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Abstract: Support vector machines (SVMs) are well-known machine learning algorithms for classifi-
cation and regression applications. In the healthcare domain, they have been used for a variety of
tasks including diagnosis, prognosis, and prediction of disease outcomes. This review is an extensive
survey on the current state-of-the-art of SVMs developed and applied in the medical field over the
years. Many variants of SVM-based approaches have been developed to enhance their generalisation
capabilities. We illustrate the most interesting SVM-based models that have been developed and
applied in healthcare to improve performance metrics on benchmark datasets, including hybrid
classification methods that combine, for instance, optimization algorithms with SVMs. We even
report interesting results found in medical applications related to real-world data. Several issues
around SVMs, such as selection of hyperparameters and learning from data of questionable quality,
are discussed as well. The several variants developed and introduced over the years could be useful
in designing new methods to improve performance in critical fields such as healthcare, where accu-
racy, specificity, and other metrics are crucial. Finally, current research trends and future directions
are underlined.

Keywords: support vector machine; healthcare; imbalanced dataset

1. Introduction

In the healthcare industry, a well-known adage is “Quality care is the right care, at the
right time, every time” [1]. Modern healthcare is more often personalized, evidence-driven,
and model-assisted. Large amounts of existing data allow for the creation of the data-
driven approaches that have emerged to enhance decision-making processes. In the era of
big data, the healthcare domain is an active area of research where various problems are
addressed using machine learning (ML) approaches. For instance, experts are supported in
disease diagnosis by ML algorithms, often employing classification techniques to determine
the presence or absence of of a particular disease based on medical examination results
and symptoms. Traditional medical diagnosis relies on a doctor’s judgment and years of
experience to make a diagnosis based on the patient’s symptoms. However, ML approaches
can replicate decision-making capabilities for disease diagnosis, as reported in a recent
review paper on ML techniques for classifying and detecting breast cancer from medical
images [2].

Support Vector Machines (SVMs) are commonly used for classification and regression
problems. The performance of SVM algorithms has been found to be comparable or
superior to other ML algorithms, making them a valuable tool for healthcare practitioners.

SVMs find applications in several fields within healthcare, including:

• Diagnosis and prognosis to predict the progression of diseases such as cancer, cardio-
vascular disease, and neurological disorders. One significant limitation is the inability
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to address class imbalance effectively in real-life datasets. Most algorithms are de-
signed with the assumption of a balanced class, including classical SVM; however,
this can result in poor performance when predicting the minority target class, which
is often the focus in prediction processes.

• Predictive modelling can be used in healthcare services to predict patient outcomes,
such as complications and survival rates. In the clinical environment, decisions based
on predicting risks and positive outcomes should ideally be supported by statistical
learning models. ML techniques are commonly used in the diagnosis of diseases to
enhance domain expert decision-making procedures. The diagnosis process relies
heavily on objective data from patients and expert decisions. Classification systems
can reduce errors caused by lack of expertise and provide medical data for examination
in a shorter time. The effectiveness of a predictive model depends on the selection of
appropriate predictors.

• Personalized medicine, where SVMs can help to develop personalized treatment plans
based on a patient’s genomic, demographic, and clinical data.

• Risk stratification allows patients to be stratified based on their risk of developing a
particular disease or condition. Interesting recent papers addressing the stratification
of patient populations based on prognostic or predictive biomarkers include [3,4],
while issues related to cancer genomics such as the discovery of new biomarkers, new
drug targets, and a better understanding of genes that act as drivers of cancer have
been addressed in [5].

• In gene expression analysis, SVMs can be applied to identify key genes that are asso-
ciated with particular diseases, such as leukemia, colon cancer, and lymphoma [6,7].
Microarray data are used to record the expression values of thousands of genes. These
datasets are characterized by a small sample size and numerous features.

• In image analysis, SVMs can be applied to detect and diagnose various diseases
and conditions in medical imaging, such as PET-CT images for patients with lung
cancer [8], breast magnetic resonance imaging [9,10], X-rays for infectious diseases
such as pneumonia [11,12], and neuroimaging for Alzheimer’s Disease, as reported in
a structured review [13] (adni.loni.usc.edu, accessed on 15 February 2024).

Recently, there has been growing interest among researchers in using electronic health
records to improve various aspects of healthcare. These include improving the outcomes
of medical procedures, reducing healthcare costs, evaluating the effectiveness of newly
developed drugs, and predicting health trends or adverse events. Survival analysis plays a
key role in predicting health trends or adverse events. It is used to investigate how a given
set of factors, known as covariates, affect the time to a particular event of interest, such
as death or reaching a particular stage of disease progression. The primary objective of
survival analysis is to establish a relationship between these covariates and the time from
baseline to the occurrence of an event. What distinguishes survival analysis from traditional
ML methods is its handling of partially observed data, commonly referred to as censoring.
For example, in clinical trials patients are typically followed for a period of time during
which events are recorded. If a patient experiences an event such as disease progression
or death, the exact timing of the event is known and the patient’s record is considered
uncensored. However, for patients who do not experience the event by the end of the study
period, their records are considered censored, either because the event has not yet occurred
or because they were lost to follow-up. This aspect of survival analysis presents unique
challenges and requires specialised techniques for analysis and interpretation. The use of
SVMs for regression problems is known as Support Vector Regression (SVR). A regression
model can predict the exact time of an event.

Figure 1 illustrates the main stages involved in developing an ML model such as an
SVM to solve a diagnostic or regression problem. Data collection is not an issue when bench-
mark datasets are used to train and test SVM models; however, it becomes a fundamental
phase when addressing real-world case studies.

adni.loni.usc.edu


Information 2024, 15, 235 3 of 36

• Data collection is the first stage, and involves collecting relevant data from various
sources such as databases or sensors. These data consist of case scenarios organized
and grouped according to specific criteria that are relevant to decision-making.

• The data processing phase aims to handle missing values, outliers, noise, and incon-
sistencies. Data preprocessing techniques may include data cleaning, normalisation,
feature scaling, encoding categorical variables, and dimensionality reduction.

• Feature engineering involves selecting, transforming, and creating new features from
raw data to enhance the performance of SVM models. This may include extracting
meaningful features from raw data, combining multiple features, or generating new
features using domain knowledge.

• Data modelling is a crucial component of the architecture, as it aims to build a model
capable of learning patterns and relationships between input features and output
labels. Effective data modelling requires careful consideration of data preprocessing,
feature engineering, model selection, and evaluation techniques to build accurate and
robust machine learning systems.

• Model evaluation is the final stage. After a model has been trained, it is evaluated
using a validation set in order to assess its performance on unseen data. The best
model is then chosen from among those that have been evaluated.

Figure 1. Typical stages in the development of an ML model such as an SVM to solve a classification
or regression problem.

Retrieving accurately labelled datasets can be a costly and challenging process. It often
requires repeated experiments or time-consuming annotation procedures, especially in
fields such as medical imaging. Therefore, learning from weakly labelled data has become
crucial. Weak-label problems are categorised based on label characteristics, including
partially-known labels (where most training vectors are unlabeled), implicitly-known
labels (where training vectors are grouped into labelled bags), and unknown labels. Data
quality issues such as label and feature noise can complicate matters, especially in medical
applications, where diagnostic tests may lack perfect accuracy. Label noise can severely
impact classifier performance, leading to deteriorated performance and increased learning
requirements. Additionally, label noise can skew the observed frequencies of medical test
results, potentially resulting in incorrect conclusions about population characteristics.

Motivations and Goals

Disease diagnosis and prognosis is crucial when determining treatment strategies and
is closely linked to patient safety. In recent years, new modelling approaches based on
SVMs have shown good performance, either as hybrid approaches combining various ML
techniques or by utilising optimization approaches. The aim of this paper is to provide an
overview of the main SVM models that have been developed over the years for use in the
healthcare domain to improve medical knowledge and support experts. Due to the large
number of such papers, this paper represents a non-exhaustive literature review. Indeed,
the following simple query of the Scopus database yielded 1764 documents from 1996
to 2023:



Information 2024, 15, 235 4 of 36

TITLE-ABS-KEY (“support vector machines” AND medical) AND PUBYEAR < 2024
AND (LIMIT-TO (SUBJAREA, “MATH”)) AND (LIMIT-TO (LANGUAGE, “English”))
AND (LIMIT-TO (EXACTKEYWORD, “Support Vector Machines”) OR LIMIT-TO (EXAC-
TKEYWORD, “Support Vector Machine”) OR LIMIT-TO (EXACTKEYWORD, “Support
Vectors Machine”) OR LIMIT-TO (EXACTKEYWORD, “SVM”) OR LIMIT-TO (EXACTKEY-
WORD, “Support Vector Machine (SVMs)”)).

Figure 2 shows the publication years of the resulting 1764 papers. A significant increase
can be observed over the past five years.

Figure 2. Number of papers on “Support Vector Machines” AND “medical” in the subject area
“MATH”.

The literature in this field is extensive. Thus, the purpose of this review is threefold:

• First, to provide an examination of the literature in order to investigate the evolution
of SVM models used in medical data and the incorporation of new techniques, for
example, the novel fuzzy least squares projection twin support vector machines for
class imbalance learning in [14]. Our focus is on research introducing innovative
SVM-based models and methods aimed at enhancing existing approaches or reporting
novel improvements in results. Our analysis firstly focused on selecting papers that
proposed innovative SVM models or reported interesting medical results in the areas
of disease diagnosis, disease prognosis, or healthcare management. The primary focus
was on three areas: disease diagnosis, including gene expression and image analysis;
disease prognosis; and healthcare management. In addition, we discuss the underlying
ideas, strengths, and weaknesses, allowing for better understanding of how to address
real-life case studies and how to develop appropriate methods for specific problems.
We excluded papers in which the main focus was not on SVM models.

• Second, to consider real case studies selected based on the contribution of ML models
including SVM for assisting clinicians in diagnosing chronic diseases (for instance,
glaucoma). These papers can provide insights into a specific medical applications,
such as the diagnosis and prognosis of certain cancers and chronic diseases such as
glaucoma and sleep apnea, as well as the estimation of brain age from neuroimaging
data. It emerged that when several ML methods were tested, SVM was not always the
most effective.

• Third, we believe that this review can help in developing new approaches based on
SVM models. The presented taxonomy should be useful for identifying potential pit-
falls and in determining which approaches could be combined into hybrid algorithms
to further improve results.
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The rest of this paper is organised as follows. Section 2 provides a brief theoretical
background on basic SVM models and contemporary SVM-based approaches. This section
describes several challenging issues, such as methods for enhancing SVM performance
with large-scale datasets and tackling imbalanced data classification problems. Section 3
reviews relevant papers that have proposed new ML models based on SVMs and evaluated
their effectiveness on medical/biomedical benchmark datasets. Typically, these studies
include comparisons with state-of-the-art methods to validate the novel approaches. Here,
we report only some of the compared ML models. Section 4 surveys papers that utilized
real-life data to measure the impact of their findings on patient outcomes, for example, to
develop clinical decision support systems in order to facilitate self-disease management and
aid healthcare professionals in decision-making. Section 5 surveys papers that employed
SVM models to predict various healthcare aspects, such as hospital readmissions, patient
length of stay, mortality rates, and negative outcomes in home health care. These predictions
encompass a range of diseases, including the notable case of COVID-19. Finally, Section 6
presents several interesting future directions.

The 92 papers reviewed in the following sections are distributed as reported in Figure 3.

Figure 3. Percentage distribution of the reviewed papers.

2. Background on Classical SVM and Overview of SVM Model Developments

SVM is one of the most widely used ML algorithms, and is based on statistical learning
theory [15–18]. It was originally designed for binary classification problems, then extended
for multi-class problems. Figure 4 shows a simplified graphical representation of a binary
classification problem solved by SVM.

Figure 4. A schematic flowchart for the diagnosis of a disease with an SVM.

In the healthcare domain, binary classification problems involve diagnosing a disease,
while multi-class classification deals with predicting disease progression. SVMs have
proven particularly adept at handling complex medical data due to their ability to address
nonlinear relationships between features and classes.

The key strength of an SVM classifier lies in its ability to identify an optimized decision
boundary representing the largest separation (maximum margin) between classes. The
creation of the optimal hyperplane is influenced by only a small subset of training samples,
known as support vectors (SVs), which are the pivotal data structure in an SVM. This
means that the training samples that are not relevant to the SVs can be removed without
affecting the construction of the SVM’s decision function, that is, the optimal hyperplane.
SVMs were initially used to tackle linearly separable problems, with their capabilities later
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extended to handle nonlinear ones. For nonlinear problems, samples are mapped from a
finite-dimensional space to a higher-dimension space.

In a classification problem, let D be a dataset, represented as pairs of patterns
D = {(x1, y1), (x2, y2), . . . , (xl , yl)}, where xi ∈ ℜn is an instance with n features and
yi is the related class label. A pattern (also called a data point or vector) is an example,
which in a binary classification problem can be either positive (denoted by a label y = 1) or
negative (denoted by y = −1); the goal of a binary classifier is to map the feature vectors
x ∈ X to the class labels y ∈ {1,−1}. In terms of functions, a binary classifier can be
written as h(x) = sign[p(x)], where the function p : X → R is denoted as the classifier
predictor. It searches for an optimal hyperplane that separates the patterns of two classes
by maximizing the margin. In a dataset that is not linearly separable, the SVM essentially
maps the inputs into higher-dimensional feature spaces using so-called kernel functions. A
possible separating hyperplane in the transformed higher-dimensional feature space can
be represented as

wTϕ(xi) + b = 0

where w ∈ ℜn is the weight vector normal to the hyperplane and b ∈ ℜ.
Often, datasets may not be completely linearly separable even when mapped into a

higher dimensional feature space; therefore, a set of slack variables ξi is introduced. Each
slack variable ξi ≥ 0 corresponds to a misclassified example i, i.e., it measures the violation
of a constraint corresponding to the training point xi. The classical SVM classifiers are
known as “maximum margin” classifiers, as they attempt to reduce the generalisation
error by maximizing the margin between two disjoint half-planes. Finding the optimal
hyperplane means solving the quadratic programming model (1)–(3), called a soft margin
optimization problem:

min
1
2
||w||2 + C

l

∑
i=1

ξi (1)

yi(wTϕ(xi) + b)− 1 + ξi ≥ 0 i = 1, . . . , l (2)

ξi ≥ 0 i = 1, . . . , l (3)

where the penalty parameter C is a user-specified parameter and represents a trade-off
between the two objectives, that is, maximum size of the margin and minimum sum of the
slack variables. This is called the regularization term.

To deal with datasets that are not linearly separable, kernel functions are introduced
in the SVM. Figure 5 shows an example of the introduction of a kernel function, denoted as
the “kernel trick”, which can make a dataset linearly separable in a feature space of a higher
dimension than the input space. A kernel function denotes an inner product in a feature
space; it measures the similarity between any pair of inputs xi and xj, and is usually denoted
as K(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩ [19]. Classical kernel functions include polynomial kernel
K(xi, xj) = (⟨xi, xj⟩+ 1)d, radial basis function (RBF) kernel K(xi, xj) = exp(−γ||xi − xj||2),
and sigmoid function K(xi, xj) = tanh(γ⟨xi, xj⟩ + c). Linear kernels are a special case
of polynomial kernels; the degree d is set to 1, and they compute the similarity in the
input space, whereas other kernel functions compute the similarity in the feature space.
The choice of a suitable kernel function depends on both the specific problem and the
characteristics of the data. The choice of an appropriate kernel function can significantly
impact the performance of SVMs.
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Figure 5. An example of the “kernel trick”.

As mentioned earlier, a conventional SVM solves a complex Quadratic Programming
Problem (QPP) with inequality constraints in order to construct an optimal separating hy-
perplane that maximizes the margin between two classes; however, obtaining the solution
to such a QPP poses a significant challenge. The dual formulation of SVM relies on the size
of the training dataset, with all data points contributing constraints to the QPP. One major
drawback of SVMs is their rapid growth in training time as the number of data points
increases. The computational complexity of an SVM is O(l3) for a training dataset of size l,
making it computationally expensive. Another important issue is that SVMs are based on
the minimization of a symmetric loss function (the hinge loss), which is cost-insensitive.
This means that it is assumed that all misclassifications have the same cost. In addition, the
performance of an SVM is greatly influenced by the choice of the kernel functions and the
associated parameters.

In the following sections, we review different developments involving SVMs that
have aimed to improve performance metrics by addressing the aforementioned drawbacks.
Specifically, we underline how SVMs can address multi-class classification problems and
identify SVM-based models that have been developed to solve important issues around
training time, identification of redundant data points, and classifying imbalanced datasets.

2.1. SVM Model Developments

A new SVM model called ν−SVM was introduced in [20], with the following form:

min
w,b,ρ,ξ

1
2
∥w∥2 − νρ +

1
l

l

∑
i=1

ξi, (4)

yi

(
w⊤xi + b

)
≥ ρ − ξi, (5)

ξi ≥ 0, ρ ≥ 0, i = 1, . . . , l, (6)

where the parameter ν controls the number of SVs and the variable ρ is the parameter to be
optimised.

2.1.1. Multi-Class Classification Problems

For multi-class classification problems, there are several approaches. One approach
to address an m-class problem with a conventional SVM involves converting it into n
two-class problems, i.e., the One-to-Rest approach, while another involves finding k(k −
1)/2 classifiers, also known as pairwise classification. For the k-th two-class problem,
class k is separated from the remaining classes. To resolve unclassifiable regions, fuzzy
SVMs (FSVMs) have been developed for conventional one-to-(k − 1) formulation [21]. The
superiority of this method over conventional SVM has even been tested on two medical
benchmark datasets consisting of thyroid data and blood cell data.

2.1.2. Speed Improvement

The major drawback of standard SVMs is the large amount of training time required.
In the case of very large datasets, learning with a classical SVM cannot be accomplished in a
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reasonable time due to the dimension of kernel matrix. To solve this issue, two SVM-based
models proposed in the literature are the least-squares SVM (LS-SVM), introduced in [22],
and Proximal SVM (PSVM), introduced in [23]. LS-SVM seeks to minimize the least square
error and maximize the margin. The objective function of the PSVM has an additional
proximal term that promotes sparsity in the solution. This term can be interpreted as
regularized least squares. The algorithm assigns datasets to the corresponding class of
the hyperplane closest to them. The PSVM formulation employs strong convex objective
functions, resulting in a more interpretable model and potentially better generalisation
performance, particularly in high-dimensional or sparse feature spaces. Additionally, the
algorithm is fast and straightforward, requiring only a single system of linear equations to
be solved.

2.1.3. Identification of Redundant Data Points

One of the primary challenges faced by SVMs is the accurate and efficient identification
of redundant data points within a given training dataset. Several approaches have been
proposed to reduce the amount of computation overhead involved in training an SVM, as
there are increased computational costs in solving QPPs when dealing with complex data.
Birzhandi et al. [24] conducted a survey of state-of-the-art methods for reducing the number
of training data points and increasing the speed of an SVM. According to the approach used
for data reduction, existing methods can be categorized into five types: clustering-based,
geometrical, distance-based, random sampling, and evolutionary approaches. For instance,
one of these models is the generalized eigenvalue proximal SVM (GEP-SVM) proposed by
Mangasarian and Wild [25] as a non-parallel plane classifier for binary data classification.
Data points from each class are in close proximity to one of two non-parallel planes.
These non-parallel planes represent eigenvectors associated with the smallest eigenvalues
of two interconnected generalized eigenvalue problems. Yao et al. [26] introduced a
novel approach that combines a clustering algorithm with SVM, effectively reducing its
complexity. Birzhandi et al. [27] developed the concept of parallel hyperplanes to efficiently
omit redundant data points, leading to a significant reduction in training time.

2.1.4. Twin SVM

Another method that generates two non-parallel planes is the twin SVM (TWSVM)
proposed in [28]. A TWSVM classifier assigns the class of a given data point according to
the distance from its corresponding hyperplane, classifying the data point into the closest
class. TWSVMs has several advantages over traditional SVMs, including in terms of speed
and generalisation performance, and has a different formulation from that of GEP-SVMs.
TWSVM obtains non-parallel planes around which the data points of the corresponding
class are grouped; these two pairs of nonparallel hyperplanes can be represented as follows:

wT
1 x + b1 = 0, and wT

2 x + b2 = 0 (7)

where the first hyperplane is as close as possible to the positive-class data points, repre-
sented by a matrix A ∈ Rm1xn, and as far as possible from the negative-class data points,
represented by a matrix B ∈ Rm2xn, while the opposite holds for the second hyperplane.
The two QPPs to be solved have the same formulation as a typical SVM except that not all
patterns appear simultaneously in the constraints of both problems. The formulations of
these QPPs are as follows:

(TWSVM1) Min
w1, b1, q

1
2
(Aw1 + e1b1)

T(Aw1 + e1b1) + C1eT
2 ξ1

subject to − (Bw1 + e2b1) + ξ1 ≥ e2, ξ1 ≥ 0,
(8)

(TWSVM2) Min
w2, b2, q

1
2
(Bw2 + e2b2)

T(Bw2 + e2b2) + C2eT
1 ξ2

subject to (Aw2 + e1b2) + ξ2 ≥ e1, ξ2 ≥ 0,
(9)
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where C1, C2 > 0 are parameters and e1 and e2 are vectors of ones with appropriate
dimensions. A graphical representation of a TWSVM is shown in Figure 6.

Figure 6. A graphical example of a Twin Support Vector Machine.

Recent review papers have reported the latest research progress on the theory of
TWSVMs, including their evolution, eleven different variants, and their respective proper-
ties, limitations, and advantages [29–31]. Furthermore, although still in a primitive stage of
development, the main applications of the variants of TWSVM lie in the medical field. Most
papers have dealt with classification problems involving electroencephalograms (EEG)
and Alzheimer’s disease (AD) prediction, as reported in the next section. A new approach
called multi-task least-squares twin support vector machine (MTLS-TWSVM) has been
proposed as a least squares variant of the direct multi-task TWSVM (DM-TWSVM) [32].

2.2. Imbalanced Datasets and Cost-Sensitive SVMs

In the healthcare field, there are a very large number of imbalanced datasets. A simple
example is the large number of patients with no rare disease. Most real-life datasets have
classes that are not evenly distributed, that is, they are imbalanced. This topic is known
in the literature as class imbalance learning [33]. The larger class is named the majority
class, while the smaller class is the minority. How to obtain an accurate prediction from
such a dataset is a subject of ongoing research, as most current classifiers tend to predict
the majority class and ignore the minority class. This occurs because a classifier attempts
to reduce the overall error, and the classification error does not take into account the
underlying data distribution. As a consequence, there is usually a lack of accuracy for
minor class. The misclassification of the minority target class has serious consequences in
healthcare, such as when positive cases are erroneously predicted as not positive when
attempting to detect chronic diseases. As an example, consider a dataset of 1000 patients in
which 900 out of 1000 patients have no disease and the remaining 100 have disease. If a
model has an accuracy of 90%, it is necessary to evaluate its sensitivity. If the sensitivity is 0,
then all 100 patients with disease will be misclassified. The aim of the different approaches
developed in the literature is to reduce the effects of the imbalance ratio in order to improve
the sensitivity of ML approaches to the minority class. Useful in this regard is the recent
review paper by Haixiang et al. [34], where 527 papers related to imbalanced learning and
rare event detection typical of medical and biomedical datasets were analysed from both a
technical and a practical perspective. Typically, higher costs are used to misclassify instances
of a minority class than instances of a majority class. The commonly used approaches
for handling imbalanced data can be divided in data-level approaches, which rely on
preprocessing and are sometimes called external methods, and algorithmic-level approaches,
also called internal methods. Data-level approaches modify the data distribution to produce
a balanced dataset, whereas algorithmic-level approaches involve modifying the classical
classification algorithms. An example of a sampling-based technique is the Synthetic
Minority Over-sampling Technique (SMOTE) [35], an oversampling algorithm that employs
the k-nearest neighbour (kNN) technique to over-sample the minority class by creating
synthetic samples. Other data-level approaches for rebalancing class distributions include
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random over-sampling and random under-sampling. Random over-sampling replicates
instances of the minority class, while random under-sampling eliminates instances of the
majority class. However, it is important to note that both methods have disadvantages.
Random over-sampling can lead to problems with overfitting due to the replication of
instances, while random under-sampling may discard potentially useful information by
removing instances. Algorithmic-level approaches involve modifications to algorithms and
cost-sensitive approaches.

Standard methods such as SVM and TWSVM are sensitive to imbalanced datasets, po-
tentially leading to suboptimal results. Regular SVMs do not perform well on imbalanced
data, as the resulting models tend to be trained with respect to the majority class and tech-
nically ignore the minority class. Different methods have been developed in the literature
to handle the class imbalance problem for SVMs, such as the multilevel weighted SVM
(MLW-SVM) and Fuzzy SVM for Class Imbalance Learning (FSVM-CIL) settings. Results
have shown that FSVM-CIL outperforms other standard SVM methods such as random
oversampling, random undersampling, and SMOTE in terms of classification accuracy.

The biased penalties (B-SVM) method, also known as cost-sensitive SVM, was intro-
duced in [36]. Two penalty weights C+ and C− are introduced for the positive and negative
SVM slack variables during training. The basic SVM is

min
1
2
||w||2 + C+ ∑

i:yi=1
ξi + C− ∑

i:yi=−1
ξi, (10)

yi(wTϕ(xi) + b)− 1 + ξi ≥ 0 i = 1, . . . , l, (11)

ξi ≥ 0 i = 1, . . . , l. (12)

Iranmehr et al. [37] proposed an alternative strategy for the design of SVMs, seeking
to optimize the classifier with respect to class imbalance or class costs. In this approach,
Bayesian consistency is guaranteed by drawing connections between risk minimization and
probability elicitation. Moreover, by performing experimental analysis of class imbalance
and cost-sensitive learning with given class and example costs, the results showed that the
algorithm provides superior generalisation performance compared to conventional methods.

Universum has become a new research topic in ML [38]. It consists of a collection
of non-examples that do not belong to any class of interest. To improve the abilities
of TWSVMs on imbalanced datasets, universum learning has been incorporated with
SVM to solve the problem of class imbalance. The resulting model is called reduced
universum TWSVM for class imbalance learning (RUTWSVM-CIL) [39]. The universum
data points are used to provide prior information about the data, while both oversampling
and undersampling techniques are applied to remove the imbalance between the classes.

One of the drawbacks of all TWSVM-based models is that they need to invert a matrix;
this operation is computationally expensive, and the matrix may not be invertible. RU-
TWSVM was improved in [40] (IRU-TWSVM) by reducing the size of the kernel matrix,
thereby avoiding the computation of inverse matrices and reducing the computation time.
IRU-TWSVM outperformed the TWSVM, U-TWSVM, and RU-TWSVM algorithms in terms
of generalisation performance on benchmark datasets.

2.3. Multiclassifiers

Multiclassifier approaches involve combining the predictions of multiple classifiers to
make a final prediction, by which the overall performance of a single model is increased.
In healthcare, this approach is used mainly when there is not a single classifier that is
best suited to make a prediction or when multiple classifiers can provide complementary
information. The basic idea behind the multiclassifier approach is that the combination
of multiple classifiers can lead to improved prediction accuracy compared to using a
single classifier.

A common approach is ensemble learning, in which multiple classifiers are trained
on the same data and their predictions are combined using methods such as majority
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voting [41], weighted voting or stacking. Another approach is to use multiple classifiers to
make predictions about different aspects of the data and then combine these predictions
to make a final prediction. There are six common types of ensemble learning models:
Bayesian optimal classification, boosting, bootstrap aggregation (bagging), Bayesian model
averaging, Bayesian model combining, and stacking.

2.4. Performance Analysis

Standard performance metrics are based on confusion matrices, and usually on K-fold
cross-validation (K-CV) techniques. The leave-one-out CV method is usually utilised for
small datasets, with k equal to the number of instances of the dataset. It has been observed
that papers sometimes fail to report the value of K when using a K-CV, which can hinder
proper comparison of results. In classification problems, the confusion matrix results in
true positives, true negatives, false positives, and false negatives. The number of true
positives (TP) represents the number of instances that were predicted as positive and were
actually positive. False positives (FP) are those examples that were predicted as positive
but were actually negative. False negatives (FN) are the examples that were predicted as
negative but were actually positive. Finally, true negatives (TN) are the examples that were
predicted as negative and were actually negative.

The most widely used performance metrics are the classification accuracy, sensitivity
(also known as recall), specificity, geometric mean, and Matthews correlation coefficient.
The classification accuracy is the ratio of the number of instances that were correctly
classified to the total number of instances. The sensitivity (or precision) measures the
proportion of actual positives which were correctly identified as such. The specificity
measures the proportion of negatives which were correctly identified. The geometric mean,
Matthews Correlation Coefficient (MCC), and F1 score are metrics specific to imbalanced
learning. The MCC falls within the range [−1, 1], and is an appropriate measure for
evaluating the classification accuracy on imbalanced datasets. A higher the MCC value
indicates better performance of the classifier. The F1 score is calculated as the harmonic
mean of the precision and recall, which is 1 − SP; it ranges from 0–100%, with a higher
score denoting a better classifier.

Let yi be the actual value and let ỹi be the predicted value of the i-th instance in a
regression problem. The most commonly metrics used for regression problems are the mean
squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE). As
error measures, smaller values indicate better model performance. The MSE measures the
average squared difference between the actual and predicted values. It gives greater weight
to larger errors. The RMSE is the square root of the MSE, and provides an interpretable
measure in the same units as the target variable. The MAE measures the average absolute
difference between the actual and predicted values, and provides a more interpretable
measure than the MSE. The coefficient of determination R2 measures how much of the
variance of a dependent variable can be predicted from its independent variables. R2 is
computed considering the mean value ȳ of the observed data. The regression curve is
considered a good fit if R2 is close to 1.

The formulations for these performance metrics are shown in Table 1.
A further important metric is the receiver operating characteristic (ROC) curve [42],

which is a plot of the true positive rate against the false positive rate for different threshold
values. Usually, the area under the curve (AUC) is used as the performance metric.
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Table 1. Common performance metrics for classification and regression problems.

Evaluation Metric Acronym Formula

Accuracy Acc (TP+TN)
(TP+TN+FP+PN)

Sensitivity SN TP
(TP+FN)

Specificity SP TN
(TN+FP)

Geometric mean G-mean
√

SN × SP
Matthews Correlation Coefficient MCC (TP×TN)−(FP×FN)√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

F1-score F1 TP
TP+ 1

2 (FP+FN)

Mean Squared Error MSE ∑D
i=1(yi − ỹi)

2

Root Mean Squared Error RMSE
√

MSE
Mean Absolute Error MAE ∑D

i=1 |yi − ỹi|
Coefficient of Determination R2 R2 = 1 − ∑D

i=1(yi−ỹi)
2

∑D
i=1(yi−ȳ)2

3. SVM-Based Models for Diagnosis and Prognosis of Diseases

This section surveys papers proposing new ML models based on SVMs and addresses
specific questions related to benchmark datasets, real datasets, and imbalanced datasets.
Efficient models for diseases diagnosis remain a challenge. This aspect explains the large
number of variants of SVM-based models that have been developed over the years. In
addition, it is necessary to compare the effectiveness of the proposed approaches with
other ML models in order to evaluate them, as highlighted in the papers reviewed below.
Researchers often aim to maximise classification accuracy, sensitivity, and specificity. The
performance of each algorithm depends on various model configurations, parameter and
hyperparameter settings, and the partition between the training and testing sets. Other
factors that strongly affect model performance are feature selection and scaling techniques.
Limiting the number of input features in a classifier is advantageous for improving pre-
dictive ability and reducing computational time. Several papers have reported that high
levels of accuracy can be achieved through the use of feature selection techniques, scaling
techniques, or optimization approaches.

In this section, we first present some results on benchmark datasets of SVM-based
models. These datasets allow ML approaches to be tested and compared in order to
evaluate their performance. Next, several twin SVM-based models are presented to cover
the improvements that they offer in terms of computational time and performance. Finally,
we review innovative approaches based on SVM that are useful in addressing imbalanced
benchmark datasets.

3.1. Benchmark Datasets

The most popular benchmark datasets in the medical field are from the University
of California at Irvine (UCI) ML repository [43] and the Knowledge Extraction based on
Evolutionary Learning (KEEL-dataset) repository http://www.keel.es/, accessed on 15
February 2024 [44].

Table 2 gathers the characteristics of the benchmark datasets most frequently used
in the papers reviewed in this section. The first seven datasets refer to cancers, with the
first three being related to microarray gene expressions. The other datasets are used for
diagnosis of other diseases.

Figure 7 depicts several kinds of benchmark datasets considering specific features, for
instance, handwritten images for Parkinson’s disease. ML approaches are widely used to
predict and diagnose diseases such as cancers. The diagnosis of breast cancer is crucial,
as the classification results have a direct impact on the treatment and safety of patients.
Achieving high accuracy, reliability, and robustness is a challenge for researchers. There
are several cancer datasets in the literature. A common dataset used for breast cancer
classification is the Wisconsin Breast Cancer Diagnostic (WBCD) dataset from UCI, which
was introduced in [45]. The purpose of this classification is to distinguish between benign

http://www.keel.es/
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and malignant tumours by analysing features extracted from images of the cell nuclei of a
fine needle aspirate of a breast mass. The dataset has 569 instances: 357 cases of benign
tumours and 212 cases of malignant tumours. Sweilam et al. [46] conducted a comparative
study to measure the effectiveness of different methods for SVM training. The methods
were Particle Swarm Optimisation (PSO), which is a population-based heuristic search
technique, Quantum Behaved Particle Swarm, Quadratic Program, and LS-SVM. The first
two techniques showed slightly higher overall accuracy (93.52–93.06%) than the other two
considering a 40–60% training test partition. Badr et al. [47] analysed the impact of scaling
on SVMs by evaluating and comparing the de Buchet, Lp-norm, entropy, and normalization
scaling techniques. The highest accuracy of 98.6% was achieved with de Buchet scaling,
which outperformed to the standard normalization technique. A grid search to set the RBF
kernel parameter and C was adopted. Similarly, Almotairi et al. [48] analysed the impact of
four scaling techniques on a hybrid classifier that combined an SVM with Harris’s Hawk
Optimisation (HHO), a metaheuristic algorithm. The HHO algorithm was used to search for
the best SVM parameters. The hybrid classifier was tested on the WBCD and outperformed
an SVM with parameter values found by a conventional grid search technique. Furthermore,
the approach with normalization scaling achieved an accuracy rate of 98.24%, while the one
with equilibration scaling outperformed ten results reported in the literature with an accuracy
rate of 99.47%. Akay [49] achieved even higher accuracy with an SVM model that used only
five features. The highest classification accuracy reported was 99.51%.

Table 2. Common medical benchmark datasets.

Dataset Number of
Instances

Number of
Features

Number of
Classes

Colon cancer 62 2000 2
Leukemia 72 7129 2
Ovarian cancer 216 4000 2
Breast Cancer Coimbra 116 9 3
Ljubljana Breast Cancer 286 9 5
Wisconsin Breast Cancer Diagnostic (WBCD) 569 30 2
Wisconsin Breast Cancer Original (WBC) 699 9 2
BUPA liver disorder 345 7 2
Heart 270 13 2
Pima Indian 768 8 2
Parkinson 197 22 2
Hand Parkinson Disease (HandPD) 736 13 2
Thyroid 215 5 2

Figure 7. Several features characterising benchmark datasets.

The Wisconsin Breast Cancer (WBC) original dataset from the UCI ML repository
dataset is another common dataset for breast cancer classification differing from the WBCD.
It comprises 699 instances, of which 458 cases are benign and 241 are malignant. Because
16 instances contain incomplete features, they are usually rejected and a dataset with
683 instances is considered. As the WBC is unbalanced, some authors have used the
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Matthews correlation coefficient as an appropriate measure for evaluating the classification
accuracy of unbalanced positive and negative samples. Polat and Günes [50] observed
that a great variety of methods have been used on this dataset and that high classification
accuracy has been achieved. Nonetheless, they were able to improve the accuracy up
to 98.53% using an LS-SVMs with a ten-fold CV. The lowest values were found with
50–50%, 70–30%, and 80–20% training–testing partitions. The main difference between
SVMs and LS-SVMs, as described earlier in Section 2, is that LS-SVMs use a set of linear
equations for training while SVMs use a quadratic optimisation problem. Interesting
approaches were developed in [51–55]. Islam et al. [51] used an SVM and a K-NN, finding
an MCC of 0.99 and an accuracy of 98.57% and 97.14% with SVM and K-NN, respectively.
In [56], a high accuracy of 99.3% was achieved with a polynomial SVM. The authors
developed data exploratory techniques (DET) and four different prediction models. The
four layers of DET used to identify the robust feature classification into malignant and
benign classes were feature distribution, correlation, elimination, and hyperparameter
optimisation. Logistic regression, KNN, and ensemble classifier had lower accuracy than
SVM. Azar and El-Said [52] summarised the main accuracy results reported in several
papers related to this dataset. They tested and compared the standard SVM with a proximal
SVM classifier, Lagrangian SVM (L-SVM), Finite Newton’s Method for L-SVM (NSVM),
Linear Programming SVM (LP-SVM), and Smooth SVM (SSVM). The results suggested
that the best classifier was LP-SVM, with an ROC value of 0.9938 and MCC of 0.9369,
outperforming other classifiers. To improve accuracy, Kamel and Kheirabadi [53] combined
an SVM with a feature selection method using Gray Wolf Optimization (GWO), which is
a metaheuristic algorithm inspired by the hierarchical structure and social behaviour of
hunting wolves. The accuracy, sensitivity, and specificity were 100% compared to other
algorithms. Singh et al. [54] proposed a hybrid meta-heuristic swarm intelligence-based
SVM called the Grey Wolf–Whale Optimization Algorithm (GWWOA) using SVM with
an RBF kernel for early-stage detection of disease. The highest accuracy was 97.72%.
Indraswari and Arifin [57] improved the accuracy on this dataset using a method that
optimises the weight of the input data and the RBF kernel with PSO based on analysing
the movement of the input data. This method has lower complexity compared to other
SVM optimisation methods, resulting in faster run times. Elkorany et al. [55] introduced
the Whale Optimization Algorithm combined with an SVM (WOA-SVM) and Dragonfly
Algorithm (DA-SVM) techniques. These approaches were tested on both of the Wisconsin
breast cancer datasets, and outperformed a traditional SVM classifier along with existing
techniques such as PSO, GA-SVM, ACO-SVM, and other approaches considering the AUC,
sensitivity, and specificity. They achieved an accuracy of 99.65% and 100% for the WBCD
and WBC datasets, respectively, when selecting the optimal SVM parameters of the RBF
kernel using optimization strategies with a 50–50 partition ratio. Lower accuracy was found
with 10-CV, as reported in Table 3; however, as underlined by the authors, a long training
time is required for larger datasets.

Table 3 summarises the developments of SVM methods and the results in terms of
accuracy on the WBCD dataset and WBC original dataset.

Table 3. SVM models developed and tested on the Wisconsin breast cancer benchmark datasets.

Dataset Paper Main Contribution Approach Accuracy (%)

WBCD Sweilam et al. [46] Compared different methods PSO + SVM 93.52
QPSO + SVM 93.06

Elkorany et al. [55] 10-fold CV WOA-SVM 97.89
Zheng et al. [58] Six features K-SVM 97.38
Badr et al. [47] Compared scaling techniques de Buchet and SVM 98.60

Almotairi et al. [48] Compared scaling techniques
Equilibration
scaling technique
and HHO-SVM

99.47

Akay [49] Five features selected based on F-score SVM 99.51
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Table 3. Cont.

Dataset Paper Main Contribution Approach Accuracy (%)

WBC Polat and Günes [50] 10-fold CV LS-SVM 98.53
Azar and El-Said [52] SVM with an RBF kernel LP-SVM 97.14
Singh et al. [54] SVM with an RBF kernel GWWOA-SVM 97.72
Islam et al. [51] 10-fold CV SVM 98.57
Elkorany et al. [55] 10-fold CV DA-SVM 99.27
Rasool et al. [56] 5-fold CV DET + PolySVM 99.30
Kamel and Kheirabadi [53] Selected features SVM + GWO 100

3.1.1. Ensemble Methods

Among the papers developing ensemble methods, we have selected the following.
Conforti and Guido [59] constructed an optimal kernel matrix for classification problems
using a semidefinite programming approach. An improvement in accuracy over a single
kernel matrix was found on tested benchmark datasets of diagnostic problems such as
WBCD, heart disease, thyroid, and three microarray gene expression datasets for leukemia,
colon cancer, and ovarian cancer. Wang et al. [60] developed an SVM-based ensemble model
based on C-SVM, ν-SVM, and six types of kernel function. It was tested on three breast
cancer datasets: WBCD, the original WBC dataset, and the SEER breast cancer dataset,
which contains 800,000 instances and was collected by the National Cancer Institutes
Surveillance, Epidemiology, and End Results (SEER) programme. A Weighted Area Under
the ROC Curve Ensemble (WAUCE) mechanism was proposed for model hybridization.
The approach outperformed existing ensemble models from the literature.

Blanco et al. [61] introduced an approach combining SVM with clustering analysis to
identify incorrect labels, minimize misclassification errors, and penalize relabelling. When
tested on various UCI datasets such as WBCD, Parkinson’s disease, and Heart disease,
it outperformed both the Confident Learning approach, which is a specialized method
designed to detect noisy labels, and classical SVM, particularly in cases involving corrupted
training datasets. Furthermore, it effectively detected and relabelled outliers that could
adversely affect the classifier’s performance.

The Pima Indian Diabetes Dataset, commonly used for predicting diabetes, comprises
female patients aged 21 or older, including 500 without diabetes and 268 with diabetes.
In their study on enhancing Type 2 Diabetes classification, Reza et al. [62] utilized an
SVM with a combination of linear, RBF, and RBF city block kernels. They addressed
missing values by imputing the median, removed outliers, and balanced the data using
SMOTE. The integrated kernels outperformed others when tested on the Pima Indian
dataset, achieving the highest accuracy (85.5%), F1 score (85.2%), and AUC (85.5%). This
performance surpassed approaches such as Decision Tree, SVM, and Naive Bayes applied
by Sisodia and Sisodia [63].

3.1.2. Gene Expression Datasets

Gene expression datasets are characterised by thousands of features and a few in-
stances, which are the number of individuals sampled. The aim is to identify the informative
genes, i.e. those with expression levels that correlate strongly with the class distinction.
Gene selection helps to reduce dimension of the gene expression data, thereby improving
training time. In addition, gene selection improves the classification accuracy, as it removes
a large number of irrelevant genes. SVM-based recursive feature elimination (SVM-RFE) is
a method for gene selection proposed by Guyon et al. [64]. However, it suffers from a heavy
computational burden and high computational complexity, as it requires training an SVM
algorithm d times on l instances of d − k + 1-dimensions, where k is the k-th SVM trained.
Ding et al. [65] improved SVM-RFE through the optimized extreme learning machine-
based RFE (OELM-RFE) model, which requires only one tuning parameter, namely, the
penalty constant C. This approach was evaluated on the publicly available colon tumor and
leukemia binary datasets as well as on the Splice dataset to recognize two types of splice
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junctions in DNA sequences. The classification algorithms employed as the evaluated
function were SVM, SVM without bias, and OELM. OELM-RFE had slightly lower perfor-
mance than SVM-RFE on the two UCI datasets, though not on the gene expression datasets.
However, in terms of predictive performance, OELM-RFE outperformed SVM-RFE.

3.1.3. Tuning of Parameters and Computational Time

Parameter tuning is a phase that affects model performance. The most commonly
used approaches are grid search algorithms and SVM parameter optimisation based on
swarm intelligence algorithms. The use of grid search algorithms is time consuming, and
the performance of the resulting SVM depends on the grid size. In the literature, genetic
algorithms (GAs) have been used as a swarm intelligence algorithm. The disadvantages of
this approach are slow convergence and high computational cost.

Several approaches have been developed to reduce computational time and improve
performance. These approaches are often based on combining SVM with other ML methods.
Yao et al. [26] proposed building SVM classifiers using training samples selected through
a K-means clustering algorithm. This approach, named K-SVM, reduces the size of the
training set and the computational time considerably with respect to LIBSVM, as shown by
computational experiments carried out on three benchmarks from the UCI repository, i.e.,
the WBCD, Heart, and BUPA Liver Disorders datasets (the latter of which is used to classify
liver disorders caused by excessive daily use of alcohol via blood tests). Another interesting
work applied a new version of the global relaxation cross-validation algorithm (GRCV) to
select the hyperparameter C in L2-loss SVM, in which semi-smooth Newton algorithm was
used [66]. From the numerical tests conducted on datasets in the LibSVM [67] collection
such as Heart, Breast-Cancer, Colon-Cancer, and Diabetes, it turned out that the solution
returned by the GRCV-l2 approach was significantly better than the inexact cross-validation
method and the grid search method. Zheng et al. [58] used the K-means algorithm to
recognize the hidden patterns of benign and malignant tumors separately in the WBCD.
The resulting K-SVM reduced the number of features to six and reached an accuracy of
97.38%. Huong et al. [68] joined a convolutional neural network (CNN) and an SVM for
a five-class classification of cervical pap smear images. They tested three different CNN
models: AlexNet, VGG19, and ResNet50. The SVM was combined with the error-correcting
output codes (ECOC) model to decompose the multiclass problem into several binary ones.
Using a benchmark dataset containing 917 single cervical cell images downloaded from
Herlev University, the AlexNet-SVM model demonstrated better estimation performance,
showing high sensitivity and specificity, good reproducibility, and a fast training speed.

Ke et al. [69] proposed a general maximum margin hypersphere SVM classifier
(MMHS-SVM) for binary classification problems. They formulated an optimization model
to identify two hyperspheres simultaneously while maximizing the square of the difference
between two class centers. An SMO-type algorithm was used to reduce the computing
time and storage space. The model was the best classifier in terms of average accuracy on
nine out of twelve benchmark medical datasets from the UCI repository, including Hepati-
tis, Bupa, WBCD, and Pima Indian, compared to other variants of SVM that considered
hyperspheres. Yan and Li [70] proposed an augmented Lagrangian method to solve the
primal form of the L1-loss model for support vector classification and the ϵ-L1-loss model
for support vector regression. The resulting subproblem was solved using the semi-smooth
Newton’s method. The method was tested on LIBLINEAR datasets, including Leukemia,
Breast-Cancer, and Diabetes, and compared to the competitive solver Dual Coordinate
Decrescent method (DCD). The authors’ approach exhibited superior performance in terms
of both accuracy and speed, achieving equal or higher accuracy while outperforming the
DCD method in terms of CPU time. Groccia et al. [71] developed a multiclassifier systems
framework to support diagnostic activities in the medical field. To improve diagnostic
accuracy, several classification algorithms, including SVMs, DTs, and NNs were combine,
and the most competent classifier was selected. The approach was tested on benchmark
datasets such as the WBC, WBCD, Mammography-Mass, Diabetic-Retinopathy, and Der-
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matology datasets using stratified ten-fold CV. The results outperformed the state of the art
in dynamic classifier selection techniques. For example, the highest accuracy achieved on
WBCD was 98.24%, which was achieved by a pool of classifiers that included an SVM.

Table 4 summarises the ensemble methods developed with SVM models.

Table 4. Ensemble methods with SVMs tested on benchmark datasets in the medical fields.

Paper SVM Model Characteristics and Findings Benchmark Datasets

Yao et al. [26] K-SVM
Reduced training set and
computational time w.r.t.

LibSVM
WBCD, Heart, Liver disorders

Conforti and Guido [59] SVM-SDP
Optimal kernel matrix using a

semidefinite programming
approach

WBCD, Heart dataset,
Thyroid, Leukemia, Colon

cancer, Ovarian cancer

Wang et al. [60] WAUCE-SVM High accuracy and low
variance WBC, WBCD, SEER

Blanco et al. [61] Clustering-SVM
Identify incorrect labels,

minimise misclassification
errors, penalise relabelling

UCI

Reza et al. [62] Integrated Kernel-SVM Linear combination of RBF
and RBF city block kernels PIMA diabetes

Ding et al. [65] OELM-RFE Faster on gene expression
datasets than SVM-RFE

Three gene expression
datasets

Chang and Lin [67] GRCV-l2SVM Better results than inexact CV
and grid search methods

Heart dataset, Breast-cancer,
Colon-cancer, Diabetes

Huong et al. [68] SVM with CNN

High sensitivity and
specificity, good

reproducibility, and fast
training time

Cervical cell

Ke et al. [69] MMHS-SVM RBF kernel. Best classifier on
11 out of 15 datasets UCI

Yan and Li [70] Augumented Lagrangian
method

Higher accuracy and speed
than DCD several LIBLINEAR datasets

Groccia et al. [71] MCS framework
High performance by

dynamic classifier selection
techniques

WBCD, WBC, Mammographic
mass, Diabetic retinopathy,

Dermatology

3.2. Twin SVM-Based Models

In the last two decades, researchers have developed different approaches based
on TWSVM, which is faster compared to SVM, although it requires solving two QPPs.
Peng [72] developed the ν−TWSVM, which effectively reduces the number of SVs, along

with a geometric algorithm for TWSVM (GA-TWSVM). The computational results on the
Heart, Diabetes, Thyroid, WBCD, and Pima Indian benchmark datasets demonstrated better
generalisation performance and a faster learning speed than the classical SVM and TWSVM.
The highest accuracy on WBCD was 98.25 ± 1.43, which was reached by GA-TWSVM.

Arun Kumar and Gopal [73] formulated a least squares version of TWSVM (LS-
TWSVM), which is faster than TWSVM because it finds two non-parallel hyperplanes by
solving two linear equations instead of the two QPPs in TWSVM. In this study, LS-TWSVM
showed better generalisation performance as well. Tomar and Agarwal [74] proposed
four novel multiclassifiers obtained by extending the formulation of the LS-TWSVM. They
performed a comparative analysis with existing multiclassification approaches based on
SVM and TWSVM in terms of advantages, disadvantages, and computational complexity
on twelve benchmark datasets from the KEEL repository, showing that their proposed
classifiers obtained better results. A recent effective and efficient algorithm for a multiclass
classification problems is the twin K-class SVM with pinball loss (Pin-TKSVC) from [75].
This method solves two smaller sized QPPs to save running times, and is a more robust
classifier. Despite TWSVM attracting much attention for its good generalisation ability and
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computational performance, the conventional grid search method has turned out to be a
very time consuming way to obtain the optimal regularization parameter. Zhou et al. [76]
developed TWSVMPath, which is a novel fast regularization parameter tuning algorithm
for TWSVM. The problem is first transformed into two sub-optimization problems, demon-
strating that the Lagrangian multipliers of two sub-optimization problems are piecewise
linear to the regularization parameters and no QPP needs to be solved. The method was
tested on eight UCI datasets from the medical field, and appeared to be very effective.

Among the several variants of TWSVM are the following:

• Intuitionistic fuzzy TWSVM (IF-TWSVM) [77] assigns an intuitionistic fuzzy number
(IFN) to each sample in order to analyze the outliers, handle noise and outliers, and
optimize the objective function via optimization of a pair of QQPs.

• Improved IFTWSVM (IIF-TWSVM) [78] reduces the effects of noise and outliers and
minimizes the structural risk, which improves the generalisation performance. For
the nonlinear case, it solves the exact formulation of the kernel, while approximate
functions are solved in the IF-TWSVM.

• Conditional probability TWSVM (CP-TWSVM) [79] returns the discriminant projec-
tions and conditional probability estimations of each class.

Malik et al. [80] demonstrated that IF-TWSVM has worse performance for Alzheimer’s
disease prediction than the intuitionistic fuzzy random vector functional link network
(IFRVFLN) employing an intuitionistic fuzzy membership (IFM) scheme and optimizing
a system of linear equations. Indeed, IFRVFLN achieved better accuracy on benchmark
datasets from the UCI and KEEL repository, such as the Heart-statlog and WPBC datasets,
compared to IF-TWSVM. Similarly, on the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset, a standardised MRI dataset, the average AUC (75.19%) was greater than the
value computed by IF-TWSVM (AUC = 72.12%). The ADNI database was launched in 2003
as a public–private partnership. The main goal of the project was to study the Alzheimer’s
disease through nueroimaging techniques. These images include magnetic resonance
imaging (MRI) and positron emission tomography (PET) of subjects with different stages
of Alzheimer’s disease. From the use of these data, the goal is to develop models for
improving early detection of Alzheimer’s disease, monitoring disease progression, and
facilitating the development of new therapies.

Bai et al. [81] proposed an IF-TWSVM for semi-supervised problems, which they
called SIF-TWSVM. In an iterative procedure, unlabelled samples are evaluated by the
proposed plane IFN and gradually learned according to the current decision environment.
The model was tested on several benchmark datasets from the UCI database, including
datasets from the medical field, and performed better than other variants of TWSVM. From
the experimental results, it emerged that SIF-TWSVM was more competitive than other
semi-supervised methods and that the proposed fuzzy techniques can greatly improve the
performance of TWSVM.

A novel parametric model called universum least squares twin parametric-margin
SVM (ULS-TPMSVM) was introduced in [82]. The solution of ULS-TPMSVM involves a
system of linear equations, making it more efficient in terms of training time than algorithms
such as TWSVM and ULS-TWSVM. The algorithm was tested with the Gaussian kernel
function on benchmark datasets from the UCI and KEEL repositories, and showed high
generalisation performance with less training time compared to algorithms such as TWSVM,
LS-TWSVM, LSTPMSVM, and ULS-TWSVM. The authors then considered three classes of
Alzheimer’s disease data, namely, control normal (CN), AD, and mild cognitive impairment
(MCI). ULS-TPMSVM outperformed the other algorithms on two of the three datasets, CN
vs. MCI and MCI vs. AD.

Ganaie et al. [78] proposed IIF-TWSVM and evaluated its performance on an EEG
dataset and twelve KEEL datasets. A Gaussian kernel and a grid search method with 5-CV
for tuning the parameters were used. The authors demonstrated that IIF-TWSVM had
better performance compared ot other variants of TWSVM, achieving an average accuracy
of 95.86% on the twelve KEEL datasets.
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Moosaei et al. [83] compared several classifier methods based on TWSVM with their
proposed method, a multi-task TWSVM with universum data (UM-TWSVM). They pro-
vided two approaches for its solution, one based on the dual formulation and a second on
a least squares version of the model. With the second approach, called LS-UMTWSVM,
the solution of the model was simplified, resulting in a quick and efficient approach for
medical data. To ensure the stability of the problem, some studies, such as (8) and (9), have
introduced a Tikhonov regularization term to their models. To compute the minimizers of
these models, Lyaqini et al. [84] proposed a primal dual algorithm. Results on several UCI
benchmarks, medical images of the UlcerDB and CVC-ClinicDB datasets, and HandPD
datasets showed the effectiveness of the proposed approach. In particular, the proposed
TWSVM outperformed popular deep learning models such as DenseNet121 and MobileNet
considering small datasets, but required more computational resources and memory when
constructing models for larger datasets.

Probability Machine Combined with TWSVM

The minimax probability machine (MPM) was introduced in [85,86] as an excellent
discriminant classifier based on prior knowledge. Yang et al. [87] combined an MPM with
TWSVM to obtain a twin MPM, which they named TWMPM. The authors developed a
simple and effective algorithm that transforms the problem into concave fractional pro-
gramming by applying multivariate Chebyshev inequality. The TWMPM was reformulated
as a pair of QPs by appropriate mathematical transformations, resulting in a problem
with a global optimal solution. Experiments conducted on UCI datasets from the medical
field, including cancer and diabetes datasets, demonstrated that TWMPM had comparable
performance to TWSVM. Another variant is the regularised Twin Minimax Probability
Machine Classification (TMPMC) [88], which takes advantage of statistical information
(mean and covariance of the samples) and constructs two non-parallel hyperplanes for final
classification by solving two smaller SOCPs.

Jain and Rastogi [89] proposed parametric non-parallel SVMs (PN-SVMs) for binary
pattern classification, taking inspiration from TWSVM. A second term in the objective
function forces the hyperplane to be close to one class; in this way, the mean of this class
projection is minimized. This model is very similar to the Pinball loss SVM (Pin-SVM) model
proposed by Huang et al. [90], in which the idea was to penalize the correctly classified
samples by introducing a parameter 1/τ that keeps the correctly classified samples close to
the separating hyperplane while at the same time maximizing the margin. The addition of
the class projections in the objective function of the PN-SVM makes the model more time-
efficient than the Pin-SVM. The datasets used to validate the model were obtained from
the UCI repository, and included Thyroid, Heart-statlog, Breast-Cancer, and other datasets
from the medical field. PN-SVM achieved better performance than TWSVM and Pin-SVM.

Shao et al. [79] developed a CP-TWSVM model that solves the problem of mea-
surement consistency in TWSVM by avoiding the need to consider it through the use of
probability estimation. Experiments carried out on benchmark and real-world datasets,
including many in the medical field, showed CP-TWSVM to have better generalisation and
interpretability than TWSVMs for both binary and multi-class classification problems.

Table 5 summarises the development of TWSVM-based models tested on medical
benchmark datasets. In addition, for a complete overview of SVM and TWSVM develop-
ments discussed here, Table 6 summarises the most important SVM-based models and
TWSVM-based models.
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Table 5. TWSVM models developed and tested on benchmark datasets in the medical field.

Paper TWSVM Model Characteristics and Findings Benchmark Datasets

Arun Kumar and Gopal [73] LS-TWSVM Faster than TWSVM UCI

Yang et al. [87] TWMPM Performances close to
TWSVM UCI

Ma and Yu [88] TMPMC Solves two smaller SOCPs UCI

Zhou et al. [76] TWSVMPath Novel fast regularization
parameter tuning algorithm UCI

Rezvani et al. [77] IF-TWSVM Reduced influence of noise
and outliers UCI

Bai et al. [81] SIF-TWSVM More competitive than other
semi-supervised methods UCI

Tomar and Agarwal [74] Extended LS-TWSVM
better results than existing

multi-classification
approaches

12 datasets KEEL

Richhariya and Tanveer [82] ULS-TPMSVM
Better performance than

TWSVM, LSTWSVM,
LSTPMSVM and ULSTWSVM

UCI, KEEL

Ganaie et al. [78] IIF-TWSVM
minimizes the structural risk
improving the generalization

performance
KEEL and EEG dataset

Lyaqini et al. [84] Primal-dual algorithm for
nonsmooth TWSVM

Outperformed popular deep
learning models

UCI, UlcerDB, CVC-ClinicDB,
HandPD

Moosaei et al. [83] LS-UMTWSVM Quick and efficient approach
for medical data

Immunotherapy, Ljubljana
Breast Cancer, Breast Cancer

Coimbra, Caesarian

Peng [72] ν-TWSVM
Better generalization and

faster learning than classical
SVM and TWSVM

Heart, Thyroid, WBCD, PIMA

Wang and Zhang [75] Pin-TKSVC
A more robust classifier with

two smaller sized QPPs to
save running times

Dermatology, Thyroid

Shao et al. [79] CP-TWSVM Better generalization and
interpretability than TWSVMs EEG

Table 6. SVM-based models and TWSVM-based models.

SVM-Based TWSVM-Based

B-SVM Biased SVM CP-TWSVM Conditional probability twin SVM
F-SVM Fuzzy SVMs IF-TWSVM Intuitionistic fuzzy TWSVM
FSVM-CIL Fuzzy SVMs for Class Imbalance Learning IIF-TWSVM Improved IF-TWSVM
GEP-SVM Generalized Eigenvalue Proximal SVM IRU-TWSVM Inverse reduced universum TWSVM
IFRVFLN Intuitionistic Fuzzy Random Vector KWRU-TWSVM-CIL KNN Weighted Reduced Universum TWSVM

functional link network for Class Imbalance Learning
K-SVM K-means SVM LS-TPMSVM Least squares Twin Parametric-Margin SVM
LP-SVM Linear Programming SVM LS-TWSVM Least Squares TWSVM
LS-SVM Least Squares SVMs Pin-TKSVC Twin K-class SVM with Pinball loss
LSVM Lagrangian SVM SIF-TWSVM Semi-supervised IF-TWSVM
MLW-SVM MultiLevel Weighted SVMs TWSVMPath Fast regularization parameter tuning
MMHS-SVM Maximum Margin Hyper-Sphere SVM algorithm for TWSVM
N-SVM Newton method for LSVM TWFTWSVM Fuzzy TWSVM with Three-Way membership
OELM-RFE Optimized Extreme Learning TWMPM Twin Minimax Probability Machine

machine-based RFE TWMPMC Twin Minimax Probability Machine
P-FSVM Pairwise-fuzzy SVM Classification
Pin-SVM Pinball loss SVM ULS-TWSVM Universum Least Squares TWSVM
PN-SVM Parametric non-parallel SVM ULS-TPMSVM Universum Least Squares Twin
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Table 6. Cont.

SVM-Based TWSVM-Based

P-SVM Proximal SVM Parametric-margin SVM
S-SVM Smooth SVM U-TWSVM Universum TWSVM
SVM-RFE SVM-based Recursive Feature Elimination UM-TWSVM Universum Multi-task TWSVM
WCS-BSVM Within-class scatter biased SVM LS-UMTWSVM Least-Square UM-TWSVM
WWCS-BSVM Weighted Within-Class Scatter Biased SVM RU-TWSVM Reduced Universum TWSVM
U-SVM Universum SVM RU-TWSVM-CIL Reduced Universum TWSVM for CIL
ν−SVM ν−TWBSVM ν-Twin Bounded SVM

Iν−TWBSVM Improved ν-Twin Bounded SVM

3.3. Benchmark Imbalanced Datasets

Imbalanced learning is a significant emerging problem in many areas, including
medical diagnosis. Although the over-sampling and under-sampling techniques are useful
to increase the prediction accuracy of the minority class, they may result in the loss of
important information or add trivial information for classification, thereby affecting the
prediction accuracy of the minority class. Jian et al. [91] developed a new sampling method
based on SVs and nonsupport vectors (NSVs). The B-SVM model (see Section 2) was
used to identify the SVs and NSVs of imbalanced data. Computational experiments
performed on medical imbalanced datasets from UCI, Statlog, and other repositories, such
as the Cod-RNA dataset with 488,565 samples and eight features, showed that the method
had better performance in terms of the ROC curve, G-mean, and AUC value compared
to four other methods, including SMOTE. Sain and Purnami [92] combined SMOTE
and Tomek links, which is an under sampling method, with an SVM using a Gaussian
kernel. They tested the method on four imbalanced benchmark medical data, including
PIMA. The positive cases in the datasets were between 2.5–34.9%. The combined sampling
had better performance in terms of the ROC, G–Mean, and F-measure than SMOTE and
Tomek links alone. Ebenuwa et al. [93] proposed the Variance Ranking Attributes (VRAS)
selection technique based on the intrinsic properties of each attribute for handling class
imbalance problems in a binary classification context. The technique was compared to
two attribute selection techniques, namely, Pearson correlation and information gain. The
results demonstrated that the VRAS technique has a direct impact on the general accuracy
of classification models, including SVM, when targeting the minority in an imbalanced
dataset. However, a limitation of the VRAS techniques is that the variables must be
numeric. Núñez et al. [94] proposed a low-cost post-processing strategy that calculates a
new bias to adjust the function learned by the SVM, which is useful in case of imbalanced
data. The bias modification approach has two advantages: (a) it avoids the need to
introduce and tune new parameters; and (b) it modifies the standard optimization problem
for SVM training. Results on benchmark datasets showed that the performance of this
approach is comparable to the well-known cost-sensitive and SMOTE schemes without
adding complexity or computational cost. In addition, the proposed approach achieved
superior performance in terms of sensitivity. In the pilot work of Dubey et al. [95], MRI
and proteomics modalities were used to systematically investigate the data imbalance
issue in the ADNI dataset. Random Forest (RF) and SVM were used as classification
methods. Experiments demonstrated the dominance of undersampling approaches over
oversampling techniques and showed that performance metrics based on majority voting
dominated the corresponding averaged metrics. SVM had better classification measures
than RF in most cases.

Zhang and Zhong [96] proposed the weighted within-class scatter biased SVM (WWCS-
BSVM) algorithm to better cluster the minority class with respect to the majority class in the
feature space. Experimental results, including on healthcare benchmark datasets, demon-
strated the effectiveness of the proposed algorithm. In addition, the authors transformed
the problem into a balanced problem by removing samples in the majority class which
have only small effects on the decision hyperplane. Five algorithms (BSVM, over-sampling,
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under-sampling, WCS-BSVM, and WWCS-BSVM) were tested on the Haberman dataset,
which contains cases from a study conducted between 1958 and 1970 at the University of
Chicago’s Billings Hospital on the survival of patients who had undergone surgery for
breast cancer. The experimental results showed that WWCS-BSVM performed the best. Raz-
zaghi et al. [97] proposed a multilevel SVM and tested it on large-scale imbalanced public
benchmark datasets. This method produced fast, accurate, and robust classification results.

Hyperparameter tuning with class weight optimization is an efficient way to handle im-
balanced data [98–101]. Zhang et al. [99] proposed an SVM hyperparameter tuning model
with high computing performance. The computational time on imbalanced Alzheimer’s
disease data was strongly reduced and the cross-validation performance was improved.
The hyperparameters of a cost-sensitive SVM were optimized using a genetic algorithm
in [100,101]. A multi-objective approach was used to optimized the model’s hyperparame-
ters, and a solution approach based on genetic algorithms combined with decision trees
was developed. Both serial and parallel version were tested on benchmark datasets, finding
savings in terms of computational time [101]. The improved model performance showed
the best values reported in the literature.

Ganaie et al. [102] proposed a KNN weighted reduced universum TWSVM for class
imbalance learning (KWRUTWSVM-CIL) that reduced the complexity of the Universum
Twin SVM (UTWSVM) model [103] by implementing the structural risk minimization
principle and considering local neighbourhood information through the incorporation of
a weight matrix. Compared to other existing models, the model demonstrated superior
performance on real-world KEEL and UCI datasets. Furthermore, the proposed model
obtained the highest average classification performance in terms of accuracy on Alzheimer’s
disease and breast cancer datasets. To improved the effectiveness of the TWSVM on
imbalanced data, Cai et al. [104] proposed a new three-way fuzzy membership function
that increases the certainty of uncertain data by assigning higher fuzzy membership to
minority samples. Their fuzzy twin support vector machine with three-way membership
(TWFTWSVM) was constructed and tested on 47 imbalanced dataset, outperforming other
traditional SVM-based models.

Table 7 summarises the papers that have addressed imbalanced datasets.

Table 7. Main characteristics of the SVM-based models developed and tested on imbalanced datasets
in the medical fields.

Paper SVM Model Other Techniques Characteristics and Finding

Sain and Purnami [92] Gaussian SVM SMOTE, Tomek links PIMA: G-Mean = 1; F1 = 0.998;
ROC = 0.868.

Jian et al. [91] B-SVM New sampling method for
SVs and NSVs Improved ROC, G-mean and AUC value

Ebenuwa et al. [93] SVM VRAS WBCD and Bupa liver disorder: improved
ROC, F1 and ACC

Núñez et al. [94] SVM Low cost post-processing
strategy based on bias Improved sensitivity

Dubey et al. [95] SVM Random, K_Medoids, SMOTE ADNI: balanced sensitivity and specificity
with K_Medoids undersampling technique

Zhang and Zhong [96] WWCS-BSVM Haberman dataset: better results than other
SVM models

Razzaghi et al. [97] Multilevel SVM Fast and accurate results
Zhang et al. [98],
Zhang et al. [99]

SVM hyperparameter
tuning model High-performance computing

Guido et al. [100],
Guido et al. [101] Cost-sensitive SVM Genetic algorithm Short computational time for the best

hyper-parameter values

Ganaie et al. [102] KWRUTWSVM-CIL
Structural risk minimization

principle, local
neighbourhood information

ADNI and WBCD: improved average
accuracy

Cai et al. [104] TWFTWSVM UCI: improved G-Mean
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4. Classification and Prediction Problems in Real-World Case Studies

This section reviews papers that have used ML approaches including SVM-based
models to address several real-world case studies, ranging from the prediction of chronic
diseases such as diabetes [105–107] and sleep apnea [108,109] to the diagnosis of glau-
coma [110] and acute myocardial infarction [111]. The selected papers consider that the
increasing prevalence of chronic diseases such as Type 2 diabetes mellitus places a heavy
burden on healthcare systems. Furthermore, the selection of the most relevant variables to
include in an ML model is a significant challenge and is crucial from a clinical perspective,
as it supports an increased focus on potentially causative factors. Table 8 lists the healthcare
problems addressed in the papers reviewed in this section.

Table 8. SVM-based models used in real case studies.

Healthcare Problem Papers

Diabetes [105–107]
Sleep apnea [108,109]
Glaucoma [110,112–114]
Graft survival [115]
Myocardial infarction [111,116]
Tumor [117–119]
Brain health [120,121]

Typical issues that researchers have encountered when dealing with real-world data
concern imbalanced datasets, missing values, nanostructured data, and high dimensionality.

4.1. Diabetes

Many ML models have been developed for envisaging diabetic complications; how-
ever, the classification and prediction accuracy is not very high. Hegde et al. [105] developed
a predictive model using medical and dental data from integrated electronic health records
(iEHR) to identify individuals with undiagnosed diabetes mellitus in a dental setting. Their
study used retrospective data retrieved from the Marshfield Clinic Health System data
repository. Future directions mentioned by the authors involved integrating their predic-
tive model into the iEHR as a clinical decision support tool for screening and identifying
patients at risk of diabetes mellitus. This could trigger follow-up and referral for inte-
grated dentist–physician care. The model could additionally be used to develop additional
decision support tools for other systemic diseases with oral health associations, such as car-
diovascular and cognitive disorders. To predict chronic disease risk in Type 2 diabetes (T2D)
mellitus, Lu et al. [106] used graph theory to discover underlying relationships between
health outcomes for a group of patients diagnosed with the same disease; in this approach,
if two people have the same disease, both patients have a latent relationship. They used
eight ML models, including SVM, to predict the risk of chronic disease. The RF model
outperformed the other models, and the authors found that the latent characteristics of pa-
tients were effective in predicting risk. According to Vidhya and Shanmugalakshmi [107],
existing methods have lower classification and prediction accuracy; therefore, they pro-
posed a model centered on deep learning for predicting complications of T2D mellitus.
Data from various diabetes repositories were used to develop an effective feature extraction
system. They tested various ML techniques, and the results showed that their approach
achieved slightly better results than SVM in recognizing the complications of T2D disease.

4.2. Sleep Apnea

Sleep apnea (SA) is a condition in which a person experiences pauses in breath-
ing or has very shallow breaths while asleep. These pauses can vary in frequency and
duration. The most common form of SA is obstructive sleep apnea (OSA), which is
typically diagnosed through polysomnography (PSG) at a sleep laboratory. PSG can
be both expensive and inconvenient, as it requires an expert human observer to work
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overnight. ML models can provide valid support to improve the detection of SA. In one
study, Almazaydeh et al. [108] used an SVM to process short duration epochs of electrocar-
diogram (ECG) data from subjects with and without OSA. Their automated classification
system was based on an IoT device that extracts ECG data from the user and evaluates the
results using an SVM-based system, which they named ‘Apnea MedAssist Service’. A high
accuracy of 96.5% was achieved in recognizing epochs of sleep disorders. Stretch et al. [109]
employed ML models such as SVM and RF to diagnose OSA. Their study considered home
sleep apnea testing (HSAT) as an efficient and cost-effective diagnostic method; however,
HSAT frequently requires additional tests, which can delay diagnosis and increase costs.
Their study aimed to optimize the diagnostic pathway by using predictive modelling to
identify patients who should be referred directly to PSG due to their high probability
of having a nondiagnostic HSAT. The RF approach performed better, and the findings
suggested that HSAT alone may not be enough for a significant number of patients (ranging
from 9% to 35%), which could result in the need for a second sleep test and potentially lead
to delayed or missed diagnosis.

4.3. Glaucoma

Traditional techniques for glaucoma detection require skilled medical practitioners and
take a significant amount of time, and a scarcity of professionals exacerbates the situation.
Ophthalmologists can use fundus images or optical coherence tomography (OCT) images
for analysis. A systematic review by [122] on ML methods for glaucoma detection and
prediction briefly explains the main contributions and findings by reviewing 128 papers.
Thet found that 68% of the papers dealt with glaucoma prediction. Maheshwari et al. [112]
proposed a method for diagnosis of glaucoma based on an LS-SVM classifier that achieved
a classification accuracy of 95.19%. Sharma et al. [113] extracted various fundus images and
then extracted many features, which were then reduced in number through a reduction
technique. An SVM was then tested with several kernels on two private and public
databases for glaucoma detection, achieving accuracy of 98.8% and 95%, respectively,
confirming that this approach can support diagnosis by ophthalmologists. According to
Shuldiner et al. [114], while several studies have focused on applying ML models to identify
glaucomatous damage and detect visual field (VF) progression over time, few studies have
attempted to predict the risk of future VF progression. Therefore, several MLs have been
developed using only a single initial VF test to predict eyes that subsequently show rapid
progression. A retrospective analysis of longitudinal data was performed in order to test
different ML methods. Performance was assessed by AUROC and the best model was
SVM, which predicted rapid progression with an AUC of 0.72, while other ML methods
performed similarly. Incorporating additional clinical data into the current model may
provide opportunities to predict patients most likely to progress rapidly with even greater
accuracy. Singh et al. [110] utilised ML models and IoT-based predictive modelling to
classify and predict glaucoma disease from OCT images through continuous monitoring.
Their study retrieved 45 critical characteristics from a combination of the public Mendeley
dataset and private datasets using the Oriented fast and rotated brief feature extractor and
custom algorithms. These features were fed into four well-known ML classifiers (SVM,
KNN, XGBoost, and RF). The KNN model achieved the highest accuracy, and the results
were improved by using a GA-KNN-based combination with nine input features.

4.4. Graft Survival

The application of SVMs in the context of graft survival prediction involves using
historical data from previous transplant cases to train the SVM model to predict the
likelihood of graft survival for new transplant recipients. Various features, such as donor
and recipient demographics, immunological factors, pre-transplant health status, and
post-transplant care protocols, can be used as input variables for the SVM model. This
information can be invaluable to clinicians in making decisions about the care of their
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patients, such as adjusting immunosuppressive therapy or identifying patients at higher
risk of graft failure who may require closer monitoring or alternative treatment strategies.

Predicting graft survival is crucial for transplant success, as it increases the utility
of available organs and benefits healthcare resource utilisation. According to a recent
review [123] on predicting graft outcomes among kidney transplant patients, ML ap-
proaches improve the prediction of kidney transplant outcomes and aid medical decision-
making. Graft survival is the length of time during which a patient does not require dialysis
or another transplant. In a retrospective analysis of a database with over 31,000 patients,
Topuz et al. [115] introduced a comprehensive feature selection framework that considers
medical literature, data analytics methods, and elastic net regression. They used SVM to
identify potential predictors of survival; elastic nets were combined with ML approaches
such as artificial neural network (ANN), bootstrap forest, and SVM to select essential
predictors in the data. Nonlinear relationships were identified and the interactions between
explanatory factors and risk levels for kidney graft survival were analyzed. The obtained
predictor set outperformed all other alternative predictors.

4.5. Myocardial Infarction

To realise a more comprehensive understanding of the progression of patients’ condi-
tion and an accurate evaluation from multiple perspectives, Zhou et al. [111] considered
several patients’ characteristics concerning acute myocardial infarction (MI), which is one
of the major causes of cardiovascular disease. They compared six ML techniques, includ-
ing SVM, based on information gleaned from electronic medical records in the Medical
Information Marketplace for Intensive Care (MIMIC)-III database. The screening of patient
characteristics included their physical condition, health insurance status, height, weight,
age, ethnicity, length of time treated in the Intensive Care Unit, and dosage of injected
drugs. SVM feature extraction from EMR data improved the prediction accuracy of pa-
tient prognostic risks. The predictive model constructed using SVM achieved an accuracy
rate of 92.2% and an AUC value of 0.98. Furthermore, thirteen markers, including blood
potassium, blood glucose, and total cholesterol, were strongly linked to the prognosis of MI
patients. Dohare et al. [116] detected MI using 12-lead ECG data and reduced the number
of features from 220 to 14 via PCA. The tested SVM achieved high MI detection, with a
sensitivity of 96.66%, specificity of 96.66%, and accuracy of 96.66%.

4.6. Tumor

Tumor response to radiotherapy is a complex process due to the involvement of many
intertwined microenvironmental, physical, and biological parameters that can change
treatment outcomes from one case to another. The complexity of heterogeneous variable
interactions constitutes a challenge for building predictive models for routine clinical
practice. El Naqa et al. [117] described a data mining framework that can unravel the higher
order relationships among dosimetric dose–volume prognostic variables. A dataset of non-
small-cell lung cancer consisting of 56 patients with discrete primary lesions, complete
dosimetric archives, and follow-up information was constructed. The best predictive results
in terms of tumor control probability with respect to logistic regression were achieved by
an SVM with a Gaussian kernel.

SVM has found important applications in the early differential diagnosis of prostate
cancer (PCa). This is because PCa can be easily confused with benign prostate hyperplasia
in its early stages due to similarities in symptoms. In certain cases, PCa is underdiagnosed.
Efforts to improve existing outcome prediction tools in PCa are always encouraged, as
demonstrated by several ML methods reviewed in Li et al. [124] for PCa detection based
on MRI. Wang et al. [119] found that zonal specific information and radiomic features
could significantly improve the prediction of aggressive scores for prostate lesions with an
SVM-RFE model. Akinnuwesi et al. [118] used a PCa dataset from the Kaggle Healthcare
repository consisting of 250 features to develop and validate an SVM model for classification.
The dataset was preprocessed to remove class imbalance, incompleteness, noise, and other
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inconsistencies. Preprocessing included data cleaning, resampling, discretization, and
normalization. Relevant features were then identified using the SelectKBest and chi-
squared methods.

4.7. Brain Health

Estimating brain age from neuroimaging data is important for assessing brain health,
predicting cognitive decline, and identifying individuals who are at risk of neurodegenera-
tive disease. Zhang et al. [120] proposed a nonlinear age-adaptive ensemble method for
brain age estimation from MRI images. They first investigated four ML models, including
an SVR, over different age groups and established an ensemble model based on these
independent models. They then built a nonlinear age-adaptive ensemble model. Unlike
from the stacking strategy, this approach can adjust the weights of inside-independent
models according to the ground truth label. A discussion of some interesting findings from
medical perspectives evidenced that as age increases, the risk of people suffering from brain
diseases increases as well. In their systematic review, Pellegrini et al. [13] claimed that ML
approaches can help to identify dementia risk from neuroimaging; however, their accuracy
remains unclear. They reported that out of 111 relevant studies, most assessed Alzheimer’s
disease versus healthy controls using data from the AD Neuroimaging Initiative and
used SVM.

Stress, social anxiety, depression, obsessive compulsive disorder, drug addiction,
and personality disorders are just a few of the factors that contribute to mental health
problems, including mental illness. Srividya et al. [121] carried out a pilot work for further
in-depth study on different types of mental illness. A target population of two groups, high
school/college students and working professionals with less than five years of experience
from different organisations, was considered. Clustering algorithms were used to identify
the number of clusters and validate the obtained class labels. Several ML approaches
were developed, including logistic regression, naive Bayes, SVM, DT, KNN with the
ensemble bagging method, and a tree ensemble using RF. SVM, KNN, and RF performed
almost equally well. The authors concluded that certain physiological parameters, such as
electrocardiogram and respiratory rate, could be included as features to better predict the
mental state of an individual.

4.8. Internet of Things

Finally, we briefly review some papers that underline the crucial role that the Internet
of Things (IoT) is playing in solving healthcare problems. One of the most important
objectives today is identifying the efficiency and cost impact of healthcare diagnoses. Un-
derstanding chronic disease progression and identifying patients at risk of developing
comorbidities are crucial. Real-time identification based on patients’ health data can be
achieved remotely. IoT sensors enable remote collection of patient data, aiding physi-
cians in identifying the most effective treatment processes in advance. In their review,
Zhang et al. [125] examined the use of noninvasive biosensors and how ML algorithms can
enhance applications in disease screening, diagnosis, therapy determination, health moni-
toring, and food safety. They noted SVM as one of the most utilized ML techniques, with
particular effectiveness in food safety and blood glucose level measurement. Furthermore,
Zhang et al. [126] highlighted the advantages of integrating ML techniques into healthcare
biosensors, leading to the development of smartphone-based biosensing systems. SVM
has emerged as a prominent algorithm demonstrating high accuracy in various biosensor
applications, including monitoring the status of COVID-19 patients. Fortunati et al. [127]
incorporated an SVM classifier into an IoT-WiFi smart and portable electrochemical im-
munosensor for quantifying SARS-CoV-2 spike protein. The SVM classifier efficiently
processes the immunosensor’s signal output to classify SARS-CoV-2 as positive or negative.
Bayesian optimization is employed to determine the best SVM parameters, with the linear
kernel achieving an accuracy of 97.3%.
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5. Predictive Modelling for Health Care Services

Measuring the quality of patient care and other health outcomes is a challenging task
that is necessary in order to identify appropriate improvement actions around purchasing
and healthcare management. Various health outcomes, such as Length of Stay (LOS) and re-
admissions to hospital within 30 days after previous discharge or mortality, can be assessed
to measure quality. These factors allow quality to be assessed, and have a significant impact
on healthcare costs. ML techniques have proved to be efficient tools for predicting quality
indicators of health care services.

Tremblay et al. [128] conducted research to develop predictive models for LOS using
NN and SVM. Their study focused on data preparation within a restricted surgical domain,
namely, the digestive system. This phase involved selecting and transforming relevant
features from the dataset, as often not all attributes are useful for prediction in large
datasets. In this research, DT and LR techniques were used for feature selection, resulting
in very similar outcomes. Among the various models applied, SVM demonstrated better
performance in predicting LOS. Alturki et al. [129] built a predictive model for LOS of
the diabetic patients, addressing the problem as a classification problem. The continuous
variable “time in hospital” was discretized as follows: short (<5 days), medium (5 to 8 days),
and long (>8 days) stays. Among several ML techniques, an SVM with the RBF kernel
function and intermediate values for C and γ parameters turned out to be the best for the
problem under investigation.

Zheng et al. [130] built a high-performance risk prediction model. They solved a
binary problem, in which the two class labels were low-risk and high-risk. The best model,
with better generalisation ability and higher sensitivity in classifying readmitted patients,
turned out to be an SVM with the Radial Basic Function (RBF) kernel on which the Particle
Swarm Optimization (PSO) swarm intelligence technique was applied for the parameter
search. Higher prediction performance was obtained by combining GA and SVM for the
re-admission prediction problem considering diabetic patients [131,132]. Turgeman and
May [133] developed an ensemble hospital readmission predictive model able to control
the trade off between transparency and prediction accuracy. The boosted C5.0 tree and the
SVM were used as the base and second classifier, respectively. When tested on a real-world
dataset, good prediction performance was achieved.

Liu et al. [134] proposed an ICU mortality prediction model that addresses the chal-
lenges of high dimensionality and imbalanced distribution in digital health data, which
can result in reduced classifier performance. Their model used modified cost-sensitive
principal component analysis (MCSPCA) to improve the imbalanced distribution of the
data and obtain low-dimensional features. An SVM with the RBF kernel was chosen as the
classifier, with a chaos particle swarm optimization (CPSO) algorithm used to optimize the
parameters. The proposed MCSPCA + CPSO + SVM achieved results in a shorter elapsed
time (814 s) and showed good performance on the problem. Ghorbani et al. [135] intro-
duced a new hybrid predictive model for ICU mortality that addresses the data imbalance
problem using the SVM-SMOTE technique. A Genetic Algorithm (GA) based on Wrapper
Feature Selection (GAWFS) was used to determine the optimal subset of features, and a new
ensemble model based on the combination of Stacking and Boosting ensemble methods was
proposed. After testing different combinations of ML models to build a stacking ensemble
model, the authors selected the Multilayer Perceptron Neural Network (MLP), kNN, and
Extra Tree Classifier as the base classifiers and a Boosted SVM with adaptive boosting using
57 SVMs with the RBF kernel as the meta-classifier. The testing phase of the proposed
model on a real-world MIMIIC-III health care dataset showed that it outperformed all the
state-of-art models in terms of both accuracy and AUC measures. Barsasella et al. [136]
predicted the mortality risk for T2D and HTN patients in a tertiary hospital in Indonesia,
testing several ML techniques. Their results showed that the SVM was able to achieve an
accuracy performance close to the efficient MLP with backpropagation. For the prediction
of mortality in adult patients with sepsis, the SVM obtained an accuracy prediction equal to
the ANN method, demonstrating its ability to elaborate big medical data [137]. To predict



Information 2024, 15, 235 28 of 36

in-hospital mortality in patients with acute ST-segment elevation myocardial infarction,
Gong et al. [138] proposed a combination of a variant algorithm based on the original sine–
cosine optimization algorithm and an SVM, resulting in a predictive framework that they
called AGCOSCA-SVM. Superior accuracy, sensitivity, and specificity were achieved by
the proposed framework compared to traditional ML methods, demonstrating its promise
as a model framework for supporting the diagnostic process of MI. SVM showed great
potential in the prediction of neonatal mortality considering four groups of categories:
demographics, pregnancy, neonatal, and delivery factors. The method was tested on a
real-world dataset and outperformed five other ML models (DT, Gaussian process, MLP,
ensemble RF, and bagging) [139].

Another application of ML techniques concerns the prediction of negative outcomes
such as hospitalizations and emergency department visits in Home Health Care (HHC).
Identifying at-risk patients allows for timely risk mitigation interventions and optimal
allocation of hospital resources. Utilizing clinical notes is crucial for improving risk pre-
diction in HHC contexts. Song et al. [140] demonstrated that clinical notes play a crucial
role in determining the optimal risk predictive model by combining standardized data
with information extracted from clinical notes. They achieved high risk prediction ability
considering a predictor set with an SVM. Previously, Ghassemi et al. [141] demonstrated
that clinical notes have an impact on ICU mortality prediction by applying an SVM model
to predict ICU mortality in-hospital, 30 days post-discharge, and 1 year post-discharge.

COVID-19

With the outbreak of the COVID-19 pandemic, better defining the allocation of scarce
healthcare resources became a major challenge for the entire world. Therefore, an urgent
need arose to apply ML techniques for the construction of risk prediction models that could
predict peoples’ needs in order to optimize limited clinical resources.

Afrash et al. [142] conducted research to construct a model for predicting the LOS
of patients who tested positive for COVID-19. The selected model was an SVM with
a Gaussian kernel function, which proved to be the model with the highest accuracy
and the lowest running time. Among the limitations of this study is the dimension of
the dataset, which was based on a single center. Song et al. [143] conducted a study
on predicting hospitalizations of elderly people who tested positive for COVID-19, with
the goal to identifying severe risk factors. Four hospitalization prediction models were
developed, including regularized LR, SVM, RF, and NN. The final input variable list for
models counted 44 characteristics based on a literature review, an online survey of clinicians
treating COVID-19 patients, and an interview with a group of physicians. All four models
obtained good prediction results, especially random forest and SVM (AUC = 0.83). Gao
et al. [144] proposed an ensemble method combining SVM, Gradient Boosted Decision
Tree (GSBT), and Neural Network (NN) to predict the occurrence of critical illness in
patients with COVID-19 based on immune–inflammatory parameters. The proposed model
obtained better performance compared to five traditional models (LR, SVM, GBDT, KNN,
and NN) considering a total of 450 patients from two hospitals in China.

Other studies conducted following the outbreak of the pandemic concerned the suit-
ability of rapid antigen tests (RAT) for diagnosing COVID-19. Amer et al. [145] used an SVM
model to investigate whether the predictive accuracy of RAT for diagnosing COVID-19
could be improved by considering different measured laboratory parameters in partici-
pants’ blood. The SVM model with Monte Carlo cross-validation and the combination of
the top two features, revealed to be HB and urea, obtained the highest prediction accuracy
(59.3%). From this research, it emerged that combining the RAT results with laboratory
measurements did not enhance the predictive accuracy of RAT.

6. Conclusions and Future Work

The main objective of this review is to provide an overview of the potential of SVMs in
healthcare along with a summary of the most recent developments. SVM has proven to be
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a powerful machine learning tool, especially in the medical field, due to its solid theoretical
foundations and advantages. Our analysis shows that there are general advantages of
applying specialized SVMs to healthcare data. It is worth noting that many models based on
SVMs are often more effective than other machine learning approaches. SVMs are suitable
for dealing with higher-dimensional data as they are able to automatically regularise such
data, helping to avoid issues around overfitting.

A number of extensions of SVM have been defined in order to face specific issues.
One variant of SVM is TWSVM and its further extensions, which have shown to better
prediction performance, including in the medical field. Despite countless developments,
research on applications of TWSVM to big data remains limited.

It is important to point out that SVM performance is largely dependent on the selection
of kernel functions and their parameters, which affects the results of the prediction to
an extent, as well as the choice of the optimal input feature subset that influences the
appropriate kernel parameters. There is currently not enough research on this topic to
guide researchers in choosing the most appropriate kernel for different applications to
achieve the desired performance. In addition, healthcare datasets are often characterised
by high dimensionality and class imbalance, which can negatively impact SVM accuracy,
especially in cases where the minority class is the target. Techniques such as cost-sensitive
learning can help to address this issue. Another issue, especially in healthcare, is that while
interpretability is paramount, SVMs produce complex decision boundaries that can make
it difficult to interpret results. Furthermore, effective feature engineering is often necessary
to improve the performance of SVM when dealing with heterogeneous medical data.

A critical factor for improving SVM performance in healthcare is the extraction of
relevant features from heterogeneous medical data, including both structured data such
as demographics and lab results and unstructured data such as medical images. Another
important issue concerns missing values due to incomplete records or measurement errors.
SVMs require complete datasets; thus, developing robust approaches to deal with missing
values could be a future research direction. Feature selection is an important issue in the
construction of prediction systems. It is advantageous to limit the number of input features
in order to ensure a good predictive model that is less computationally demanding. The
construction of a model that can handle this obstacle is very important, and despite the
developments recorded in the literature, further research is required.

Another future direction concerns the application and development of cost-sensitive
SVMs, which have been extensively tested in the laboratory but only rarely applied in
real-world settings. Although the cost-sensitive SVMs have demonstrated good predictive
performance in medical settings, their performance may be affected by factors characteristic
of real-world scenarios, such as missing data, unbalanced datasets, and the presence
of confounding variables. Future research could address the gaps in the literature on
cost-sensitive SVMs in healthcare settings. This research should focus on evaluating the
performance of these algorithms in real-world healthcare settings and comparing them
with other learning algorithms. Such research would provide valuable insights into the
practical application of these algorithms in clinical practice. Additionally, it is important to
note that the number of papers reporting useful information for replicating their results is
very small. Researchers should pay more attention to the information that they provide
in order to facilitate the continued progress of SVMs and improve their applicability. In
conclusion, results and applications on both real and benchmark data have demonstrated
the superiority of SVMs over most alternative algorithms, providing motivation for their
future developments.
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GBM Generalized Boosted modelling ROC receiver operating characteristic
GRCV global relaxation cross-validation algorithm SGB stochastic gradient boosting
GSBT Gradient Boosted Decision Tree SMOTE Synthetic Minority Oversampling Technique
HB hemoglobin SVs support vectors
HHC Home Health Care SVM support vector machine
HTN hypertension SVR support vector regression
ICU intensive care unit TWSVM twin support vector machine
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