
Citation: Grigore, I.M.; Tavares, G.M.;

Silva, M.C.d.; Ceravolo, P.; Barbon

Junior, S. Automated Trace Clustering

Pipeline Synthesis in Process Mining.

Information 2024, 15, 241. https://

doi.org/10.3390/info15040241

Academic Editors: Ivan Miguel Pires,

Eftim Zdravevski and Petre Lameski

Received: 18 March 2024

Revised: 5 April 2024

Accepted: 18 April 2024

Published: 20 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Automated Trace Clustering Pipeline Synthesis in
Process Mining
Iuliana Malina Grigore 1 , Gabriel Marques Tavares 2,3 , Matheus Camilo da Silva 1 , Paolo Ceravolo 4

and Sylvio Barbon Junior 1,*

1 Dipartimento di Ingegneria e Architettura, Università Degli Studi di Trieste, 34127 Trieste, Italy;
iulianamalina.grigore@phd.units.it (I.M.G.); matheus.camilodasilva@phd.units.it (M.C.d.S.)

2 Chair of Database Systems and Data Mining, Ludwig-Maximilians-Universität München,
80538 Munich, Germany; tavares@dbs.ifi.lmu.de

3 Munich Center for Machine Learning (MCML), 80539 Munich, Germany
4 Dipartimento di Informatica, Università Degli Studi di Milano Statale, 20122 Milano, Italy;

paolo.ceravolo@unimi.it
* Correspondence: sylvio.barbonjunior@units.it

Abstract: Business processes have undergone a significant transformation with the advent of the
process-oriented view in organizations. The increasing complexity of business processes and the
abundance of event data have driven the development and widespread adoption of process mining
techniques. However, the size and noise of event logs pose challenges that require careful analysis.
The inclusion of different sets of behaviors within the same business process further complicates
data representation, highlighting the continued need for innovative solutions in the evolving field
of process mining. Trace clustering is emerging as a solution to improve the interpretation of
underlying business processes. Trace clustering offers benefits such as mitigating the impact of
outliers, providing valuable insights, reducing data dimensionality, and serving as a preprocessing
step in robust pipelines. However, designing an appropriate clustering pipeline can be challenging
for non-experts due to the complexity of the process and the number of steps involved. For experts,
it can be time-consuming and costly, requiring careful consideration of trade-offs. To address the
challenge of pipeline creation, the paper proposes a genetic programming solution for trace clustering
pipeline synthesis that optimizes a multi-objective function matching clustering and process quality
metrics. The solution is applied to real event logs, and the results demonstrate improved performance
in downstream tasks through the identification of sub-logs.

Keywords: AutoML; trace clustering; pipeline synthesis; process mining

1. Introduction

Business processes have been central to organizational operations since the emergence
of process-oriented views of organizations. With the increase in event data and the intricate
nature of business processes, companies need to gain a deeper understanding of how
their processes operate in real-world situations. This need has led to the development
and growing adoption of process mining techniques as a key catalyst. Process mining
(PM), recognized as a significant innovation in business process management [1], is a new
discipline that combines process model-driven approaches with data mining. It offers
valuable insights into the actual operational dynamics of business processes. Process
mining is a critical tool for organizations, bridging the gap between machine learning, data
mining, and process modeling and analysis. It enables the extraction of valuable insights
from event logs, helping to identify, monitor, and improve business processes [2].

PM works on two basic assumptions: a process model outlines the lifecycle of a single
object (i.e., unit of analysis within a business process), and each event relates to exactly one
object of a particular type [3]. However, real life event logs are challenging, due to the size

Information 2024, 15, 241. https://doi.org/10.3390/info15040241 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15040241
https://doi.org/10.3390/info15040241
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0009-0007-4602-2714
https://orcid.org/0000-0002-2601-8108
https://orcid.org/0000-0002-1256-823X
https://orcid.org/0000-0002-4519-0173
https://orcid.org/0000-0002-4988-0702
https://doi.org/10.3390/info15040241
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15040241?type=check_update&version=2

Information 2024, 15, 241 2 of 15

and noise of event logs, which require careful analysis. In addition, the different sets of
behaviors within the same business process increase the variability of traces (i.e., a sequence
of related events that are recorded in a log file or dataset), posing a data representation
challenge. These challenges highlight the continued need for innovative solutions in the
evolving field of process mining [4]. An event log is a collection of events that represents
a view of a process. Each event has three essential characteristics: case ID, activity, and
timestamp. The case ID helps to identify a particular event within the process and links
related events. Meanwhile, the timestamp organizes events and helps to identify potential
issues. An activity acts as a description or label, providing information about the specific
activity or event. This may include the type of operation, the user involved, or the event’s
outcome. Other attributes, such as cost, resources, and location, can also be added. Trace
refers to a sequence of related events that are recorded in a log file or dataset. Traces provide
a chronological description of how a particular case or instance of a process unfolded
over time.

Trace clustering is a method that aims to tackle the issue of noise present in event logs.
It does so by grouping similar traces or sequences of events, which enables the identification
of patterns and trends in the data. This simplifies the process of distinguishing meaningful
activity from irrelevant or noisy events. Ultimately, trace clustering streamlines the analysis
of the overall data.

Trace clustering is a significant aspect of process discovery as it helps in identifying
recurrent sequences of activities or events that occur within a process. These sequences
are consistent patterns that offer valuable insights into process dynamics. By isolating
these patterns, organisations can analyze, optimize, and improve their processes, leading
to greater efficiency and compliance. Hence, trace clustering is an essential process mining
tool that helps to unearth hidden patterns and derive actionable insights from operational
data. The resulting clusters delineate different pathways or process variants, providing the
basis for a more profound understanding of process behavior [5].

However, creating a trace clustering solution, called a pipeline, requires careful con-
sideration of various steps, including data preprocessing, feature extraction, similarity
measurement, clustering algorithm selection, parameter tuning, and cluster evaluation,
as mentioned in [4]. Several approaches have been explored in other fields to overcome
the issue of pipeline creation. The process of creating data mining pipelines capable of
inferring and/or predicting dataset patterns is a complex effort that requires expertise
not only in the domain of the problem related to the data [6] but also in the data mining
field [7].

A recent solution is pipeline synthesis, which is one of the focuses of the area known
as automated machine learning (AutoML) [8]. It aims to develop techniques that can
make decisions about pipeline conception in a data-driven, objective, and automated
manner—the user simply provides data, and the AutoML system automatically determines
the approach that performs best for a particular application [9].

Specifically for trace clustering, researchers in the field of process mining continue to
work on addressing effectively handling process variants and concurrency, especially in
scenarios where multiple paths or activities can occur simultaneously. Choosing appropri-
ate parameters for clustering algorithms (e.g., distance metrics, number of clusters) can be
non-trivial and may require domain expertise. Suboptimal parameter settings can lead to
poor clustering quality.

Considering the complexity of designing trace clustering pipelines and the limitations
of current approaches, this paper proposes a solution based on genetic programming for
trace clustering pipeline synthesis. The solution was tested on four event logs benchmarks,
and the results indicate its viability in balancing several indicators. Moreover, an evaluation
is provided touching on the relationship between pipeline steps. Finally, the implementa-
tion provides a pipeline prototype that can be easily applied by practitioners. The main
contributions of this work are:

• A new method for trace clustering pipeline synthesis based on AutoML.

Information 2024, 15, 241 3 of 15

• We present a state-of-the-art review of trace clustering and correlate it with the theo-
retical basic aspects of PM.

• We introduce the usage of a multi-objective function for trace clustering, based on
combining clustering and process discovery metrics to improve clustering quality.

The remainder of this paper is organized as follows: Section 2 discusses research
connected with the trace clustering problem. Section 3 presents the theoretical basis for
this work, focusing on PM notations and the trace clustering pipeline synthesis. Section 4
follows by presenting the proposed approach for automated pipeline design for clustering
event logs. Section 5 presents the results of the experiments developed from the perspectives
of PM and data mining. Section 6 discusses the results and presents the current limitations
of the solution and the experimental setup. Finally, Section 7 leaves the final remarks and
indicates possible future research directions.

2. Related Work

The problem of clustering event logs has been discussed at length in the PM literature.
In this review, we focus on trace clustering methods, the main goal of which is finding
groups of behaviors within a business process [10] emphasizing the pipeline complexity,
i.e., from encoding to algorithm selection and hyperparameter tuning. It follows that the
identification of sublogs leads to a better understanding of the process for stakeholders
and improves output quality for downstream tasks, e.g., process discovery by providing
simpler and more comprehensible models [11].

An initial step for clustering traces is deciding the representational scheme. Greco et al. [12]
used n-grams to map event data to feature vectors, whereas Song et al. [13] emphasized
the importance of trace clustering in identifying process variants in diverse environments.
They proposed a generic approach that effectively addresses diversity-related issues by
breaking down the log into smaller, more homogeneous subsets of traces. They used trace
profiles that characterize cases based on specific features extracted from the log to achieve
this. These profiles play a crucial role in assessing the similarity of points to be clustered,
providing a systematic method for analyzing process instances and extracting valuable
insights for process optimization.

Bose et al. [11] used the string edit distance between traces (represented as strings)
to measure their distance. To adjust to the PM domain, the authors propose particular
weights depending on the operation type. Bui et al. [14] proposed a new trace clustering
algorithm that utilizes trace context. The algorithm comprises two phases: Determining
trace context and building clustering. One of the major benefits of this algorithm is its
ability to work directly with the trace data without the need for converting them into an
intermediate representation. Another significant advantage is that it can automatically de-
tect the optimal number of clusters, which reduces the complexity compared to traditional
clustering techniques.

Boltenhagen et al. [15] proposed an improved version of the trace clustering method
that enables cluster centroids to have a more complex structure. This enhancement is
beneficial when dealing with concurrency and loop constructs in process models. By
incorporating concurrency and loop considerations, the clustering method becomes more
robust and efficient in analyzing event logs. The outcome is a more abstract representation
of trace variants, which simplifies interpretation and reduces redundancy within clusters.

Jablonski et al. [16] introduced a new approach to trace clustering that aims to enhance
the quality and conformity of processes. The approach suggests that considering different
perspectives is crucial for this purpose. It provides a comprehensive definition of similarity
between traces by combining information about performed activities, utilized resources,
and data values. However, calculating the optimal weights for this computation is a
costly process.

Clustering event logs can be seen as a preprocessing step to identify sublogs, thus
improving the quality of downstream tasks, such as process discovery [17]. Other common
encoding methods applied are bags of activities [18], dependency spaces [19], and log

Information 2024, 15, 241 4 of 15

footprints [10], for instance. In terms of clustering, a plethora of different methods were
already applied, e.g., k-means [12,20], hierarchical clustering [11,20], spectral clustering [19],
and constrained clustering [21]. Moreover, clustering algorithms are known for being very
sensitive to hyperparameter setting, by virtue of this, one should consider that these
methods require a significant effort towards correctly adjusting the setup.

The complexity of defining a trace clustering pipeline is huge, which hampers its
application in many scenarios. Stakeholders often have the process knowledge; however,
specialists might also be overwhelmed by the overabundance of options, leading to a
trial-and-error approach where optimization dimensions are not well defined. Given the
complexity of defining clustering steps, Tavares et al. [4] proposed a method based on
meta-learning to pipelines considering event log behavior as a guide. The authors propose
a framework that extracts meta-features (i.e., descriptors) to quantify the behavior of an
event log. Then, the defined pipeline space is applied to the event log collection with the
aim of finding the best configuration (meta-target). In this way, finding an optimal setup is
transformed into a classification problem. A classifier learns the mapping between meta-
features and meta-targets and, given a new event log, its meta-features are retrieved and
the classifier recommends a pipeline. The approach is the first in the direction of optimizing
trace clustering pipelines. However, it falls short in several aspects. First, the pipeline
space is highly limited because the computational cost of applying all possible pipelines
to the log collection is huge. Moreover, by transforming the pipeline synthetization into a
classification problem, the recommendation quality is limited by the classifier performance,
which is further impacted in imbalanced scenarios. Finally, the step to choose the best
solution is based on positional ranking, which cannot reflect well the distances to the
optimal metrics.

Pipeline synthesis can be defined as a process of optimizing elements (i.e., steps) in the
combined algorithms and hyperparameters search space. Therefore, it is a difficult problem
to model since the search space is highly dimensional and the steps may have hierarchical
dependencies, such as hyperparameters that only harmonize if combined with a specific
algorithm [22]. In general, AutoML solutions can be divided into two groups. The first
group uses local search approaches: starting from a fixed structure of pipeline steps, the
search space is divided by first performing a selection of clustering algorithms (or data
preprocessors) and then optimizing their parameters [22,23]. In turn, the second group
explores the global search approach: it represents pipeline components as data structures
and then applies evolutionary computation on the structures to obtain the most optimized
dynamic pipeline possible [6,24].

A solution for automated design of trace clustering pipelines based on meta-learning
was proposed by Tavares et al. [4]. The authors presented a method to provide pipeline
recommendations based on event log behavior. For that, descriptors are extracted and a
ranking function defines an optimal pipeline (considering the available search space). The
problem is then converted into a classification task, with a traditional predictive model built
based on the relationship between event log behavior and optimal solutions. However, the
approach falls short as it relies on a considerable collection of event logs to provide good
performing recommendations. Moreover, the computational cost is high as every possible
pipeline needs to be tested against all event logs.

Therefore, considering the complexity of designing decent trace clustering pipelines
and the limitations of automated solutions, we propose a method to find the optimal cluster-
ing design, from the encoding algorithm to a particular algorithm and its hyperparameters,
based only on a given event log. In this manner, the automation of trace clustering not
only provides a readily available prototype but also promotes interpretability and helps
conserve resources.

3. Preliminaries

This section presents the main foundations for this research, mainly concepts regard-
ing PM and AutoML. With regard to the definition of traditional event logs, we present

Information 2024, 15, 241 5 of 15

some universes in Definition 1 [25] and then the definition of traditional event logs in
Definition 2 [25].

Definition 1 (Universe). Uev is the universe of events, Uact is the universe of activities, Ucase
is the universe of cases, Utime is the universe of timestamps, Uatt = {act, case, time, . . . } is the
universe of attributes, Uval is the universe of values, and Umap = Uatt ̸→ Uval is the universe of
attribute-value mappings. We assume that Uact ∪ Ucase ∪ Utime ⊆ Uval , ⊥̸∈ Uval , and for any f
∈ Umap : f (act) ∈ Uact ∪ {⊥}, f(case) ∈ Ucase ∪ {⊥}, and f(time) ∈ Utime ∪ {⊥}.

Definition 2 (Event Log). An event log is a tuple L =(E, # , ≺) consisting of a set of events E
⊆ Uev, a mapping # ∈ E → Umap, and a strict partial ordering ≺⊆ ExE on events.
For any e ∈ E and att ∈ dom(#(e)): #att(e) = #(e)(att) is the value of attribute att for event e.
For example, #_act(e),#_case(e), and #time(e) are the activity, case, and timestamp for an event e.
The ordering of events respects time, i.e., if ei, e2 ∈ E, #time(e1) ̸=⊥, #time(e2) ̸=⊥, and
#time(e1) < #time(e2), then e2 ⊀ e1.

To work with trace clustering, we present the definition of the trace in Definition 3 [25],
and then the definition of trace clustering in Definition 4 [15].

Definition 3 (Trace). A trace σ =< a1, a2, . . . , an >∈ U∗
act is a sequence of events, with the

constraint that, for all 0 < i < j ≤ m, time(ei) ≤ time(ej). L(σ) is the number of times trace σ
appears in the event log L.

Definition 4 (Trace Clustering). Given a log L, a trace clustering over L is a partition over a
(possible proper) subset of the traces in L.

As in most PM pipelines, trace clustering techniques ingest event logs. Within the
scope of our study, we aim to extract the traces from an event log and map them into a
numerical feature space by encoding their behavior. Therefore, a function that projects
event data into another feature space is required.

Definition 5 (Encoding [26]). Assuming an event log L, encoding is a function fe that maps L to
a feature space, i.e., fe : L → Rn, where Rn is an n-dimensional real vector space.

Encoding is the first step for trace clustering which should then be combined with
subsequent steps to form a pipeline.

Definition 6 (Trace clustering pipeline synthesis [9]). Let fe ∈ Fe be an encoding function in
an encoding space, let ϕ = {ρ1, ρ2, . . . , ρn} be the space containing all different preprocessors, such
that ∀ρ1, ρ2 ∈ ϕ, ρ1 ◦ ρ2 ∈ ϕ, let C = {C1, C2, . . . , Cn} be a set of clustering algorithms, and let the
hyperparameters of each clustering algorithm Ci have a domain θi ∈ Θ. A trace clustering pipeline
is defined by the tuple (fe

i ∈ Fe, ρi ∈ ϕ, ci ∈ C, θi ∈ Θ). The trace clustering pipeline synthesis is
the problem of finding a pipeline p ∈ P that maximizes the performance of an objective function π∗.

Hence, automating the design of a trace clustering pipelines involves optimizing a
scoring function, typically composed of relevant metrics of interest.

4. Materials and Methods

This work presents a novel method that leverages the application of genetic program-
ming (GP) techniques to synthesize trace clustering pipelines specifically tailored for PM
based on AutoML. The proposed method employs an evolutionary algorithm to automat-
ically generate and optimize clustering pipelines by evolving a population of potential
solutions, as depicted in Figure 1. It combines the optimization power of evolutionary
computation with the domain knowledge of PM to generate effective trace clustering
pipelines tailored to event log datasets. In this section, we provide a detailed description

Information 2024, 15, 241 6 of 15

of the methodology, its implementation, and the experimental results demonstrating its
effectiveness in enhancing quality metrics.

Figure 1. Overview of the proposed trace clustering approach.

The synthesis of pipelines for event log data proposed by this work is based on
the representation of a trace clustering pipeline’s steps as nodes in a tree data structure.
The sequences of combinations between different encodings, preprocessing techniques,
clustering algorithms, and their hyperparameters constitute the individuals of a diverse
population [6]. The optimization process of the proposed method starts with the generation
of an initial population size of 25 individuals. This population is iterated for 10 generations
with a mutation rate of 0.9 and a crossover rate of 0.1. The initial population is created by
randomly generating pipelines, which are then evaluated for performance using a multi-
objective (MO) function. Once the quality of the pipelines is assessed, the optimization
process continues by generating a new population based on the fittest pipelines, where the
best combinations of operators according to the MO function are kept and perpetuated to
new individuals through GP techniques, such as crossover and mutation. This process is
repeated until a predefined number of generations is optimized and the fittest individual is
selected [27]. We expanded mainly on the functionality of the Tree-based Optimization Tool
(TPOT) [28], which has an interesting mechanism that also takes into account the length
(number of steps) of the pipelines in the optimization process. This assures that the trace
clustering pipelines generated by our proposed method not only have a good performance
by the MO function but also a simple and understandable pipeline.

4.1. Dataset

We used four real publicly available datasets already employed widely in the literature.
BPI12 (https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204, accessed on 17
March 2024) represents a loan application process from a Dutch bank. As BPI12 is a huge
event log, we sampled 15% of all events to facilitate computation. Moreover, the goal is
to demonstrate the approach’s ability to identify behaviors within the log; therefore, we
do not envision the sampling as an issue. The next two event logs (BPI13CP (https://data.
4tu.nl/datasets/1987a2a6-9f5b-4b14-8d26-ab7056b17929, accessed on 17 March 2024) and
BPI13I (https://data.4tu.nl/datasets/0fc5c579-e544-4fab-9143-fab1f5192432, accessed on
17 March 2024)) report the problem management for incidents in a vehicle manufacturer
organization. Finally, we included the Helpdesk (https://data.4tu.nl/datasets/94ee26c8-7
8f6-4387-b32b-f028f2103a2c, accessed on 17 March 2024) event log picturing a process for
the ticket management of an Italian software company.

As presented in Table 1, the dataset collection comprehends processes from several
different domains. Moreover, the characteristics of the logs vary considerably, e.g., the ratio
of variants to several cases ranges from 0.05 to 0.45. We also highlight good variation in
several activities and trace lengths. We hypothesize that by having a diverse collection, the
experiments force the proposed approach to deal with very different scenarios, measuring
its generality.

https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://data.4tu.nl/datasets/1987a2a6-9f5b-4b14-8d26-ab7056b17929
https://data.4tu.nl/datasets/1987a2a6-9f5b-4b14-8d26-ab7056b17929
https://data.4tu.nl/datasets/0fc5c579-e544-4fab-9143-fab1f5192432
https://data.4tu.nl/datasets/94ee26c8-78f6-4387-b32b-f028f2103a2c
https://data.4tu.nl/datasets/94ee26c8-78f6-4387-b32b-f028f2103a2c

Information 2024, 15, 241 7 of 15

Table 1. Statistics (number of cases, number of events, number of activities, trace length, number of
variants) describing the used event logs (Logs).

Logs #Cases #Events #Activities Trace Length #Variants

BPI12 1854 39,330 24 3–130 834
BPI13CP 1487 6660 4 1–35 183
BPI13I 7554 65,533 4 1–123 1551
Helpdesk 4580 21,348 14 2–15 226

4.2. Encoding

In the context of this work, we modified TPOT to cater to the clustering task in process
mining (PM) datasets. Since these data have unique characteristics, we added an encoding
functionality to the pipeline’s search space. These encoding methods capture various
aspects of how event log data are represented. They help in discovering optimal clustering
pipelines that are specific to PM datasets. This involves converting sequential data into a
numerical format that can be processed and analyzed in subsequent pipeline steps. The
encoding technique that maps traces from the event log space into a numerical feature
space is a crucial element in the trace clustering pipeline. This numerical representation
can then be integrated with downstream data mining algorithms, as discussed in previous
work by [29–31]. A recent survey on several encoding techniques from different natures
and families demonstrated that there is no unique optimal encoding method for any
scenario [32]. Moreover, depending on which dimensions one is interested in optimizing,
distinct methods can be considered. This issue is aggravated in environments with multiple
objectives, revealing the importance of trading-off between dimensions. Considering
the need to provide a robust and diverse algorithm space, we employed four encoding
techniques from various families: one-hot, alignment, word2vec, and node2vec. It is
important to note that the implemented proposal can have an expanded repertoire of
encoding techniques, aligning with the design pattern outlined in the repository.

One-hot encoding is the most common technique used in PM. It works by transforming
a variable (with n different values) into an array representing a binary vector with the i-th
position set to one when a value appears [33]. For event data, one-hot encodes activities as
categories where each trace has a corresponding feature vector based on the occurrence and
positions of activities in that trace. The size of the feature vector is equal to the vocabulary
size of the business process. The alignments are a conformance checking technique that
aims at comparing behavior between a model and an event log [34]. More specifically, it
aims at directly relating traces to valid execution sequences allowed by the model and,
with that, producing several features, such as the associated cost of moves and a fitness
value, which are used as feature vector representing traces. Word embeddings have
also been used to encode event data [29,31]. We choose word2vec considering its wide
use across studies. Word2vec builds upon the concept that words appearing in similar
contexts generate similar encodings. For that, it trains a neural network to reconstruct
the linguistic context in a document. The embedding comes from the weights of the
neural network. For event data, the trace representation comes from the aggregation of
each activity’s embeddings. Finally, as processes can also be represented as graphs, we
employed node2vec [35] aiming to explore the relationships between nodes and their
neighborhoods. The node representations come from second-order random walks focusing
on a trade-off between breadth and width searches. As in word2vec, trace representation
comes from aggregation of activities representations, which, in this scenario, are the nodes.

4.3. Clustering

In addition to the encoding methods afforded mentioned, the optimization search
space of the proposed method is composed of multiple preprocess methods, clustering
algorithms, and hyperparameters that are implemented in the machine learning library
sklearn [36]. The preprocessers present in the search space perform a range of different

Information 2024, 15, 241 8 of 15

data transformations which can reveal different aspects of the dataset and help the pipeline
to find the clustering groups. They are the following: MinMaxScaler, Normalizer, and
StandardScaler. Additionally, there is also the feature selector VarianceThreshold and feature
decomposers PCA and FastICA that perform a similar function in the pipeline. Finally,
the unsupervised algorithms that compose the search space cover the most relevant types
of clustering for the domain problem of this work; this set of algorithms is intended to
provide the proposed optimization method with a diversity of options and characteristics
for the creation of pipelines [37]. They include the hierarchical clustering algorithm Ag-
glomerativeClustering, the density-based clustering algorithm DBSCAN, the centroid-based
algorithms MiniBatchKMeans, and the graph-based SpectralClustering. The hyperparam-
eters of the search space are dependent on the clustering algorithms, where not every
hyperparameter is available to every clustering algorithm.

4.4. Optimization

The evolutionary process is guided by an MO optimization function that integrates
two important metrics: the widely used silhouette coefficient and a PM metric known as the
sequence entropy. By considering both metrics, our proposed method aims to optimize the
clustering pipelines based not only on the quality of the resulting clusters but also on their
conformity to PM requirements, such as model quality and log complexity.

The silhouette coefficient is a non-supervised metric capable of evaluating the quality
of the spatial distribution of clustering results [38]. It provides a measure of how far each
data point in a cluster is away from other clusters in the dataset. The coefficient ranges from
−1 to 1, where values closer to 1 indicate that most of the data points are well clustered,
with a significantly higher distance from neighboring clusters in comparison to their cluster.
A value near 0 indicates that the data points are in a similar distance between their cluster
and another cluster. Finally, a negative value suggests that the data points might have
been assigned to the wrong cluster, as their distance to neighboring clusters is smaller than
their distance to their cluster. By calculating the silhouette coefficient for each data point
and then averaging them across the entire dataset, we can assess the overall quality of a
clustering solution.

Sequence entropy is an extension of the entropy metric for event logs that takes into
account the sequence of events in a log [39]. It calculates the entropy of the event sequence,
considering the relative frequency of different sequences in the log. The sequence with the
highest frequency has a higher proportion and contributes more to the calculated entropy.
The sequence entropy metric is used to assess the variability and complexity of the event
sequence in a process. The metric ranges from 0 to 1, where high sequence entropy indicates
greater diversity of sequences and lower predictability in process execution, while low
sequence entropy suggests greater regularity and predictability in the event sequences.

Since the metrics proposed for the pipeline optimization have different ranges, our
MO function consists of the mean average of the normalized metrics of every individual
pipeline in the evaluated generation. Furthermore, we inverted the values of the silhouette
coefficient, i.e., the optimization process minimizes the MO function, where pipelines with
an MO score closer to 0 have a good fit.

4.5. Decision-Making

The complexity of business processes often results in a significant volume of events in
logs, leading to numerous relationships and introducing significant noise. Trace clustering
is a valuable tool in mitigating this complexity, but the existence of different behaviors in
event logs adds an additional layer of complexity.

Our primary goal is to use a trace clustering pipeline to gain insights into the behavior
of event logs, which can support various tasks related to business processes. The challenge
of noise in event logs comes from irrelevant or extraneous information that can obscure
meaningful patterns or insights within the data. Event logs, which document activities or

Information 2024, 15, 241 9 of 15

events, are critical for monitoring and troubleshooting. However, noise from a variety of
sources can prevent effective analysis of these logs.

Mathematically, our goal is to generate an optimal clustering solution, denoted π∗.
Here, P represents a pipeline consisting of a coding function fe, a preprocessor ρ, a clustering
algorithm c, and its hyperparameters θ, which together form the set of steps that yields the
pipeline with the lowest average mean of its silhouette coefficient and sequence entropy
over the entire set of pipelines generated during the optimization process for an event log
L. The equation represents this optimization process (1):

π∗ = arg min
π∈Comb(f ∗e ,ρ∗ ,C∗ ,θ∗)

P
({

arg min
f i
e∈Fe ,ρi∈ϕ,ci∈C,θi∈Θ

{
Mean(S, E) | j = 1, . . . , p

}}
(1)

Here, Comb(f ∗e , ρ∗, C∗, θ∗) represents the set of possible combinations of the optimal
encoding function, preprocessor, clustering algorithm, and their respective hyperparame-
ters. The optimization involves minimizing the mean of the silhouette coefficient (S) and
sequence entropy (E) over a range of pipelines generated from different combinations of
functions and parameters.

The silhouette coefficient (S) and sequence entropy (E) are defined as follows:

S = silj(f i
e , ρi, ci, θi(L)) E = entropyj(f i

e , ρi, ci, θi(L)) (2)

These equations express the silhouette coefficient and sequence entropy calculated for
each pipeline j using the corresponding encoding function f i

e , preprocessor ρi, clustering
algorithm ci, and their hyperparameters θi applied to the event log L.

5. Results

This section presents a discussion based on the results collected. We divide the
discussion into two complementary perspectives: process mining (PM) and data mining.
From one side, we illustrate how stakeholders can benefit from easily identifying groups of
behaviors in an event log. Then, we look at the contribution of designing complex pipelines
using genetic programming (GP).

The experiments were conducted on a high-end workstation, a Dell Precision 5820
Tower X-Series, with the following hardware specifications:

• CPU: Intel Core i9-10980XE featuring 18 cores, 36 threads, and a maximum clock speed
of 4.6 GHz.

• Memory: 62.5 GiB of RAM.
• Storage: Two SK Hynix PC801 NVMe 1TB drives.
• GPU: NVIDIA Quadro T1000 Mobile (TU117GLM).
• Operating System: Ubuntu 22.04.2 LTS (Jammy Jellyfish)

The implementation is available for replication purposes (https://github.com/Meta-
Group/tpot_pm, accessed on 17 March 2024).

5.1. Process Mining Perspective

We first report results connected with PM to demonstrate the viability of our method.
Table 2 presents several process quality measurements before and after the clustering
process. For this experiment, we computed the original log fitness, precision, and entropy.
Then, the log is submitted to the proposed methodology to find a suitable pipeline for trace
clustering. Then, we measure the same metrics and compare the performance improvement
or decline. Note that for the clustered metrics, the reported value is the weighted average
of all discovered clusters.

It is noticeable that the original event logs already had good fitness performance with
three of them reaching over 0.9, and two with almost perfect fitness. When comparing
with clustered event logs, two different behaviors arise. First, for BPI12 and BPI13CP, the
obtained sublogs had a small fitness variation, remaining similar to the complete logs. For

https://github.com/Meta-Group/tpot_pm
https://github.com/Meta-Group/tpot_pm

Information 2024, 15, 241 10 of 15

BPI13I, a significant decrease in fitness value is observed. The log is characterized by having
lengthy traces (reaching up to 123 events) with a limited vocabulary (four activities), which
makes the identification of sublogs complex since most behavior is similar. For Helpdesk,
we envision the opposite phenomenon, i.e., a high increase in fitness values. This behavior
is explained by the number of discovered clusters being the same as the number of variants.
That is, the trace clustering pipeline identified the event log variants and grouped traces
based on which variant they belong to. Therefore, the fitness increases as clusters are more
concise, i.e., they have less variability. Regarding precision, BPI12 originally had a very low
performance, which was increased substantially by the clustered log. For BPI13CP and
Helpdesk, the clustered log presented a very controlled variation when compared with
the entire log. Finally, BPI13I, as with fitness, also presented a considerable performance
decrease for this metric. Given the clear performance drop for BPI13I, the synthesized
pipeline did not favor the quality of generated process models representing the cluster
behaviors. On the contrary, for BPI12 and Helpdesk, the discovered pipeline was found to
show an increase in the model quality metrics.

Table 2. Performance metrics before and after clustering. The sublogs identified by our method are
always simpler (less entropic) than the originals. The percentages describe the percentage increase
(green) or decrease (red) in comparison with the original event log.

Log BPI12 BPI13CP BPI13I Helpdesk

Fitness 0.93 0.99 0.99 0.73
Precision 0.37 0.93 0.94 0.94
Entropy 0.44 0.31 0.40 0.25
Number of Clusters 98 25 92 226
Clustered Fitness (I) 0.95 (2%) 0.96 (−3%) 0.68 (−30%) 0.99 (26%)
Clustered Precision (I) 0.66 (29%) 0.86 (−6%) 0.55 (−39%) 0.95 (1%)
Clustered Entropy (I) 0.18 (26%) 0.15 (16%) 0.14 (27%) 0.02 (24%)

When analyzing entropy, the improvement over the original logs is evident (ranging
from 16% to 27%). This result indicates that the identified sublogs are inherently coherent.
Therefore, the complexity downgrade can enable a better understanding of how an event
log is composed of different behaviors. Although smaller event logs tend to have a lower
complexity (meaning that sublogs have this tendency), clustering traces do not necessarily
lead to an entropy decrease, i.e., random trace clustering would not be consistent with
entropy decline. Except for Helpdesk, we observe that the number of discovered clusters
is not directly correlated with the number of variants of a given log. Considering the
number of variants of the original event logs, we believe the number of clusters discovered
is healthy as the pipelines were able to group similar behaviors without limiting clusters to
have only a unique variant.

Overall, the results indicate a possible trade-off between the model quality metrics (fitness
and precision) and the log complexity (entropy), which is the case for BPI13CP and BPI13I.
For both BPI12 and Helpdesk, the clustered event logs improved all metrics concomitantly.

For the next experiment, we aimed to provide a visual representation of the clustered
space. For that, we sampled 10% of the Helpdesk event log to improve readability. The
synthesized pipeline discovered was composed of the alignments encodings, the Standard-
Scaler preprocessor, and MiniBatchKmeans as the cluster with k as 4. Figure 2 shows the
clustered space after dimensionality reduction was applied with PCA. Since most distances
were respected (high explained variance), we can rely on the visual representation of traces
and clusters. Although the border points cluster association is debatable, the clusters are
concise and well separated, as indicated by the obtained silhouette score (0.79). The entropy
was also diminished from 0.22 to 0.09. To strengthen the argument of complexity decrease,
we also consider the number of nodes and edges of the leveraged directly follow graph.
The original log contained 12 nodes and 30 edges. The respective number of nodes and
edges for clusters 0, 1, 2, 3 are: 8 and 18, 2 and 1, 10 and 23, 5 and 7. The distribution

Information 2024, 15, 241 11 of 15

of the graph objects shows that each cluster contains different behavior, also highlighted
by the number of nodes, which reflect the number of activities. Therefore, this example
demonstrates how the complexity (measured from several perspectives) was alleviated by
our proposal of automated pipeline synthesis.

4 2 0 2 4 6 8
PC1 (91.1% explained variance)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

PC
2

(6
.1

6%
 e

xp
la

in
ed

 v
ar

ia
nc

e)

Clusters
0
1
2
3

Figure 2. Clustered space for a sample of Helpdesk. The synthesized pipeline identified 4 clusters
representing different trace behaviors.

The associations between pipeline steps are also worth investigating as the encoding
method determines the output quality of subsequent tasks [32]. For this, we submitted
each event log ten times to our method. Figure 3 reports the frequency of how each
encoding method is combined with a clustering algorithm. Notably, there is a good balance
between encoding methods (except for one-hot, which never appears in the final pipeline).
Alignments appear more frequently associated with MiniBatchKMeans and DBSCAN, with
the same following for node2vec. Word2vec presented the most heterogeneous behavior,
being combined with all possible clusters. Regarding clustering solutions, MiniBatchKMeans
and DBSCAN appear very often, while SpectralClustering and AgglomerativeClustering are
infrequent, demonstrating that the former group matches better the distributions of our
event log collection. To generalize this conclusion for the event log space, more logs should
be included in the experiments.

AgglomerativeClustering

DBSCAN

MiniBatchKMeans

SpectralClustering

alignments

node2vec

word2vec

Figure 3. Sankey visualization of associations between encoding techniques and clustering algorithms.
Each color represents a solution obtained by the combination of a given encoding method and a particular
algorithm. The thickness of colored regions refers to the frequency of a combined pair.

Information 2024, 15, 241 12 of 15

5.2. Data Mining Perspective

We present a comprehensive evaluation of the proposed method from a data mining
perspective. The evaluation compares the performance of our method against a random
search approach, both operating within the same search space and event logs. Random
search is a simple and intuitive method used in optimization and hyperparameter tuning.
In the context of this work, it involves randomly sampling and combining the steps of
clustering pipelines from the defined search space. Random search is a good competitor
for optimization tests due to its simplicity, exploration capability, baseline performance,
robustness to noise, computational efficiency, and its usefulness in benchmarking and
comparative analysis. We analyze and interpret the results obtained by comparing the
runs from random search and the proposed method, focusing on key metrics, such as
the silhouette coefficient, the sequence entropy, and the execution time. Through this
analysis, we aim to provide insights into the effectiveness and efficiency of our method in
synthesizing trace clustering pipelines.

The experimentation involved running the random search and proposed approach ten
times for each of the four datasets (totaling 40 runs). Each run had a budget of 250 pipelines,
resulting in a total of 2500 pipelines generated for each approach per dataset. Overall, a
total of 10,000 pipelines were generated and evaluated throughout the experimentation
process. For the evaluation, we ranked the best performing ones from the random search,
selecting the pipeline with the best performance for each of its 40 runs.

The performance metric chosen was the Euclidean distance between a point repre-
senting the optimal values of the silhouette coefficient and the sequence entropy (1 and
0, respectively) and the values obtained by each pipeline. The aim was to assess how
close the generated pipelines were to the ideal values. As shown in Figure 4, the results
of the evaluation indicated that the proposed method outperformed the random search
algorithm in terms of pipeline performance. The pipelines generated by the proposed
method exhibited mostly smaller or at least similar Euclidean distances to the ideal values
in comparison to random search. Additionally, the evaluation considered the time required
for pipeline generation. The proposed method was less time-consuming compared to the
random search algorithm. This indicates that the proposed method achieved superior
performance while also being more efficient in terms of computational resources.

0 1000 2000 3000 4000 5000 6000
Execution Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

Event log
BPI12
BPI13CP
BPI13I
Helpdesk

Approach
Random Search
Proposed Approach

Figure 4. Visualization of the performance per execution time of random search and the pro-
posed method.

Overall, the experiment showcased the advantage of the proposed method in terms
of reduced computational time, making it a promising approach for generating trace
clustering pipelines.

Information 2024, 15, 241 13 of 15

6. Discussion and Limitations

The experiments aimed to capture several complimentary qualitative aspects of clus-
tered event logs. From the metrics perspective, we observe a trade off between model
quality and log complexity for two logs (BPI13CP and BPI13I). That is, the cost of reducing
entropy also implies diminishing the average model’s fitness and precision. Contrarily, for
BPI12 and Helpdesk, we observe an increase in both facets. The relationship between the
balance within these metrics might be influenced by the underlying log behavior. More
experiments to generalize these findings are necessary. Overall, the method showed a
good capability in reducing complexity throughout the experiments, indicating that trace
clustering pipeline synthesis can enable a better understanding of behaviors in event logs.
The second part of the experiments demonstrated that random modeling leads to sub-
optimal results as the pipeline search space is enormous and finding a suitable sequence of
algorithms is not a simple task. In terms of time consumption, the proposed method also
delivers consistently.

Furthermore, a few limitations can also be identified. First, the collection of event logs
is limited; further investigation needs to be conducted to analyze the proposed method
when facing diverse scenarios. Although there exists research in the direction of automating
trace clustering pipeline design [4], a direct comparison is not viable for a few reasons. The
pipeline search space of these methods is different (our proposal is much more extensive),
which hinders a fair evaluation. The meta-learning based method also requires a high
number of event logs to build the meta-database. Finally, the MO function is significantly
different, meaning that each method optimizes distinct dimensions.

We believe the proposed approach takes one step further in the incorporation of
automated pipeline synthesis in PM. The biggest contribution is releasing the burden from
specialists who would need to design trace clustering pipelines by trial-and-error. With
an automated solution, analysis is facilitated and human time can be freed. Moreover, the
approach is similar to zero-shot learning as it does not need to build a knowledge database.
One can simply plug the desired event log to find its corresponding pipeline.

7. Conclusions

Process mining involves extracting information from event logs, which are often large,
noisy, and contain many relationships. This can result in the creation of complex models
that are difficult to interpret. To address this problem, trace clustering is used to identify
groups with similar behavior. However, selecting appropriate trace clustering parameters
can be daunting when dealing with vast amounts of data.

Clustering algorithms are sensitive to hyperparameters, requiring optimization and
hyperparameter search spaces. AutoML automates this process by selecting algorithms
and hyperparameters. Nevertheless, the construction of trace clustering pipelines remains
complex and involves several complicated steps.

To address these challenges, we propose an automated method for synthesizing trace
clustering pipelines using genetic programming (GP). Our approach optimizes various
dimensions to find an optimal pipeline. The results demonstrate the viability of our solution
in real-world scenarios, balancing model quality with sublog complexity. Our analysis
spans both process mining (PM) and data mining perspectives, providing valuable insights
for business analysis while maintaining rigorous optimization goals.

For future research, further experiments are needed to generalize the presented results,
including the inclusion of additional event logs in the pipeline. Additionally, exploring dif-
ferent AutoML-based methods with different multi-objective (MO) optimization functions
could provide a more robust approach to pipeline synthesis.

Author Contributions: Conceptualization: I.M.G., G.M.T., M.C.d.S., P.C. and S.B.J.; methodology:
I.M.G., M.C.d.S. and P.C.; software: S.B.J. and I.M.G.; writing—original draft preparation: G.M.T.,
M.C.d.S., S.B.J. and I.M.G.; supervision: I.M.G. and P.C. All authors have read and agreed to the
published version of the manuscript.

Information 2024, 15, 241 14 of 15

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. van der Aalst, W.M. Business Process Management: A Comprehensive Survey. ISRN Softw. Eng. 2013, 2013, 507984. [CrossRef]
2. Martin, N.; Fischer, D.A.; Kerpedzhiev, G.D.; Goel, K.; Leemans, S.J.J.; Röglinger, M.; van der Aalst, W.M.P.; Dumas, M.; La Rosa,

M.; Wynn, M.T. Opportunities and Challenges for Process Mining in Organizations: Results of a Delphi Study. Bus. Inf. Syst. Eng.
2021, 63, 511–527. [CrossRef]

3. van der Aalst, W.M.P.; Carmona, J. Process Mining Handbook; Springer: Berlin/Heidelberg, Germany, 2022.
4. Tavares, G.M.; Barbon Junior, S.; Damiani, E.; Ceravolo, P. Selecting Optimal Trace Clustering Pipelines with Meta-learning. In

Proceedings of the Intelligent Systems; Xavier-Junior, J.C., Rios, R.A., Eds.; Springer International Publishing: Cham, Switzerland,
2022; pp. 150–164.

5. Neubauer, T.R.; Pamponet Sobrinho, G.; Fantinato, M.; Peres, S.M. Visualization for enabling human-in-the-loop in trace
clustering-based process mining tasks. In Proceedings of the 2021 IEEE International Conference on Big Data (Big Data), Orlando,
FL, USA, 15–18 December 2021; pp. 3548–3556. [CrossRef]

6. Olson, R.S.; Bartley, N.; Urbanowicz, R.J.; Moore, J.H. Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data
Science. In Proceedings of the Genetic and Evolutionary Computation Conference 2016, New York, NY, USA, 20–24 July 2016;
pp. 485–492. [CrossRef]

7. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2013;
Volume 112.

8. Tavares, G.M.; Junior, S.B.; Damiani, E. Automating process discovery through meta-learning. In Proceedings of the International
Conference on Cooperative Information Systems, Bozen-Bolzano, Italy, 4–7 October 2022; Springer: Berlin/Heidelberg, Germany,
2022; pp. 205–222.

9. Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated Machine Learning: Methods, Systems, Challenges; Springer Nature:
Berlin/Heidelberg, Germany, 2019.

10. De Koninck, P.; De Weerdt, J.; vanden Broucke, S.K.L.M. Explaining clusterings of process instances. Data Min. Knowl. Discov.
2017, 31, 774–808. [CrossRef]

11. Bose, R.P.J.C.; van der Aalst, W.M. Context Aware Trace Clustering: Towards Improving Process Mining Results. In Proceedings of
the 2009 SIAM International Conference on Data Mining (SDM), Sparks, NV, USA, 30 April–2 May 2009; pp. 401–412. [CrossRef]

12. Greco, G.; Guzzo, A.; Pontieri, L.; Sacca, D. Discovering expressive process models by clustering log traces. IEEE Trans. Knowl.
Data Eng. 2006, 18, 1010–1027. [CrossRef]

13. Song, M.; Günther, C.W.; van der Aalst, W.M.P. Trace Clustering in Process Mining. In Proceedings of the Business Process
Management Workshops; Ardagna, D., Mecella, M., Yang, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 109–120.

14. Bui, H.-N.; Tri-Thanh Nguyen, T.C.N.; Ha, Q.T. A New Trace Clustering Algorithm Based on Context in Process Mining. In
Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 11103. [CrossRef]

15. Boltenhagen, M.; Chatain, T.; Carmona, J. Generalized Alignment-Based Trace Clustering of Process Behavior. In Lecture Notes in
Computer Science; Springer International Publishing: Cham, Switzerland, 2019; Volume 11522. [CrossRef]

16. Jablonski, S.; Röglinger, M.; Schönig, S.; Wyrtki, K.M. Multi-Perspective clustering of process execution traces. Enterp. Model. Inf.
Syst. Archit. (Emisaj) Int. J. Concept. Model. 2019, 14. [CrossRef]

17. Fani Sani, M.; Boltenhagen, M.; van der Aalst, W. Prototype Selection Using Clustering and Conformance Metrics for Process
Discovery. In Proceedings of the Business Process Management Workshops; Del Río Ortega, A., Leopold, H., Santoro, F.M., Eds.;
Springer International Publishing: Cham, Switzerland, 2020; pp. 281–294.

18. de Medeiros, A.K.A.; Guzzo, A.; Greco, G.; van der Aalst, W.M.P.; Weijters, A.J.M.M.; van Dongen, B.F.; Saccà, D. Process
Mining Based on Clustering: A Quest for Precision. In Proceedings of the Business Process Management Workshops; ter Hofstede, A.,
Benatallah, B., Paik, H.Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 17–29.

19. Delias, P.; Doumpos, M.; Grigoroudis, E.; Manolitzas, P.; Matsatsinis, N. Supporting healthcare management decisions via robust
clustering of event logs. Knowl.-Based Syst. 2015, 84, 203–213. [CrossRef]

20. Lakshmi Narayana, N.; Jagadishwari, V. Trace Clustering Techniques for Process Mining. In Proceedings of the 2023 Third
International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai,
India, 5–6 January 2023; pp. 1–6. [CrossRef]

21. De Koninck, P.; Nelissen, K.; vanden Broucke, S.; Baesens, B.; Snoeck, M.; De Weerdt, J. Expert-driven trace clustering with
instance-level constraints. Knowl. Inf. Syst. 2021, 63, 1197–1220. [CrossRef]

http://doi.org/10.1155/2013/507984
http://dx.doi.org/10.1007/s12599-021-00720-0
http://dx.doi.org/10.1109/BigData52589.2021.9671985
http://dx.doi.org/10.1145/2908812.2908918
http://dx.doi.org/10.1007/s10618-016-0488-4
http://dx.doi.org/10.1137/1.9781611972795.35
http://dx.doi.org/10.1109/TKDE.2006.123
http://dx.doi.org/10.1007/978-3-319-99368-3_50
http://dx.doi.org/10.1007/978-3-030-21571-2_14
http://dx.doi.org/10.18417/emisa.14.2
http://dx.doi.org/10.1016/j.knosys.2015.04.012
http://dx.doi.org/10.1109/ICAECT57570.2023.10117842
http://dx.doi.org/10.1007/s10115-021-01548-6

Information 2024, 15, 241 15 of 15

22. Thornton, C.; Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Auto-WEKA: Combined selection and hyperparameter optimization of
classification algorithms. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, New York, NY, USA, 11–14 August 2013.

23. Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.; Blum, M.; Hutter, F. Efficient and robust automated machine learning.
Adv. Neural Inf. Process. Syst. 2015, 28, 2962–2970.

24. Chen, B.; Wu, H.; Mo, W.; Chattopadhyay, I.; Lipson, H. Autostacker: A compositional evolutionary learning system. In
Proceedings of the Genetic and Evolutionary Computation Conference, New York, NY, USA, 15–19 July 2018; pp. 402–409.

25. van der Aalst, W.M.P. Process Mining: A 360 Degree Overview. In Lecture Notes in Business Information Processing; Springer
International Publishing: Cham, Switzerland, 2022; Volume 448.

26. Tavares, G.M.; Barbon Junior, S. Matching business process behavior with encoding techniques via meta-learning: An anomaly
detection study. Comput. Sci. Inf. Syst. 2023, 20, 1207–1233. [CrossRef]

27. ElShawi, R.; Sakr, S. TPE-AutoClust: A Tree-based Pipline Ensemble Framework for Automated Clustering. In Proceedings of
the 2022 IEEE International Conference on Data Mining Workshops (ICDMW), Orlando, FL, USA, 28 November–1 December
2022; pp. 1144–1153. [CrossRef]

28. Fu, W.; Olson, R.; Nathan; Jena, G.; PGijsbers; Augspurger, T.; Romano, J.; Saha, P.; Shah, S.; Raschka, S.; et al. EpistasisLab/tpot:
V0.11.5. 2020. Available online: https://zenodo.org/records/3872281 (accessed on 17 March 2024).

29. De Koninck, P.; vanden Broucke, S.; De Weerdt, J. act2vec, trace2vec, log2vec, and model2vec: Representation Learning for
Business Processes. In Proceedings of the Business Process Management; Weske, M., Montali, M., Weber, I., vom Brocke, J., Eds.;
Springer International Publishing: Cham, Switzerland, 2018; pp. 305–321.

30. Polato, M.; Sperduti, A.; Burattin, A.; Leoni, M.d. Time and activity sequence prediction of business process instances. Computing
2018, 100, 1005–1031. [CrossRef]

31. Barbon Junior, S.; Ceravolo, P.; Damiani, E.; Marques Tavares, G. Evaluating Trace Encoding Methods in Process Mining. In
Proceedings of the From Data to Models and Back; Bowles, J., Broccia, G., Nanni, M., Eds.; Springer International Publishing: Cham,
Switzerland, 2021; pp. 174–189.

32. Tavares, G.M.; Oyamada, R.S.; Junior, S.B.; Ceravolo, P. Trace encoding in process mining: A survey and benchmarking. Eng.
Appl. Artif. Intell. 2023, 126, 107028. [CrossRef]

33. Weiss, S.M.; Indurkhya, N.; Zhang, T. Fundamentals of Predictive Text Mining, 2nd ed.; Texts in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2015. [CrossRef]

34. Rozinat, A.; van der Aalst, W. Conformance checking of processes based on monitoring real behavior. Inf. Syst. 2008, 33, 64–95.
[CrossRef]

35. Grover, A.; Leskovec, J. Node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13–17 August 2016; pp. 855–864.
[CrossRef]

36. Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.;
et al. API design for machine learning software: Experiences from the scikit-learn project. In Proceedings of the ECML PKDD
Workshop: Languages for Data Mining and Machine Learning, Prague, Czech Republic, 23–27 September 2013; pp. 108–122.

37. Xu, R.; Wunsch, D. Survey of clustering algorithms. IEEE Trans. Neural Netw. 2005, 16, 645–678. [CrossRef] [PubMed]
38. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987,

20, 53–65. [CrossRef]
39. Augusto, A.; Mendling, J.; Vidgof, M.; Wurm, B. The connection between process complexity of event sequences and models

discovered by process mining. Inf. Sci. 2022, 598, 196–215. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2298/CSIS220110005T
http://dx.doi.org/10.1109/ICDMW58026.2022.00149
https://zenodo.org/records/3872281
http://dx.doi.org/10.1007/s00607-018-0593-x
http://dx.doi.org/10.1016/j.engappai.2023.107028
http://dx.doi.org/10.1007/978-1-4471-6750-1
http://dx.doi.org/10.1016/j.is.2007.07.001
http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.1109/TNN.2005.845141
http://www.ncbi.nlm.nih.gov/pubmed/15940994
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1016/j.ins.2022.03.072

	Introduction
	Related Work
	Preliminaries
	Materials and Methods
	Dataset
	Encoding
	Clustering
	Optimization
	Decision-Making

	Results
	Process Mining Perspective
	Data Mining Perspective

	Discussion and Limitations
	Conclusions
	References

