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Abstract: The use of machine learning algorithms in healthcare can amplify social injustices and health
inequities. While the exacerbation of biases can occur and be compounded during problem selection,
data collection, and outcome definition, this research pertains to the generalizability impediments that
occur during the development and post-deployment of machine learning classification algorithms.
Using the Framingham coronary heart disease data as a case study, we show how to effectively select
a probability cutoff to convert a regression model for a dichotomous variable into a classifier. We
then compare the sampling distribution of the predictive performance of eight machine learning
classification algorithms under four stratified training/testing scenarios to test their generalizability
and their potential to perpetuate biases. We show that both extreme gradient boosting and support
vector machine are flawed when trained on an unbalanced dataset. We then show that the double
discriminant scoring of type 1 and 2 is the most generalizable with respect to the true positive
and negative rates, respectively, as it consistently outperforms the other classification algorithms,
regardless of the training/testing scenario. Finally, we introduce a methodology to extract an optimal
variable hierarchy for a classification algorithm and illustrate it on the overall, male and female
Framingham coronary heart disease data.

Keywords: machine learning; classification algorithm; health disparities; variable selection methodology;
optimal variable hierarchy

1. Introduction

As machine learning (ML) and artificial intelligence (AI) are rapidly proliferating
in many aspects of decision-making in society, there is growing concern regarding their
ethical use and their potential to perpetuate existing racial biases, as highlighted in pre-
dictive policing [1,2], in mortgage lending practices [3], in financial services [4] and in
healthcare [5–9]. At the intersection of health, machine learning and fairness, a compre-
hensive review [10] of the ethical considerations that arise during the model development
of machine learning in health has been laid out in five stages, namely problem selection,
data collection, outcome definition, algorithm development and post-deployment con-
siderations, the latter two of which are the main focus of this present research. For each
of these five stages, there are considerations for machine learning to not only mitigate
and/or prevent the exacerbation of existing social injustices, but also to attempt to prevent
the creation of new ones. First, interest and available funding influence the selection of a
research problem and this, together with the lack of diversity in the scientific workforce,
leads to the exacerbation of existing global, racial and gender injustices [11–13]. Second,
biases in data collection arise from two processes that result in a loss of data. On one hand,
the type of collected data has been shown to suffer, at varying degrees, from challenges
and limitations, as illustrated for randomized controlled trials [14–16], electronic health
records [17–19] and administrative health records [20,21]. On the other hand, historically
underserved groups, which include low- and middle-income nationals [22,23], transgender
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and gender-nonconforming individuals [24], undocumented immigrants [25] and pregnant
women [26,27], are often underrepresented, misrepresented or missing from the health data
that inform consequential health policy decisions. The third stage in the model pipeline
is outcome definition, which may appear to be a straightforward healthcare task—for
example, defining whether a patient has a disease—but, surprisingly, can be skewed by
the prevalence of such disease and the way that it manifests in some patient populations.
One such instance may occur during clinical diagnosis. For example, the outcome label
for the development of cardiovascular disease could be defined through the occurrence of
specific phrases in the clinical notes. However, women can manifest symptoms of acute
coronary syndrome differently [28] and receive delayed care as a result [29]. In addition,
ambiguities occur as a result of diagnosis codes being leveraged for billing purposes, rather
than for clinical research [30]. Another instance in which outcome definition can lead to
biases and the exacerbation of inequities is the use of non-reliable proxies to account for and
predict a health outcome given that socioeconomic factors affect access to both healthcare
and financial resources. The fourth stage in the model pipeline is algorithm development
per se. Even when all considerations and precautions have been taken into account in the
previous three stages to minimize the infiltration of biases, noise and errors in the data,
the choice of the algorithm is not neutral and often is a source of obstruction to the ethical
deployment of the algorithm. The crucial factors in model development are understanding
confounding, feature selection, parameter tuning, performance metric selection and group
fairness definition. Indeed, confounding features are those features that influence both the
independent and dependent variables, and, as the vast majority of models learn patterns
based on observed correlations within the training dataset, even when such correlations
do not occur in the testing dataset, it is critical to account for confounding features, as
illustrated in classification models designed to detect hair color [31] and in predicting the
risk of pneumonia and hospital 30-day readmission [32]. Moreover, blindly incorporat-
ing factors like race and ethnicity, which are increasingly available due to the large-scale
digitization of electronic health records, may exacerbate inequities for a wide range of
diagnoses and treatments [33]. Therefore, it is crucial to carefully select the model’s features
and to consider the human-in-the-loop framework, where the incorporation of automated
procedures is blended with investigator knowledge and expertise [34]. Another crucial
component of algorithm development is the tuning of the parameters, which can be set
a priori, selected via cross-validation or extracted from a default setting from software.
These methods that can lead to the overfitting of the model to the training dataset and a
loss of generalizability to the target population, the latter of which is a central concern for
ethical machine learning. To assess and evaluate a model, many performance metrics are
commonly used, such as the area under the receiver operating characteristic curve (AUC)
and area under the precision–recall curve (AUPRC) for regression models, on one hand, and
the accuracy, true positive rate and precision for classification models, on the other hand. It
is important to use a performance metric that reflects the intended use case and to be aware
of potential misleading conclusions when using so-called objective metrics and scores [33].
Finally, the fifth stage of the model pipeline is the post-deployment of the model in a clini-
cal, epidemiological or policy service. Robust deployment requires careful performance
reporting and the auditing of generalizability, documentation and regulation. Indeed, it is
important to measure and address the downstream impacts of models through auditing
for bias and the examination of clinical impacts [35]. It is also crucial to evaluate and audit
the deployment of its generalization, as any shift in the data distribution can significantly
impact model performance when the settings for development and deployment differ, as
illustrated in chest X-ray models [36–38]. While some algorithms have been proposed to
account for distribution shifts post-deployment [39], their implementation suffers from
significant limitations due to the requirement for the specification of the nature or amount
of distributional shift, thus requiring tedious periodic monitoring and auditing. The last
two components for the ethical post-deployment of machine learning are the establishment
of clear and insightful model and data documentation and adherence to best practices and
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compliance with regulations. In addition, the introduction of complex machine learning
models can sometimes lead to “black box” solutions, where the decision-making process is
not transparent. Enhancing the clinical interpretability of the algorithms, possibly through
the integration of explainable AI (XAI) techniques, could increase their acceptance among
healthcare professionals. Providing insights into how and why predictions are made can
aid in clinical decision-making, fostering trust and facilitating the adoption of these models
in medical practice.

In [40], a review of 2815 research articles from the MEDLINE, Embase, Web of Science,
ClinicalTrials.gov and ICTRP databases pertaining to the prediction of atrial fibrillation,
which is a major risk factor for stroke, identified sixteen studies using machine learning
models to predict incident atrial fibrillation and three studies focusing on machine learning
models to detect atrial fibrillation post-stroke. It concluded that (1) many models used only
a limited number of variables available in the patients’ health records; (2) only 37% were
externally validated, and a stratified analysis was often lacking; (3) 0% of the models and
53% of the datasets were made available, which limited the transparency and reproducibil-
ity; and (4) there were no sufficient details to ensure bias mitigation. As such, the study
identified the low generalizability, high false alarm rate and the lack of interpretability
as additional factors that need to be addressed before a machine learning model can be
widely deployed in a clinical care setting, and it recommends the improvement of the gen-
eralizability and the reduction of potential systemic biases, as well as investing in external
validation studies whilst developing a transparent pipeline to ensure reproducibility.

With the algorithm development and post-deployment considerations of the five-
stage model pipeline [10] on one hand, and with the improvement of the generalizability
recommended in [40] on the other hand, this research uses the well-known Framingham
coronary heart disease data as a case study and focuses on the comparison of several
classification algorithms, in a paired design setting, using electronic health records, with
the goal of identifying a methodology that is not only ethical, robust and understandable by
practitioners or community members but also generalizable. While regression models for
dichotomous observations are widely used by modelers, the probability outcome for patient-
level data may not be insightful or helpful to determine whether a given patient should
undergo further intervention, i.e., whenever the response of a practitioner to a patient
(or family member) is expected to be a binary response rather than a vague probability
statement. Despite the fact that this research was conducted before the publication of [40],
the relevance of our comparative analysis is its response to one of the limiting factors
highlighted in [40], which is the lack of performance benchmarking against conventional
predictive models, with the majority of the atrial fibrillation studies (10/16) utilizing only
one model architecture, without comparing the performance of machine learning models
against baseline models such as logistic regression. Our study compares several machine
learning algorithms in a paired design framework with a high number of cross-validation
steps across several stratified training/testing scenarios, using the same data and set of
variables. In Section 2, we recall the historical context of the Framingham Heart Study,
and we then describe the seven predictors and the four training/testing scenarios used in
this comparative analysis. We also recall the definitions of commonly used performance
metrics for classification algorithms, i.e., the accuracy, true positive rate (sensitivity) and
true negative rate (specificity). We then make the distinction between positive precision
(resp., observed prevalence), which is simply called precision (resp., prevalence) in the
literature, and negative precision (resp., predicted prevalence), which we introduce and
define. Finally, we introduce the classification performance matrix as an extension of the
confusion matrix with these seven performance metrics (accuracy, true positive/negative
rates, positive/negative precision and observed/predicted prevalence) as a comprehensive
and transparent means of assessing and comparing the machine learning algorithms. In
Section 3, we not only show that the naive choice of a 50% probability cutoff to convert a
regression algorithm for dichotomous observation into a classification algorithm leads to
misclassification, but we show also how a balanced and optimal probability cutoff can be
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determined to effectively convert logistic [41] and random forest [42] regression models
into classifiers. We investigate also the effect of using the significant variables of a logistic
regression model on the classification performance. We then compare the performance of
eight classification algorithms, two of which are widely used supervised machine learning
algorithms, namely extreme gradient boosting (XGB) [43] and support vector machine
(SVM) [44], together with the logistic and random forest classifiers and two uncommonly
used supervised machine functions, i.e., linear and quadratic discriminant functions [45].
We introduce two different combinations of the linear and quadratic discriminant functions
into two scoring functions, which we call the double discriminant scoring of types 1 and
2. Using a paired design setup, we perform a sampling distribution analysis for these
eight classification algorithms under four different training/testing scenarios and for
varying training/testing ratios. We determine, from the comparison of the performance
sampling distributions, the algorithm that consistently outperforms the others and is the
least sensitive to distributional shifts. We then lay out and illustrate a methodology to
extract an optimal variable hierarchy, i.e., a sequence of variables that provides the most
robust and most generalizable variable selection for the classification algorithm for a given
performance metric. For instance, if the optimal variable hierarchy for a classification
algorithm and a performance metric is a sequence of two variables, then the first variable
is the optimal single variable among the set of all features, the first and second variables
constitute the optimal pair of variables among all pairs of features and the inclusion of any
extra feature in this two-variable hierarchy would diminish the performance metric. We
show in particular that the optimal variable hierarchy of the double discriminant scoring
of type 1, with respect to the true positive rate and applied to the Framingham coronary
heart data, satisfies the Bellman principle of optimality, leading then to the reduction of
the sampling distribution tests from 2p − 1 iterations to at most p(p + 1)/2, where p is the
number of variables (features). This methodology is applied to the entire Framingham
CHD data and to both the male and female Framingham CHD data. Finally, in Section 4,
we discuss the findings of the comparative analyses and summarize the strengths and
limitations of our study.

2. Materials and Methods

The Framingham Heart Study is a widely acknowledged longitudinal cohort
study [46–49]. Motivated by the serious epidemic of cardiovascular disease (CVD) in
the 1950s, becoming the leading cause of death and the reason that the population’s life
expectancy beyond age 45 did not increase, action was needed to identify the determinants
of the disease process. Given that no treatment capable of prolonging life for those who
survived an attack existed, a preventive approach was deemed more important than a
search for a cure. Moreover, given that CVD is a disease that develops over time, a longi-
tudinal study was necessary. The Framingham Study [46,49] was conducted as follows:
a systematic sample of 2 of every 3 families in the town of Framingham, Massachusetts,
was selected. People in these families, between the ages of 30 and 59 years, were invited to
participate in the study. A total of 5209 individuals (2336 men and 2873 women) joined the
study, with the goal of collecting epidemiological data on CVD and the establishment of
the relations among risk factors such as clinical (age, sex, blood pressure, cholesterol, body
weight and diabetes), and lifestyle (smoking, physical activity and alcohol consumption)
parameters. The participants of the Framingham Heart Study were continuously monitored
to identify when a CVD event occurred. Given the success of the Framingham Heart Study,
a second cohort in 1971, with over 5000 subjects, and a third cohort in 2001, with over
4000 subjects, led to two replications [50,51]. The reader may refer to [49] for the most
recent review of the Framingham Heart Study and an overview of the Framingham risk
functions for CVD and coronary heart disease (CHD). Note that CHD includes myocardial
infarction (i.e., heart attack), coronary death, stroke and heart failure.

Using the Framingham coronary heart disease data available on Kaggle, we extracted
a sub-dataset consisting of seven explanatory variables, representing, for each patient,
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the age X1, total cholesterol X2, systolic blood pressure X3, diastolic blood pressure X4,
body mass index (BMI) X5, heart rate X6 and number of cigarettes smoked per day X7,
and one dichotomous response variable Y, representing whether a patient had coronary
heart disease in the 10-year period following the measurement of these seven explanatory
variables. The sub-data extracted, which we refer to as the Framingham CHD data in this
paper, consisted of all patients for which there were no missing measurements for each
of the seven explanatory variables. The goal of this study was to compare the sampling
distribution of the performance of several machine learning classification algorithms under
several training/testing scenarios to (1) determine a methodology that can better predict
whether (or not) a patient will develop coronary heart disease in the 10-year period fol-
lowing the measurement of the seven explanatory variables; (2) determine the best way
to train these machine learning algorithms and their sensitivity to both the size and the
distribution of the training datasets; and (3) extract an optimal variable hierarchy for the
explanatory variables and assess their generalizability to new medical and geographical
data. The characteristics of patients who had coronary heart disease ten years later are
given in Table 1.

Table 1. Characteristics of patients who had coronary heart disease ten years later.

Male + Female CHD No CHD

Total, n, (%) 622 (15.02) 3520 (84.98)
Age, X1, mean (SD) 54.20 (7.98) 48.72 (8.39)
Total Cholesterol, X2, mean (SD) 245.89 (48.05) 235.08 (43.74)
Systolic Blood Pressure, X3, mean (SD) 143.52 (26.58) 130.31 (20.41)
Diastolic Blood Pressure, X4, mean (SD) 87.00 (14.09) 82.18 (11.28)
Body Mass Index, X5 mean (SD) 26.52 (4.50) 25.67 (3.99)
Heart Rate, X6, mean (SD) 76.54 (12.29) 75.71 (11.99)
Number of Cigarettes Smoked Per Day, X7, mean (SD) 10.73 (13.07) 8.68 (11.68)

These Framingham CHD data consisted then of two groups: Group 1, with
N1 = 622 patients who had coronary heart disease in the 10-year period following the
beginning of the study, and Group 2, with N2 = 3520 patients who did not have coronary
heart disease in the same 10-year period. The prevalence of CHD in these data was 15%,
meaning that 15% of the N = N1 + N2 = 4142 patients had coronary heart disease. Data
analysts often randomly split the data into training and testing datasets using a training
ratio τ. For instance, if one assigns randomly 80% of the data to the training dataset, and
then assigns the remaining 20% of the data to the testing dataset, then the training ratio
is τ = 0.8. Given a training ratio of τ = 0.8, there are several ways to split the data into
training and testing sets, the simplest of which is to merge Group 1 and Group 2 and then
randomly split the data into training and testing datasets using a given training ratio τ.
This simple splitting leads to the overrepresentation in the training dataset of the largest
of the two groups, i.e., Group 2 in these Framingham CHD data. For reasons that will
be clarified in the findings in Section 3.2, we do not consider this simple splitting in this
paper, but rather the following four stratified training/testing scenarios. Let us denote by
n1 the number of observations in the intersection of Group 1 and the training dataset, by
n2 the number of observations in the intersection of Group 2 and the training dataset and
by n3 the number of observations used in the testing dataset. Therefore, the number of
observations in the training dataset is n1 + n2. In what follows, [.] denotes the rounding to
the nearest natural number. For a fixed training ratio τ, let us consider the following four
training/testing scenarios.

1. Proportional training and testing: randomly select n1 = [τN1] observations from
Group 1 and n2 = [τN2] observations from Group 2 to form the training dataset, and
then use the remaining n3 = [(1 − τ)(N1 + N2)] observations for the testing dataset.

2. Equal training and proportional testing: randomly select n1 = n2 = [τ min(N1, N2)]
observations from each of Groups 1 and 2 to form the training dataset and then select
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the remaining (1 − τ)N1 observations of Group 1 and randomly select (1 − τ)N2
observations from the remaining observations of Group 2 to form the testing dataset
of size n3 = [(1 − τ)(N1 + N2)].

3. Proportional training and equal testing: randomly select n1 = [τN1] observations
from Group 1 and n2 = [τN2] observations from Group 2 to form the training dataset;
then, randomly select (1 − τ)min(N1, N2) from each of Groups 1 and 2 to form the
testing dataset and hence n3 = 2(1 − τ)min(N1, N2).

4. Equal training and testing: randomly select n1 = n2 = [τ min(N1, N2)] from each
of Groups 1 and 2 to form the training dataset; then, to form the testing dataset,
randomly select [(1 − τ)min(N1, N2)] observations from the remaining observations
for each of Groups 1 and 2 and hence n3 = 2[(1 − τ)min(N1, N2)].

Using the Framingham CHD data, where N1 = 622, N2 = 3520 and with a training ratio
τ = 0.8, the sizes n1, n2 and n3 for each of the four training/testing scenarios are given in
Table 2.

Table 2. Training and testing dataset sizes across four training/testing scenarios and for a training
ratio τ = 0.8.

Training Testing n1 n2 n3

Proportional Proportional 498 2819 124 + 704 = 828
Equal Proportional 498 498 124 + 704 = 828
Proportional Equal 498 2819 124 + 124 = 248
Equal Equal 498 498 124 + 124 = 248

Once a classification model has been tested, one can produce the confusion matrix,
i.e., a table specifying the frequencies of the true positive (TP), the false positive (FP), the
false negative (FN) and the true negative (TN) predictions. One can then use this confusion
matrix to compute one or several performance metrics to assess the classification model,
such as the accuracy, true positive rate (sensitivity), true negative rate (specificity) and
precision. In what follows, we recall the definitions (and formulas) of the accuracy and true
positive and true negative rates. We then introduce and make a distinction between positive
precision and negative precision on one hand, and between the observed prevalence
and the expected prevalence on the other hand. Finally, we introduce the classification
performance matrix as an extension of the standard confusion matrix, along with the
above seven model performance metrics. Let us refer to the total number of predictions as
the grand total, i.e., grand total = TP + FP + FN + TN. Recall that the accuracy (Acc) of a
classification model is the ratio of correct predictions among the total number of predictions,
i.e., Acc = (TP + TN)/grand total. Recall also that the true positive rate (TPR), also called
sensitivity in the literature, is the ratio of the number of true positive predictions among
the total number of actual positive tested cases, i.e., TPR = TP/(TP + FN). Finally,
recall that the true negative rate (TNR), also called specificity in the literature, is the ratio
of the number of true negative predictions among the total number of actual negative
tested cases, i.e., TNR = TN/(FP + TN). We define the positive precision (PPrec), which
is simply called precision in the literature, as the ratio of the number of true positive
predictions among the total number of tested cases that have been predicted as positive
by the classification model, i.e., PPrec = TP/(TP + FP). Similarly, we define the negative
precision (NPrec) as the ratio of the number of true negative predictions among the total
number of tested cases that have been predicted as negative by the classification model, i.e.,
NPrec = TN/(FN + TN). We define the observed prevalence (OPrev), which is simply
called prevalence in the literature, as the proportion of positive cases among the tested cases,
i.e., OPrev = (TP + FN)/grand total. Finally, we define the expected prevalence (EPrev)
as the ratio between the number of tested cases that have been predicted as positive among
the tested cases, i.e., EPrev = (TP + FP)/grand total. Lastly, we introduce an extension
of the confusion matrix with the above seven performance metrics to provide a practical
and comprehensive way to compare the performance of several classification algorithms
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across the four training/testing scenarios. We believe that this classification performance
matrix (Table 3) is comprehensive and transparent as it allows us, at a glance, to detect
whether a classification model is biased and flawed. For instance, if the prevalence of the
testing dataset is high, e.g., 95%, then a classification model that predicts all tested cases
as positive would have 95% accuracy and a 100% true positive rate. A modeler that uses
only these two metrics to build and/or compare models would have a false impression of
obtaining a successful model. However, this model would be flawed, as the true negative
rate would be 0%, which means that all tested cases that are negative would be predicted
as positive, and thus it would trigger, in a medical context, additional interventions that
are financially, timely and emotionally costly, rendering the practical implementation of
this model ineffective.

Table 3. Classification performance matrix.

Predicted

Positive Negative Total True Rate %

Actual Positive TP FN TP + FN TPR
Negative FP TN FP + TN TNR

Total TP + FP FN + TN Grand Total OPrev

Precision % PPrec NPrec EPrev Acc

3. Results
3.1. Logistic and Random Forest Classifiers

Given a regression model for a dichotomous random variable, e.g., a logistic regression
or random forest, where the output for one tested case is the probability of being a positive
case, one can convert such a regression model into a classification algorithm by choosing a
probability threshold or a classifier cutoff, and then classify a tested patient as positive if
the output of the regression model is greater or equal than the chosen classifier cutoff and
classify a tested patient as negative otherwise. A naive classifier cutoff of 50% leads to poor
prediction performance when the prevalence of the training dataset deviates substantially
from 50%. Indeed, for each of the four training/testing scenarios, the Framingham CHD
data, with all seven explanatory variables, were split (one simulation) using a training
ratio of τ = 0.8. Both logistic regression and random forest models were extracted using
the training dataset, and then, using both models, all patients in the testing data set were
classified using successive values of a classifier cutoff ranging from 0% to 100%, with a 1%
step, and the number of true/false positive and true/false negative cases was recorded.
The graphs of the true positive, false positive, false negative and true positive cases as
functions of the classifier cutoff for each training/testing scenario, and for both the logistic
and random forest regression models, are given in Figures 1 and 2. A good classifier
cutoff should minimize misclassification. As the classifier cutoff increases, the number
of true negatives (TN, green curve) increases, and the number of true positives (TP, blue
curve) decreases. Thus, an equilibrium classifier cutoff must strike a balance between
the number of true positive and the number of true negative cases. One can observe
from each of the logistic and random forest graphs that such a balanced classifier cutoff
is around 15% when the training dataset is proportional (first and third training/testing
scenarios), and it is around 50% when the training dataset is equal (second and fourth
training/testing scenarios). In other words, a good and balanced classifier cutoff for both
the logistic and random forest regression models appears to be the prevalence of the training
dataset, independent of the prevalence of the testing dataset. In light of this observation,
we replicated the above simulation one hundred times and superposed the graphs of
each simulation into the same graph, as shown in Figures 3 and 4. For these sampling
distributions, the yellow dots represent the average points of intersection (centroïd) of the
100 pairs of curves, TN–TP, TP–FN, FN–FP and TN–FP. The black dot is the average point
(centroïd) of the four yellow points. For these sampling distributions (100 simulations),
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the equilibrium classifier cutoff for the logistic regression, i.e., the x-coordinate of the
black dot, is 15.56% (resp., 47.48%, 15.25 and 50.03%) for the proportional training and
testing scenario (resp., equal training + proportional testing, proportional training + equal
testing and equal training + testing). Similarly, the equilibrium classifier cutoff for the
random forest regression, i.e, the x-coordinate of the black dot, is 16.47% (resp., 48.77%,
16.14 and 50.70%) for the proportional training and testing scenario (resp., equal training
+ proportional testing, proportional training + equal testing and equal training + testing).
In light of these sampling distributions, we propose to chose the equilibrium classifier
cutoff for both the logistic and random forest regression models to be the prevalence of the
training dataset. These results are coherent with the findings in [52], pertaining to machine
learning models for acute kidney injury risk stratification in hospitalized patients. In this
study [52], penalized logistic regression using the least absolute shrinkage and selection
operator (LASSO), random forest and a gradient boosting machine were trained to predict
risk of acute kidney injury using electronic medical record data available at 24 h of inpatient
admission. Moreover, the performance of the three algorithms in [52] was evaluated using
the area under the receiver characteristic curve (AUROC) and precision–recall curves, and
the probability cutoff was determined based on Youden’s index from 5% to 95% with a 5%
step. It was found that a probability cutoff greater than 15% provided sensitivity of 0.80 and
0.79. In light of our study, with 100 cross-validations and a probability cutoff range of 0% to
100% with a 1% step, we believe that the 15% optimal probability cutoff in [52] was due to
the prevalence of the training data, where the training cohort comprised electronic health
record admissions from 2012 through 2017, with a testing cohort composed of electronic
health record admissions in 2018.
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Figure 1. One simulation for the logistic classifier cutoffs for four training/testing scenarios.

Note that all above testing for both the logistics and random forest regression models
was performed using all seven explanatory variables. One can justifiably argue that using
all explanatory variables may not lead to optimal models, and thus one may question the
use of such a balanced classifier cutoff. To test this hypothesis, we performed one thousand
logistic regression model analyses for each of the four training/testing scenarios, and we
counted, for each of the intercepts and the seven explanatory variables, the number of times



Information 2024, 15, 252 9 of 24

such a variable was significant, using a significance level α of 1%, 5% and 10%. The results
of these 1000 simulations (cross-validation) are summarized in Table 4, where X0 stands for
the logistic regression intercept.

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Proportional Training and Testing

Random Forest Classifier Cutoff (%)

F
re

qu
en

cy TP
TN
FP
FN

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Equal Training and Proportional Testing

Random Forest Classifier Cutoff (%)

F
re

qu
en

cy TP
TN
FP
FN

0 20 40 60 80 100

0
20

40
60

80
10

0
12

0

Proportional Training and Equal Testing

Random Forest Classifier Cutoff (%)

F
re

qu
en

cy TP
TN
FP
FN

0 20 40 60 80 100

0
20

40
60

80
10

0
12

0

Equal Training and Testing

Random Forest Classifier Cutoff (%)

F
re

qu
en

cy TP
TN
FP
FN

Figure 2. One simulation for the random forest classifier cutoffs for four training/testing scenarios.
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Figure 3. Sampling distribution of 100 simulations for the logistic classifier cutoffs for four train-
ing/testing scenarios.
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Figure 4. Sampling distribution of 100 simulations for the random forest classifier cutoffs for four
training/testing scenarios.

Table 4. Logistic regression variable significance analysis for four training/testing scenarios—
1000 simulations.

α Training Testing X0 X1 X2 X3 X4 X5 X6 X7

1%

Proportional Proportional 1000 1000 2 1000 0 0 0 1000
Equal Proportional 1000 1000 21 622 0 5 0 1000
Proportional Equal 1000 1000 4 1000 0 0 0 1000
Equal Equal 1000 1000 21 656 2 7 1 1000

5%

Proportional Proportional 1000 1000 82 1000 0 25 2 1000
Equal Proportional 1000 1000 125 887 15 69 19 1000
Proportional Equal 1000 1000 71 1000 0 18 0 1000
Equal Equal 1000 1000 130 883 15 62 15 1000

10%

Proportional Proportional 1000 1000 185 1000 1 73 12 1000
Equal Proportional 1000 1000 257 953 43 150 18 1000
Proportional Equal 1000 1000 207 1000 1 56 6 1000
Equal Equal 1000 1000 228 941 43 124 32 1000

For all three significance levels α, the y-intercept, age X1 and number of cigarettes
smoked per day X7 were statistically significant 1000 times (out of 1000). Moreover, systolic
blood pressure X3 was statistically significant 1000 times when the testing dataset was
proportional (15% prevalence) and between 622 and 953 times when the testing dataset
was equal (50% prevalence). For a significance level of α = 10%, the total cholesterol
level X2 was statistically significant between 185 and 257 times (out of 1000), which was
roughly between 20 and 25% of the 1000 simulation runs. In light of this logistic regression
variable significance analysis, for each of the four training/testing scenarios and for the
same data split (training ratio τ = 0.8), we implemented three logistic regression models:
Logistic Model 1 with all seven explanatory variables; Logistic Model 2 with only age X1,
systolic blood pressure X3 and the number of cigarettes smoked per day X7; and Logistic
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Model 3 with the total cholesterol X2 added to the three variables in Model 2. For a given
training/testing scenario and for the same data split, the three logistic regression models
were converted into three logistic classifiers using a balanced/equilibrium classifier cutoff
equal to the prevalence of the training dataset, and the number of true positive cases (out
of 124 patient tests for each training/testing scenario) was recorded. This process was
repeated 1000 times, and the average number of true positive predictions for each of the
three regression classification models is summarized in Table 5.

Table 5. Average number of true positive cases (out of 124) for three logistic classification models
across four training/testing scenarios—1000 simulations.

Training Testing Logistic 1 Logistic 2 Logistic 3
(X1, . . . , X7) (X1, X3, X7) (X1, X2, X3, X7)

Proportional Proportional 81.80 81.81 82.59
Equal Proportional 82.68 82.80 83.06
Proportional Equal 81.85 82.80 82.67
Equal Equal 82.18 81.77 82.73

Table 5 shows that the number of true positive predictions is roughly the same regard-
less of which variables are used for the logistic regression. In other words, while different
choice of variables may lead to differences in the logistic regression where the outcome
is a probability, such a variable choice appears not to be relevant for a logistic classifier
across all four training/testing scenarios, with an (equilibrium) classifier cutoff equal to
the prevalence of the training dataset. A modeler can thus either use all variables or run a
few simulation runs and use the subset of variables that are statistically significant for the
logistic regression. Finally, the average numbers of true negatives, false positives and false
negatives were consistent with the results in Table 5, and thus we choose not to report the
average frequencies.

3.2. Training Ratio Analysis and Classification Algorithm Comparison

We consider, in this subsection, the following eight classification algorithms, and
we compare their predictive performance using the Framingham CHD data across the
four training/testing scenarios in a paired-design-type setting. Note that the last two
classification algorithms, i.e., the double discriminant scoring of type 1 and type 2, are
introduced in this paper and have not been considered yet in the literature.

1. Extreme gradient boosting (XGB), for which the outcomes for one tested case are the
two probabilities of being a positive and negative case, respectively. Therefore, we
assign a tested case to Group 1 (having CHD) if the probability of being positive is
greater than the probability of being negative; otherwise, we assign the tested case to
Group 2 (not having CHD).

2. Support vector machine (SVM).
3. Random forest classifier (RF), where the classifier cutoff is set to be the prevalence of

the testing dataset (as shown in Section 3.1).
4. Logistic classifier (Logit), where the classifier cutoff is set to be the prevalence of the

testing dataset (as shown in Section 3.1), and the link function is the logit function.
5. Linear discriminant function (LD).
6. Quadratic discriminant function (QD).
7. Double discriminant scoring of type 1 (DDS1), where a tested patient is assigned to

Group 1 (having CHD) if either the linear or quadratic discriminant models assigns
the tested patient to Group 1; otherwise, the tested patient is assigned to Group 2 (not
having CHD).

8. Double discriminant scoring of type 2 (DDS2), where a tested patient is assigned to
Group 1 (having CHD) if both the linear and quadratic discriminant models assign
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the tested patient to Group 1; otherwise, the tested patient is assigned to Group 2 (not
having CHD).

Note that both the linear and quadratic discriminant functions [45] in this research
assume normality and are derived as the difference in the log-likelihood function. When the
(multivariate) population variances of Groups 1 and 2 are assumed to be equal (resp., dif-
ferent), the maximum log-likelihood discriminant rule leads to the linear (resp., quadratic)
discriminant function. We choose to simply consider both instances without running a
Bartlett test. One can consider the double discriminant scoring of type 1 (resp., type 2) as
a “liberal” (resp., “conservative”) combination of the linear and quadratic discriminant
functions. We compare the mean predictive performance of these eight classification algo-
rithms for a training ratio τ = 0.1, 0.2, . . . , 0.8, 0.9 across the four training/testing scenarios,
using 100 simulations for each classification algorithm. All predictive performance metrics
in the classification performance matrix in Table 3, i.e., TP, FP, FN, TN, TPR, TNR, PPrec,
NPrec, OPrev, EPrev and Acc, are recorded, and the means of 100 simulations are com-
puted for each one of the four training/testing scenarios. In Figure 5, the graphs of the
true positive rates as a function of the training ratio τ are plotted, and they lead to the
following remarks. First, both the extreme gradient boosting and support vector machine
classification algorithms perform poorly when the training dataset is proportional, i.e.,
when the prevalence of the training dataset is equal to the prevalence of the Framingham
CHD data (15%). These two algorithms are extremely biased toward Group 2, as they
predict almost all tested patients as not having CHD when the training dataset is propor-
tional. However, they perform better when the training dataset is equal, with the support
vector machine being the second best algorithm with respect to the true positive rate when
the training dataset is equal and the testing dataset is proportional. Second, the double
discriminant scoring of type 1 (resp., type 2) consistently outperforms all other algorithms
for all training data ratios and across all four training/testing scenarios with respect to
the true positive rate (resp., true negative rate). Moreover, the true positive rates (resp.,
true negative rates) for the double discriminant scoring of type 1 (resp., type 2) are fairly
constant across all four training/testing scenarios when the training ratio τ is higher than
0.4, leading to the suggestion that a training dataset of size 250 or greater leads to consistent
predictions. This generalizability finding is very important for predictions in the health
sector as it would enable a modeler to be confident about applying an optimal model
from one dataset to another dataset from a different geographical area with a different
distribution and/or prevalence.

In Table 6, the mean accuracy, true positive rate, true negative rate and number
of true positive, false negative, false positive and true negative tested patients (out of
100 simulations), using a training ratio of τ = 0.8, for each of the eight classification
algorithms, are summarized. Using the accuracy as the only metric to assess the predictive
performance of a classification model is dangerous. Indeed, the highest mean accuracy is
84.95%, which occurs for the extreme gradient boosting and support vector machine when
both the training and testing datasets are proportional. However, the corresponding true
positive rates are 1.98% and 0%, respectively, as both models predict (almost) all 828 test
patients as negative. As mentioned previously, both extreme gradient boosting and support
vector machine are biased and flawed when the training dataset is proportional, regardless
of the prevalence of the testing dataset. Let us focus our attention on the true positive
rates. Out of the 32 sampling distributions (eight algorithms and four training/testing
scenarios), only five true positive rates are above 75%. One of these is for the support vector
machine when the training dataset is equal and the testing dataset is proportional, and the
four others are for the double discriminant scoring of type 1 for all four training/testing
scenarios. While the support vector machine’s mean true positive rate is 76.44% (the third
highest) for equal training and proportional testing, its mean true positive rate drops to
68.04% when the testing dataset is equal. In addition to having a null true positive rate
when the training dataset is proportional, we believe that the support vector machine, while
performing well with an equal training dataset, is sensitive to the prevalence of the testing
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dataset and thus one cannot be confident when using the model for patients of unknown
CHD status, even when ensuring that the prevalence of the training dataset remains at 50%.
The mean true positive rates for double discriminant scoring of type 1 for all four training
scenarios are higher than 75%, which means that this classification algorithm performs
consistently well for all training/testing scenarios. As shown in Figure 5, it performs
consistently well whenever the size of the training dataset is above 250 observations. This
shows that the double discriminant scoring of type 1 is generalizable. Note that the cost
incurred due to the double discriminant scoring of type 1 classification method having the
highest true positive rate is not having the highest true negative rate. Nevertheless, reliably
predicting true positive patients and minimizing false positives is crucial in medicine and
public health. Finally, note that the double discriminant scoring of type 2 is consistently the
highest with respect to the true negative rate (between 67.91% and 68.74%), which is driven
by the linear discriminant function (between 65.69% and 67.23%), followed by logistic
regression (between 65.69% and 66.25%) in third position. The means of 100 simulations
(cross-validation) of the true positive, false positive, true negative and false negative
frequencies in Table 6 enable the reader to compute any other performance metric, for
full transparency.
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Figure 5. Means of 100 true positive rates for eight classification algorithms as a function of the
training ratio across four training/testing scenarios from 10% to 90% with a 10% step.
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Table 6. Mean prediction performance metrics for eight classification algorithms across four train-
ing/testing scenarios, with 100 simulations, for a training ratio of τ = 0.8.

Alg. Training/Testing Acc% TPR% TNR% TP FN FP TN

XGB

Prop./Prop. 84.95 1.98 99.57 2.46 121.54 3.02 700.94
Equal/Prop. 61.94 66.98 61.05 83.05 40.95 274.22 429.78
Prop./Equal 50.83 2.18 99.49 2.70 121.30 0.63 123.37
Equal/Equal 64.86 67.57 62.15 83.79 40.21 46.93 77.07

SVM

Prop./Prop. 84.95 0.00 100.00 0.00 124 0.00 704
Equal/Prop. 57.95 76.44 54.70 94.78 29.22 318.94 385.06
Prop./Equal 50.00 0.00 100.00 0.00 124.00 0.00 124.00
Equal/Equal 66.41 68.04 64.77 84.37 39.63 43.68 80.32

RF

Prop./Prop. 60.91 65.41 60.12 81.11 42.89 280.78 423.22
Equal/Prop. 62.11 64.89 61.62 80.46 43.54 270.22 433.78
Prop./Equal 62.87 65.66 60.08 81.42 42.58 49.50 74.50
Equal/Equal 63.59 65.20 61.97 80.85 43.15 47.16 76.84

Logit

Prop./Prop. 65.77 65.41 65.77 81.62 42.38 241.01 462.99
Equal/Prop. 65.68 65.60 65.69 81.34 42.66 241.53 462.47
Prop./Equal 66.12 65.99 66.25 81.83 42.17 41.85 82.15
Equal/Equal 66.21 66.37 66.07 82.30 41.70 42.09 81.91

LD

Prop./Prop. 66.48 64.57 66.81 80.07 43.93 233.65 470.35
Equal/Prop. 65.71 65.81 65.69 81.34 42.40 241.51 462.49
Prop./Equal 65.98 64.73 67.23 80.26 43.74 40.64 83.36
Equal/Equal 66.30 66.60 65.99 82.58 41.42 42.17 81.83

QD

Prop./Prop. 59.18 74.51 56.48 92.39 31.61 306.36 397.64
Equal/Prop. 58.87 73.54 56.29 91.19 32.81 307.73 396.27
Prop./Equal 65.13 73.87 56.39 91.60 32.40 54.08 69.92
Equal/Equal 65.79 74.68 56.90 92.60 31.40 53.45 70.55

DDS1

Prop./Prop. 58.21 76.53 54.48 94.90 29.10 316.96 387.04
Equal/Prop. 57.49 76.86 54.08 95.31 28.69 323.30 380.70
Prop./Equal 65.41 75.94 54.87 94.17 29.83 55.96 68.04
Equal/Equal 65.87 77.12 54.62 95.63 28.37 56.27 67.73

DDS2

Prop./Prop. 67.45 62.55 68.32 77.56 46.44 223.05 480.95
Equal/Prop. 67.09 62.48 67.91 77.48 46.52 225.94 478.06
Prop./Equal 65.70 62.65 68.74 77.69 46.31 38.76 85.24
Equal/Equal 66.21 64.15 68.27 79.55 44.45 39.35 84.65

3.3. Derivation of Optimal Variable Hierarchies

The double discriminant scoring of type 1 consistently performed the best across all
four training/testing scenarios and for all training ratios τ = 0.1, 0.2, . . . , 0.9 when com-
paring the true positive rates using all seven explanatory variables. In this subsection, we
establish a methodology to not only determine the optimal variable selection for a machine
learning classification algorithm, but also to derive a hierarchy for the optimal subset of
explanatory variables. We illustrate this methodology using the Framingham CHD data.
Given multivariate data with p explanatory variables (X1, . . . , Xp) and one response vari-
able Y, a machine learning classification algorithm can be derived using either all or a subset
of these p explanatory variables; thus, 2p − 1 possible models for the same classification
algorithm can be derived. For the Framingham CHD data, there are 27 − 1 = 127 possible
subsets of the seven variables that can be used for the classification algorithm. Using a
training ratio τ = 0.8, for each of the four training/testing scenarios and for each of the
127 possible variable selections, we executed, and cross-validated with 1000 prediction
simulations, the double discriminant scoring of type 1 algorithm. In particular, we ran-
domly split the data into training and testing datasets, trained the model using the training
dataset, classified the observations in the testing dataset into Group 1 (positive, having
CHD) and Group 2 (negative, not having CHD), computed the classification performance
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matrix (Table 3) and computed the means of these 1000 prediction simulation runs for each
one of the seven performance metrics in the classification performance matrix. Therefore,
one can derive a data frame with 2p − 1 = 127 rows (number of variable sub-selections)
and as many columns as the number of considered performance metrics and sort this data
frame with respect to a prediction performance metric (column), e.g., the true positive rate.
We performed the above analysis using a paired design setting for the linear discriminant
function (LD), the quadratic discriminant function (QD), the double discriminant scoring
of type 1 and the double discriminant scoring of type 2. However, we focus our attention
on the double discriminant scoring of type 1. Using the mean true positive rate (out of
1000 simulations), the data frame of 127 mean true positive rates has been sorted from
the highest to the lowest true positive rate for each of the four training scenarios, and the
top five variable selections are reported in Table 7. Note that (1, 2, 7) in Table 7 refers to
(X1, X2, X7) and, hence, to the model using age X1, total cholesterol X2 and the number of
cigarettes smoked per day X7 for the predictions.

Table 7. The top five variable sub-selections with respect to the true positive rates for the double
discriminant scoring of type 1 across all four training/testing scenarios—1000 simulations each.

Training Testing Variables Mean True Positive Rate %

Proportional Proportional

(1,2,4,5,6,7) 78.04391
(1,2,4,5,7) 77.60114
(1,2,4,6,7) 76.96811
(1,2,4,7) 76.30827
(1,2,3,4,5,6,7) 76.18401
...

...

Equal Proportional

(1,2,4,5,6,7) 78.29709
(1,2,4,5,7) 77.43829
(1,2,3,4,5,6,7) 77.42931
(1,2,4,6,7) 77.13655
(1,2,3,4,5,7) 76.82127
...

...

Proportional Equal

(1,2,4,5,6,7) 78.06162
(1,2,4,5,7) 77.54947
(1,2,4,6,7) 77.00361
(1,2,4,7) 76.43153
(1,2,3,4,5,6,7) 76.20655
...

...

Equal Equal

(1,2,4,5,6,7) 78.25840
(1,2,4,5,7) 77.68898
(1,2,4,6,7) 76.90521
(1,2,4,7) 76.53085
(1,2,3,4,5,6,7) 76.44378
...

...

From Table 7, on average, using all explanatory variables except systolic blood pressure
X3 led to the highest true positive rates (78%) for all four training/testing scenarios. Note
that the model using all seven explanatory variables, analyzed in Section 3.2, appears in
the top five for each of the four training/testing scenarios and has a true positive rate
between 76% and 77%. Further analysis of the rankings of all 127 variable sub-selections
shows that the double discriminant scoring of type 1, with respect to the true positive rate
ranking, satisfies the Bellman principle for optimality, i.e., “an optimal policy has the property
that whatever the initial state and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first decision” [53]. Indeed, out of the
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127 variable sub-selections, seven (resp., 21, 35, 35, 21, 7 and 1) have a size of one (resp., 2, 3,
4, 5, 6 and 7) variable, and the optimal variable sub-selection per number of variables and
the corresponding mean true positive rates are given for each of the four training/testing
scenarios in Table 8. It shows that the same optimal variable hierarchy, i.e., age X1, diastolic
blood pressure X4, the number of smoked cigarettes per day X7, total cholesterol X2, BMI
X5 and heart rate X6, stands for all four training/testing scenarios.

Table 8. Optimal variable hierarchy per number of variables for the double discriminant scoring of
type 1 across the four training/testing scenarios—1000 simulations each.

Number of Training Testing Optimal Mean %
Variables Variable Hierarchy True Positive Rate

1

Proportional Proportional

(1) 62.94364
2 (1,4) 69.54167
3 (1,4,7) 72.64327
4 (1,4,7,2) 76.30827
5 (1,4,7,2,5) 77.60114
6 (1,4,7,2,5,6) 78.04391
7 (1,4,7,2,5,6,3) 76.18401

1

Equal Proportional

(1) 63.55076
2 (1,4) 69.67313
3 (1,4,7) 72.93037
4 (1,4,7,2) 76.34774
5 (1,4,7,2,5) 77.43829
6 (1,4,7,2,5,6) 78.29709
7 (1,4,7,2,5,6,3) 77.42931

1

Proportional Equal

(1) 63.14595
2 (1,4) 69.61105
3 (1,4,7) 72.78043
4 (1,4,7,2) 76.43153
5 (1,4,7,2,5) 77.54947
6 (1,4,7,2,5,6) 78.06162
7 (1,4,7,2,5,6,3) 76.20655

1

Equal Equal

(1) 63.04836
2 (1,4) 69.87731
3 (1,4,7) 73.12409
4 (1,4,7,2) 76.53085
5 (1,4,7,2,5) 77.68898
6 (1,4,7,2,5,6) 78.25840
7 (1,4,7,2,5,6,3) 76.44378

A similar optimal variable hierarchy analysis with respect to the true negative rates
leads to systolic blood pressure X3 as the optimal variable sub-selection across all four
training/testing scenarios. We conjecture that the optimal variable hierarchy with respect
to the true negative rate is always the complement of the optimal variable hierarchy with
respect to the true positive rate.

In light of the above analysis, we believe that performing 2p − 1 sampling distributions
for multivariate data with p explanatory variables is not necessary to determine the optimal
variable hierarchy with respect to the true positive and negative rates. One can perform
at most p(p + 1)/2 such tests. For instance, for the Framingham CHD data, the seven
sampling distributions of the single variables with respect to the true positive rate show that
age X1 is the optimal single variable selection. For the optimal pair of variable selections,
and because of the Bellman principle, the modeler does not need to test all twenty-one
sampling distributions but only six pairs of variables that include age X1, in which case
diastolic blood pressure is the second variable that joins the variable hierarchy. Similarly,
for the optimal trio of variables, the modeler does not need to test all thirty-five sampling
distributions but only the five trios of variables that include both age X1 and diastolic
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blood pressure X4, in which case the number of smoked cigarettes per day X7 is the third
variable that joins the variable hierarchy. This recursive process is repeated until there
is no increase in the considered performance metric, e.g., the true positive rate. In other
words, this recursive process stops when the addition of any new variable in an optimal
sub-hierarchy leads to a decrease in the considered performance metric.

3.4. Framingham CHD Analysis by Sex

In this subsection, we perform the above analysis, i.e., we provide the characteristics
of the male (resp., female) patients who had coronary heart disease ten years later are given
in Table 9 (resp., Table 10), the training and testing dataset sizes each each training/testing
scenario per sex in Table 11, the training ratio analysis (see Figures 6 and 7), classification
algorithm comparison, and the derivation of the optimal variable hierarchies for the double
discriminant scoring on the Framingham CHD data per sex (Table 12).
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Figure 6. Means of 100 true positive rates for eight classification algorithms as a function of the
training ratio across four training/testing scenarios for the Framingham CHD male data.

Out of the 622 observations in Group 1, 337 are male and 285 are female. Out of the
3520 observations in Group 2, 1456 are male and 2064 are female. Therefore, the prevalence
of CHD in males is 18.80% and the prevalence of CHD in females is 13.81%.
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Figure 7. Means of 100 true positive rates for eight classification algorithms as a function of the
training ratio across four training/testing scenarios for the Framingham CHD female data.

Table 9. Characteristics of male patients who had coronary heart disease ten years later.

Male CHD No CHD

Total, n, (%) 337 (18.80) 1456 (81.20)
Age, X1, mean (SD) 53.28 (8.00) 48.35 (8.38)
Total Cholesterol, X2, mean (SD) 239.87 (42.60) 231.61 (42.05)
Systolic Blood Pressure, X3, mean (SD) 140.42 (22.50) 129.35 (17.84)
Diastolic Blood Pressure, X4, mean (SD) 86.96 (13.47) 82.97 (10.85)
Body Mass Index, X5 mean (SD) 26.38 (3.50) 26.13 (3.40)
Heart Rate, X6, mean (SD) 75.64 (11.90) 73.93 (11.71)
Number of Cigarettes Smoked Per Day, X7, mean (SD) 15.00 (14.13) 12.99 (13.72)

The graphs in Figures 6 and 7 are consistent with the results in Figure 5 in Section 3.3.
Indeed, both the extreme gradient boosting and support vector machine have an extremely
low true positive rate when the training datasets are proportional, and the double dis-
criminant scoring of type 1 is consistently the best classification algorithm with respect to
the true positive rate for all training/testing scenarios and for each of the training ratios
τ = 0.1, 0.2, . . . , 0.9. In light of these results, we perform a sampling distribution analysis
for the double discriminant scoring of type 1 and obtain the optimal variable hierarchy per
sex and for all four training/testing scenarios, whose results are summarized in Table 12.
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Table 10. Characteristics of female patients who had coronary heart disease ten years later.

Female CHD No CHD

Total, n, (%) 285 (12.13) 2064 (87.87)
Age, X1, mean (SD) 55.29 (7.83) 48.98 (8.39)
Total Cholesterol, X2, mean (SD) 253.01 (52.99) 237.54 (44.74)
Systolic Blood Pressure, X3, mean (SD) 147.19 (30.34) 130.99 (22.01)
Diastolic Blood Pressure, X4, mean (SD) 87.05 (14.81) 81.62 (11.55)
Body Mass Index, X5 mean (SD) 26.68 (5.45) 25.34 (4.32)
Heart Rate, X6, mean (SD) 77.60 (12.67) 76.97 (12.02)
Number of Cigarettes Smoked Per Day, X7, mean (SD) 5.69 (9.51) 5.64 (8.80)

Table 11. Training and testing dataset sizes across four training/testing scenarios and for a training
ratio τ = 0.8.

Sex Training Testing n1 n2 n3

Male

Proportional Proportional 270 1165 67 + 291 = 358
Equal Proportional 270 1165 67 + 291 = 358
Proportional Equal 270 1165 67 + 67 = 134
Equal Equal 270 270 67 + 67 = 134

Female

Proportional Proportional 228 1651 57 + 413 = 470
Equal Proportional 228 228 57 + 413 = 470
Proportional Equal 228 1651 57 + 57 = 114
Equal Equal 228 228 57 + 57 = 114

Table 12. Optimal variable hierarchy of double discriminant scoring of type 1 per sex and across all
four training/testing scenarios.

Sex Training Testing Optimal Mean %
Variable Hierarchy True Positive Rate

Male

Proportional Proportional (1,2,4,7,5,6) 73.86820
Equal Proportional (1,2,4,7,5,6) 74.77845
Proportional Equal (1,2,4,7,5,6) 73.97563
Equal Equal (1,2,4,7,5,6) 74.98736

Female

Proportional Proportional (1,4,2,5,7,6) 78.82797
Equal Proportional (1,2,4,5,6,7) 79.35948
Proportional Equal (1,4,5,2,7,6) 78.81030
Equal Equal (1,2,4,5,7,6) 78.41210

For both the male and female data, and with respect to the true positive rate, the
optimal variables for the prediction of CHD are all variables but systolic blood pressure,
which is the same as for the overall Framingham data. However, the hierarchies of these
six optimal variables are different. Indeed, the optimal variable hierarchy for the prediction
of CHD for male patients is the sequence of age X1, total cholesterol X2, diastolic blood
pressure X4, number of cigarettes smoked per day X7, BMI X5 and heart rate X6. This
optimal variable hierarchy is the same across all training/testing scenarios for the Fram-
ingham CHD male data, with a mean true positive rate between 73.87% and 74.99%. The
optimal variable hierarchy for the prediction of CHD for female patients, while having the
same six variables, differs depending on the training/testing scenario, as shown in Table 12.
For all training/testing scenarios, age X1 is the first variable in the hierarchy. The second
variable in the hierarchy is either total cholesterol X2 when the training datasets are equal
or diastolic blood pressure X4 when the training datasets are proportional. The third and
fourth variables in the hierarchy are between total cholesterol X2, diastolic blood pressure
X4 and BMI X5. Finally, the fifth and sixth variables in the hierarchy for the Framingham
CHD female data are either the heart rate X6 or the number of cigarettes smoked per day.
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The mean true positive rate for the Framingham CHD female data is between 78.41% and
79.36%.

We conclude this subsection by giving the mean (of 1000 simulations) classification
performance matrices (Tables 13–15) for all data and for the male and female CHD data,
respectively, using the variables (X1, X2, X4, X5, X6, X7) of the optimal variable hierarchy,
for equal training and proportional testing and a training ratio τ = 0.8.

Table 13. Mean classification performance matrix for Framingham CHD data for the optimal variable
hierarchy (X1, X2, X4, X5, X6, X7), equal training and proportional testing and training ratio τ = 0.8.

Male + Female
Predicted

Positive Negative Total True Rate %

Actual Positive 97.38 26.62 124 78.53
Negative 326.35 377.65 704 53.64

Total 423.73 404.27 828 14.98

Precision % 23.00 93.43 51.17 57.37

Table 14. Mean classification performance matrix for Framingham CHD male data for the optimal
variable hierarchy (X1, X2, X4, X5, X6, X7), equal training and proportional testing and training ratio
τ = 0.8.

Male
Predicted

Positive Negative Total True Rate %

Actual Positive 50.30 16.70 67 75.07
Negative 135.08 155.92 291 53.58

Total 185.38 172.62 358 18.72

Precision % 27.17 90.36 51.78 57.60

Table 15. Mean classification performance matrix for Framingham CHD female data for the optimal
variable hierarchy (X1, X2, X4, X5, X6, X7), equal training and testing and training ratio τ = 0.8.

Female
Predicted

Positive Negative Total True Rate %

Actual Positive 45.14 11.86 57 79.19
Negative 193.99 219.01 413 53.03

Total 239.13 230.87 470 12.13

Precision % 18.90 94.88 50.88 56.20

4. Discussion

Using the Framingham CHD data and four stratified training/testing scenarios, we
showed that a classifier cutoff equal to the prevalence of the training data is the best
when converting both logistic and random forest regressions into a classification algorithm.
Moreover, using statistically significant variables in a logistic regression does not improve
the performance of the logistic classifier; thus, one can either use these significant variables
or use all available variables. A sampling distribution comparison of eight classification
algorithms (extreme gradient boosting, support vector machine, random forest classifier,
logistic classifier, linear discriminant analysis, quadratic discriminant analysis and double
discriminant scoring of types 1 and 2), through a paired design with 100 cross-validations,
across four training/testing scenarios and for training ratios τ from 10% to 90% with a
10% step, led to the following results. (1) Both the extreme gradient boosting and support
vector machine are flawed when the prevalence of the training dataset is proportional,
and thus these two classification algorithms must be derived with a training dataset with
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a 50% prevalence. (2) A support vector machine trained on a balanced training dataset,
while performing well, seems to be sensitive to the prevalence of the testing dataset, and
thus one cannot be confident about its generalizability. (3) The logistic and random forest
classifiers derived using a (balanced equilibrium) cutoff (equal to the prevalence of the
training dataset) perform well and fairly consistently across all four training scenarios. (4)
The double discriminant scoring of type 1 (resp., of type 2) consistently outperforms all
other classification algorithms with respect to the true positive rate (resp., true negative
rate) and across all training/testing scenarios, and hence one can be confident about their
generalizability, i.e., using the derived optimal double discriminant scoring of type 1 and/or
2 models to make predictions on the same type of data, even with a different distribution—
for instance, medical data from a different geographical location. Furthermore, the sampling
distribution of the performance of the double discriminant scoring of types 1 and 2 across
all training/testing scenarios applied to the Framingham CHD data demonstrates the
Bellman principle, and thus the modeler does not need to perform a sampling distribution
test of 2p − 1 variables for p-variable data, but would need at most p(p + 1)/2 tests using a
recursion. In other words, they can find the optimal one-variable selection and then add
the other p − 1 variables and check whether the used performance metric improves; in this
case, they can repeat the process until the addition of a variable to the optimal variable
sub-hierarchy no longer improves the considered performance metric. For instance, out
of 127 total sampling distribution tests, 28 were needed for the optimal variable hierarchy
with respect to the true positive rate, which led to six variables out of seven variables, and
13 tests were needed for the optimal variable hierarchy with respect to the true negative
rate, which led to one variable out of seven. Moreover, the optimal variable hierarchies
for the true positive and negative rates are complementary, leading us to conjecture that
the missing variables in the optimal hierarchy with respect to the true positive rate belong
to the optimal variable hierarchy with respect to the true negative rate. Lastly, while the
current study focuses on static prediction using baseline data, future research could explore
the dynamics of CHD risk factors over time by incorporating longitudinal data analysis.

Machine learning comparative studies, which include extreme gradient boosting,
support vector machine, linear discriminant analysis, random forest and logistic regression,
are starting to gain traction in predictive modeling for healthcare—for instance, regarding
the risk of stroke [54], knee osteoarthritis diagnosis [55] and mortality risk and hospital
stay duration in hospitalized patients with COVID-19 treated with Remdesivir [56]. The
latter two works showed that extreme gradient boosting provided the highest accuracy.
Given the type of data, the performance metrics reported and insufficient details to ensure
bias mitigation, we are not able to fairly compare their findings with ours.

Our study has several strengths and novel elements. Indeed, a simultaneous com-
parison of eight machine learning algorithms using the same set of variables and train-
ing/testing datasets and with a high number of cross-validations (100 simulation runs)
not only addresses the shortfalls outlined in [10,40], but contributes also to the better
interpretability of the machine learning models, which will aid their implementation in
healthcare. One common shortfall in [52] pertaining to the quality of the trained models is
the low positive predictive value and the high number of false negative predictions. We
thus include the frequencies of the true/false positive/negative predictions in Table 6 to
enable the reader to compute the mean of any performance metric and thus provide full
transparency. The Framingham CHD data are publicly available, and while the R code used
in this study is not yet publicly available, we believe that the amount of technical detail in
our analysis will enable the reader to reproduce our findings. To the best of our knowledge,
our systematic investigation of all 2p − 1 possible model selections for multivariate data
with p explanatory variables, with a high number of cross-validations (one thousand), to
extract a variable hierarchy across four stratified training/testing scenarios, is novel and
insightful for the machine learning literature. Moreover, such an investigation led to the
finding that not only does the double discriminant scoring of types 1 and 2, applied to the
Framingham CHD data, satisfy the Bellman principle of optimality with respect to the true
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positive rate and true negative rate, respectively, but their corresponding optimal variable
hierarchies are complementary, which allows us to confirm this fact in general.

Despite the above strengths, and in light of the considerations, recommendations and
shortfalls highlighted in [10,40], our study has the following limitations. Our comparative
analysis of machine learning classification algorithms used only seven variables from the
Framingham CHD data. Given that the derived optimal variable hierarchies led to six
variables out of seven, the inclusion of more features is recommended. Moreover, our study
focused on static prediction using baseline data, and thus future research could explore the
dynamics of CHD risk factors over time by incorporating longitudinal data analysis. Our
study also did not check the medical validity of the derived optimal variable hierarchies
against the medical literature. Nonetheless, the derived optimal variable hierarchies did
not yield an unintuitive result, and, if they did, the data would have provided a hypothesis
to be tested by medical scientists.
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