
Information 2012, 3, 661-675; doi:10.3390/info3040661
OPEN ACCESS

information
ISSN 2078-2489

www.mdpi.com/journal/information

Article

Enhancing the Search in MOLAP Sparse Data
Joseph Zalaket

Department of Industrial and Manufacturing Engineering, Faculty of Engineering, University of
Saint-Esprit de Kaslik, Kaslik main Street, P.O. Box 446, Jounieh, Lebanon;
E-Mail: josephzalaket@usek.edu.lb; Tel.: +961-960-0943; Fax: +961-960-0901

Received: 25 June 2012; in revised form: 23 September 2012 / Accepted: 8 November 2012 /
Published: 14 November 2012

Abstract: Multidimensional on-line analytical processing (MOLAP) systems deal well with
dense data than relational ones (ROLAP). In the existence of sparse data, MOLAP systems
become memory consuming, which may limit and slow down data processing tasks. Many
compression techniques have been proposed to deal with the sparsity of data in MOLAP
systems. One of these techniques is the bitmap compression, which allows a significant
reduction of the memory space used for data processing. In this article, we propose an
extension to the bitmap compression technique by storing the compressed data as bits into
multiple efficient data structures based on a new indexing strategy instead of the linear
structure. Compared with the classical bitmap, the proposed enhancement not only allows
space reduction but also reduces the search time through the compressed data. We present
some algorithms that allow maintaining and searching within the compressed structure
without the need for decompression. We demonstrate that the complexity of the proposed
algorithms varies from logarithmic to constant, compared with the linear complexity of the
classical bitmap technique.

Keywords: data warehousing; MOLAP; bitmap compression; hashing

1. Introduction

Nowadays data warehousing and on-line analytical processing (OLAP) become essential elements
for the most of the companies. They help them to intelligent strategic decisions. A data warehouse
is a “subject-oriented, integrated, time varying, non-volatile collection of data that is used primarily in
organizational decision making” [1]. Data warehouses store two kinds of tables [2]: Fact tables that

Information 2012, 3 662

contain facts or measures about a business (e.g., the quantity sold, the sales amount, . . .) and dimension
tables that represent those characteristics that are measured (e.g., customer, product, store, . . .). The
attributes of a dimension table are usually used to qualify, categorize or summarize facts.

To facilitate complex analysis and visualization of the data stored in a data warehouse, an on-line
analytical processing (OLAP) server is used as intermediate between the data warehouse and the
end-user tools (visualization, data mining, querying/reporting, . . .). The role of an OLAP server is
to provide a multidimensional data view to the end-user in order to facilitate analytical operations
such as slice and dice, roll-up, drill down, etc. [2] There are four main types of OLAP servers:
(1) Relational OLAP (ROLAP) in which the data is directly retrieved from the relational data warehouse
and transformed on the fly to multidimensional format using complex queries in order to be presented to
the end-user; (2) Multidimensional OLAP (MOLAP) in which the data is pre-calculated and stored
in special multidimensional databases using multidimensional arrays structure; (3) Hybrid OLAP
(HOLAP), which is an attempt to combine some of the features of MOLAP and ROLAP technologies;
(4) Desktop OLAP (DOLAP), which is an inexpensive and easy to deploy variant of ROLAP.

In Multidimensional DBMSs (MDBMSs) the data structure is based on multidimensional arrays, in
which the values of dimension attribute play the role of indexes of cells that store the corresponding fact
values. For example, the cell sales (1, 5, 120) = 13,500 represents an instance of the array sales, which
stores sales fact values per product, per customer and per time dimensions. This cell is the intersection
of product number 1 and customer number 5 and time number 120, for which the sales amount is 13,500.
Cells can contain null values at many intersected dimension values, for example the sales amount can be
null for a specific time value as for example sales (1, 5, 122) = Null, if 122 represents a week-end day or
a holiday during which the store was closed. Such null values lead to sparse multidimensional array and
thus waste memory space. In addition to the unnecessary space used, sparse arrays affect the performance
and the response time of queries. Moreover, the problem with MOLAP is that large arrays would be
loaded in primary memory, which can slow down the system or even saturate its memory in the case of
excessive useless space that could be avoided. A solution to this problem is to use a compact structure
in which only dense data of sparse multidimensional arrays are maintained for querying operations.

Many compressing methods have been used to solve the problem of sparsity; the most common are
the mapping-complete methods. Those methods provide both forward and backward mapping to allow
accessing directly the compressed data without the need to decompress it. The bitmap compression
method was largely adopted in MOLAPs. As a result, the bitmap method allowed the reduction of the
space used for data loading in primary and secondary memory, and as a consequence, it sped up the query
processing. Other methods based on constant removal [3] have been also developed for compressing
MOLAP data.

In this article, we present an extension to the classical bitmap compression algorithm in which we use
multiple efficient data structures (e.g., the balanced binary tree, the hash table and the clustered indexing),
instead of a linear one-dimensional array structure that is originally used, to store the dense compressed
data. These structures allow the queries to access directly the compressed data in logarithmic even in
constant time complexity without the need of any decompression in order to get the original data. The
proposed extensions are based on a new indexing strategy retrieved from the hypercube structure. They
have been tested over multiple data sets and compared with each other as well as to the standard bitmap

Information 2012, 3 663

compression algorithms. The empirical results that have been done to access compressed structure
showed that the proposed extensions overcome the classical bitmap compression based algorithms over
all the benchmarks.

In the second section of this article, we discuss the classical bitmap compression algorithm adopted
for MOLAPs. In the third section, we detail our extension and the adaptation of the binary tree structure
to store dense data as well as to generate indexes. In the fourth section, we theoretically evaluate our
algorithm compared with the classical bitmap compression one. In the fifth section, we show some
empirical results for comparison before concluding our work.

2. Bitmap Compression

In this section, we detail the bitmap compression method used in MOLAP by presenting a simplified
example consisting of a two dimensional array. The dimensions representing the indexes of this array
are respectively products and customers, and the values represent sales amounts, each of which is a
fact for a specific customer and a specific product. Figure 1 shows the original non-compressed matrix
(two-dimensional array), in which null values are represented by dashed cells.

Figure 1. Two-dimensional sparse matrix.

2000
�����������2600
��3500
 1900
����2400
��������5300
��6100
����4200
�����2800

1
 2
 5
 4
 5

P50
 P60
 P70
 P80
 P90

1
 C1

2
 C2

3
 C3

4
 C4

5
 C5

Product/

Customer

The bitmap compression scheme is using a bitmap multidimensional array (here a matrix of
two dimensions for simplification) and a physical file vector that stores only the non-null values of a
sparse multidimensional array [4]. The role of the bitmap is to indicate the presence or the absence of
non-null values in the original multidimensional array. In general, this technique is suitable for sparse
data sets than for dense ones, so it can be largely used in OLAP systems.

The bitmap compression starts by creating a multidimensional array of bits, which has the same
number of dimensions as the original one, and another one-dimensional array called the value vector [5],
which stores the non-null values of the original multidimensional array. Therefore, for each cell
in the original multidimensional array, if its value is null, then the corresponding value in the bit

Information 2012, 3 664

multidimensional array will be set to 0, otherwise it will be set to 1 and its measure will be added
to the value vector (see Figures 2 and 3). The basic method used to search a non-null value in the
bitmap compressed structure consists of counting the number of values equal to one in the bitmap
multidimensional array by traversing the cells starting from the first up to the corresponding searched
value position. Once counted, their count result is used as the index of the non-null searched value in the
value vector.

Figure 2. Generated bitmap matrix corresponding to Figure 1.

1
 2
 3
 4
 5

1
 1
 0
 0
 0
 0

2
 0
 1
 0
 1
 1

3
 0
 0
 1
 0
 0

4
 0
 1
 0
 1
 0

5
 1
 0
 0
 0
 1

Figure 3. The value vector corresponding to Figure 1 and Figure 2.

2000
 2600
 3500
 1900
 2400
 5300
 6100
 4200
 2800

1
 2
 3
 4
 5
 6
 7
 8
 9

Using this bitmap compressed structure, the null values can be put away from any processing and
only non-null values will occupy a complete storage space.

For example, the sales of customer C4 of product P70 is null as cell(4, 3) = 0 (Figure 2). But,
the sales of C4 for product P80 is not null as cell(4, 4) = 1 (Figure 2). To locate the corresponding
sales amount in the compressed bitmap structure, we have to count the number of 1s starting from the
first cell up to cell(4, 4) included. The count can be calculated by summing the implied cells such as
cell(1, 1) + cell(2, 2) + . . .+ cell(4, 4) = 7, which means the corresponding sales amount value can be
accessed directly at the 7th index of the value vector (Figure 3), which contains the value 6100 matching
the sales amount of customer C4 for product P80 in the non-compressed structure (Figure 1).

3. Using Binary Search Tree to Store Compressed Data

Many algorithms based on the use of different tree structures were proposed for storing or indexing
the data cube [6,7]. We propose an algorithm based on the bitmap compression method combined to
the binary tree data structure. This algorithm starts by calculating a multidimensional array of bits to
represent the existence of data elements in a sparse multidimensional data cube. The generation of the
multidimensional array of bits is the same as in the bitmap method (Figure 2). However, compared with
the classical bitmap method, instead of using the value vector of bitmap method (Figure 3), we use a
binary search tree (BST) [8] data structure to store the compressed data instead of the linear value vector
used in bitmap.

Information 2012, 3 665

A binary search tree is a binary tree in which each internal node x stores a value such that the values
stored in the left sub-tree of x are less than or equal to x and the values stored in the right sub-tree of x
are greater than x [9].

To adjust the binary search tree structure to store and maintain the data of a multidimensional array,
we introduce the following two algorithms for inserting and searching values in the adapted binary search
tree structure. To be able to make the mapping between the cells of the multidimensional array of bits
created at the first bitmap phase and the data location within the binary search tree, we use the original
indexes—instead of the value—of the data element in the multidimensional data cube as a traversal guide
in the BST.

Therefore, the adapted binary will be organized as a binary tree, in which each internal node x stores
a value such that the values stored in the left sub-tree of x have indexes in the original multidimensional
data cube that are less than the indexes of x, and the values stored in the right sub-tree of x have indexes
in the original multidimensional data cube that are greater than the indexes of x. Each node x of the
tree will store, in addition to the value, a vector containing the indexes of this value in the original
multidimensional cube. The vector size is static and equal to the dimension of the matrix representing
the multidimensional cube. A more compact indexing method can be used to replace the vector of
indexes in order to guide the traversal of the binary tree. This indexing method will be based on the
observation introduced in the next section.

3.1. Compact Indexing Strategy

Indexes comparison properties:
Giving a vector of indexes I of size k and another vector I′ of the same size:

(1) I < I ′ iif

I [1] < I ′ [1] or

(∃ 1 < i ≤ k s.t. I [i] < I ′ [i] and ∀ 1 ≤ j < i, I [j] ≤ I ′ [j])

(2) I > I ′ iif

I [1] > I ′ [1] or

(∃ 1 < i ≤ k s.t. I [i] > I ′ [i] and ∀ 1 ≤ j < i, I [j] ≥ I ′ [j])

(3) I = I ′ iif

I [i] = I ′ [i] , ∀ 1 ≤ i ≤ k

By observing the above indexes properties, we can store and compare the indexes of a value as one
entity value composed by concatenating the values of the vector of indexes. For example, the sales
amount for customer P1 for product P50 is 2000 (see Figure 1) and has I = [1, 1] as a vector of indexes,
and thus, its index value can be represented by a single integer value, which is 11. To avoid the generation
of duplicated index values, we add to the number a dash separator before each new index dimension
except the first, and thus, instead of generating 11 as an index value for I = [1, 1], its generated value
will be “1-1”. Duplication can happen while concatenating indexes such as [1, 21] and [12, 1], where

Information 2012, 3 666

the generated index values will be 121 for both of them without the dash symbol as a separator, and
respectively 1− 21 and 12− 1 with it.

For an array of n dimensions, we need n − 1 dash separator and the obtained concatenation will be
processed as a single string value.

This technique allows the optimization of processing in the BST by evaluating one value instead of a
vector of values. In fact, it reduces the number of comparisons for the tree traversal, such that one and
only one comparison is needed at each visited node to shift left or right instead of k comparisons per
node in the worst case as proposed by [10], where k is the size of the vector of indexes.

By concatenating the vector of indexes of a value at the multidimensional cube, the composed single
index value is obtained and is called the key index.

3.2. Inserting a Cell Value into the BST

This algorithm is used to insert the values of the multidimensional cube into the BST. Each value has
to be inserted in the BST according to its key index ki.

insert(v, ki, node){

if (node = NULL)

node = new binaryNode(v, ki);

else if (ki >node.ki)

insert(v, ki, node.rightChild);

else

insert(v, ki, node.leftChild);

}

Therefore, a node of the BST will store, for each non-null multidimensional cube cell, the pair
constituted by the value v contained at this cell and its key index ki. The parameters of the recursive
algorithm “insert” include the value v, its key index ki and a node initialized to the root of the BST at
each call. The algorithm creates a new node for v by inserting it in addition to its key index into that new
node when a null node pointer is reached (e.g., if the root is null, v will be inserted as a root). Before the
null node pointer is reached, the algorithm will recursively call its right child node or its left child node
and test the key index ki of the value v. It will go right if v is greater than the key index of the visited
node and go left if otherwise. Note that the key index of the inserted value cannot be equal to an existing
key index in the BST, as each key index represents a different cell in the multidimensional cube.

For example, we will show the result of applying of the “insert” algorithm to the values stored in
the matrix of Figure 1. The values of this matrix will be inserted sequentially in the data cube as in a
real world application where the sequence of inserting is the sequence of data arrival from the loading
process, in which facts are added as new values to the end of the multidimensional cube. Each non-null
value from the sparse matrix (Figure 1) has to be inserted into the BST. We start by the fact value
v = 2000 of C1, P50, which occupies the cell [1, 1] on the matrix, so its key index ki = 1− 1. This pair
of data (v = 2000, ki = 1−1) will be stored in new node representing this cell in the BST. As the tree is
empty, the corresponding node will be inserted as a root without further processing (see Figure 4). The
next non-null fact value v = 2600 in the matrix matches the dimensions C2, P60, which has a key index

Information 2012, 3 667

ki = 2 − 2. The index of the cell is 2 − 2 > 1 − 1 (the index of the root) and thus the new node for
the pair (v = 2600, ki = 2 − 2) needs to be inserted to the right of the root. Afterward, new nodes will
be created respectively for the pairs (v, ki) as in Figure 4 having the values (3500, 2− 4), (1900, 2− 5),
(2400, 3− 3), (5300, 4− 2), (6100, 4− 4), (4200, 5− 1) and (2800, 5− 5) [11].

Figure 4. Binary search tree corresponding to the matrix of Figure 1.

1-1

2000
 2-2

2600
 2-4

3500
 2-5

1900
 3-3

2400
 4-2

5300
 4-4

6100
 5-1

4200
 5-5

2800

The search in the BST is done according to the value of the key index. Like the insert algorithm, the
search algorithm compares the key indexes to know the direction to be followed in order to retrieve the
searched value.

3.3. Searching a Cell Value in the BST

The search algorithm takes as first parameter a key index ki, which represents the indexes of the
searched cell (normally a cell that has a value “1” in the bitmap multidimensional array), and the current
node “node”, which is initiated to the root at each external call. If the searched key index ki is found
into a node in the BST, then the algorithm will return the value v from this node.

search(ki, node){

if (node = NULL){

return NULL;

else if (ki = node.ki)

return node.v;

else if (ki < node.ki)

search (ki, node.leftChild);

else

search (ki, node.rightChild);

}

For example, the value at position [2, 4] in the bitmap matrix of Figure 2 is 1. Thus, to locate the
original value, we apply the search algorithm using 204 as actual parameter for ki. The algorithm will
return the value v = 3500 from the node having ki = 2 − 4, which corresponds to the original value at
position [2, 4] in the two-dimensional sparse matrix of Figure 1.

Applying the search for a value in the BST structure can be done in a logarithmic time in the best
case depending on the size of the problem n (number of non-null value in the multidimensional array),

Information 2012, 3 668

which is better than the linear time requested by the bitmap search. However, the BST can become
unbalanced as in our example in Figure 4, which leads to a linear time complexity in the worst case.
Thus, the proposed algorithm will be at the same complexity level in the worst case as the classical
bitmap search algorithm.

3.4. Balancing the Tree to Reduce the Time Complexity

To overcome the lack of time complexity in the worst case scenario, we choose to use a balanced
binary search tree instead of a classical one. For this reason, we choose the AVL tree structure [12].
Inserting a node into an AVL tree is a two-part process. First, the item is inserted into the tree using the
usual method for insertion as in a binary search tree. After the item has been inserted, it is necessary to
check that the resulting tree is still balanced. A tree is considered balanced if for any node of this tree the
height of its left sub-tree differs from the height of its right sub-tree by at most one level. This difference
is called the balance factor of that node. When the tree becomes unbalanced, a single or a double rotation
to the left or to the right has to be applied to the tree in order to re-balance it.

A single rotation to the left means rotating from the left toward the right. The right child of a node
is rotated about it. In other words, the node becomes the left child of its right child. A single rotation
to the right is done in the other way; the node becomes the right child of its left child (symmetric to the
left rotation).

A double rotation can be regarded as a combination of left and right single rotations. A double left
rotation at a node can be defined to be a single right rotation at its right child followed by a single left
rotation node itself. Rotations are done symmetrically for the double right rotation.

By keeping the tree balanced, we can maintain a time complexity of O(log(n)) search capability even
in the worst case. For that, an additional test for the balance factor has to be added to the inset algorithm
(in Figure 4) and one of four rotation functions has to be called when |balancefactor| ≥ 2 (which means
that the tree is not an AVL).

Remarks:

(1) The same search algorithm presented for BST (Figure 5) is used to search an element in the
AVL tree.

(2) The delete algorithm is at the same complexity level as the insert algorithm. But we do not present
a delete algorithm as we consider that data is usually appended to MOLAP, and as this latter is
read-only, data are not deleted from there once added [13]. However, a refresh algorithm is taken
into account to destroy all the BST by deleting all its nodes at once. This algorithm can be useful
for fully refreshing the MOLAP.

(3) The time complexity of operations in the worst, average and best cases is O(log(n)), where n is
the number of existing non-null values in the multidimensional data cube.

(4) The compact indexing strategy can be used to store the non-null values of multidimensional data
cube in a B+-tree structure [14], in which the key index can serve as a key and the non-null value
as a record content. Using this structure, the complexity of operations in all the case will be
O(logm(n)), where m is the order of the B+-tree and n is the number of existing non-null values

Information 2012, 3 669

in the multidimensional data cube. Furthermore, for a better optimization, a clustered index can
be constructed over the key indexes.

Figure 5. Balanced BST corresponding to the matrix of Figure 1.

1-1

2000

2-2

2600

2-4

3500
 2-5

1900

3-3

2400

4-2

5300
 4-4

6100

5-1

4200

5-5

2800

1-1

2000

2-2

2600

2-4

3500

left simple rotation(11)

left simple rotation(24)

2-5

1900

3-3

2400

1-1

2000

2-2

2600

2-4

3500

left simple rotation(24)
 left simple rotation(22)

4-2

5300

2-5

1900

3-3

2400

1-1

2000

2-2

2600

2-4

3500

4-4

6100

left simple rotation(33)

4-2

5300

2-5

1900

3-3

2400

1-1

2000

2-2

2600

2-4

3500

5-1

4200

5-5

2800

4-4

6100

left simple rotation(44)

4-2

5300

2-5

1900

3-3

2400

1-1

2000

2-2

2600

2-4

3500

4. Incremental Hashing

In [15], a novel compressed bitmap index approach is proposed, which reduces CPU and disk loads
by introducing a reordering mechanism based on the locality-sensitive hashing (LSH). Furthermore,
combining bitmap compression and hashing storage techniques can be useful for reducing space and
accelerating the query response as it has been demonstrated. Our intension to profit from the advantage

Information 2012, 3 670

of this combination leads us to use the compressed bitmap schema to incrementally generate fact indexes
and then to use them to insert and locate fact data in a dynamic hash structure. We start by creating a
collection of hash tables having the same size. The generation of these tables will be done incrementally
in a way that when the existing tables become full, one new table will be automatically created to allow
the insertion of new keys. A vector containing critical key indexes will be used as a root of the proposed
data structure to handle the insertion of keys into the corresponding hash tables and the search of the
keys within the hash tables. This vector will play the role of an interface that guides the access to the
concerned hash tables in order to minimize the time complexity of insertion and search operations (see
Figure 6). On the other hand, the goal of the incremental creation of hash tables is to minimize the space
complexity of the used data structure, as only one small-sized hash table will be created and maintained
at a time instead of a single huge-sized one that reserves empty null-valued cases. Consequently, the
limited small size of hash tables will minimize the time complexity needed for handling the collisions
that can happen during the insertion into these tables.

Figure 6. Structure of incremental hashing.

2-5
 5-1
 +

2-4
 3500

2-5
 1900

2-2
 2600

1-1
 2000

4-4
 6100

3-3
 2400

4-2
 3500

5-1
 4200

5-5
 2800

1
 2
 3

1
 2
 3

Root Vector

Hash tables

of size 4

hash tables IDs

0

1

2

3

8

2-1
 5555

An extension table may be added

(e.g. to insert
 a
 late coming key 2-1 < 2-5)

4.1. Handling the Operations

Initially the root vector will contain only one value, which is the infinity, and it will point to an empty
hash table of size m.

4.1.1. Insert Operation

Inserting data will always take place into the hash table pointed by a critical key that is greater than or
equal the key index of the data to be inserted. The initial and last cell value of the root vector will be
always the infinity value. This insertion method will generate values in the root vector in ascending order,
where each value of this vector will finally point to a hash table containing keys less than or equal to it.

After locating the insertion point of a value in the corresponding hash table, a closed hashing method is
applied over the key index to solve the collisions and to find an available empty cell in which the key

Information 2012, 3 671

index and its related data element value from the multidimensional cube have to be inserted. To simplify
our tests, we used the linear probing as a closed hashing method, but other methods can be used
such as the double hashing in order to avoid the primary clustering problem that can happen with the
former method.

When the pointed hash table becomes full, the maximum value among its key indexes will be
returned back to the root vector and placed in the cell pointing to this hash table that was originally
pointed by the infinity value. Subsequently, the infinity value will be shifted up to a new cell just after
the newly inserted maximum key index. Finally, a new hash table of size m will be created to allow
new insertions. This process will continue as long as new non-null-valued cells are loaded into the
MOLAP cube.

In order to keep the ascending ordering of the root vector adequate, we allow the creation of
extension hash tables (of the same size m) that will be pointed by the corresponding full hash table to be
extended. This can happen when the insertion point of a late incoming key index is located at a full
hash table.

InsertHash(v, ki){

j=RootVector.lengh;

While (ki <= RootVector[j]) j=j-1;

j=j+1;

If (hashTable [j] is full){

Create new hashTable of size m point it by hashTable [j];

// an extension

}

Insert the couple (v,ki) into the hashTable[j] ;

// or into one of its extension

/*using h=(ki mod m + k) mod m

as hash function for k = 1 to m*/

If (hashTable [j] is full){

RootVector[j]= maximum value of ki in hashTable [j];

RootVector[j+1]= Infinity;

Create new hashTable [j+1] of size m;

}

}

4.1.2. Search Operation

To search a value having a key index ki, the search will start into the root vector by comparing the
value of the index key consecutively with the values of the root vector until reaching a value greater
than or equal ki [16]. In the worst case, the last infinity value will be greater than ki. Once this greater
or equal value is found, the hash table pointed by its case (numbered as its index) will be elected as
containing the searched key. Thus, the search will take place only into this hash table of size m and

Information 2012, 3 672

probably in its extensions if they exist. The same hash method used during insertion will be applied in
order to find the key location within the elected hash table.

value SearchHash(ki){

j=1;

While(ki > RootVector [j]) j=j+1:

Search value v indexed by ki into hashTable[j],

if not found try in its extensions;

/*using h=(ki mod m + k) mod m

as hash function for k = 1 to m*/

Return v or null if ki is not found;

}

According to our proposed indexing properties (see Section 3.1) and the previous insertion algorithm,
the searched key index cannot be found in another table if it has not been found in the elected one or
its extensions, because the key indexes are supposed to be inserted in the ascending order of the root
vector. This search strategy also facilitates the search of a range of keys in a way that a subset of hash
table most likely adjacent will be elected as containing the keys of the range interval and the search will
take place only within this subset. The root vector has a size of k, which is proportional to the number
of key indexes n currently existing in the multidimensional cube and the fixed size of hash tables m,
such that k ≈ n/m+ 1, by ignoring the extension tables, which are in fact rare.

Remarks:

(1) The time complexity of operations in the worst case is:

O(log(k) +m) ⇒

O(log(k))) if log(k) ≺ m

O(m) if m ≺ log(k)
where k,m <<< n

(2) In the average and best cases the time complexity is constant O(1).

5. Empirical Results

In this section, we show some empirical results obtained by running prototypes of our algorithms
written in C++ language and the classical bitmap algorithm over a number of data sets. Each chosen
data set represents a data cube (three-dimensional array). The number of facts (null or not) in the cube is
represented in the first column of Table 1. The sparsity in all cubes is about 20%. The last three columns
of the table represent respectively the running time in millisecond for the classical bitmap algorithm, for
the balanced BST based algorithm and for the Incremental Hash based algorithm.

Figure 7 represents graphically the difference in running time among the three algorithms while
searching for data. According to the obtained result, the algorithms based on BST and Incremental
Hash dramatically outperform the classical bitmap, especially when the number of cells increases above
1,000,000,000. Besides, the Hash based algorithm performs faster than the BST based algorithm when
the data size increases.

Information 2012, 3 673

Table 1. OLAP Search time comparison.

3-D cube size Classical Bitmap Balanced BST Incremental Hash
(Number of cells/facts) Time (ms) Time (ms) Time (ms)

103 = 1000 17.1 16.21 15.24
203 = 8000 53.73 17.28 16.98
303 = 27, 000 168.2 19.88 19.34
403 = 64, 000 328.4 21.63 21.67
503 = 125, 000 653.6 26.47 24.81
603 = 216, 000 993.2 30.01 27.12
703 = 343, 000 1394 34.12 31.23
803 = 512, 000 2570 50.76 35.22
903 = 729, 000 3047 69.20 40.03
1003 = 1, 000, 000 59,911 155.31 46.52
10003 = 1, 000, 000, 000 600,054 232.01 70.39
1016 52518054 2120 1412

Figure 7. Running time comparison.

For all the tested benchmarks, the compression ratio was proportional to the sparsity of the cube. For
20% of sparsity the compression ratio was 18.4% and 24.18% depending on the size of the cube [17],
and for 40% sparsity it was 39.16% and 46.34%.

6. Conclusions

In this paper, we adapted multiple data structures that can store multidimensional arrays (hypercubes)
in a way to eliminate the sparsity of these arrays and to accelerate the search process within their data

Information 2012, 3 674

contents. Several methods have been recently developed for compressing data cubes in MOLAP systems
and some others for speeding up the query processing. Our objective was to combine these two tasks by
using convenient data structures that can serve to compress the data and to optimize the operations over
them without the need for decompression. We proposed a new compact indexing strategy that can be
easily calculated and then retrieved directly from the uncompressed hypercube structure. This indexing
strategy has been subsequently used to identify the data elements in two different compressed data
structures. The first compressed structure consists of using the classical bitmap technique by creating
a multidimensional cube of bits having the same number of dimensions as the original uncompressed
hypercube, but it replaces the single dimension array used to store the non-null values by a balanced
binary tree (i.e., the AVL tree), in which the nodes are inserted and later searched depending on their
compact indexes (which are calculated according to their indexes of cells in the original uncompressed
hypercube) instead of their values. This chosen structure allows to search within compressed data in
logarithmic time instead of the linear time required for searching in a classical bitmap compression
structure. The second compressed structure is based on hashing, in which multiple hash tables of a
limited prefixed size are created dynamically on demand, one after another and maintained by a vector
containing a subset of critical compact indexes. This later allows speeding up the search in the proposed
structure and consequently the other operations such that the insertion will be also accelerated as its
acceleration is based on the speed of the search operation. On the other hand, the limited size of the hash
tables allows the reduction of time needed to handle the collisions that can happen in these tables. This
structure requires a time complexity that varies from logarithmic in the worst case for all the operations
to constant in the average and the best cases. The incremental hash algorithm requires less execution
time as well as less space to maintain its structure compared with the balanced tree based algorithm.
Our perspective is to try additional data structures that can serve for data compression always by using
our proposed compact indexing strategy. As a tactical objective, we will try to use the compact indexes
to serve as clustered indexes for records containing the facts as attribute values. We think that this
structure will be beneficial when a query tries to retrieve some interval of index values, as the input/output
operations will be reduced due to the physical order of data stored at each disk block.

References and Notes

1. Inmon, W.H. The data warehouse environment. In the Building the Data Warehouse, 3rd ed.; John
Wiley & Sons: Hoboken, NJ, USA, 2002; pp. 31–77.

2. Kimball, R.; Ross, M. Dimensional modeling primer. In the Data Warehouse Toolkit: The
Complete Guide to Dimensional Modeling, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA,
2002; pp. 1–27.

3. Li, J.; Rotem, D.; Wong, H. A new compression method with fast searching on large databases.
In Very Large Data Bases: Proceedings of the Thirteenth International Conference on Very Large
Data Bases, Brighton, England, September 1–4 1987; Morgan Kaufmann: San Francisco, CA,
USA, 1987; pp. 311–318.

Information 2012, 3 675

4. Moffat, A.; Zobel, J. Parameterised compression for sparse bitmaps. In Proceedings of the
15th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval. Copenhagen, Denmark, June 21–24, 1992; Belkin, N.J., Ingwersen, P., Pejtersen, A.M.,
Eds.; ACM Press: New York, NY, USA, 1992; pp. 274–285.

5. Chan, C.Y.; Ioannidis, Y.E. Bitmap index design and evaluation. Sigmod Rec. 1998, 34, 355–366.
6. Vaidyanathan, J.K.; Yang, G.; Agrawal, G. Communication and memory optimal parallel data cube

construction. IEEE Trans. Parallel Distrib. Syst. 2005, 16, 1105–1119.
7. Ester, M.; Kohlhammer, J.; Kriegel, H.P. The DC-tree: A fully dynamic index structure for data

warehouses. In Proceedings of the 16th International Conference on Data Engineering, San Diego,
CA, USA, 29 February–3 March 2000; pp. 379–388.

8. Allen, B.; Munro, I. Self-organizing binary search trees. J. ACM 1978, 25, 526–535.
9. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Binary search trees. In Introduction to

Algorithms, 2nd ed.; MIT Press: Cambridge, MA, USA, 1990; pp. 253–272.
10. Zalaket, J. Speed up the search in bitmap based compressed sparse arrays. In Proceedings of the

International Conference on Information Management and Engineering, Kuala Lumpur, Malaysia,
3–5 April 2009; pp. 142–146.

11. In this example, the indexes are arriving in an ascending order, but they can arrive in any order
without affecting our goal which is obtaining a compressed structure.

12. Adelson-Velskii, G.; Landis, E.M. An algorithm for the organization of information. Sov. Math.
Dokl. 1962, 146, 1259–1263; Translated by Ricci, M.J.

13. Data can be modified or deleted from dimension MOLAP tables, but here our balanced BST is
representing facts which in general are not deleted directly from the fact table but canceled by
adding negative entries when it is necessary.

14. Elmasri, R.; Navathe, S. Fundamentals of Database Systems, 2nd ed.; Addison Wesley: Boston,
MA, USA, 2010; pp. 646–659.

15. Fusco, F.; Vlachos, M.; Stoecklin, M. Real-time creation of bitmap indexes on streaming network
data. VLDB J. 2012, 21, 287–307.

16. Dichotomous search is applied into the sorted root vector in our implementation which has
a logarithmic time compared with the linear time of the invoked one which is illustrated for
simplicity reason.

17. The compression ratio increases when we increase the amount of data. The same benchmarks of
Table 1 are used for the calculation of compression ratio.

c⃝ 2012 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

	Introduction
	Bitmap Compression
	Using Binary Search Tree to Store Compressed Data
	Compact Indexing Strategy
	Inserting a Cell Value into the BST
	Searching a Cell Value in the BST
	Balancing the Tree to Reduce the Time Complexity

	Incremental Hashing
	Handling the Operations
	 Insert Operation
	 Search Operation

	Empirical Results
	Conclusions

