algorithm, the optimization
efficiency of the classical particle swarm optimization algorithm is reduced by 49.7%. At the
same time, the daily revenue comparison of the distribution network falls by nearly 45%. In
the stable price range of 19–23 h, the classical particle swarm optimization algorithm lacks
the comprehension of a global solution and is limited to the minimum optimization in this
period, ignoring the overall optimization effect. Additionally, in the two nodes of 9 h and 24
h, where the price changes rapidly, the classical particle swarm optimization algorithm does
not respond quickly enough. Instead, it computes by extending the comprehensive price
from the previous time interval, rather than mapping the price for that specific timeframe.

Compared with chaotic particle swarm optimization, classical particle swarm opti-
mization is weaker in calculation accuracy and reaction speed. Therefore, chaotic particle
swarm optimization has a clear advantage in economic scheduling.

5. Conclusions

The management of operational costs in a decentralized power grid is a complex
task, due to uncertainties arising from the response of distributed energy users. Moreover,
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the integration of renewable energy sources into the grid can have negative impacts,
posing challenges to both the stability and economic feasibility of decentralized power grid
operations. Therefore, it has become crucial to prioritize research efforts towards enhancing
the stability and economic viability of these operations. While ongoing studies are exploring
potential solutions for these issues, there remains a need to investigate efficient methods that
effectively balance economic considerations with reliable scheduling techniques. Given the
influence of real-time electricity pricing and distributed energy storage on the decentralized
power grid, we propose an integrated demand response model, incorporating chaotic
particle swarm optimization as an optimization and scheduling approach.

Initially, the power grid’s economic dispatch design is introduced. Subsequently,
a chaotic particle swarm optimization algorithm is applied to multi-energy cooperative
control. Ultimately, a calculation of the real-time electricity price response aims to achieve
a balance between economic and reliable dispatching methods. The integrated demand
response model under the real-time electricity price mechanism is solved using the chaotic
particle swarm optimization algorithm. By efficiently coordinating and optimizing the
management of distributed power sources, energy storage systems, and flexible loads, the
active power grid operates at its maximum efficiency, while meeting electricity demand on
the consumer side. The primary goal is to achieve a smooth load curve. During off-peak
periods, there is an approximate 60% increase in load power, resulting in an overall bal-
ancing effect during regular periods. In peak evening hours, user responses contribute
significantly to reducing the grid load by up to 65 kW. Compared with the classical particle
swarm optimization algorithm, the prediction accuracy and efficiency are greatly improved.
The total cost is reduced by nearly 48.7%. This not only relieves pressure on grid oper-
ations but also lowers electricity costs for users. Moreover, it motivates users to adjust
their consumption patterns, alleviates strain on the transmission system, enhances power
supply reliability, reduces greenhouse gas emissions effectively, and promotes renewable
energy development.

The findings and analysis of the graphical representations demonstrate the possibility
and effectiveness of this optimization technique. When formulating strategies for opti-
mizing and scheduling distributed power grids, taking into consideration factors such as
time-of-use pricing and distributed energy storage can result in a reduction in peak loads,
an improvement in load curves, and decreased operational costs for the grid. Ultimately,
this enhances the stability and economic viability of operating distributed power grids. This
method introduces a fresh approach to achieving a cost-effective dispatch in distributed
power grids.
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