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Abstract: A multi-layered perceptron type neural network is presented and analyzed in
this paper. All neuronal parameters such as input, output, action potential and connection
weight are encoded by quaternions, which are a class of hypercomplex number system. Local
analytic condition is imposed on the activation function in updating neurons’ states in order
to construct learning algorithm for this network. An error back-propagation algorithm is
introduced for modifying the connection weights of the network.
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1. Introduction

Processing multi-dimensional data is an important problem for artificial neural networks. A single
neuron can take only one real value as its input, thus a network should be configured so that several
neurons are used for accepting multi-dimensional data. This type of configuration is sometimes unnatural
in applications of artificial neural networks to engineering problem, such as processing of acoustic
signals or coordinates in the plane. Thus, complex number systems have been utilized to represent
two-dimensional data elements as a single entity. Application of complex numbers to neural networks
have been extensively investigated, as summarized in the references [1–3].
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Though complex values can treat two-dimensional data elements as a single entity, what we should
treat data with more than two-dimension in artificial neural networks? Although this problem can of
course be solved by applying several real-valued or complex-valued neurons, it would be useful to
introduce a number system with higher dimensions, the so-called hypercomplex number systems.

Quaternion is a four-dimensional hypercomplex number system introduced by Hamilton [4,5]. This
number system has been extensively employed in several fields, such as modern mathematics, physics,
control of satellites, computer graphics, etc. [6–8]. One of the benefits provided by quaternions is
that affine transformations of geometric figures in three-dimensional spaces, especially spatial rotations,
can be represented compactly and efficiently. Applying quaternions to the field of neural networks
has been recently explored in an effort to naturally represent high-dimensional information, such as
color and three-dimensional body coordinates, by a quaternionic neuron, rather than complex-valued or
real-valued neurons.

Thus, there has been a growing number of studies concerning the use of quaternions in neural
networks. Multilayer perceptron (MLP) models have been developed in [9–14]. The use of quaternion
in MLP models has been applied to several engineering problems such as control problems [10], color
image compression [12], color night vision [15,16], and predictions for the output of chaos circuits and
winds in three-dimensional space [13,14]. Other types of network models has also been explored, such as
the computational ability of a single quaternionic neuron [17] and the existence condition of an energy
function in continuous-time and continuous-state recurrent networks [18]. There are several types of
quaternionic Hopfield-type networks with discrete-time driven, such as bipolar state [19,20], continuous
state [21,22], multistate by phase representation [23,24]. Learning schemes for these networks have also
been proposed in [25].

One of the difficulties in constructing neural networks in the quaternionic domain is about the
introduction of suitable functions for the activation function in updating the neurons’ states. A typical
type of activation function is the so-called “split” type function, in which a real-valued function is applied
to update each component of a quaternionic value [10]. Real-valued sigmoidal function and hyperbolic
function, which are analytic (differentiable) functions, are often used for this purpose. However, as an
activation function, the split-type quaternionic function is not appropriate due to lack of analyticity. Thus,
it is necessary to define other types of differential functions in order to construct learning schemes such as
the error back-propagation algorithm. The Cauthy–Riemann–Fueter (CRF) equation defines the analytic
condition for the quaternionic functions, which corresponds to the Cauthy–Riemann equation for the
complex-valued functions. The functions satisfying the CRF equation turn out to be only linear functions
or constants; therefore it is impossible to introduce non-linearity into the updates of the neurons’ states.

Recently, another class of analyticity for the quaternionic functions has been developed [26–28].
Called “local analyticity”, this analytic condition is derived at a quaternionic point with its local
coordinate, rather than in a quaternionic space with a global coordinate. The derivation of local
analytic condition shows that a quaternion in the local coordinate system is isomorphic to the complex
number system and thus it can be treated as a complex value. A neural network with an activation
function with local analyticity has been first proposed and analyzed in [13,14] in terms of MLP-type
network. It is shown that the performance for this network is superior to the network with a split-type
activation function through several applications. Another application of analytic activation function to
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quaternionic neural networks has been investigated in terms of Hopfield-type network [22]. The local
analytic condition is constructed based on [28], and the stability conditions are derived in the case of
quaternionic tanh function being used for an activation function is deduced in this network, in which the
complex-valued tanh function used in [29] can be used as a quaternionic function.

This paper presents an MLP-type quaternionic neural network with locally analytic activation
function. All variables in this network, such as input, output, action potential and connection weights,
are encoded by quaternions. A learning scheme, a quaternionic equivalent of error back-propagation
algorithm, is presented and theoretically explored. The derivation of the learning scheme in this paper
adopts the Wirtinger calculus [30], which has been invented in the field of complex analysis, where a
quaternionic value and its conjugate are treated independent of each other. This calculus enables the
derivations to be more straightforward of its description, than by using the conventional description, i.e.,
Cartesian representation.

2. Quaternionic Algebra

2.1. Definition of Quaternion

Quaternions form a class of hypercomplex numbers consisting of a real number and three imaginary
numbers—i, j, and k. Formally, a quaternion number is defined as a vector x in a four-dimensional
vector space,

x = x(e) + x(i)i+ x(j)j + x(k)k (1)

where x(e), x(i), x(j), and x(k) are real numbers. The division ring of quaternions, H , constitutes the
four-dimensional vector space over the real numbers with bases 1, i, j, and k. Equation (1) can also be
written using 4-tuple or 2-tuple notation as

x = (x(e), x(i), x(j), x(k)) = (x(e), x⃗) (2)

where x⃗ = {x(i), x(j), x(k)}. In this representation, x(e) is the scalar part of x, and x⃗ forms the vector
part. The quaternion conjugate is defined as

x∗ = (x(e),−x⃗) = x(e) − x(i)i− x(j)j − x(k)k (3)

Quaternion bases satisfy the following identities,

i2 = j2 = k2 = ijk = −1 (4)

ij = −ji = k, jk = −kj = i, ki = −ik = j (5)

known as the Hamilton rule. From these rules, it follows immediately that multiplication of quaternions
is not commutative.
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Next, we define the operations between quaternions p = (p(e), p⃗) = (p(e), p(i), p(j), p(k)) and
q = (q(e), q⃗) = (q(e), q(i), q(j), q(k)). The addition and subtraction of quaternions are defined in a similar
manner as for complex-valued numbers or vectors, i.e.,

p± q = (p(e) ± q(e), p⃗± q⃗) (6)

= (p(e)±q(e), p(i)±q(i), p(j)±q(j), p(k)±q(k)) (7)

The product of p and q is determined by Equation (5) as

pq = (p(e)q(e) − p⃗ · q⃗, p(e)q⃗ + q(e)p⃗+ p⃗× q⃗) (8)

where p⃗ · q⃗ and p⃗× q⃗ denote the dot and cross products, respectively, between three-dimensional vectors
p⃗ and q⃗. The conjugate of the product is given as

(pq)∗ = q∗p∗ (9)

The quaternion norm of x, denoted by |x|, is defined as

|x| =
√
xx∗ =

√
x(e)2 + x(i)2 + x(j)2 + x(k)2 (10)

2.2. Quaternionic Analyticity

It is important to introduce an analytic function (or differentiable function) to serve as the activation
function in the neural network. This section describes the required analyticity of the function in the
quaternionic domain, in order to construct activation functions for quaternionic neural networks.

The condition for differentiability of the quaternionic function f is given by

∂f(x)

∂x(e)
= −i

∂f(x)

∂x(i)
= −j

∂f(x)

∂x(j)
= −k

∂f(x)

∂x(k)
(11)

The analytic condition for the quaternionic function, called the Cauchy–Riemann–Fueter (CRF)
equation, yields:

∂f(x)

∂x(e)
+ i

∂f(x)

∂x(i)
+ j

∂f(x)

∂x(j)
+ k

∂f(x)

∂x(k)
= 0 (12)

This is an extension of the Cauchy–Riemann (CR) equations defined for the complex domain. However,
only linear functions and constants satisfy the CRF equation [14,26,27].

An alternative approach to assure analyticity in the quaternionic domain has been explored in [26–28].
This approach is called local analyticity and is distinguished from the standard analyticity, i.e., global
analyticity. In the following, we introduce local derivatives with Wirtinger representation and analytic
conditions for quaternionic functions, with reference to [28].

A quaternion x can be alternatively represented as:

x = x(e) + uxr (13)

r =

√
x(i)2 + x(j)2 + x(k)2 (14)

ux =
x(i)i+ x(j)j + x(k)k

r
(15)
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From the definition in Equation (15), we deduce that u2
x = −1. If ux holds a commutative property

against a difference of x, then the system with ux can be regarded as locally isomorphic to the complex
number system.

A quaternionic difference of x, denoted by dx = (dx(e), dx(i), dx(j), dx(k)), can be decomposed
by using:

dx = dx∥ + dx⊥ (16)

where,

dx∥ =
1

2
(dx− uxdxux) , dx⊥ =

1

2
(dx+ uxdxux)

Then, the following relations hold:

dx∥x = xdx∥, dx⊥x = x∗dx⊥

when we set dx⊥ = 0, i.e., dx+uxdxux = 0, which results in uxdx = dxux. This leads to ux×dx⃗ = 0,
because ux is a quaternion without a real part. Thus, ux and dx⃗ are parallel to each other. Then,
dx⃗ = uxδ can be obtained, where δ is a real-valued constant. From Equation (14), it follows that

dr =
∂r

∂x(i)
dx(i) +

∂r

∂x(j)
dx(j) +

∂r

∂x(k)
dx(k)

=
1

2

1

r
2x(i)dx(i) +

1

2

1

r
2x(j)dx(j) +

1

2

1

r
2x(k)dx(k)

=
1

r
x(i)dx(i) +

1

r
x(j)dx(j) +

1

r
x(k)dx(k)

Then,

rdr = x(i)dx(i) + x(j)dx(j) + x(k)dx(k)

= x⃗ · dx⃗

Considering x⃗ = uxr and dx⃗ = uxδ, we obtain

rdr = rδux · ux

= rδ

Hence, δ = dr is derived and dx⃗ = uxdr is obtained. dx is represented as
dx = dx∥ = dx(e) + dx⃗ = dx(e) + uxdr.

Figure 1 shows a schematic coordinate system for defining a local complex plane. The component k
is omitted (x(k) = 0) in this figure due to difficulties in representing a four-dimensional vector space. In
this example, for a given quaternion x, its unit vector ux is defined in the i–j plane. Then, a complex
plane is defined by spanning the components x(e)(real axis) and x(r) in the quaternionic space, and the
analytic condition is constrained in this plane.



Information 2012, 3 761

Figure 1. A schematic illustration of local complex plane in a quaternionic space, where the
component k is omitted for simplicity.
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The local derivative operators are introduced, corresponding to the form of dx∥, as follows:

∂

∂x∥
=

1

2

(
∂

∂x(e)
− ux

∂

∂x(r)

)
∂

∂x∗
∥

=
1

2

(
∂

∂x(e)
+ ux

∂

∂x(r)

)
where

∂

∂x(r)
≡ x(i)

r

∂

∂x(i)
+

x(j)

r

∂

∂x(j)
+

x(k)

r

∂

∂x(k)

with the properties
∂x

∂x∥
=

∂x∗

∂x∗
∥
= 1 and

∂x∗

∂x∥
=

∂x

∂x∗
∥
= 0

Note that the variables x and x∗ turn out to be independent of each other. These derivative operators are
quaternionic equivalents to the well-known Wirtinger derivative in the complex domain [30].

F (x+ dx) can be expanded using the above-mentioned representations as

F (x+ dx) = F (x) + F (1) + F (2) +O(dx3) (17)

where,

F (1) = F ′(x)dx∥ +
F (x)− F (x∗)

(x− x∗)
dx⊥,

F (2) =
1

2
F ′′(x)dx2

∥ +
F (x)− F (x∗)

(x− x∗)2
(
dx⊥dx∥ − dxdx⊥

)
+

F ′(x)

x− x∗dxdx⊥ +
F ′(x∗)

x∗ − x
dx⊥dx∥
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When dx⊥ = 0, the local derivative of F (x) is written as

F ′(x) =
∂F (x)

∂x∥

and the local analytic condition for the function F (x) is given by

∂F (x)

∂x∗
∥

= 0 i.e.,
∂F

∂x(e)
+ ux

∂F

∂x(r)
= 0

in the corresponding local complex plane. This result corresponds to the one presented in [27], where
dx⊥ = 0 always holds.

Moreover, if F is a function with the two arguments, x and x∗, it becomes:

F (x+ dx,x∗ + dx∗)

= F (x,x∗) +
∂F

∂x∥
dx∥ +

∂F

∂x∗
∥
dx∗

∥ +
1

2

(
∂2F

∂x2
∥
dx2

∥ +
∂

∂x∗
∥

(
∂F

∂x∥

)
dx∥dx

∗
∥

+
∂

∂x∥

(
∂F

∂x∗
∥

)
dx∗

∥dx∥ +
∂2F

∂x∗
∥
2dx

∗
∥
2

)
+O(dx3

∥) (18)

with x and x∗ being independent of each other. As a result, we can treat quaternionic functions in the
same manner as complex-valued functions under the condition of local analyticity.

3. Quaternionic Multilayer Perceptron

3.1. Network Model

The structure of the network assumed in this paper is shown in Figure 2. This network is a so-called
multilayer perceptron network with one hidden layer, and the parameters in the network are encoded by
quaternionic values.

The numbers of neurons in the input, hidden and output layers are set to M , N and K, respectively.
A set of quaternionic signals denoted by z is input to the neurons in the input layer of the network. The
outputs of the neurons in the input layer are the same as input z’s. In the hidden layer, each neuron
takes the weighted sum of the output signals from the input layer. The (connection) weight from the n-th
neuron in the input layer to the m-th neuron in the hidden layer is denoted by vnm. The output of the
neuron in the hidden layer, denoted by xn, is determined by

xn = g

(
M∑

m=1

vnmzm

)
(19)

where g is a quaternionic activation function introducing non-linearity between the action potential and
output in the neuron. This function satisfies the following condition:

(g(z))∗ = g(z∗) (20)
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Figure 2. The structure of the multilayer perceptron in this paper.
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Processing the neurons’ outputs in the output layer can be defined in the same manner as in the hidden
layer. The output of the neuron in the output layer, yk, is defined as

yk = h

(
N∑

n=1

wknxn

)
(21)

where the function h is a quaternionic activation function from the action potential to the output, and
wkn is the connection weight between the n-th neuron in the hidden layer and the k-th neuron in the
output layer. The function h also satisfies

(h(x))∗ = h(x∗) (22)

The connection weights should be modified by the so-called learning algorithms, in order to obtain
the desired output signals with respect to the input signals. One of the learning algorithms for MLP-type
networks is the error back-propagation (EBP) algorithm. The following section describes our derivation
of this algorithm for the presented network.

3.2. Learning Algorithm

An EBP algorithm works so that the output error, calculated by the neurons’ outputs at the output
layer and the desired output signals, is minimized. In the case of networks with three layers as shown
in Figure 2, the connection weights between the hidden and output layers are first modified, and then
the weights between the input and hidden layers are modified. In general (networks with n layers), EBP
algorithms first modify the connection weights between the n-th layer (the output layer) and (n − 1)-th
layer, and then between the (n− 1)-th layer and the (n− 2)-th layer, etc. This section only describes the
three-layers case.
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First, let dk be a quaternionic desired signal for the k-th output neuron when z’s are input to the
network. The connection weights affect the output signals with respect to a set of input signals, thus the
error E is regarded as a function with arguments wkn’s and w∗

kn’s. The output error E at the time t is
then defined as

E(t) = E (wkn(t),w
∗
kn(t)) =

K∑
k=1

(dk − yk(t)) (dk − yk(t))
∗ (23)

The output error should be real-valued so that it can be minimized.
Suppose that the connection weights are updated at the time (t+ 1) by

wkn(t+ 1) = wkn(t) + ∆wkn (24)

where ∆wkn is a quantity in updating. Then, the output error at the time (t+ 1) can be written as

E(t+ 1) = E (wkn(t+ 1),w∗
kn(t+ 1))

= E (wkn(t),w
∗
kn(t)) +

∑
k,n

∂E

∂wkn∥
∆wkn +

∑
k,n

∂E

∂w∗
kn∥

∆w∗
kn (25)

Note that the local analytic condition in quaternionic domain should be satisfied in calculating the
derivatives. Thus, if we set ∆wkn as

∆wkn = −µ
∂E

∂w∗
kn∥

,

(
i.e., ∆w∗

kn = −µ∗ ∂E

∂wkn∥

)
(26)

where µ is a quaternionic constant, the temporal difference of the output error, ∆E, becomes

∆E = E(t+ 1)− E(t)

=
∑
k,n

∂E

∂wkn∥
∆wkn +

∑
k,n

∂E

∂w∗
kn∥

∆w∗
kn

= −µ
∑
k,n

∂E

∂wkn∥

∂E

∂w∗
kn∥

− µ∗
∑
k,n

∂E

∂w∗
kn∥

∂E

∂wkn∥

= − (µ+ µ∗)
∑
k,n

∣∣∣∣ ∂E

∂wkn∥

∣∣∣∣2
= −2Re(µ)

∑
k,n

∣∣∣∣ ∂E

∂wkn∥

∣∣∣∣2 (27)

If the real part of µ is positive, ∆E ≤ 0 holds. This indicates that the output error would decrease
upon updating weights according to Equations (24) and (26). For calculating the updated quantity
in Equation (26), the component ∂E/∂w∗

kn∥ are expanded by using chain rule of derivative and
∂y/∂w∗

∥ = 0 from the local analytic condition is applied:
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∂E

∂w∗
kn∥

=
∂E

∂y∗
k∥

∂y∗
k

∂w∗
kn∥

+
∂E

∂yk∥

∂yk

∂w∗
kn∥

=
∂E

∂y∗
k∥

∂y∗
k

∂w∗
kn∥

= − (dk − yk)h
′

(
N∑

n=1

w∗
knx

∗
n

)
x∗
n

= δkx
∗
n (28)

where h′ is the (local) derivative of the activation function h, and δk is defined as
−(dk − yk)h

′(
∑N

n=1 w
∗
knx

∗
n).

Similarly, the updates for the connection weights v’s can be deduced. The output error function E is a
function with arguments vnm’s and v∗

nm’s, thus the output error at the time (t+1) can be represented by

E(t+ 1) = E (vnm(t+ 1),v∗
nm(t+ 1))

= E (vnm(t),v
∗
nm(t)) +

∑
n,m

∂E

∂vnm∥
∆vnm +

∑
n,m

∂E

∂v∗
nm∥

∆v∗
nm (29)

Hence, vnm is updated with the quantity ∆vnm,

vnm(t+ 1) = vnm(t) + ∆vnm, (30)

∆vnm = −µ
∂E

∂v∗
nm∥

(31)

This leads to ∆E ≤ 0 under the condition of the real part of µ being positive. The component
∂E/∂v∗

nm∥ can be expanded by chain rules and local analytic conditions, ∂x/∂v∗
∥ = 0, ∂y/∂x∗

∥ = 0, and
∂x/∂v∗

∥ = 0 are applied:

∂E

∂v∗
nm∥

=
K∑
k=1

(
∂E

∂y∗
k∥

∂y∗
k

∂x∗
n∥

∂x∗
n

∂v∗
nm∥

+
∂E

∂y∗
k∥

∂y∗
k

∂xn∥

∂xn

∂v∗
nm∥

+
∂E

∂yk∥

∂yk

∂x∗
n∥

∂x∗
n

∂v∗
nm∥

+
∂E

∂yk∥

∂yk

∂xn∥

∂xn

∂v∗
nm∥

)

=
K∑
k=1

(
∂E

∂y∗
k∥

∂y∗
k

∂x∗
n∥

∂x∗
n

∂v∗
nm∥

)

=
∂x∗

n

∂v∗
nm∥

K∑
k=1

(
∂E

∂y∗
k∥

∂y∗
k

∂x∗
n∥

)

Using the derivatives ∂x∗
n/w

∗
nm∥ = g′(

∑M
m=1 v

∗
nmz

∗
m)z

∗
m, ∂y∗

k/∂x
∗
n∥ = h′(

∑N
n=1 w

∗
knx

∗
n)w

∗
kn, and

∂E/∂y∗
k∥ = −(dk − yk), we finally obtain

∂E

∂v∗
nm∥

=

(
K∑
k=1

δkw
∗
kn

)(
M∑

m=1

v∗
nmz

∗
m

)
z∗
m (32)
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Once a set of network output {yk} is obtained for a set of network input, the output error with respect
to a target set {dk} can be calculated by Equation (23). Then, the connection weights between hidden
and output layers are modified by Equations (24–28). The connection weights between input and hidden
layers are finally modified by Equations (30–32).

3.3. Universal Approximation Capability

As an example of activation functions for neurons (g and h), the quaternionic tanh function [22]
can be used. Other types of activation functions are also available, because complex-valued functions
can be used for the presented network and the properties of several functions have been explored
for the activation functions in [29]. It is important to consider the capability of the proposed
quaternionic network with these activation functions, i.e., whether the proposed network can approximate
given functions.

This concern is known as the universal approximation theorem [31,32]. In the real-valued MLPs with
single hidden layer, the universality has been proven with a so-called sigmoidal function being used as an
activation function of neurons. Other than sigmoidal functions, the bounded and differentiable functions
are also available for activation functions.

This theorem is also discussed in the case of complex-valued networks [29]. The condition for
boundedness in the real-valued MLPs is not required in some complex-valued MLPs. There are three
types of activation functions discussed in [29], which are categorized by the properties of complex-valued
functions, and for each of them, it is shown that universal approximation can be achieved.

The first type of complex-valued functions concerns the functions without any singular points. These
functions can be used as activation functions and the networks with this type of activation functions are
shown as good approximators. Although some of the functions are not bounded, they can be used by
introducing bounding operation for their regions. The second type concerns the functions having the
bounded singular points, e.g., the discontinuous functions. These singularities can be removed and thus
they can also be used for activation functions and can achieve their universality. The last type is for
the functions with the so-called essential singularities, i.e., their singularities cannot be removed. These
functions can also be used as activation functions, with the consideration of restricting the regions for
them so that their regions never cover their singularities.

In the proposed quaternionic MLPs, for example, a quaternionic tanh function can be used as an
activation function. This function is unbounded and may contain several kinds of singularities as in
the case of complex-valued functions described above. Thus this quaternionic MLPs would face the
same problem, i.e., the existence of singularities, but this can also be handled similarly as in the case of
complex-valued MLPs for the removal or avoidance of such singularities. It could be possible to show
the universality with handling singularities for the proposed MLPs according to the ways adopted in the
complex-valued MLPs [29], but it remains as our future work.

4. Conclusions and Discussion

This paper has proposed a multilayer type neural network and an error back-propagation algorithm
for its learning scheme in the quaternionic domain. The neurons in this network adopt locally analytic
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activation functions. The quaternionic functions with local analytic conditions are isomorphic to the
complex functions, thus several activation functions, such as complex-valued tanh function, can be used
extendedly in the quaternionic domain. The Wirtinger calculus, where a quaternion and its conjugate are
treated as independent of each other, makes the derivation of the learning scheme clear and compact.

Analytic conditions for quaternionic functions are derived by defining a complex plane at a
quaternionic point, which is a kind of reduction from quaternionic domain to complex domain. There
exists another type of reduction in quaternionic domains, such as the commutative quaternion, which
is a four-dimensional hypercomplex number system with commutativity in its multiplication [33–36].
A principal property is that a commutative quaternion can be decomposed and represented by two
complex numbers with two linearly independent bases (called the decomposed form by idempotent
bases). Commutative quaternions have been applied to neural networks only in terms of Hopfield-type
network [24], but defining multilayer perceptron type networks can also be straightforward. Thus, it will
be interesting to explore the relationship between commutative quaternion-based networks and networks
with the local analyticity.

Showing the universality of the proposed network is also an important issue. Quaternionic functions,
such as tanh function, may contain several kinds of singularities where the values of functions or their
differentials are not defined in particular regions. In complex-valued networks with fully complex-valued
function [29], the universality of the networks can be shown by dealing with these singularities, so
that such singularities are removed or avoided by restricting the regions. It is expected to show the
universality of the proposed network, in a similar way to the case of complex-valued networks.

Also, it is necessary to investigate the performances of the proposed network, though in this paper the
experimental exploration could not be accomplished. The proposed network is similar to the networks
proposed in [13,14], due to the introduction of local analytic function in quaternionic domain, thus the
performances for both types of networks may have similar tendencies. Performance comparisons can
also be conducted between the proposed network and the ones in [29], because both networks adopt
the same representation in their constructions, i.e., Wirtinger calculus. A wide variety of activation
functions have been investigated including the split-type function, phase-preserving function [37], and
circular-type function [38]. Similar experiments should be conducted for the quaternionic networks.

Application of the presented network to engineering problems is also challenging. The processing
of three or four dimensional vector data, such as color/multi-spectral image processing, predictions for
three-dimensional protein structures, and controls of motion in three-dimensional space, will be the
candidates from now on.
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